Parameterized Complexity of the Workflow Satisfiability Problem

Anders Yeo

Department of Mathematics University of Johannesburg

Joint work with Jason Crampton and Gregory Gutin

July 25, 2012

Outline

2 New Results Overview

イロン イヨン イヨン イヨン

Introduction and Known Results New Results Overview

New Results Overview Outline of proofs Hierarchies

Outline

- 2 New Results Overview
- Outline of proofs
- 4 Hierarchies

イロト イヨト イヨト イヨト

A simple constrained workflow for purchase order processing

We are given a set of users, U, say u_1 =Sheldon Cooper, u_2 =Leonard Hofstadter, u_3 =Howard Wolowitz and u_4 =Rajesh Koothrappali.

A simple constrained workflow for purchase order processing

We are given a set of users, U, say $u_1 =$ Sheldon Cooper, $u_2 =$ Leonard Hofstadter, $u_3 =$ Howard Wolowitz and $u_4 =$ Rajesh Koothrappali.

We are given a set of steps, S, such as the following.

s_1 create purchase order	s ₂ approve purchase order
sign goods received note	<i>s</i> ₄ create payment
s_5 countersign goods received note	<i>s</i> ₆ approve payment

Authorizations and Constraints

We are given a list, A, of who are authorized for which steps, such as $A(s_1) = \{u_1, u_2\}, A(s_2) = \{u_1, u_3, u_4\}, \ldots$

・ロト ・回ト ・ヨト

Authorizations and Constraints

We are given a list, A, of who are authorized for which steps, such as $A(s_1) = \{u_1, u_2\}, A(s_2) = \{u_1, u_3, u_4\}, \ldots$

Finally we are given a set of constraints, (ρ, S_1, S_2) , where $S_1, S_2 \subseteq S$ and ρ is a binary relations.

Authorizations and Constraints

We are given a list, A, of who are authorized for which steps, such as $A(s_1) = \{u_1, u_2\}, A(s_2) = \{u_1, u_3, u_4\}, \ldots$

Finally we are given a set of constraints, (ρ, S_1, S_2) , where $S_1, S_2 \subseteq S$ and ρ is a binary relations.

A constraint is satisfied if there exists $s_1 \in S_1$ and $s_2 \in S_2$, such that $(u(s_1), u(s_2)) \in \rho$, where u(s) is the user assigned to step s.

For example: $(=, \{s_2\}, \{s_1, s_3\})$.

Full example

$$U = \{u_1, u_2, u_3, u_4, u_5\}$$
 and $S = \{s_1, s_2, s_3\}.$

$$A(s_1) = \{u_1, u_2\}, A(s_2) = \{u_1, u_3\} \text{ and } A(s_3) = \{u_1, u_4, u_5\}$$

$$C = \{ (=, \{s_1\}, \{s_2, s_3\}), (\neq, \{s_2\}, \{s_3\}) \}.$$

Is there a solution?

・ロン ・四と ・ヨン ・ヨン

Full example

$$U = \{u_1, u_2, u_3, u_4, u_5\}$$
 and $S = \{s_1, s_2, s_3\}$.

$$A(s_1) = \{u_1, u_2\}, A(s_2) = \{u_1, u_3\} \text{ and } A(s_3) = \{u_1, u_4, u_5\}$$

$$C = \{ (=, \{s_1\}, \{s_2, s_3\}), (\neq, \{s_2\}, \{s_3\}) \}.$$

Is there a solution? YES.

One Solution: u_1 does s_1 , u_1 does step s_2 and u_5 does step s_3 .

Workflow Satisfiability Problem (WSP)

Crampton considered the case where in all constraints (ρ , S_1 , S_2), S_1 and S_2 are singletons (and there were some extra restrictions).

Workflow Satisfiability Problem (WSP)

Crampton considered the case where in all constraints (ρ , S_1 , S_2), S_1 and S_2 are singletons (and there were some extra restrictions).

Wang and Li considered, WSP(ρ^*), which is the case when all constraints (ρ , S_1 , S_2) have the property that S_1 is a singleton and $\rho \in \rho^*$.

Workflow Satisfiability Problem (WSP)

Crampton considered the case where in all constraints (ρ , S_1 , S_2), S_1 and S_2 are singletons (and there were some extra restrictions).

Wang and Li considered, WSP(ρ^*), which is the case when all constraints (ρ , S_1 , S_2) have the property that S_1 is a singleton and $\rho \in \rho^*$.

• WSP(=) is polynomial-time solvable

Workflow Satisfiability Problem (WSP)

Crampton considered the case where in all constraints (ρ , S_1 , S_2), S_1 and S_2 are singletons (and there were some extra restrictions).

Wang and Li considered, WSP(ρ^*), which is the case when all constraints (ρ , S_1 , S_2) have the property that S_1 is a singleton and $\rho \in \rho^*$.

- WSP(=) is polynomial-time solvable
- WSP(≠) is NP-complete even if only type (≠, {s'}, {s''}) constraints are used.

・ロン ・回と ・ヨン ・ヨン

Known Results and Observations

As the problem in NP-hard (even in very simple cases!), Wang and Li considered it from the point og view of FPT.

Known Results and Observations

As the problem in NP-hard (even in very simple cases!), Wang and Li considered it from the point og view of FPT.

k = |S| is small compared with n = |U| and so k-WSP is of interest.

Wang and Li proved the following,

Known Results and Observations

As the problem in NP-hard (even in very simple cases!), Wang and Li considered it from the point og view of FPT.

k = |S| is small compared with n = |U| and so k-WSP is of interest.

Wang and Li proved the following,

• Complexity of
$$k$$
-WSP $(=, \neq)$ is
 $O^*(k^{k+1}(k-1)^{k2^{k-1}}) = O^*(2^{2^k k \log k})$

Known Results and Observations

As the problem in NP-hard (even in very simple cases!), Wang and Li considered it from the point og view of FPT.

k = |S| is small compared with n = |U| and so k-WSP is of interest.

Wang and Li proved the following,

• Complexity of
$$k$$
-WSP $(=, \neq)$ is
 $O^*(k^{k+1}(k-1)^{k2^{k-1}}) = O^*(2^{2^k k \log k})$

• Complexity of k-WSP (\neq) is $O^*(k^{k+1}) = O^*(2^{k \log k})$

Results for Similar Problem

Fellows, Friedrich, Hermelin, Narodytska and Rosamond (IJCAI 2011):

• k-WSP(\neq) with all constraints having only singletons

・ロン ・回 と ・ ヨ と ・ ヨ と

Results for Similar Problem

Fellows, Friedrich, Hermelin, Narodytska and Rosamond (IJCAI 2011):

• k-WSP(\neq) with all constraints having only singletons

• Complexity is $O^*(kk!) = O^*(2^{k \log k})$

4 Hierarchies

Anders Yeo Workflow Satisfiability Problem

イロン イヨン イヨン イヨン

New Results: FPT

Complexity of k-WSP(=, ≠) is O*(2^k) (it was O*(2^{k log k}) for k-WSP(≠)).

イロン イヨン イヨン イヨン

New Results: FPT

Complexity of k-WSP(=, ≠) is O*(2^k) (it was O*(2^{k log k}) for k-WSP(≠)).

• This can be extended to some relations ρ added to =, \neq

・ロン ・回 と ・ ヨ と ・ ヨ と

2

New Results: FPT

Complexity of k-WSP(=, ≠) is O*(2^k) (it was O*(2^{k log k}) for k-WSP(≠)).

• This can be extended to some relations ρ added to =, \neq

• Complexity cannot be decreased to $O^*(2^{o(k)})$ unless ETH fails

・ロン ・回 と ・ ヨ と ・ ヨ と

New Results: Kernels

• If all constraints use only singletons then there exist a kernel with at most k users

イロン 不同と 不同と 不同と

New Results: Kernels

• If all constraints use only singletons then there exist a kernel with at most *k* users

• k-WSP $(=, \neq)$ has no poly-size kernel unless $NP \subseteq coNP/poly$

New Results: Extensions

 If we do not restrict S₁, S₂ in constraints (ρ, S₁, S₂) then the problem is still FPT.

<ロ> (日) (日) (日) (日) (日)

New Results: Extensions

- If we do not restrict S₁, S₂ in constraints (ρ, S₁, S₂) then the problem is still FPT.
- We can add a natural hierarchy and still remain FPT (which will be discussed later).

New Results: Extensions

- If we do not restrict S₁, S₂ in constraints (ρ, S₁, S₂) then the problem is still FPT.
- We can add a natural hierarchy and still remain FPT (which will be discussed later).
- With our hierarchy there will not exists polynomial kernels though (even if all constraints are of the form (≠, {s₁}, {s₂}), unless NP ⊆ coNP/poly.

Outline

2 New Results Overview

4 Hierarchies

Anders Yeo Workflow Satisfiability Problem

イロン イヨン イヨン イヨン

Max Weighted Partition Theorem

Björklund, Husfeldt and Koivisto (SIAM J. Comput., 2009):

イロン 不同と 不同と 不同と

Max Weighted Partition Theorem

Björklund, Husfeldt and Koivisto (SIAM J. Comput., 2009):

An *n*-partition of S is an *n*-tuple (F_1, \ldots, F_n) s.t. $F_1 \cup \cdots \cup F_n = S$ and $F_i \cap F_j = \emptyset$ for all $i \neq j \in [n]$. Some blocks F_i can be empty.

Max Weighted Partition Theorem

Björklund, Husfeldt and Koivisto (SIAM J. Comput., 2009):

An *n*-partition of S is an *n*-tuple (F_1, \ldots, F_n) s.t. $F_1 \cup \cdots \cup F_n = S$ and $F_i \cap F_j = \emptyset$ for all $i \neq j \in [n]$. Some blocks F_i can be empty.

MAX WEIGHTED PARTITION Input: A set S of k elements and n functions ϕ_i , $i \in [n]$, from 2^S to integers from the range [-M, M] $(M \ge 1)$. Output: An n-partition (F_1, \ldots, F_n) of S that maximizes $\sum_{i=1}^n \phi_i(F_i)$.

Max Weighted Partition Theorem

Björklund, Husfeldt and Koivisto (SIAM J. Comput., 2009):

An *n*-partition of S is an *n*-tuple (F_1, \ldots, F_n) s.t. $F_1 \cup \cdots \cup F_n = S$ and $F_i \cap F_j = \emptyset$ for all $i \neq j \in [n]$. Some blocks F_i can be empty.

MAX WEIGHTED PARTITION Input: A set S of k elements and n functions ϕ_i , $i \in [n]$, from 2^S to integers from the range [-M, M] $(M \ge 1)$. Output: An n-partition (F_1, \ldots, F_n) of S that maximizes $\sum_{i=1}^n \phi_i(F_i)$.

Theorem

MAX WEIGHTED PARTITION can be solved in time $\tilde{O}(2^k n^2 M)$.

$O^*(2^k)$ for k-WSP(=, \neq): Ideas

• Partition S into blocks, each of which is allocated to a single (authorized) user.

イロト イヨト イヨト イヨト

$O^*(2^k)$ for k-WSP(=, \neq): Ideas

- Partition S into blocks, each of which is allocated to a single (authorized) user.
- Find a partition in which each user is authorized to perform all steps in the block to which he/she is assigned.

$O^*(2^k)$ for k-WSP(=, \neq): Ideas

- Partition S into blocks, each of which is allocated to a single (authorized) user.
- Find a partition in which each user is authorized to perform all steps in the block to which he/she is assigned.

We have constraints (\neq, S_1, S_2) and $(=, S'_1, S'_2)$, where S_1 and S'_1 are singletons. Then $F \subseteq S$ cannot be a block if

$O^*(2^k)$ for k-WSP(=, \neq): Ideas

- Partition S into blocks, each of which is allocated to a single (authorized) user.
- Find a partition in which each user is authorized to perform all steps in the block to which he/she is assigned.

We have constraints (\neq, S_1, S_2) and $(=, S'_1, S'_2)$, where S_1 and S'_1 are singletons. Then $F \subseteq S$ cannot be a block if

•
$$F \supseteq S_1 \cup S_2$$
 or

$O^*(2^k)$ for k-WSP(=, \neq): Ideas

- Partition S into blocks, each of which is allocated to a single (authorized) user.
- Find a partition in which each user is authorized to perform all steps in the block to which he/she is assigned.

We have constraints (\neq, S_1, S_2) and $(=, S'_1, S'_2)$, where S_1 and S'_1 are singletons. Then $F \subseteq S$ cannot be a block if

•
$$F \supseteq S_1 \cup S_2$$
 or

•
$$F \cap (S'_1 \cup S'_2) = S'_i$$
, for some $i \in [2]$.

$O^*(2^k)$ for k-WSP(=, \neq): New Result

 For each F ⊆ S, φ_i(F) = 1 if F = Ø or F can be a block and u_i ∈ A(s_j), for all s_j ∈ F.

・ロン ・回と ・ヨン ・ヨン

$O^*(2^k)$ for k-WSP(=, \neq): New Result

- For each F ⊆ S, φ_i(F) = 1 if F = Ø or F can be a block and u_i ∈ A(s_j), for all s_j ∈ F.
- Otherwise, $\phi_i(F) = 0$

・ロン ・回と ・ヨン ・ヨン

$O^*(2^k)$ for k-WSP(=, \neq): New Result

- For each F ⊆ S, φ_i(F) = 1 if F = Ø or F can be a block and u_i ∈ A(s_j), for all s_j ∈ F.
- Otherwise, $\phi_i(F) = 0$

・ロン ・回と ・ヨン ・ヨン

$O^*(2^k)$ for k-WSP(=, \neq): New Result

- For each F ⊆ S, φ_i(F) = 1 if F = Ø or F can be a block and u_i ∈ A(s_j), for all s_j ∈ F.
- Otherwise, $\phi_i(F) = 0$
- Using the Max Weighted Partition Theorem decide: is there a partition of weight *n*?

Lower Bound for k-WSP(=, \neq): NAE-3-Sat

Not-All-Equal-3-Sat (NAE-3-Sat)

Input: A 3-CNF formula ϕ .

Output: Decide whether there is a truth assignment s.t. in every clause of ϕ at least one literal in TRUE and one is FALSE.

・ロト ・同ト ・ヨト ・ヨト

Lower Bound for k-WSP(=, \neq): NAE-3-Sat

Not-All-Equal-3-Sat (NAE-3-Sat)

Input: A 3-CNF formula ϕ .

Output: Decide whether there is a truth assignment s.t. in every clause of ϕ at least one literal in TRUE and one is FALSE.

Lemma

Assuming ETH, there is $\epsilon > 0$ s.t. NAE-3-SAT with n variables cannot be solved in time $O(2^{\epsilon n})$.

Lower Bound for k-WSP(=, \neq): NAE-3-Sat

Not-All-Equal-3-Sat (NAE-3-Sat)

Input: A 3-CNF formula ϕ .

Output: Decide whether there is a truth assignment s.t. in every clause of ϕ at least one literal in TRUE and one is FALSE.

Lemma

Assuming ETH, there is $\epsilon > 0$ s.t. NAE-3-SAT with n variables cannot be solved in time $O(2^{\epsilon n})$.

Theorem

Even if n = 2, k-WSP(\neq) cannot be solved in time $O^*(2^{\epsilon k})$ for some $\epsilon > 0$ unless ETH fails.

Lower Bound for k-WSP(=, \neq): Using NAE-3-Sat

Theorem

Even if n = 2, k-WSP(\neq) cannot be solved in time $O^*(2^{\epsilon k})$ for some real $\epsilon > 0$ unless ETH fails.

Lower Bound for k-WSP($=, \neq$): Using NAE-3-Sat

Theorem

Even if n = 2, k-WSP(\neq) cannot be solved in time $O^*(2^{\epsilon k})$ for some real $\epsilon > 0$ unless ETH fails.

• instance of NAE-3-Sat with variables x_1, \ldots, x_t .

Lower Bound for k-WSP($=, \neq$): Using NAE-3-Sat

Theorem

Even if n = 2, k-WSP(\neq) cannot be solved in time $O^*(2^{\epsilon k})$ for some real $\epsilon > 0$ unless ETH fails.

- instance of NAE-3-Sat with variables x_1, \ldots, x_t .
- set $s_i := x_i$, $s_{t+i} := \overline{x}_i$ and k := 2t
- add constraint (\neq, s_i, s_{t+i})

Lower Bound for k-WSP($=, \neq$): Using NAE-3-Sat

Theorem

Even if n = 2, k-WSP(\neq) cannot be solved in time $O^*(2^{\epsilon k})$ for some real $\epsilon > 0$ unless ETH fails.

- instance of NAE-3-Sat with variables x_1, \ldots, x_t .
- set $s_i := x_i$, $s_{t+i} := \overline{x}_i$ and k := 2t
- add constraint (\neq, s_i, s_{t+i})
- for a clause with literals s_i, s_j, s_q we add constraint $(\neq, s_i, \{s_j, s_q\})$

Lower Bound for k-WSP($=, \neq$): Using NAE-3-Sat

Theorem

Even if n = 2, k-WSP(\neq) cannot be solved in time $O^*(2^{\epsilon k})$ for some real $\epsilon > 0$ unless ETH fails.

- instance of NAE-3-Sat with variables x_1, \ldots, x_t .
- set $s_i := x_i$, $s_{t+i} := \overline{x}_i$ and k := 2t
- add constraint (\neq, s_i, s_{t+i})
- for a clause with literals s_i, s_j, s_q we add constraint $(\neq, s_i, \{s_j, s_q\})$
- USER1=TRUE, USER2=FALSE

・ロト ・回ト ・ヨト ・ヨト

Outline

2 New Results Overview

Outline of proofs

・ロ・ ・ 日・ ・ 日・ ・ 日・

Organizational Hierarchies: Definitions

• Let (X_1, \ldots, X_p) and (Y_1, \ldots, Y_q) be *p*- and *q*-partitions of the same set.

イロン イヨン イヨン イヨン

2

Organizational Hierarchies: Definitions

Let (X₁,..., X_p) and (Y₁,... Y_q) be p- and q-partitions of the same set. We say that (Y₁,... Y_q) is a *refinement* of (X₁,..., X_p) if for each i ∈ [q] there exists j ∈ [p] s.t. Y_i ⊆ X_j.

Organizational Hierarchies: Definitions

- Let (X₁,..., X_p) and (Y₁,...Y_q) be p- and q-partitions of the same set. We say that (Y₁,...Y_q) is a *refinement* of (X₁,..., X_p) if for each i ∈ [q] there exists j ∈ [p] s.t. Y_i ⊆ X_j.
- Let U be the set of users in an organization. An organizational ℓ-hierarchy is a collection of ℓ partitions of U, *H* = U⁽¹⁾,..., U^(ℓ), where U⁽ⁱ⁾ is a refinement of U⁽ⁱ⁺¹⁾.

・ロン ・回と ・ヨン・

Organizational Hierarchies: Definitions

- Let (X₁,..., X_p) and (Y₁,...Y_q) be p- and q-partitions of the same set. We say that (Y₁,...Y_q) is a *refinement* of (X₁,..., X_p) if for each i ∈ [q] there exists j ∈ [p] s.t. Y_i ⊆ X_j.
- Let U be the set of users in an organization. An organizational ℓ-hierarchy is a collection of ℓ partitions of U, *H* = U⁽¹⁾,..., U^(ℓ), where U⁽ⁱ⁾ is a refinement of U⁽ⁱ⁺¹⁾.
- We say \mathcal{H} is *canonical* if it satisfies the following:
 - $U^{(i)} \neq U^{(i+1)};$
 - $U^{(\ell)}$ is a 1-partition containing the set U;
 - $U^{(1)}$ is an *n*-partition containing every singleton from U.

・ロン ・回 とくほど ・ ほとう

Organizational Hierarchies: Theorem

• $u_p \sim_i u_q$ iff $u_p, u_q \in$ same block of $U^{(i)}$

・ロン ・回と ・ヨン・

Organizational Hierarchies: Theorem

- $u_p \sim_i u_q$ iff $u_p, u_q \in$ same block of $U^{(i)}$
- $u_p \not\sim_i u_q$ iff $u_p, u_q \in$ different blocks of $U^{(i)}$

< 🗗 🕨

A B K A B K

Organizational Hierarchies: Theorem

- $u_p \sim_i u_q$ iff $u_p, u_q \in$ same block of $U^{(i)}$
- $u_p \not\sim_i u_q$ iff $u_p, u_q \in$ different blocks of $U^{(i)}$

Theorem

Given a canonical organizational ℓ -hierarchy, k-WSP($\sim_1, \not\sim_1, \ldots, \sim_{\ell}, \not\sim_{\ell}$) can be solved in time $O^*(3^k)$.

Organizational Hierarchies: Theorem

- $u_p \sim_i u_q$ iff $u_p, u_q \in$ same block of $U^{(i)}$
- $u_p \not\sim_i u_q$ iff $u_p, u_q \in$ different blocks of $U^{(i)}$

Theorem

Given a canonical organizational ℓ -hierarchy, k-WSP($\sim_1, \neq_1, \ldots, \sim_{\ell}, \neq_{\ell}$) can be solved in time $O^*(3^k)$.

Theorem

Given a canonical organizational 3-hierarchy, k-WSP($\sim_1, \neq_1, \ldots, \sim_3, \neq_3$) has no polynomial kernel unless NP \subseteq coNP/poly (even if all constraints only contain singletons).

The End

- Thank you!
- Questions?

・ロン ・回 と ・ ヨン ・ ヨン