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About this presentation 

• New algorithmic graph algorithms needed for 
bio-molecule structure prediction 

– Involving graphs of small tree width 

– Parameterized computation 

– Engineering parameters 

– New applications for FPT framework 



Outline  

• Background 

• Optimal subgraph isomorphism from k-trees 

• Maximum spanning k-tree 

• Additional applications 



Background  

Single strand DNA 
Transcribed to non-coding RNA sequence 

Folded into 
3D structure 
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Background  





• Tertiary structure: 

– Less understood non-
canonical interactions 

– Only a small number of 
resolved structures 

 

• Secondary structure: 

– (Well understood) canonical 
base pairs 

– Scaffolding tertiary structure 

– Well studied  

Background  



Background 

• Modeling structure with graphs 

 To characterize interaction relationships  
between elements (e.g., residues) on the 
sequence (i.e., interaction topology) 

 

• Need to model interactions: 
– Neighboring element connections through  

 backbone chaining 

– Spatial contacts through energy potentials 

– Simplifications: pair-wise, non-geometric 



Background 

• Each topological structure of a molecule is 
modeled with backbone graph [Song et al, 2006]  

 

 

– V: vertices for elements (often residues) 

– D: directed edges only for backbone connections 

– A: non-directed edges for spatial contacts 

 

 D forms exactly a Hamiltonian path 



Background 

• A backbone graph example 

Backbone graph for tRNA tertiary structure (after residues are grouped) 



Background 

• Backbone graphs for bio-molecule structures 
are of small tree width.   

Tree width distribution of backbone  
graphs of 515 RNA resolved tertiary  
structures from PDB/NDB 

Similar distributions hold for backbone graphs formulated with residues as 
vertices, and for 6,000+ protein tertiary structures. 



Background 

• Structure prediction from molecule sequences 
1. Template based methods 

– number of structures is a small fraction of number of 
sequences 

– cannot predict new structures 

 

 
Backbone  
graph modeling 

Comparison 
alignment 



Background 

• Structure prediction from molecule sequences 
1. Template based methods 

 

 

comparison 
alignment 

preprocessed 

subgraph 
isomorphism 



Background 

• Structure prediction from molecule sequences 
1. Template based methods 

 

 

subgraph 
isomorphism 



Background 

• Structure prediction from molecule sequences 
2.   ab initio (de novo) methods 

– Prediction based on only the given sequence 

– Potentially can predict new structures 

 

 
preprocessed 

Extract the most 
plausible interaction 
topology 

geometric fitting and 
shape refinement 



Background 

• Structure prediction from molecule sequences 
2. ab initio (de novo) methods 

 

 

 

Finding an optimal  
spanning k-tree as  
the most plausible 
Interaction topology 



Background 

• OSGI: 

 

 

 

 

• MSkT: 



Subgraph isomorphism from k-trees  

• k-tree, tree width, and tree decomposition are 
fundamental notions in coping with graph 
algorithm efficiency: 

 

 e.g., Courcelle’s theorem [Courcelle, 1990]: 

 Monadic second order (MSO)-logic definable 
problems admit                 -time algorithms on graphs 
of tree width ≤ k 

 

 



Subgraph isomorphism from k-trees  

• The theorem also includes: subgraph isomorphism 
from fixed source H of tree width ≤ k to host G can 
be solved in time  

  

 There have been several lines of research 
extending this result for subgraph isomorphism. 



Subgraph isomorphism from k-trees  

• H is fixed, while G is planar:  

  solvable in linear time [Eppstein , 1999] 

• H has bounded degree but not fixed, while G has 
tree width ≤ k: 

  solvable in time                         [Matousek and  
Thomas, 1992, Arnborg and Proskurowski, 1989] 

• H is k-connected and a partial k-tree while G is 
another partial k-tree:   

  solvable in time               d [Dessmark et al, 1999]               

 

 



Subgraph isomorphism from k-trees  

 

• Our OSGI problem is to find an optimal subgraph 
isomorphism from a backbone partial k-tree H to 
an arbitrary G.  

 

 

 



Subgraph isomorphism from k-trees  

• A subgraph isomorphism mapping f requires  

  injection:   

     structure preserving:  

 

 

• Using a tree decomposition for H, structure 
preserving can be checked along with a dynamic 
programming. 

 

 

 

 



Subgraph isomorphism from k-trees  

 

• With the Hamiltonian path constraint, the 
injection mapping property  

 

 can be checked along with the dynamic 
programming.  

 

 Proof by induction on the backbone distance 
between u and v. 

  

 



Subgraph isomorphism from k-trees  

 

• OSGI from backbone partial k-tree can be solved 
in time                     f  for some small integer c > 0 
[Song et al, 2006] 

 

 

 



Subgraph isomorphism from k-trees 

• Backbone does not reduce the parameterized 
complexity of the problem. 

 W[1]-hard, by a reduction from k-clique 



Subgraph isomorphism from k-trees 

• Additional engineering parameterization on 
the OSGI, with given candidate sets 

 

 

 

  

 and bounded map-width m.  

 



Subgraph isomorphism from k-trees 

• OSGI problem, parameterized with k of (k-
tree) and map width m, is solvable in time 

 

for some constant c and polynomial p.  

 by following the result of Song et al, [2005]. 



Subgraph isomorphism from k-trees 

• An alternative approach to the OSGI problem 

 

Is there a way for “non-MSO-definable” problems, 
such as subgraph isomorphism, to be redefined as 
(transformed to) MSO-definable sets over graphs 
of small tree width? 

 



Subgraph isomorphism from k-trees 

• An alternative approach to the OSGI problem 

 E.g., subgraph isomorphism from H to G 
conveniently corresponds to a size |VH| clique 
over the product graph H x G , in which 

 

  

 



Subgraph isomorphism from k-trees 

• Any clique would have to satisfy all conditions 
set for edges in E.  

 But for SGI over backbone graphs, all conditions 
can be checked locally, we only need to focus on 
induced subgraph by each tree bag.  

  

• Thus, the dense induced product subgraph may 
be replaced with a graph of smaller tree width. 

 



Subgraph isomorphism from k-trees 

• Edge ([1, 4], [2, 8]) represented by the 
independent set involving 2log |VG| + 1 vertices 

 



Subgraph isomorphism from k-trees 

• The transformed product graph has tree width 
≤O((k+1)log|VG|) instead of (k+1)|VG|. 

 

 

 



Maximum spanning k-trees 

• Problem definition (MSkT) 

 



Maximum spanning k-trees 

• Finding maximum spanning (partial) k-trees 
from a given graph, 

• K=1, the same as minimum spanning tree  

• NP-hard even for k=2 [Bern 1987] 

 



Maximum spanning k-trees 

• Remain NP-hard for many classes of restricted 
graphs [Leizhen Cai and Maffray 1993] 

– graphs of degree ≤ 3k + 2 

– planar graphs 

– split graphs 

 



Background 

• What type of graphs allow efficient 
algorithms for determining spanning k-tree?  

– Decision problem on split-comparability graphs 
[Leizhen Cai and Maffray, 1993] 

– Not applicable to the optimization problem MSkT 



Maximum spanning k-trees 

• MSkT over backbone graphs can be solved in 
time                     [Samad and Cai, 2012] 

• It is not known if the efficiency can be further 
improved or it is W[1]-hard. 



Maximum spanning k-trees 

• The algorithm is dynamic programming, taking 
advantage of a number properties of MSkT on 
backbone graph.  

• Properties are about child-parent 
relationships of (k+1)-cliques in a k-tree (in 
some ordering) 

 



Maximum spanning k-trees 

• Main Property: 

 if 

 then either all or none of       

             are in the subtree rooted at a single child 
(k+1)-clique of     . 

 

 

 



Maximum spanning k-trees 

• Theorem: Any (k+1)-clique in a k-tree has at 
most (k+2) children. 

  

• For dynamic programming, we use a canonical 
form of a (k+1)-clique sequence in a k-tree, 
such that each (k+1)-clique has at most two 
children. 



Maximum spanning k-trees 

• For every (k+1)-clique    and every importable 
set      , we compute the maximum spanning 
sub k-tree rooted at     of     .  

 

 



Maximum spanning k-trees 

• The DP table has dimensions 

 Each entry requires a factor of time                         

    for checking all x’s and y’s 

 Each entry needs an additional factor of 

   for  enumerating  

 

 



Maximum spanning k-trees 

• We do not know yet where MSkT stands in the 
W-hierarchy, though 

 we suspect that it is at least W[1]-hard 
because 

 using O(klog n) amount of nondeterminism to 
guess does not seem to solve the problem. 



Maximum spanning k-trees 

• Regardless where MSkT stands in the W-
hierarchy, the time complexity                     is 
too high; 

• Is Maximum spanning k-path (MSkP) easier? 
e.g., solvable in time                       or better?   



Maximum spanning k-trees 

• If so, how about restricting the number of 
branches in the desired k-tree? (biologically 
still meaningful)      

• Are there other engineering parameters 
making the computation problems easier?         



Applications of MSkT solvers 

1. Bio-molecule folding  

– ab initio structure prediction from single sequence 

 

• A complete graph can be formulated from a given  
molecule sequence, with edge weights for 
potentials of interactions between residues 

• Parameter value for k is chosen 

• MSkT answer gives a most plausible topological 
graph based on interaction potentials 

 



Applications of MSkT solvers 

1. Bio-molecule folding  

Note: the result of MSkT is not geometrical 
structure. 

 

• Incorporating geometric constraints into 
interaction potentials (non-pairwise, however) 

 

• From topology to geometry 



Applications of MSkT solvers 

1. Bio-molecule folding  

 Geometric modeling 

–  k=2, modeling (k+1)-cliques with triangles 

–   suitable for secondary structure prediction  



Applications of MSkT solvers 
1. Bio-molecule folding (k=2, n=10) 
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Applications of MSkT solvers 
1. Bio-molecule folding (k=2, n=10) 
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Applications of MSkT solvers 

1. Bio-molecule folding  

 Geometric modeling 

–  k=3, modeling (k+1)-cliques with tetrahedrons 

–   can capture most tertiary structures  



Applications of MSkT solvers 

1. Bio-molecule folding (k=3, n=9) 
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Applications of MSkT solvers 

1. Bio-molecule folding (k=3, n=9) 
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Applications of MSkT solvers 

2.   Formal language theory  

Languages 
recognized 

Parsing process Grammar rules 

CYK algorithm Context-free Tree  Context-free 
rules 

Our algorithm Mildly context-
sensitive 

k-tree Mildly context-
sensitive rules? 

applications molecule 
sequences 

Molecule 
structures 
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S 

S 

S 

S  aSu   L  aL 

S  uSa L  cL 

S  gSc  L  a 

S  cSg L  c 

S  L 

  

• Each derivation tree corresponds to a structure. 

Applications of MSkT solvers 
•  Stochastic Context-free Grammars (SCFGs) 

L 

L 

L 

L 

[Lari and Young’90, Sakakibara et al’94] 



S  aSu 

S  cSg 

S  gSc 

S  uSa 

S  a 

S  c 

S  g 

S  u 

S  SS 

 

 

1. A CFG 

S  aSu 

    acSgu 

    accSggu 

    accuSaggu 

    accuSSaggu 

    accugScSaggu 

    accuggSccSaggu 

    accuggaccSaggu  

    accuggacccSgaggu 

    accuggacccuSagaggu 

    accuggacccuuagaggu 

2. A derivation of “accuggacccuuagaggu” 3. Corresponding structure   

Applications of MSkT solvers 



Applications of MSkT solvers 

3. DNA nanotechnology 

 Using DNA base pairs as basic construct to build 
complex with precisely controlled nanoscale 
features.  

 



Applications of MSkT solvers 

3. DNA nanotechnology 

  

 

 

 

 

  

Can efficient algorithms for  
MSkT problem (and/or alike) serve  
critical  roles  for investigating  
DNA nanotechnology ? 



Conclusion 

• Introduced two types of parameterized 
computation problems on backbone graphs 
involving k-trees, 

• Motivated by bio-molecule folding, 

• Additional applications in formal language 
theory and DNA nanotechnology, 

• Open problems, in particular, further 
engineering parameters for efficiency 
improvement. 
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