

APAC Applications of Parameterized 2012 Algorithms and Complexity

Uncovering Latent Relationships in High Dimensional Data with High Performance Parameterized Algorithms: A Smorgasbord of Applications

Mike Langston

Professor

Department of Electrical Engineering and Computer Science University of Tennessee USA

8 July 2012

Some Thoughts on What, Really, is an "Application"

A Few Relevant Algorithms and Implementations

A Smorgasbord or Mélange of Applications

Some Ongoing Work

Some Thoughts on What, Really, is an "Application"

A Few Relevant Algorithms and Implementations

A Smorgasbord or Mélange of Applications

Some Ongoing Work

I would propose that there are at least three levels.

I would propose that there are at least three levels.

I would propose that there are at least three levels.

Some Thoughts on What, Really, is an "Application"

A Few Relevant Algorithms and Implementations

A Smorgasbord or Mélange of Applications

Some Ongoing Work

Everyone's Favorite: Vertex Cover

Everyone's Favorite: Vertex Cover

- Most widely studied FPT problem
- Dual to maximum clique
- Window to biclique, paraclique, etc
- Also to maximal clique and assorted enumerations
- Meld notions of FPT and graph coloring

Everyone's Favorite: Vertex Cover

- Most widely studied FPT problem
- Dual to maximum clique
- Window to biclique, paraclique, etc
- Also to maximal clique and assorted enumerations
- Meld notions of FPT and graph coloring
- The damn thing simply will not go away

Nonblocker aka Dominated Set

Nonblocker aka Dominated Set

- Second best known FPT problem?
- Dual to dominating set
- A bit misunderstood but highly useful
- We employ nonplanar red/blue dominating set
- Optimization lags well behind vertex cover

A Few Algorithms and Implementations

Cluster Edit

Cluster Edit

- Another handy FPT problem
- Peter Damaschke, and several here, have worked on generalizations and restrictions
- Frank Dehne, yours truly, others have had students work on implementations

Cluster Edit

- Another handy FPT problem
- Peter Damaschke, and several here, have worked on generalizations and restrictions
- Frank Dehne, yours truly, others have had students work on implementations
- Not monotonic
- Can lack applications fidelity without tweaks

A Few Algorithms and Implementations

Supercomputers: Kraken, an ORNL-UT Cray XT5 system

- 10⁵ processor cores with distributed memory
- roughly 10¹² calculations per second (a petaflop)
- until recently the world's most powerful computer for open science
- now moving to Jaguar then Titan

NERSC & XSEDE (formerly the TeraGrid)

Serendipity: Keller's Conjecture Resolved

A Few Algorithms and Implementations

Some Thoughts on What, Really, is an "Application"

A Few Relevant Algorithms and Implementations

A Smorgasbord or Mélange of Applications

Some Ongoing Work

Meta-Application: Co-Expression Analysis

Clustering Algorithms Ranked by Quartile Comparisons

		Small (3-10 genes)		Medium (11-100 genes)		Large (101-1000 genes)	
Clustering Method	Average Quartile	Quartile	BAT5 Jaccard	Quartile	BAT5 Jaccard	Quartile	BAT5 Jaccard
K-Clique Communities	1.00	1	0.7531	1	0.4465	1	0.4915
Maximal Clique	1.00	1	0.8433	1	0.4081		0.0000
Paraclique	1.00	1	0.7576	1	0.4285	1	0.4169
Ward (H)	1.33	2	0.5782	1	0.4011	1	0.5723
CAST	1.67	1	0.7455	3	0.3146	1	0.4994
QT Clust	2.00	2	0.5473	2	0.3670	2	0.3944
Complete (H)	2.33	3	0.3933	2	0.3677	2	0.3419
NNN	2.67	2	0.5521	2	0.3705	4	0.2406
K-Means	3.00	4	0.2573	3	0.3015	2	0.3463
SOM	3.00	4	0.3260	2	0.3286	3	0.3282
WGCNA	3.00	3	0.4391	3	0.3106	3	0.2949
Average (H)	3.33	3	0.4087	4	0.2792	3	0.3037
McQuitty (H)	3.33	3	0.4594	3	0.3065	4	0.2868
SAMBA	3.50		0.0000	4	0.1860	3	0.3298
CLICK	4.00	4	0.0339	4	0.1453	4	0.2817

APAC

2012

Application: Allergic Rhinitis

Data Description

- Mikael Benson, Göteborg, Sweden, 56 patients and 39 controls
- Affymetrix HU133 arrays
- roughly 33,000 genes (~1B interactions)
- nasal secretions, lymphocytes, skin
- hay fever, eczema

Preprocessing

- MAS5.0
- log transformed
- replicates averaged
- centered around zero with z scores
- probesets with consistently low expression levels removed

Threshold Selection

- spectral graph theory used to set and balance graph densities
- AFFX spots retained for quality control

Application: Allergic Rhinitis

Clique profiles using the five most highly represented genes:

Cor	ntrol	Patient			
Gene Symbol	Clique membership	Gene Symbol	Clique membership		
UBE1C	29%	FGFR2	66%		
RANBP6	27%	NFIB	65%		
DKFZP5640123	26%	PPL	64%		
SLC25A13	24%	FGFR3	64%		
GTPBP4	21%	CDH3	56%		

ribosomal or RNA-related

T-lymphocytes or epithelial cells

Applied differential screens, then chromatin immunoprecipitation Sample Result: Discovered a novel and key role for *ITK* (IL2-inducible T-cell kinase)

Application: Prostate Cancer

Data Inhomogeniety

- Pablo Moscato, Uni Newcastle, Australia
- huge problem without model organisms
- no recombinant inbred human populations
- tumors and other diseases are often not uniform

Creative Use of Graph Algorithms

- perform multiple data views
- drive correlations with both persons and genes
- exclude outliers and separate subtypes
- perform differential analysis to distill gene differences

2012

APAC

Application: Prostate Cancer

Ornal

2012

Application, **Data Integration**

Diverse Sets of Oceanographic Data

Spatial analysis via paraclique supports the North Sea flushing rate

2012

Application, **Social Disparities**

Sample Gulf Coast Analysis: Mortality Quadrants circa 2005

Application, Social Disparities

Hurricane Katrina's impact on minority populations, as measured by mortality, morbidity and displacement

 $score(gene_i) = |m_{classA} - m_{classB}| - |\sigma_{classA} + \sigma_{classB}|$

Followed by bipartite graph construction, edge weighting, thresholding, and application of nonplanar red/blue dominating set.

ALAN TURINGYEAR

2012

Some Thoughts on What, Really, is an "Application"

A Few Relevant Algorithms and Implementations

A Smorgasbord or Mélange of Applications

Some Ongoing Work

Some Ongoing Work

Comparison graphs. Graphs are compared, on enormous scales, to detect anomalies and extract path, subgraph and other topological differences.

Time series or dynamic graphs. We perform differential analysis to determine how correlate relationships change over time and possibly space.

Noisy graphs. We use fuzzy clustering, soft and/or spectral thresholding, and other techniques to mitigate noise and see past its effects.

Graphs with repeated patterns. Motifs are identified in large and sometimes dynamic graphs. We employ maximum common subgraph and special cases of subgraph isomorphism.

Multivariate graphs. We have built libraries of algorithms to analyze graphs that represent heterogeneous data. Our methods frequently proceed with the use of multi-partite and other special graph classes.

Metagraphs. Also known as networks of networks, data is analyzed at multiple levels of granularity. A typical example is the use of clique intersection graphs to coarsen topological network data.

The Langston Lab

Computer Science, Mathematics, Molecular Biology, Statistics

ELECTRICAL ENGINEERING & COMPUTER SCIENCE UNIVERSITY OF TENNESSEE

