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Summary

In behavioural ecology, stochastic dynamic programming may be used as a
general method for calculating animals’ optimal behavioural policies. But how
might the animals themselves learn optimal policies from their experience? The
aim of the thesis is to give a systematic analysis of possible computational
methods of learning efficient behaviour.

First, it is argued that it does follow from the optimality assumption that
animals should learn optimal policies, even though they may not always follow
them. Next, it is argued that Markov decision processes are a general formal
model of an animal’s behavioural choices in its environment. The conventional
methods of determining optimal policies by dynamic programming are then
described. It is not plausible that animals carry out calculations of this type.

However, there is a range of alternative methods of organising the
dynamic programming calculation, in ways that are plausible computational
models of animal leaing. In particular, there is an incremental Monte-Carlo
method that enables the optimal values ( or ‘canonical costs’) of actions to be
learned directly, without any requirement for the animal to model its environ-
ment, or to remember situations and actions for more than a short period of
time. A proof is given that this learning method works. Learning methods of
this type are also possible for hierarchical policies. Previously suggested leamn-
ing methods are reviewed, and some even simpler learning methods are
presented without proof. Demonstration implementations of some of the learn-

ing methods are described.




Corrigenda

Page 90, lines 13-21 should be replaced by:
Note that
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A learning method can be implemented by, at each time step, adding appropnaue fractions of the
current prediction difference to previously visited states.

Page 91, insert after line 16:
The total change in U(x) that results from a visit to x at time ¢ is
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Note that [C(x,0)| < 1 3\. for all x and r. If U is exactly correct, then the average value of the

first term on the RHSabovewﬂlbezcm, however, if there is any error in U, then the second
term on the RHS above will become negligible for sufficiently small o

Page 98, in line 21:
‘Michie (1967)' should be deleted; ‘Widrow et al (1972)° should be replaced by
‘Widrow et al (1973)’.

Page 227, lines 7 to 13 should be replaced by:
Sufficient conditions are that:
. For each observation, x, a, and o may be chosen with knowledge of previous observations,
but 7 and y are sampled, independently of other observations, from a joint distribution that
depends only on x and a.

. For all x and a, the rewards should have finite mean and finite variance.

“ For each state-action pair x, a, the subsequence of leaming factors for observations of the
form [ x a y, r, ] is monotonically decreasing, tends to zero, and sums to infinity.

Page 228, replace lines 14 to 23 by:
between each value of n in the sequence.

To show this, consider the subsequence of observations in which action a is performed in
state x. Let the index of the ith observation in this subsequence have index m; in the main
sequence of observations. The replay probabilities when performing a in state <x,m;> in the ARP
may be written explicitly as follows. Let f;, be the probability that the m,th observation will be
replayed when action a is performed in <x,m;>. Then

Bis = 0 for s>i
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That is, if d(<x,n">,a) — d(<x,n>,a) = D then if action a is performed in <x,n’> then the probabil-
ity that the observation replayed has index less than n is less than 1—e™2.

Hence, the depth construction given previously on page 228 shows that, for any chosen
number of replays k and any chosen value € of the learning factor and for any small probability 8,
it is possible to choose a level n in the ARP so large that, starting at any state <x,n> and follow-
ing any sequence of actions, the number of replays will be greater than k and the maximal value
of a encountered during any of the first k replayed moves will be less than g, with probability
greater than 1-8. k and 8 may be chosen so that the expected k-step truncated returns of the ARP
are as close as desired to the expected returns of the ARP,

It remains to show that the transition probabilities and expected rewards in the ARP con-
verge to those of the RP. There is a delicate problem here: the ARP is constructed from a
sequence of observations, and some observation sequences will be unrepresentative samples.
Furthermore, x, , a,, and a, may all be chosen with knowledge of the previous observations 1
to n—1. So to give a convergence result, it is necessary to regard the observed rewards and transi-
tions as random variables, and to argue that, for any RP, the transition probabilities and expected
rewards in the ARP will converge to those in the RP with probability 1, the probability being
taken over the set of possible sequences of observations for each state action pair.

Consider once more the subsequence of observations of action a in state x, and let the ith
observation in this subsequence be observation m; in the main sequence, and let R; be the random
variable denoting the reward observed on this m;th observation. Let the states be numbered from
1to S, and let T! , ..., Tf be random variables such that if the observed destination state at the
mth observation is the kth state, then Tf = 1 and T/ = 0 for j # k. Note that E[ T ] = P, (a) and
E[R; ] = p(x,a) for all i.

The expected reward and the transition probabilities in the ARP (which are now random vari-
ables, since they depend on the observation sequence) are:

i
PW(Q" m>,a) = z ﬁl’..r R;
12=0
and :
!qu.'-‘Jf.J(a) = 2B, T
=0
Note that E[ p**’(<x, m>,a)]=p(x,a) and E[ P s, .5(@) 1=Py(a), and observe that
max {B;,} = 0 as i — o, Since, by hypothesis, the means and variances of all rewards are
&
finite, and the Tf are bounded, the strong law of large numbers implies that as i —» oo,
p**P(<x, m>,a) - p(xa) and P’ o (@) > P,(a), both with probability 1. Since there is
only a finite number of state-action pairs, all transition probabilities and expected rewards in the

ARP converge uniformly with probability 1 to the corresponding values in the RP as the level in
the ARP tends to infinity. This completes the proof.
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Chapter 1
Introduction

Learning to act in ways that are rewarded is a sign of intelligence. It is,
for example, natural to train a dog by rewarding it when it responds appropri-
ately to commands. That animals can learn to obtain rewards and to avoid pun-
ishments is generally accepted, and this aspect of animal intelligence has been
studied extensively in experimental psychology. But it is strange that this type
of learning has been largely neglected in cognitive science, and I do not know
of a single paper on animal learning published in the main stream of literature
on ‘artificial intelligence’.

This thesis will present a general computational approach to learning from
rewards and punishments, which may be applied to a wide range of situations
in which animal learning has been studied, as well as to many other types of
learning problem. The aim of the thesis is not to present specific computational
models to explain the results of specific psychological experiments. Instead, I
will present systematically a family of algorithms that could in principle be
used by animals to optimise their behaviour, and which have potential applica-

tions in artificial intelligence and in adaptive control systems.

In this introduction I will discuss how animal leamning has been studied,

and what the requirements for a computational theory of learning are.
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1. Classical and Instrumental Conditioning

I will not give any comprehensive review of the enormous literature on
the experimental study of animal learning. Instead I will describe the essential
aims of the experimental research, the nature of the phenomena studied, and

some of the main conclusions.

There is a long history of research into conditioning and associative leamn-
ing, as described by Mackintosh (1983). Animals’ ability to learn has been stu-
died by keeping them in controlled artificial environments, in which events and
contingencies are under the control of the experimenter. The prototypical
artificial environment is the Skinner box, in which an animal may be con-
fronted with stimuli, such as the sound of a buzzer of the sight of an
illuminated lamp, and the animal may perform responses such as pressing a
lever in the case of a rat, or pecking at a light in the case of a pigeon. The
animal may be automatically provided with reinforcers. In behavioural terms, a
positive reinforcer is something that may increase the probability of a preceding
response; a positive reinforcer might be a morsel of food for a hungry animal,
for instance, or a sip of water for a thirsty animal. Conversely, a negative rein-
forcer, such as an electric shock, is something that may reduce the probabilty of
a preceding response. In a typical experiment, the animal’s environment may be
controlled automatically for a long _period of time, and the delivery of rein-
forcers may be made contingent upon the stimuli presented and on the
responses of the animal. The events and contingencies that are specified for the

artificial environment are known as the reinforcement schedule.

Two principal types of experimental procedure have been used: instrumen-

tal and classical conditioning schedules.

In instrumental schedules, the reinforcement that the animal receives

depends on what it does. /nstrumental learning is learning to perform actions to
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obtain rewards and to avoid punishments: the animal learns to behave in a cer-
tain way because behaving in that way leads to positive reinforcement. The
adaptive function of instrumental conditioning in animals is clear: blue tits will
obtain more food in winter if they can learn to visit well stocked bird-tables.

In classical (or ‘Pavlovian’) experiments, the animal is exposed to
sequences of events and reinforcers. The reinforcers are contingent on the
events, not on the animal’s own behaviour: a rat may be exposed to a light, and
then given an electric shock regardless of what it does, for example. Experi-
ments of this type are often preferred (Dickinson 1980) because the correlations
between events and reinforcers may be controlled by the experimenter, whereas

the animal's actions may not.

Classical conditioning experiments depend on the fact that an animal may
naturally respond to certain stimuli without any previous learning: a man will
withdraw his hand from a pin-prick; a dog will salivate at the sight of food.
The stimulus that elicits the response is termed the unconditioned stimulus or
US. If the animal is placed in an environment in which another stimulus—the
conditioned stimulus or CS—tends to occur before the US, so that the
occurrence of the CS is correlated with the occurrence of the US, then an
animal may produce the response after the CS only. It is as if the animal learns

to expect the US as a result of the CS, and responds in anticipation.

Whether there are in fact two types of learning in instrumental and classi-
cal conditioning is much disputed, and complex and difficult issues are
involved in attempting to settle this question by experiment. However, I will be
concerned not with animal experiments but with learning algorithms. I will
therefore give only a brief discussion of one interpretation of the experimental
evidence from animal experiments, as part of the argument in favour of the

type of leamning algorithm [ will develop later.
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Mackintosh (1983) discusses the relationship between classical and instru-

mental conditioning at length.

First, it might seem tempting to regard classical conditioning as a form of
instrumental conditioning: might a dog not learn to salivate in anticipation of
food because the dog found that if it salivated the food was more palatable?
Mackintosh argues that classical conditioning cannot be explained as instrumen-
tal conditioning in this way. One of the neatest experiments is that of (Browne
1976) in which animals were initially prevented from giving any response while
they observed a correlation between a stimulus and a subsequent reward.
When the constraint that prevented the animals giving the response was
removed, they immediately gave the response; there was no possibility of any

instrumental learning because the animals had been prevented from responding.

Mackintosh also notes that, perhaps more suprisingly, much apparently
instrumental conditioning may be explainable as classical conditioning. In an
instrumental experiment in which animals learn to perform some action in
response to a conditioned stimulus, the animal must inevitably observe a corre-
lation between the conditioned stimulus and the reward that occurs as a result
of its action. This correlation, produced by the animal itself, may give rise to a
classically conditioned response: if this classically conditioned response is the
same as the instrumental response, then each response will strengthen the corre-
lation between the CS and the reward, thus strengthening the conditioning of
the CS. Learning would thus be a positive feedback process: the more reliably
the animal responds, the greater the correlation it observes, and the greater the

correlation it observes, the more reliably the animal will respond.

But, as Mackintosh argues, not all instrumental learning may be explained
in this way. A direct and conclusive argument that not all instrumental learning

is explainable as classical conditioning is the common observation that animals
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can learn to perform different responses in response to the same stimuli to

obtain the same rewards.

Mackintosh suggests, however, that no instrumental conditioning experi-
ment is totally free of classically conditioned effects, and vice versa. For
instrumental learning to occur, an animal must produce at least one response, or
sequence of responses, that results in a reward—why does the animal produce
the first such response? Instrumental learning consists of attempting to repeat
previous successes; the achievement of the first success fequires a different
explanation. One possibility is that an animal performs a totally random
exploration of its environment: but this cannot be accepted as a complete expla-
nation. A reasonable hypothesis is that classical conditioning is the expression
of innate knowledge of what actions are usually appropriate when certain types
of events are observed to be correlated in the environment. The roughly
appropriate innate behaviour released by classical conditioning may then be
_ fine-tuned by instrumental learning. The question of the relationship between
classical and instrumental conditioning is, therefore, one aspect of a more fun-
damental question: what types of innate knowledge do animals have, and in

what ways does this innate knowledge contribute to learning?

Conditioning theory seeks to explain animals’ behaviour in detail: to
explain, for example, just how the time interval between a response and a rein-
forcer affects the rate at which the r\lmponse is learned. As a consequence of
this level of detail, conditioning theory cannot readily be used to explain or to
predict animal leamning under more natural conditions: the relationships between
stimuli, responses, and reinforcers become too complex for models of instru-
mental conditioning to make predictions. It is clear in a general way that instru-
mental conditioning could enable an animal to learn to obtain what it needs, but

conditioning theory cannot in practice be used to predict the results of learning
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quantitatively under most natural conditions. The difficulty is that conditioning
theory has tended to be developed to explain the results of certain types of

experiment, rather than to predict the effect of learning on behaviour overall.

The optimality argument as used in behavioural ecology can provide, I
believe, a clear and well motivated description of what instrumental learming
should ideally be. I will later consider systematically the different ways in

which this type of instrumental learning may be achieved.

2. The Optimality Argument

Behavioural ecologists seek to explain animal behaviour by starting from a
different direction. They argue that animals need to behave efficiently if they
are to survive and breed: selective pressure shoﬁld, therefore, lead to animals
adopting behavioural strategies that ensure maximal reproductive success. Just
as evolution has provided animals with bodies exquisitely adapted to survival in
their ecological niches, should not evolution also lead to similarly exquisite
adaptations of behaviour? On this view, it should be possible to explain natural
animal behaviour in terms of its contribution to reproductive success. This
approach to the analysis of animal behaviour is known as the oprimalirv argu-

ment.

The optimality argument is controversial: Gould and Lewontin (1979)
attack its uncritical use, and Stephens and Krebs (1986) give an extended dis-
cussion of when the use of the optimality argument can be justified. It is clear
that there are both practical and theoretical difficulties with the optimality argu-

ment.

One difficulty that Gould and Lewontin point out is that the optimality
argument must be applied to an animal and its behaviour as a whole, and not to

each aspect of the animal separately. Further, optimality can only be assessed
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relative to the animal’s ‘choice’ of overall design (or ‘bauplan’) and mode of

life. One cannot recommend a whale to become a butterfly.

A potential weakness of the optimality argument is that evolution is not a
perfect optimiser. It is likely, therefore, that there are some aspects of
behaviour which have no adaptive value, just as there are some parts of the
body that might benefit from being re-designed. Nevertheless, there are many
examples where optimality arguments can be .applied convincingly to explain
aspects of animals’ natural behaviour.

And, of course, optimality arguments may often be difficult to provide in
practice because it may be difficult to establish what the optimal behavioural
strategy actually is for an animal in the wild. The difficulty may be either that
it is difficult to determine what an animal’s intermediate goals should be if it is
to leave as many surviving descendants as possible, or else the difficulty may
be that although the goals of optimal behaviour are reasonably clear, it is
difficult for a behavioural ecologist to know how animals could best go about

achieving them. What is the best way for a squirrel to look for nuts?

To apply the optimality argument to any particular example of animal
behaviour is fraught with subtle difficulties, and a substantial amount of investi-
gation of the animal’s behaviour and habitat is necessary. But I am not going to
do this—all I need to assume is a rather limited form of the optimality argu-

ment, which is set out below.

3. Optimality and Efficiency

The optimality argument as applied to behaviour suggests that the function
of instrumental learning is to learn to behave optimally. Some aspects of
behaviour are innate, other aspects are learned, but all behaviour should be

optimal. But this is much too simple.
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There is a basic difficulty: animals cannot learn how to leave as many
descendants as possible. It is not possible for an animal to live its life many
times and to determine from its experience the optimal strategy for perpetuating
its genes. All that an animal can learn to do is to achieve certain intermediate
objectives. To ensure maximal reproductive success, animals may need to
achieve a variety of intermediate goals: finding food and water, finding shelter,
defending territory, attracting a mate, raising offspring, avoiding predators, rest-
ing, grooming, and so on. Animals may learn to achieve these goals, but they

cannot learn optimal fitness directly.

It is often possible to identify certain skills that animals need to have—
one such skill that many animals need is the ability to fora'gc SO as to gain
encrgiz at the maximum possible rate. To describe an intermediate objective
quantitatively, it is necessary to specify a performance criterion, which can be
used to ‘score’ different possible behavioural strategies. The maximally efficient
" behavioural strategy is the one that leads to the best score according to the per-
formance criterion. If animals can represent suitable performance criteria inter-
nally, so that they can score their current behaviour, then it becomes possible
for them to learn efficient behaviour. This is the type of leamning I will exam-
ine.

But an animal will not always need to achieve all its intermediate objec-
tives with maximal efficiency. A plausible view is that, for each species of
animal, there are certain critical objectives, in that the levels of performance an
animal achieves in these areas strongly affect its reproductive fitness. In other
areas of behaviour, provided that the animal’s performance is above some
minimum level of efficiency, further improvements do not greatly affect fitness.
For example, a bird may have ample leisure during the autumn when food is

plentiful and it has finished rearing its young, but its survival in the winter may
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depend critically on its ability to forage efficiently. There is, therefore, an
important distinction between oprimal behaviour in the sense of behaviour that
ensures maximal reproductive success, and behaviour that is maximally efficient

in achieving some intermediate objective.

It is possible that some animals need to learn to optimise their behaviour
overall by learning to choose to devote appropriate amounts of time to different
activities; but it is likely that it is more usual that animals need to learn certain
specific skills, such as how to hunt efficiently. It is unlikely that an animal will
have to learn to seek food when it is hungry: it is more likely to need to learn

how to find food efficiently, so that it can exercise this skill when it is hungry.

Animals may, therefore, need to learn skills that they do not always need
to use. Learning of this type is to some extent incidental: an animal may learn
how to forage efficiently while actually foraging somewhat inefficiently, so that
the animal’s true level of skill may only become evident when the animal needs
to use it. Furthermore, it is usually necessary to make mistakes in order to
learn: animals must necessarily behave inefficiently sometimes in order to learn
how to behave efficiently when they need to. This view of learning is rather
different from traditional views of reinforcement learning, as presented by, for

example, Bush and Mosteller (1955).

4. Learning and the Optimality Argument

The optimality argument does predict that animals should have the ability

to learn—to adapt their behaviour to the environment they find. The reason for

this is that

¢ The same genorype may encounter circumstances in which different

behavioural strategies are optimal.
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That is, either the same individual may need to adapt its behaviour, or different
individuals may encounter different circumstances. This is not an entirely trivial
point: one reason why we do not learn to beat our hearts is that the design of
the heart, the circulatory system, and the metabolism is encoded in the genes,
so that the optimal strategy for beating the heart may be genetically coded as
well. It is possible, however, that there could be a mechanism for fine-tuning
the control system for the heart-beat in response to experience, because physi-

cal development is not entirely determined by the genotype.

Naturally, optimality theory predicts optimality in learning, but there are
two notions of optimality in learning: optimal learning, and learning of efficient
strategies. ‘Optimal learning’ is a process of collecting and ﬁsing information
during learning in an optimal manner, so that the learmner makes the best possi-
ble decisions at all stages of learning: learning itself is regarded as a multi-
stage decision process, and learmning is optimal if the learner adopts a strategy
that will yield the highest possible return from actions over the whole course of
learning. ‘Learning of an efficient strategy’ or ‘asymptotically optimal’ learning
(Houston et al 1987) is a much weaker notion—all that is meant is that after
sufficient experience, the learner will eventually acquire the ability to follow
the maximally efficient strategy.

The difference between these tv.o notions may be made clear by consider-
ing the ‘two-armed bandit’ problem. In this problem, a player is faced with two
levers. On each turn, the player may pull either lever A or lever B, but not
both. After pulling a lever, the player receives a reward. Let us suppose that,
for each lever, the rewards are generated according to a different probability
distribution. Successive rewards are independent of each other, given the
choice of lever. The average rewards given by the two levers are different.

The reward the player obtains, therefore, depends only on the lever he pulls.

10
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Now, suppose that the player is allowed only 10 turns; at each turn, the player
may decide which lever to pull based on the rewards he has received so far in

the session.

If the player knows that lever A gives a higher reward than lever B, then
clearly his maximally efficient strategy is to pull lever A 10 times. But if the
player is uncertain about the relative mean rewards offered by the two levers,
and his aim is to maximise his total reward over n turns, then the problem
becomes interesting. The point is that the player should try pulling both levers
alternately at first, to determine which lever appears to give higher rewards;
once the player has sampled enough from both levers, he may choose to pull
one of the levers for the rest of the session. Other sampling strategies are possi-

ble.

The difference between optimal learning and learning an efficient strategy
is clear for this problem. Learning an efficient strategy is learning which lever
gives the higher rewards on average; a learning method learns the efficient stra-
tegy if it always eventually finds out which lever gives the higher rewards.
‘However, a learning method is optimal for a session of length  if it results in
the player obtaining the highest possible expected reward over the n tumns,
‘highest possible’ taking into account the player’s initial uncertainty about the

reward distributions of the levers.

Optimal learning is the optimal use of information to inform behaviour. It
is leamning that is optimal when considered over the whole course of learning,
taking into account both early mistakes and later successes. Optimality in this
sense refers to the learning method itself, not to the final behaviour attained. In
the two-armed bandit problem, for example, if only a few turns are allowed, it
may be optimal for the player to perform very little initial sampling before

choosing one lever to pull for the rest of the session. If the player does not

11
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perform enough sampling, then he may easily choose the wrong lever: if many
turns are allowed, therefore, the optimal strategy may be to do more sampling.
Note that optimal learning does not necessarily lead to the acquisition of the
maximally efficient strategy: if learning the maximally efficient skill is costly, it

may not be worthwhile for the animal to learn it.

The two-armed bandit problem is perhaps the simplest learning problem
which involves a trade-off between exploration of the possibilities of the
environment, and exploitation of the strategies that have been discovered so far.
This is a dilemma that arises in almost any instrumental learning problem. If an
animal performs too much exploration, it may not spend enough time in
exploiting to advantage what it has learned: conversely, if an animal is incuri-
ous and does too little exploration, it may miss discovering some alternative
behaviours that would bring much higher returns, and it may spend all its time
exploiting an initial mediocre strategy. This is known as the exploration-
exploitation trade-off. During its life time, an animal must continually choose
whether to explore or whether to exploit what it knows already. One prediction
of optimality theory, therefore, is that an animal should make an optimal choice
in the exploration-exploitation trade-off. It may happen that, in following the
optimal strategy, the animal will not necessarily perform enough exploration to
achieve maximally efficient performance: it may be better to be incurious and
so avoid making too many mistakes during exploration.

Houston and McNamara (1988) and Mangel and Clark (1988), propose
explaining natural animal learmning as optimal learning in this sense. This
approach is surely correct for learning in the sense of collecting and using

information, but it is in practice impossible to apply for learning in the sense of

the gradual improvement of skill.

12
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Rather confusingly, ‘learning’ is used in the operational research and
dynamic programming literature (for example, de Groot (1970) or Dreyfus and
Law (1977)) to refer to the short-term collection of information for immediate
use. This is the sense of ‘learning’ as in ‘In the darkness of the room there
came a slow rustling sound and then the sound of the sofa being pushed across
the floor, so I learned I was dealing with a snake of remarkable size.’ as
opposed to the sense of learning in ‘It took him three months of continuous
practice to learn to ride that unicycle.” The short-term collection and use of
information (learning in the first sense) is a skill that can itself be gradually
improved by practice (learning in the second sense).

Krebs, Kacelnik, and Taylor (1978) performed one of the first experiments
to determine whether animals could learn to collect and use information in an
optimal way—indeed, one of the first experiments to determine whether
animals could learn an optimal strategy, where the optimality of the strategy
was determined by reference to a dynamic model. They kept birds (great tits)
in an artificial environment in which they were fed in a series of short sessions.
For the duration of each feeding session, the bird was presented with two
feeders, one of which would yield food more readily than the other. The birds
could only tell which feeder was better by trial and error, so that each session
was in effect a two armed bandit problem, and successive sessions were
independent problems of the same typé. A reasonable strategy for a bird—and
one that is very nearly optimal—is to sample from both feeders for a short time
at the start of each session, and then to feed for the rest of the session
exclusively from the feeder that gave out food most readily during the sampling
period. Over many sessions, the birds did indeed acquire near optimal strategies

of this type.

13
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But the type of learning that I will be interested in is the improvement in
performance over many feeding sessions. In this example, the birds gradually
learned a maximally efficient strategy for the problem. Was this gradual leam-

ing also optimal? That is a very difficult question to answer, for two reasons.

The first reason is that it is exceedingly difficult to devise demonstrably
optimal learning strategies for any but the simplest of formal problems. Even
for the two-armed bandit problem, finding the optimal strategy is a formidable
computation. There is a straightforward general method, as explained in
de Groot (1970), for constructing optimal learning strategies, but the strategies
and the computation become impractically complex for any but small problems,
or problems for which simplifying assumptions are possible. The problem of
learning the optimal strategy in repeated two-armed bandit problems is far too

complex for it to be possible to determine the optimal learning strategy.

But a second and more fundamental difficulty is that an optimal learning
strategy is optimal only with respect to some prior assumptions concerning the
probabilities of encountering various possible environments. In an experiment
similar to that of Krebs et al (1978), the optimal strategy within a feeding ses-
sion depends on the distribution of yields from the feeders in different sessions.
After the great tits have experienced many feeding sessions, they have enough
information to ‘know’ the statistical distribution of the yields from each feeder,
and it makes sense to ask whether they can acquire the optimal strategy for the
distribution of yields that they have experienced. But to ask whether the birds’
learning is optimal over the whole experiment is a different matter: the optimal
strategy from the birds’ point of view is depends on the birds’ prior expecta-
tions, and we have no means of knowing what these expectations are or what

they should optimally be.
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In other words, to show that some particular learning method is optimal, it
is necessary to specify a probability distribution over the environments that the
animal may encounter, as noted by McNamara and Houston (1985). In prac-
tice, this is likely to be an insuperable difficulty in providing convincing quanti-

tative optimality explanations for any type of skill acquisition.

But although quantitative arguments on optimal learning may be difficult
to provide, some qualitative explanations involving optimal learning are com-
mon sense. Animals that are physically specialised so that tht;:y are adapted to a
particular way of life, for example, should in general be less curious and
exploratory than animals that are physically adapted to eat many different
foods. The reason for this is that a highly specialised animal is unlikely to dis-
cover viable alternative sources of food, while an omnivore lives by adapting

its behaviour to exploit whatever is most available.

I am not going to consider computational models of optimal learning, both
- because of the technical difficulty of constructing optimal learning methods,
and because of the need to introduce explicit assumptions about a probability
distribution over possible environments. In any case, optimal learning will sel-

dom be a practical quantitative method of explaining animal learning.

Let us return to the second type of learning—learning of efficient stra-
regies. By the learning of efficient strategies, I mean the acquisition of the abil-
ity to follow a strategy that is maximally efficient according to an intermediate
criterion. Note that this is learning of the abiliry to follow a maximally efficient
strategy: an animal with this ability need not always actually follow the

efficient strategy, but it can do so if it chooses to.

An example where optimality theory would predict that an animal should
learn an efficient strategy is that a prey animal should learn how to return to its

burrow as fast as possible from any point in its territory. Of course, the animal
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need not always return to its burrow as fast as possible—but it is vitally neces-
sary that it should be able to do so if danger threatens. Similarly, it is not
important that an animal should follow an efficient strategy in searching for
food if it has just eaten, but it is advantageous for an animal to be able to fol-

low an efficient strategy in searching for food if it needs to.

Optimal learning will require the learning of an efficient strategy if the

following three conditions hold:
e  The capacity for maximally efficient performance is valuable.
e  Exploration is cheap.

e  The time raken to learn the behaviour is short compared to the period of

time during which the behaviour will be used.

The third condition implies that the final level of performance reached is more
important than the time taken to learn it—hence optimal learning will consist of

learning the efficient strategy.

Animals need to be able to survive adverse conditions that are more
extreme than those they usually encounter. It is likely, therefore, that under nor-
mal circumstances most animals have some leisure for exploration; in other
words, the opportunity cost of exploration is usually small. Animals may, there-
fore, normally perform with slightly less than maximum efficiency in order to
be able to learn: maximally efficient performance is only occasionally neces-
sary. Efficient performance may be valuable for the animal to acquire either
because it is occasionally vital (as in avoiding predators), or else because it

continuously ensures a small competitive advantage (as in searching for food).

Even if these assumptions are not entirely satisfied, it is still plausible that
animals should learn efficient strategies. The point is that optimal learning will

entail learning an efficient strategy unless learning is expensive. Learning may
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be expensive if mistakes are costly: prey animals would be unwise to attempt to
learn which animals were their predators by experience, for example. If animals
have innate behaviours that prevent them from making disastrous mistakes,
there is no reason why these behaviours should not be fine-tuned by instrumen-
tal learning. If an innately feared predator never behaves in a threatening way,
for example, the prey animal may lose some of its fear, and so cease spending
time and energy in avoiding the predators. Animals may have innate knowledge
or behaviours that prevent them from making costly initial mistakes, and these
innate behaviours may be progressively modified to become maximally efficient
behaviours through instrumental learning. In other words, innate knowledge

may take the pain out of learning.

In conclusion, the optimality assumption leads to the hypothesis that
animals will be able to learn efficient behavioural strategies. That is, after
sufficient experience in an environment, an animal should acquire the ability to
exploit that environment with maximal efficiency. Most of the thesis is devoted

to investigating what algorithms animals might use to learn in this way.

4.1. Learning Efficient Strategies and Conditioning

Instrumental conditioning and the learning of efficient strategies are related
concepts, but they are not at all the same. The motivation for studying instru-
mental conditioning is that it is possiblc mechanism for a type of learning that
could be useful to an animal in the wild. However, operant conditioning theory
does not explicitly consider efficiency of strategy, and many aspects of instru-
mental conditioning experiments are not directly interpretable from the
viewpoint of optimality theory. Conversely, many experiments that test whether
animals can learn an efficient behavioural strategy are not easy to interpret as

instrumental conditioning experiments.
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Although they are superficially similar to instrumental conditioning experi-
ments, experiments to test whether animals can learn maximally efficient
behavioural strategies are designed quite differently. A well designed ‘leamning
of efficiency’ experiment should give animals both incentive and opportunity to
learn the maximally efficient strategy.

. Animals should be placed in an artificial environment for which the exper-
imenter can determine the maximally efficient behavioural strategy.

e The animals should be left in the artificial environment for long enough
for them to have ample opportunity of optimising their strategies. The
environment should not be changed during this time.

. The: animals should have an adequate mou'va‘uion to acquire the optimal

strategy, but the incentive should not be so severe that exploration of alter-

native behaviours is too costly.

e  Control groups should be placed in artificial environments that differ in
chosen respects from the environment of the experimental group. Control
groups should be given the same opportunities of optimising their

behaviour as the experimental group.

Experiments designed in this way have two considerable advantages. First, it is
possible to devise experiments that simulate directly certain aspects of natural
conditions. Second, optimality theory can be used to make quantitative predic-

tions about what strategy the animals will eventually learn.

Some conditioning experiments satisfy these design requirements; others
do not. For example, the phenomenon known as ‘extinction’ in conditioning
theory, in which a learned response gradually extinguishes when the stimulus is
repeatedly presented without the reinforcer, is not directly interpretable in terms
of optimality. This is because in a typical instrumental conditioning experiment,

the purpose of testing animals under extinction is to determine the persistence
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or ‘strength’ of the animal’s expectation of a reward following the stimulus.
This concept of ‘strength’ is difficult to interpret in terms of optimality. There
is often no ‘correct’ behaviour during extinction: whether an animal should
continue to respond for a long time or not depends entirely upon what types of
regularity it should expect to find in its environment. Since the extinction con-
dition occurs only once during the experiment, the animal is not given enough

data for it to work out what it ought to do.

If, on the other hand, extinction were to occur repeatedly in the course of
an experiment, the animal has the chance to learn how to react in an optimal
way. Kacelnik and Cuthill (1988) report an experiment in which starlings
repeatedly obtain food from a feeder. Each time it is used, the feeder will sup-
ply only a limited amount of food, so that as the birds continue to peck at the
feeder they obtain food less and less often, until eventually the feeder gives out
no more food at all. To obtain more food, they must then leave the feeder and
hop from perch to perch in their cage until a light goes on that indicates that
the feeder has been reset. In terms of conditioning theory, this experiment is
(roughly) a sequence of repeated extinctions of reinforcement that is contingent
upon pecking at the feeder: however, because the birds have the opportunity to
accumulate sufficient experience over many days, they have the necessary
information to find an optimal strategy for choosing when to stop pecking the

feeder.

I do not want at all to suggest that conditioning experiments are uninter-
pretable: they ask different questions and, perhaps, provide some more detailed
answers than optimality experiments do. However, the optimality approach is
both quantitative and strongly motivated, and I will argue in the rest of this
thesis that it is possible to classify and to implement a range of algorithms for

learning optimal behaviour.
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5. Special-Purpose Learning Methods

McNamara and Houston (1980) describe how decision theory may be used
to analyse the choices that animals face in some simple tasks and to calculate
the efficient strategy. They point out that it is in principle possible that animals
might learn by statistical estimation of probabilities, and then use decision
theory to calculate their strategies, but they suggest that it is more likely that
animals learn by special purpose, ad hoc methods. McNamara and Houston

give two main arguments in favour of this conclusion.

First, they point out that the calculations using decision theory are quite
complex even for simple problems, and that, in order to perform them, the
animals would need to collect a considerable amount of information that they
would not otherwise need. Their second argument is that animals do not face
the problem of determining optimal strategies in general: each species of animal
has evolved to face a limited range of learning problems in a limited range of
environments. Animals, therefore, should only need simple, special-purpose
heuristic learning methods for tuning their behaviour to the optimum. These
special-purpose strategies may break down in artificial environments that are

different from those in which the animals evolved.

The classic example of a heuristic, special-purpose, fallible learning
method of this type is the mechanism of imprinting as described by Lorenz. In
captivity, the ducklings may become imprinted on their keeper rather than on
their mother. There can be no doubt that many other special-purpose learning

methods exist, of exactly the type that McNamara and Houston describe.

But [ do not think that McNamara and Houston’s arguments are convinc-
ing in general. Although some innate special-purpose adaptive mechanisms
demonstrably exist, it is implausible that all animal learning can be described in

this way. Many species such as rats or starlings are opportunists, and can learn

20




Chapter 1 — Introduction

to invade many different habitats and to exploit novel sources of food. Animals
can be trained to perform many different tasks in conditioning experiments, and
different species appear to learn in broadly similar ways. Is it not more plausi-
ble that there are generally applicable learning mechanisms, common to many
species, that can enable animals to learn patterns of behaviour that their ances-

tors never needed?

The next section presents a speculative argument that special-purpose
learning methods may sometimes evolve from general learning methods applied
to particular tasks. But the most convincing argument against the hypothesis of
special-purpose learning methods will be to show that simple general learning

methods are possible, which I will attempt to do later on.

6. Learning Optimal Strategies and Evolution

Evolution may speed up learning. If the learning of a critical skill is slow
and expensive, then there will be selective pressure to increase the efficiency of
learning. The efficiency of learning may be improved by providing what might
be called ‘innate knowledge’. By this, I do not necessarily mean knowledge in
the ordinary sense of knowing how to perform a task, or of knowing facts or
information. Instead, I mean by ‘innate knowledge’ any innate behavioural ten-
dency, desire, aversion, or area of curiosity, or anything else that influences the
course of learning. An animal that has evolved to have innate knowledge
appropriate for learning some skill does not necessarily know anything in the
normal sense of the word, but in normal circumstances it is able to learn that

skill more quickly than another animal without this innate knowiedgc.

A plausible hypothesis, therefore, is that useful behaviours and skills are
initially learnt by some individuals at some high cost: if that behaviour or skill

is sufficiently useful, the effect of selective pressure will be to make the
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learning of it quicker, less costly, and more reliable. One origin of special-
purpose learning methods, therefore, may be as innate characteristics that have

evolved to speed up learning by a general purpose method.

7. How Can a Learning Method be General?

A ‘general learning mechanism’ is an intuitively appealing idea, but it
difficult to pin down the sense in which a learning mechanism can be general,
because all learning must start from some innate structure. It has become a
commonplace in philosophy that learning from a rabula rasa is necessarily
impossible. Any form of learning or empirical induction consists of combining
a finite amount of data from experience with some prior structure. No learning
method, therefore, can be completely general, in the sense that it depends on no

prior assumptions at all.

However, there is another, more restricted sense in which a leaming
method can be ‘general’. An animal has sensory abilities that enable it to dis-
tinguish certain aspects of its surroundings, it can remember a certain amount
about the recent past, and it has a certain range of desires, needs, and internal
sensations that it can experience. It can perform a variety of physical actions.
A behavioural strategy is a method of deciding what action to take on the basis
of the surroundings, of the recent past, and of the animal’s internal sensations
and needs. A strategy might be viewed as a set of situation-action rules, or as a
set of stimulus-response associations, where the situations or ‘stimuli’ consist of
the appearance of the surroundings, memories of the recent past, and internal
sensations and desires, and the ‘responses’ are the actions the animal can take. I
do not wish to imply that a strategy is actually represented as a set of
stimulus-response associations, although some strategies can be: the point is

merely that a strategy is a method of choosing an action in any situation.
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Learning is a process of finding better strategies. Now, a given animal will be
able to distinguish a certain set of situations, and to perform a certain set of
actions, and it will have the potential ability to construct a certain range of
situation-action strategies. A general learning method is a method of using
experience to improve the current strategy, and, ideally, to find the strategy that
is the best one for the current environment, given the situations the animal can
recognise and the actions the animal can perform. As will be shown, there are
general methods of improving and optimising behavioural strategies in this

SE€nse.

8. Conclusion

[ have argued that the optimality argument of behavioural ecology does
indicate an analysis of associative instrumental learning, but the connection
between the optimality argument and associative instrumental learning is
indirect. Animals cannot directly learn to optimise their fitness, because they
cannot live their lives many times and learn to perpetuate their genes as much

as possible. Instead, animals may learn crirical skills that improve their fimess.

By a ‘critical skill’, I mean a skill for which improvements in performance
result directly in increases in fitness. For example, the rate at which a bird can
bring food to its nest directly affects the number of chicks it can raise. In
many cases, an animal need not alway-s perform its critical skills with maximal
efficiency: it is the capaciry to perform with maximal efficiency when necessary
that is valuable. A bird may need to obtain food with maximal efficiency all the

time during the breeding season, but at other times it may have leisure.

One role of instrumental learning, therefore, is in acquiring the ability to
perform critical skills as efficiently as possible. This learning may be to some

extent incidental, in that performance does not always have to be maximally
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efficient during learning: indeed, sub-optimal performance may be a necessary

part of learning.

According to the optimality argument, if an animal has many opportunities
to practise a critical skill, and if it is able to try out some alternative strategies
without disaster, then the animal should ultimately acquire a capacity for maxi-
mally efficient performance.

In the next chapter, I will describe how a wide range of learning problems
may be posed as problems of learning how to obtain delayed rewards. [ will
argue that it is plausible that animals may represent tasks subjectively in this
way. After that, [ will describe the established method for calculating an
optimal strategy, assuming that complete knowledge of the environment is
available. Then I will consider systematically what learning methods are possi-
ble. The learning methods will be presented as alternative algorithms for per-
forming dynamic programming. After that, I will describe computer implemen-

tations of some of these learning methods.

From now on, I will speak more often about hypothetical ‘agents’ or
‘learners’ rather than about ‘animals’, because the discussion will not be related
to specific examples of animal learning. The leamning algorithms are strong
candidates as computational models of some types of animal learning, but they

may also have practical applications in the construction of learning machines.
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In this chapter I will describe several problems to which the learning

methods are applicable, and I will indicate how the problems are related.

1. The Pole-Balancing Problem

A well-known example of a procedural learning problem, studied by
Michie (1967), and Barto, Sutton, and Anderson (1983), is the ‘pole-balancing’

problem, illustrated overleaf.

The cart is free to roll back and forth on the track between the two end-
blocks. The pole is joined to the cart by a hinge, and is free to move in the
vertical plane aligned with the track. There are two possible control actions,
which are to apply a constant force to the cart, pushing it either to the right or
to the left. The procedural skill to be acquired is that of pushing the cart to left
and right so as to keep the pole balanced more or less vertically above the cart,
and to keep the cart from bumping against the ends of the track. This skill
might be represented as a rule for deciding whether to push the cart to the right

or to the left, the decision being made on the basis of the state of the cart-pole

system.

There are several ways of posing this as a learning problem. If an ‘expert’
is available, who knows how to push the cart to balance the pole, then one
approach would be to train an automatic system to imitate the expert’s
behaviour. If the learner is told which action would be correct at each time, the

learning problem becomes one of constructing a mapping from states of the cart
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At each time step, the controller may push the cart either to

the right or to the left.

The task is to keep the pole balanced, and to keep the cart from

hitting the endstops.

26




Chapter 2 — Learning Problems

and pole to actions. The problem of learning a procedural skill is reduced to the
problem of learning a single functional mapping from examples. The disadvan-
tage of this ‘imitate the teacher’ method is that a teacher may not be available:
indeed, if there is a machine teacher, there is rarely any point in having a

machine learner.

A more interesting and general formulation of the learning problem is that
the learner receives occasional rewards and penalties, and that the learner’s aim
is to find a policy that maximises the rewards it receives. The pole-balancing
problem, for example, can be formulated as follows. The learner may repeat-
edly set up the cart and pole in any position, and it may then push the cart to
and fro, trying to keep the pole balanced. The information that the learner can
use consists of the sequence of states of the cart-pole system and of the actions
that the learner itself performs; the learner is informed when the pole is deemed
to have fallen. The falling of the pole may be thought of as a punishment or
‘penalty’, and the learner may be viewed as having the goal of avoiding these
penalties. Note that the learner is not given the aim of ‘keeping the pole nearly
vertical and the cart away from the ends of the track’: it is just given the aim
of avoiding penalties, and it must work out for itself how to do this. The
learner does not know beforehand when penalties will occur or what sort of
strategy it might follow to avoid them. The learning method of Barto, Sutton,

and Anderson (1983) learns under these conditions.

In the ‘imitate the teacher’ formulation of procedural learning, the learner
is told whether each action it performs is correct; in the reward/punishment for-
mulation, the rewards or punishments may occur several steps after the actions
that caused them. For example, it may be impossible for the learner to prevent
the pole from falling for some time before the pole actually falls: the final

actions the learner took may have been correct in that by these actions the
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falling of the pole was delayed as long as possible, and the actual mistaken

actions may have occurred some time earlier.

1.1. States, Actions, and Rewards

The pole-balancing problem has a particularly clear structure. What needs
to be learned is a method for deciding whether to push right or left. At any
time, all the information that is needed to make this decision can be summed

up in the values of four srare-variables:

the position of the cart on the track
the velocity of the cart
the angular position of the pole relative to the cart

the angular velocity of the pole

These variables describe the physical state of the system completely for the
purposes of pole-balancing: there is no point in considering any more informa-
tion than this when deciding in which direction to push. If this information is
available for the current time, then it is not necessary to know anything more

about the past history of the process.

The space of possible combinations of values of these state variables is the
state-space of the system—the set of possible situations that the agent may
face. The purpose of learning is to find some mcthod for deciding what action
to perform in each state: the agent has mastered the skill if it can decide what
to do in any situation it may face. There need not necessarily be a single
prescribed action in any state—there may be some states in which either action

is equally good, and a skilful agent will know that it can perform either.

The state-space may be described in alternative ways. For example, sup-
pose that the agent cannot perceive the rates of change of the position of the

cart or of the angle of the pole. It cannot, therefore, perceive the state of the
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system directly. However, if it can remember previous positions and angles and
the actions it has recently taken, then it can describe the state in terms of its
memories of previous positions and previous actions. If the information that the
agent uses to describe the current state would be sufficient to determine approx-
imate values of all four state variables, then it is in principle sufficient informa-
tion for the agent to decide what to do. In the cart and pole problem, it is easy
to define one adequate state-space: many other systems of descriptions of the
state are possible. The criterion for whether a method of description of state is
adequate is that distinct points in the adequate state space should correspond to

distinct descriptions.

2. Foraging Problems

Stephens and Krebs (1987) review a number of decision-making problems
that animals face during foraging, and describe formal models of these prob-
lems that have been developed for predicting what animal behaviour should be

according to the optimality argument.

One ubiquitous problem that animals face is that food is non-uniformly
distributed—it occurs in ‘patches’: foraging consists of searching for a ‘patch’
of food, exploiting the patch until food becomes harder to obtain there, and
then leaving to search for a new patch. While searching for a patch, the animal
expends energy but obtains no food. When an animal finds a patch, the rate of
intake of food becomes high initially, and then declines, as the obtainable food
in the patch becomes progressively exhausted. Eventually, the animal has to
make an unpleasant decision to leave the current patch and search for a new
patch to exploit. This decision is ‘unpleasant’ in that the animal must leave
behind some food to go and search for more, and the initial effect of leaving a

patch is to reduce the rate of intake of food.

29




Chapter 2 — Learning Problems

This dilemma is known as the parch-leaving problem. If the animal stays
in patches too long, it will waste time searching for the last vestiges of food in
exhausted patches. If, on the other hand, the animal leaves patches too soon,

then it will leave behind food that it could profitably have eaten.

The animal gains energy from food, and spends energy in looking for and
in acquiring it. It is reasonable to suppose that the optimal foraging strategy for
an animal is to behave so as to maximise some average rate of net energy gain.
A common assumption is that an animal will maximise its /ong-term average
rate of energy gain; this is not the only assumption that is possible, but it is one

that is frequently used by foraging theorists.

Chammov and Orians (1973), as cited by Stephens ;md Krebs (1986),
Chapter 3, considered this and similar problems, and proposed the marginal
value rheorem. This applies in circumstances where
e At any time, an animal may be either searching for opportunities (e.g.

prey, patches), or else engaged in consumption (e.g. eating prey, foraging

in a patch).

e The animal may abandon consumption at any time, and return to searching
for a new opportunity. The animal may only stop searching once it has

found a new opportunity.

. The results of searches on differént occasions—the values of the opportun-
ity discovered, the time taken to find the opportunities, etc—are statisti-

cally independent.
e New opportunities are not encountered during consumption.

. The rate of energy intake during consumption declines monotonically.

That is, ‘patch depression’ is monotonic.
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e  The decision problem for the animal is that of when to stop consumption
and return to searching. An animal has the option of not starting consump-

tion at all if an opportunity is not sufficiently promising.

If all these assumptions are satisfied, then there is a simple optimal decision
rule, which has the following form. Suppose that the best possible long-term
average rate of energy gain is L. Then the optimal decision rule is to abandon
consumption and return to search when the instantaneous rate of energy gain
falls to L or below. This definition might appear circular But it is not: L is a
well defined quantity that could in principle be found by calculating the long
term average returns of all possible strategies, and then choosing the largest of
the results. The marginal value theorem states that the optimal strategy consists
of leaving a patch when the rate of return drops below L, and this fact can

often be used as a short-cut in finding L.

This decision rule, however, requires an animal to assess the instantaneous
rate of energy gain during consumption. There are some circumstances where
it is reasonable for animals to be able to do this (e.g. a continuous feeder such
as a caterpillar), but it also often happens that energy gain in a patch is a sto-
chastic process, in which food comes in chunks within a patch (such as a bird
eating berries in a bush). In this case, the animal cannot directly measure its
instantaneous rate of energy gain, but the marginal value theorem still applies if
the instantaneous expected rate of energy gain is used. To use a decision rule
based on the expected instantaneous rate of return, the animal must estimate
this on the basis of other information, such as the appearance of the patch, the
history of finding food during residence in the patch, and whether it has found
signs of food in the patch.

McNamara (1982) has proposed a more general type of decision rule,

based on the idea of potenrial. This formulation is more general than that
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required for the marginal value theorem in that it is no longer necessary to
assume that the rate of energy gain declines monotonically as an animal

exploits a patch: the other assumptions remain the same.

The potential is rather cumbersome to define in words, but a definition
runs as follows. An animal continually estimates the potential of a patch on
the basis of what it currently knows about the patch. The potential is the
estimated maximum achievable ratio of energy gain to residence time in the
patch, the maximum being taken over all possible exploitation strategies that
the animal might adopt. A bird might, for example, estimate the potential of a
particular tree on the basis of the type of tree, the season, how long it has been
searching in the tree, and how many berries it has found recently. The decision

rule is to leave the patch if the potential drops below L, and to stay otherwise.

This is a considerably more complex analysis than Charnov and Orians’
original presentation of the marginal value theorem. All that is left of the sim-
plifying assumptions for the marginal value theorem is that the searches are sta-
tistically independent, and this assumption itself may not always be plausible. If
this assumption too is dropped, a still more general method of determining
optimal strategies may be used: dynamic programming.

The point is that, to calculate optimal strategies and how they depend on
certain environmental variables, it is necessary to construct a simplified formal
model of the foraging problem that the animal faces. It is sometimes possible to
justify a very simple type of model, such as the type of model needed to apply
the marginal value theorem, and the optimal strategy can then be derived by
some simple statistical reasoning and a little algebra. However, these strong

assumptions will often be unrealistic.
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2.1. Dynamic Models of Foraging

The most general form of foraging model that it is reasonable to construct
is a dynamic model, which can be described in the following terms. The forag-
ing problem is described abstractly, in such a way that the foraging could in
principle be simulated on a computer. At any time, the animal and the environ-
ment can be in any of a certain set of objective states, the objective state being
the information about the state of the animal and its environment that is neces-
sary for continuing the simulation. The objective state may contain information
that would not be available to the animal, such as how much food is left in the
current patch.

Let us suppose that the animal does not make decisions continuously, but
that decision points occur at intervals during the simulation. The foraging prob-
lem faced by the animal is that of taking decisions as to what to do next: at
each decision point, there is a certain range of alternative actions that the
animal can choose between. The action the (simulated) animal chooses will
affect the amount of food that it finds in the time up to the next decision point,

and it will affect the objective state at the next decision point.

The book by Mangel and Clark (1988) is an extended description of this

approach to the modelling of the behavioural choices that animals face.

3. Subjective Dynamic Models

One constraint on foraging is that an animal can take decisions only on
the basis of the information available to it. The animal may not be able to
know the objective state, but the information that the animal uses to decide
what to do might be called the subjective state. The subjective state may con-
sist of information about the appearance of the environment, about recent

events in the past, and about the animal’s internal state, and about its current
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goals, if it has any. I will suppose that an animal has an internal subjective
model of the foraging problem, different from, but corresponding to the objec-
tive model. The animal forms subjective descriptions of the situations it faces,
the actions it takes, and of the benefits or costs of the actions it takes (the

rewards).

What are the subjective rewards and costs? A behavioural ecologist may
determine what an animal’s short term goals ought, objectively, to be, but need
the animal’s subjective reward system correspond directly to the objective
reward system? If animals learn to achieve subjective rewards rather than
objective rewards, then all that can be deduced from the optimality argument is
that the optimal strategy according to the subjective reward system should be
the same as the optimal strategy according to the objective reward system. This

does not imply that the objective and subjective rewards are the same.

A plausible example where there is a difference between subjective and
objective rewards is that of an innate fear of predators. If a bird feeds in a cer-
tain spot, sees a kestrel, and escapes, it has suffered no objective penalty
because it has survived. The only objective penalties from predation occur
when animals get eaten, after which they can no longer learn. In order for
animals to avoid predators, it is plausible that sights and sounds of predators
should be subjectively undesirable experiences that the animals should seek to
avoid. Within the framework of a subjective dynamic model, the sight of a pre-
dator should therefore be a subjective penalty. In the bird’s natural environ-
ment, a policy of avoiding situations in which predators are seen may be a
good policy for avoiding predation.

To suggest possible learning methods, I do need to assume that the animal
or agent’s subjective representation of the problem is sufficiently detailed that

the subjective problem is that of controlling a Markov decision process. This is
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a large assumption to have to make, but it is unavoidable. The only consolation
is that the learning may often succeed even if the assumption does not hold. As
I will not mention this assumption for the rest of the thesis, I will give two
examples of how things can go wrong if the agent does not encode enough

information about states for the results of its actions to be predictable.

The first example is that of finding one’s way about in central London. It
is easy enough to build up a mental map of the streets and the junctions, so
that one can mentally plan a route; the ‘states’ in this case are the junctions,
and the ‘actions’ are the decisions as to which street to turn into at each junc-
tion. Now, the smeet layout and even the one way system are easy enough to
remember, but this information is not sufficient, because there are heavy restric-
tions on which way one is allowed to turn at each junction. That is, a descrip-
tion of which junction one is at is nor a description of the state that is sufficient
for determining what action to take—it is also necessary to specify which street
one is in at the junction. If one does not succeed in remembering the turning

restrictions, one cannot plan efficient routes.

As a second example of a non-Markovian subjective problem, consider an
animal undergoing some conditioning experiment in which the reinforcements
depend in a complicated way on the sequence of recent events and actions. If
the animal does not remember enough information about the recent past to be
able to distinguish aspects that are relevant to the reinforcement it will receive,
then it may not be able to learn the most efficient strategy for exploiting that
environment. Furthermore, the environment could be contrived so as to frustrate
the animal’s attempts to learn a simple strategy that made use only of the infor-

mation that it could encode.

In both of these examples, the problem is that the agent does not encode

enough relevant information about the situation it is in to be able to have
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effective situation action rules. In both cases the remedy is clear: the agent
should base its decisions on more information: it is a question of determining

what information defines the state.

Autonomous learning agents will surely need to have some methods, pos-
sibly heuristic, of detecting whether their current encoding of state is adequate.
I have not considered this problem, and I think that it is unlikely that there is
any single general approach to it. From now on, I will assume that the agent’s

subjective formulation of the problem is indeed a Markov decision process.

To suppose that animals formulate subjective problems in this way is to
make a psychological hypothesis. I think that this hypothesis is both plausible
and fully consistent with long established assumptions about associative learn-

ing.
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Markov Decision Processes

The formal model that will be used for these and other problems is the
Markov decision process; there are a number of books that treat Markov deci-
sion processes. A clear and concise account of discrete Markov processes is
given in Ross (1983); other books are Bellman and Dreyfus (1962),
Denardo (1975), Bertsekas (1976), Dreyfus and Law (1977), and Dynkin and
Yushkevich (1976). To make this document self-contained, I will give a brief

account of the main methods and results for finite-state problems here.

A Markov decision process, or controlled Markov chain, consists of four
parts: a state-space S, a function A that gives the possible actions for each

state, a transition function T, and a reward function R.

The state-space S is the set of possible states of the system to be con-
trolled. In the case of the cart-pole system, the state-space is the set of 4-
vectors of values of the position and velocity of the cart, and of the angular

position and angular velocity of the pole.

In each state, the controller of the system may perform any of a set of
possible actions. The set of actions possibie in state x is denoted by A(x). In the
case of the cart-pole system, every state allows the same two actions: to push

right or to push left.
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1. Finite Approximation to Continuous Processes

To avoid the complications of systems which have continuous state-spaces,
continuous action sets, or which operate in continuous time, I will consider

only finite, discrete-time Markov decision processes. That is,
. S is a finite set of discrete states
. A(x) is a finite set of discrete actions for all x in S

. states are observed, actions taken, and rewards received at discrete times

1’2,3, T

Any non-pathological continuous Markov decision process may be approx-
imated adequately for present purposes by a finite, discrete-time Markov deci-
sion process. From now on, I will discuss only finite Markov decision processes
unless I specifically say otherwise.

The random variable denoting the state at time r is X,, and the actual state
at time ¢ is x,, The state at time r+1 depends upon the state at time r and upon
the action a, performed at time z. This dependence is described by the transition
function T, so that T( x,, a, ) = X,,, , which is the state at time r+1. Transi-
tions may be probabilistic, so that T(x,a) may return a state sampled from a

probability distribution over S.

Since there is only a finite number of states, we may define P, (a) to be
the probability that performing action a in state x will transform x into state y.

That is
Py(a) = Pr(T(x,a) =y)
For finite systems, T is fully specified by the numbers P.(a) for all x, y, and a.

Finally, at each observation, the controller receives a reward that depends
upon the state and the action performed. The random variable denoting the

reward at time ¢ is R,, and the actual reward at time ¢ is r. That is, the reward
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received is R, =R(x,, a,). In the case of the pole-balancing problem, the
rewards might be defined as -1 at the time-step during which the pole falls, and
0 at all other times. Rewards may be probabiliistic: the actual reward may be
sampled from a probability distribution determined by x and a.

Usually, we need not consider the reward function itself, but only its

expectation, which is written
p(x,a) = E[R(x,a)] for fixed x and a

This completes the definition of a Markov decision process.

2. The Markov Property

Note that although both transitions and rewards may be probabilistic, they
depend only upon the current state and the current action: there is no further
dependence on previous states, actions, or rewards. This is the Markov pro-
perty. This property is crucial: it means that the current state of the system is
all the information that is needed to decide what action to take—knowledge of

the current state makes it unnecessary to know about the system’s past.

It is important to note that the Markov properties for transitions and for
rewards are not intrinsic properties of a real process: they are properties of the
state-space of the model of the real process. Any process can be modelled as a
Markov process if the state-space is made detailed enough to ensure that a
description of the current state captures those aspects of the world that are

relevant to predicting state-transitions and rewards.
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3. Policies

A policy is a mapping from states to actions—in other words, a policy is a
rule for deciding what to do given knowledge of the current state. A policy
should be defined over the entire state-space: the policy should specify what to

do in any situation.

A policy that specifies the same acton each time a state is visited is
termed a starionary policy (Ross 1983). A policy that specifies that an action
be independently chosen from the same probability distribution over the possi-
ble actions each time a state is visited is termed a stochastic policy. During
learning, the leamer’s behaviour will change, so that it wili be neither station-
ary nor stochastic; however, the optimal policies that the learner seeks to con-

struct will be stationary.
If a stochastic policy f is followed in state x, , the probability that the next

state is y is

Pr(X,=y)= 2 Pr(fix)=a)P(a)

a e Ax)

It will be convenient to write the transition probability from x to y when fol-

lowing policy f as
Pl f)
and, similarly, let

T(xf), R(x,f), p(xf)

be the next state, the reward, and the expected reward respectively when fol-

lowing policy f in state x.
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4. Return

Broadly, the aim of the agent is to maximise the rewards it receives. The
agent does not merely wish to maximise the immediate reward in the current

state, but wishes to maximise the rewards it will receive over a period of future

time.

There are three main methods of assessing future rewards that have been
studied: total reward; average reward; and total discounted reward. I will
assume that the agent seeks to maximise total discounted rewards, because this
is the simplest case. The learning methods can, however, be modified for learn-

ing to maximise total rewards, or average rewards under certain conditions.

The total discounted reward from time ¢ is defined to be
2
i P i e SR L s L

where r; is the reward received at time k and ¥ is a number between 0 and 1
(usually slightly less than 1). ¥ is termed the discount factor. The total
.discounted reward will be called the rerurn. The effect of v is to determine the
present value of future rewards: if y is set to zero, a reward at time /+1 is con-
sidered to be worth nothing at time 7, and the return is the same as the immedi-
ate reward. If v is set to be slightly less than one, then the expected return from
the current state will take into account expected rewards for some time into the
future. Nevertheless, for any value of y strictly less than one, the value of

future rewards will eventually become negligible.

5. Optimal Policies

The aim of the learner will be to construct a policy that is optimal in the
sense that, starting from any state, following the policy yields the maximum

possible expected return that can be achieved starting from that state. That is,
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an optimal policy indicates the ‘best’ action to take in any possible situation in
the sense that continuing to follow the policy will lead to the highest possible

expected return.

[t may not be obvious that the highest possible expected return can be
achieved by following a stationary policy, or even that there is a single policy
that will be optimal over all states. Nevertheless, it can be proved that for every
Markov decision process as described above, there will be a stationary optimal
policy, and the proof may be found in Ross (1983). The essential reason for
this is that, in a Markov process, a description of the current state contains all
information that is needed to decide what to do next; hence the same decision

will always be optimal each time a state is visited.

6. The Credit-Assignment Problem

It is not immediately obvious how to compute the optimal policy, let alone
how to learn it. The problem is that some judicious actions now may enable
high rewards to be achieved later; each of a sequence of actions may be essen-
tial to achieving a reward, even though not all of the actions are followed by
immediate rewards. Conversely, in the pole-balancing problem, the cart and
pole may enter a ‘doomed’ state from which it is impossible to prevent the pole
from eventually falling—but the pole actually falls some time later. It would be
wrong to blame the decisions taken immediately before the pole fell, for these
decisions may have been the best that could be taken in the circumstances. The

actual mistake may have been made some time previously.

Because of this difficulty of determining which decisions were right and
which were wrong, it may be difficult to decide what changes should be made
to a suboptimal policy. In artificial intelligence, this problem of assigning credit

or blame to one of a set of interacting decisions is known as the ‘credit
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assignment problem'. For efficient learning, it is necessary to have some
efficient way of finding changes to a policy that improve it, because the sheer
number of different possible policies in any significant problem makes a stra-

tegy of policy optimisation by trial and error hopelessly inefficient.
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Policy Optimisation by Dynamic Programming

Dynamic programming is a method of solving the credit-assignment prob-
lem in multi-stage decision processes. The scope of dynamic programming is
often misrepresented in the computer science literature—the true variety of its
applicatons is perhaps best explained in Bellman and Dreyfus (1962) or
Dreyfus and Law (1977). The basic principle of dynamic programming is to
solve the credit assignment problem by constructing an evaluation funcrion,
also known as a value function or a return function, on the state-space.

In discussing Markov decision processes, it is necessary to be able to refer
to random quantities such as ‘the state that results after starting at state x and
following policy f for five time steps’. A notation for this is the following,

where x is a state, f is a policy, and ~ is a non-negative integer:
X(xf,n) and R(xfin)

are the random variables denoting the state reached and the immediate reward

obtained, after starting at state x, and following policy f for n steps. Clearly,
X(xf,0)=x
and
R(x.f,0) = R(x,f)
[ will also write
X(x,a,1)

as the state that results from performing action a in state x.
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1. Value Functions

In a Markov decision process, the future evolution of the process—in par-
ticular, the expected return—depends only upon the current state and on the
policy that will be followed. If the process is in state x and the policy f is fol-

lowed, the expected return will be written Vf (x). That is,
Vf(x) =E[REFO- W RF1) o+ ¥RERe ) o - ws

Note that the value function could in principle be estimated by repeatedly simu-
lating the process under the policy f, starting from state x, and averaging the
discounted sums of the rewards that follow, the sums of rewards being taken
over a sufficient period of time for v* to become negligible. But because value

discounting is exponential, Vy also satisfies the following equation for all x:
Vi) =p(x,f) + YE[V(XGf1)) ]

For a finite-state problem, the evaluation functon is known if its value is
known for each state. The evaluation function may, therefore, be specified by

the |S| linear equations

Vf(.:) = plxNH + ZszU) Vf(y) for each x
¥

Thus in a finite-state problem, if p and P are known, the evaluation function
can be calculated by solving a set of linear equations, one for each state. The
calculation of the evaluation function for a policy is, therefore, straightforward

but time-consuming.

2. Using the Evaluation Function in Improving a Sub-Optimal Policy

The point of constructing the evaluation function V for a policy f is that,
once the evaluation function is known, it becomes computationally simple to

improve the policy f if it is sub-optimal, or else to establish that f is in fact
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optimal.

Suppose one wishes to know whether some proposed policy g will yield
higher expected returns for all states than the existing policy f, for which the
evaluation function V; is known. This question might be phrased as ‘Is g uni-
formly better than f?' One way of determining whether g is uniformly better
than f would be to compute V, , and then to compare V, with Vy over the entire
state space. But calculating the evaluation function for a policy g is computa-
tionally expensive: to do this whole calculation for each proposed modification
of the policy f would be extremely wasteful.

A simpler method of comparing f and g using V only is as follows. Con-
sider the expected returns from following policy g for one step, and then fol-
lowing policy f thereafter. Suppose that the policy g recommends action b at
state x, while policy f recommends action a. The expected return from starting
at x, following policy g for one step (i.e. taking action ) and then following

policy f thereafter is

; f

This is much simpler to calculate than V, , for to calculate Qf(x,8(x)) it is only
necessary to look one step ahead from state x, rather than calculating the whole
evaluation function of g. I will call the quantity Qf(x,a) the action-value of

action a at state x under policy f. Note that Qf (x,f(x)) = V(x), by definition.

To allow for the possibility that g may be a stochastic policy, I will define
Qf (xvg) by

Qr(x,8) = 3 Pr(g(x) =a) O (x, a)

That is, Qf (x,g) is the expected return from starting at x, following policy g for

one step, and then following policy f thereafter.
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Action-values are useful for the following reason. Suppose that the
expected return from performing one step of ¢ and then switching to fis uni-

formly as good as or better than the expected return from f itself, that is
Qr(x8) 2 Vi)

for all states x. One can then argue inductively that g is uniformly as good as
or better than f. Starting at any state x, it is (by assumption) better to follow g
for one step and then to follow f, than it is to start off by following f. However,
by the same argument, it is better to follow g for one further step from the state
just reached. The same argument applies at the next state, and the next. Hence
it is always better to follow g than it is to follow f. The proof is given in detail

in Bellman and Dreyfus (1962), and in Ross (1983). The result is

Policy Improvement Theorem

Let f and g be policies, and let g be chosen so that
Qf(X,g ) ZVf(x) forall xe S
Then it follows that g is uniformly better than f, i.e.

Vg (x) 2 Vf(.t) forall xe S

The significance of the policy improvement theorem is that it is possible
to find uniformly better policies than f, if such exist, in a computationally
efficient way. If the starting policy is £, then an improved policy is found by

first calculating Vj, and then calculating the action-values

Qr (x,a)

for each state x and each possible action a at x. A new policy f is defined by

choosing at each state the action with the largest action-value. That is,
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f(x) =ae A(x) : max Qr(x,a)

According to the policy-improvement theorem, f* is uniformly as good as or
better than f. This process repeats: the evaluation function and action-values for
f may be computed, and a new policy f obtained, and f” will be uniformly as
good as or better than £. With a finite Markov decision process, this process of
policy improvement will terminate after a finite number of steps when the final

policy f* is found for which
fFx)=ae AX): ma_fo.(x,a)

In other words, no improvement can be found over f* or Va using the policy
improvement theorem. Might f* still be sub-optimal? The answer is no,
according to the following theorem, proved in e.g. Bellman and Dreyfus
(1962):
Optimality Theorem
Let a policy f* have associated value funcrion V* and action-value func-
tion Q*. If policy f* cannot be further improved using the policy-

improvement theorem, that is if

V*(x) = max Q*(x,a)
a € A(x)

and
F*(x) = a such that Q*(x,a) = V¥(x)

for all x € S, then V* and Q* are the unique, uniformly optimal value and
action-value functions respecrively, and f* is an optimal policy. The
optimal policy f* is unique unless there are siates at which there are
several actions with maximal action-value, in which case any policy that
recommends actions with maximal action-value according to Q* is an

optimal policy.
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As a consequence of these two theorems, the following algorithm is

guaranteed to find the optimal policy in a finite Markov decision problem:

f := arbitrary initial policy;
Repeat
1. calculate the evaluarion funcrion Vf
2. calculate the action-values Qf (x,a) for all x, a
3. update the policy for all x by
fx) := a such thar Qf (x,a) = a??x)Qf (x,a)

until there is no change in f at step 3.

This method of calculating an optimal policy is the policy-improvement algo-
rithm. Note that the entire evaluation function has to be recalculated at each
stage, which is expensive. Even though the new evaluation function may be
similar to the old, there is no dramatic short cut for this calculation. There is,
however, another method of finding the optimal policy that avoids the repeated

calculation of the evaluation function. This method is known as value iteration.

2.1. Value Iteration

Value iteration is often a more efficient computational technique for
finding the optimal evaluation function and policy. The principle is to solve the
optimality equation directly for each of a sequence of finite-horizon problems.
As the finite horizon is made more distant, the evaluation function of the
finite-horizon problem converges uniformly to the evaluation function for the

infinite-horizon problem.

A finite-horizon problem is a problem in which some finite number of
actions are taken, which may have immediate rewards as in the infinite horizon

problem, and then a final reward is given; the final reward depends only on the
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final state.

Let VO(x) be the final reward for state x. V° is the optimal return after no
stages: if there is an initial estimate of the optimal evaluation function, then this
may be used as V9, or alternatively % may be an arbitrary guess. The only
restriction that needs to be placed on VP is that it should be bounded:; in finite-
state problems, any VO is necessarily bounded. Let V"(x) be the optimal
expected return achievable in n stages, starting in state x.

Once V9 has been chosen, it is then possible to calculate V!, V2, - - as

follows. V™ can be calculated from V™! by

Vi(x) = e ){p( x,a) + Y 3IPy@ Vo) }
ae X, ¥y

The point of this procedure is that as n — oo, | V" = Vju | — O uniformly
over all states. This proof is given in Ross (1983), and it is generalised in
appendix 1 where is is used to prove the convergence of a learning method.

" The value-iteration algorithm is

VO := arbitrary bounded funcrtion over states;
=
Repeat

b=l & 13

for each srate x do

Vi' S : It Vi-—l
(x) a??:{tx){P( x, a) ‘Y};;,ny(a) O }
until the differences berween V' and Vi~! are small for all x.

The method of value iteration that has just been described requires that,
after V° has been defined, V! is calculated for all states, then V2 is calculated
for all states using the values of V!, and then V2 is calculated using the values

of V2, and so on. This is a simple and efficient way to organise the calculation
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in a computer: for instance, the values of V* and V*! may be held in two
arrays, and once V" has been computed, the values of V™! are no longer
needed, and the array used to hold them may be re-used for the values of V**!
as they are computed in turn. In addition to the computational simplicity, the

time-horizon argument is intuitively clear.

However, in the learning processes I will consider, the learner may not be
able to consider all the possible states in turn systematically, and so fill in the
values for a new time-horizon. The value iteration method need not be carried
out in a systematic way in which ¥, V!, - .- are computed in sequence. Pro-
vided that the values of all states are updated often enough, the value iteration
method also converges if the values of individual states are updated in an arbi-
trary order. As with policy iteration, the computation may be less efficient if

the states are updated in arbitrary order, but it remains valid.

A different argument for the convergence of the value-iteration method
runs as follows. At some intermediate stage in the calculation, let the approxi-
mate value function be U, and let the (as yet unknown) optimal value function

be V. Let M be the maximal absolute difference between U/ and V, that is

M = max | U(x) = V(x) |
x
If some state y is chosen, the value of U(y) may be updated according to

Uy = 2 {p(y,a) + ; Py (a) U(2)}

where U’(y) is the updated estimate of the value of y. It is possible to show

Local Value Improvement Theorem

If| Ux) = V(x) | < M for all sitates x, then for any state y

U -Vo) | s vyM
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Proof:

By the definition of V,
V) = afé'l:-(’;) { pOia) + Y EV(T(.a)]}
=p(.a*) + v E[V(T(y,a")]
for some optimal action a*. Similarly,

Vel = Jax, {pOa) + YE[U(TH.a)]}
=p(.a) + E[U(T(.a))]

for some action a’, which is the optimal action with respect to UU. Observe

that
U'(y) 2 p(ra*) + YE[U(T(,a*))]
2 p(r,a*) + YE[V(T(y,a*)) — M]
=V -wW™
Similarly,
UW) < ptha) + YEV(T(.a)) + M]
s pOa*) + YE[V(TG,a%) + M)
=Vo) + Y M
so the proposition is proved.

Note that U” will not necessarily be uniformly more accurate than U. However,
since the maximal error of U’ is guaranteed to be geometrically smaller than
the maximal error of U, it follows that the value iteration method is guaranteed
to converge, and that the maximum error of the estimated evaluation function is

guaranteed to decline geometrically, the rate of decline depending upon the

discount factor 7.
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Note also that the updating of the estimated value function may be done
one state at a time, in any arbitrary order—it is not necessary to perform the
updates systematically over the state-space as in the value-iteration algorithm.
The estimated value function will converge to the true value function as the
total number of updates tends to infinity provided that all states are updated
infinitely many times.

The Local Improvement Theorem has an immediate corollary:

The Approximation Assessment Corollary

If U is an approximation to V, and

max |[U(x) = V(x)| =M

there is at least one x such that
U'(x) = U)| 2 (1-y) M
Equivalently,

max L&) = U 5 4
x (1P

This is a most useful result, for it yields an efficient method of determin-
ing whether some function U is a good approximation to the optimal evaluation
function V. Given an approximate value function U, one can obtain an upper

bound on max |U(x) — V(x)| by carrying .out one pass of the value iteration
max|U’(x) — U(x)|
X
iz

algorithm and observing

2.2. Discussion

This has been a very brief account of the principle of dynamic program-
ming applied to Markov decision problems. The main point I wish to convey is

that the computation consists of three processes: computing the evaluation
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function for the current policy; computing action-values with respect to the
current evaluation function; and improving the current policy by choosing
actions with optimal current action-values. These three procedures may be car-
ried out repeatedly in succession, as in the policy-improvement method, or else
they may be carried out concurrently, state by state, as in the value-iteration
method. In either case, the policy and the evaluation function will eventually
converge to optimal solutions. In this optimisation process, there are no local
maxima, and uniform improvements can be found at every step. Furthermore,
the minimum improvement theorem shows that convergence of either method is
rapid.

These results together paint a picture of an optimisation prdblem that is as
benign as it is possible for an optimisation problem to be; and small, finite
problems are indeed benign. However, in practical problems, the state-space
may be extremely large, and it may be impossible ever to examine all parts of
the state-space. Although it is not necessary to examine the whole state-space
to find guaranteed improvements to the current policy, it is necessary to exam-
ine the entire state-space to be sure of finding the optimal policy. The
minimum improvement theorem states only that there is some state for which
an improvement of a certain size may be found, not that such improvements
can be found for any state. Hence, if it is not possible to examine the entire
state space, it is not in general possible fo establish whether the current policy

is indeed optimal.
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Chapter 5
Modes of Control of Behaviour

An animal or agent chooses what actions to perform by doing some com-
putations on internally stored information. The type of computation done and

the type of information used constitute the mode of control of behaviour.

Different modes of control require different learning algorithms, so it is
necessary to classify possible modes of control of behaviour before considering
learning algorithms.

In classifying modes of control, the first distinction to make is between
modes in which the agent looks ahead and considers the future states and
rewards that would result from various courses of action, and modes in which
the agent decides what to do by considering only the current state. If the agent
considers the effects of different courses of action, it may be said to use a
‘model-based’ or ‘look-ahead’ mode of control, and if it considers only the
current state, it may be said to use a ‘primitive’ mode of control. Hierarchical

control will be considered in chapter 9.

1. Look-Ahead

In controlling its actions by look-ahead, an agent uses an internal model of
its world to simulate various courses of action mentally before it performs one
of them. That is, the agent considers the likely rewards from each of a number
of possible courses of action, and chooses that course of action that appears
best. For example a hill-walker may need to consider how best to cross a

mountain stream with stepping stones without getting his feet wet. He may do
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this by tracing out various possible routes from rock to rock across the stream,
and for each route he should consider how likely he is to fall in, taking into

account the distances between the rocks, and how slippery they appear.

The method of deciding what to do by ‘look-ahead’ is important because
it is much used in artificial intelligence. For example, chess-playing programs
decide what to do at each turn by tracing out many thousands of possible
sequences of further moves, and considering the desirabilities of the positions

that result.

In abstract terms, the essential abilities that an agent must have to use
look-ahead control are: a transition model, a reward model, and an ability to
consider states other than the current state. An agent with these abilities can in
principle compute the best course of action for any finite number of time-steps

into the future.

The computation for this may be laid out in the form of a tree, as illus-
trated as the upper tree in the diagram overleaf. Let us assume for the moment
that actions have deterministic effects, so that a unique state results from apply-
ing any action. Each node represents a state, and each branch represents an
acton, leading from one state to another. The root of the tree—the leftmost
state in the diagram—is the current state. Paths from the root through the tree
represent possible sequences of actions and states leading into the future. Each
action is labelled with the expected reward that would result from it.

If the tree is extended fully to a depth of n, so that it represents all possi-
ble courses of action for n time-steps into the future, then it is possible to
determine the sequence of moves that will lead to the greatest expected reward
over the next n time steps. The path from root to leaf in the tree that has maxi-
mal total discounted reward represents the optimal sequence of actions. This

path may be found efficiently as follows. The nodes in the tree are labelled
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A look-ahead tree.

The actions are labelled with the
expected rewards.

1543

The same look-ahead tree, with

the states labelled with their backed-up

values, using a discount factor of 0.5 9

The action at each state that is optimal in the look-ahead tree is marked in bold.
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with their values, the value of a node being the maximal possible expected
return obtainable by starting in that node and following a course of action
represented in the tree. The values may be computed efficiently by starting with
the leaves and working back to the root, labelling each node of the tree with its
value. The node labels for the previous tree are shown on the lower tree in the

diagram, assuming, for convenience, a discount factor of 0.5

The optimal path from each node—that is, the optimal path within the tree
of possibilities—is drawn as a thicker line. The node values are calculated as
follows. Leaf nodes are given zero value, since no actions for them are
represented in the tree. If x is an interior node of the tree then the estimated

value of x, written V(x), is given by

V(x) = mgx {p(x,a) + YV(T(x,a))}

where T(x,a) ranges over all the successor nodes of x as a varies.

With this mode of control, the action the agent chooses to perform is the
first action on the path with maximal expected return. Once the agent has done
this, it chooses the next action in the same way as before, by extending a new
tree of possibilities to the same depth as before, and then recomputing the path

with maximal expected return.

This mode of control is equivalent to following the policy that is optimal
over a time-horizon of n steps—the nth policy calculated in the value-iteration
method of dynamic programming.

If the state-transitions are not deterministic, then the tree of possibilities
becomes much larger. This is because each action may lead to any of a number
of possible states, so that at each level, many more possible transitions have to
be considered. An example of a (small) tree of possibilities for actions with

probabilistic effects is shown in the diagram overleaf. In this case, actions are
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0.3

0.3

0.4

Starting
state.

A small stochastic look-ahead tree.
Each action may have several possible results, so that the size of the tree

grows rapidly as more actions are considered.

The actions need to be labelled both with the expected reward
and with the probability of each result; only one action has

been labelled as an example.
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represented by multi-headed arrows, because each action may lead to any one
of several states. Not only must each action be labelled with the expected
immediate reward—each possible transition between a state x and a successor

state y must be labelled with P, (a).

It is still possible to calculate the optimal course of action over the next n
moves, with the difference that future actions will depend on which states are
reached. With probabilistic actions, a ‘course of action’ itself has the form of a
tree, a tree that specifies a single action for each state reached, but which

branches to take account of the possibility of reaching different states.

The best course of action may be found by a procedure that is similar to
that for the deterministic case. The value of a node is still defined as the maxi-
mal expected return that can be obtained by starting from that node and follow-

ing a course of action represented in the tree, but V(x) is given by

Vix) = mjtx {p(x,a) + Y2 P (a)V()}
y

That is, the agent must take into account all possible states that could

result when computing the expected return from performing the action.

It is only computationally possible to extend a tree of possible courses of
action to a finite depth. If the agent wishes to follow a policy that yields
optimal total discounted rewards, then it must extend the tree of possibilities far
enough into the future for the return from subsequent rewards to become negli-

gible.

However, the number of nodes in the tree will in general grow exponen-
tially with the depth of the tree. It is therefore usually impractical to consider
courses of action that extend for more than a short time into the future—the
number of possible sequences of state transitions becomes far too large. This is

the so called ‘combinatorial explosion’ of artificial intelligence.
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If the agent can extend the tree of possible courses of action far enough
into the future, then it can compute the optimal policy and value function.
However, it is just this vast calculation that dynamic programming avoids, if

the state-space is small enough.

2. Look-Ahead with an Evaluation Function

The amount of computation required for look-ahead control may be
greatly reduced if the value function, or even an approximate value function, is

known.

If the agent can compute an evaluation function, then it may choose its
actions by considering a much smaller tree of possibilities than would be
needed if the naive look-ahead method of the previous section were used.
Recall that in computing the values, the leaf states were assigned values of zero
in the naive look-ahead method. If, instead, the leaf nodes are given estimated
values, the values computed for interior nodes of the tree may be more accu-

rate,

2.1, One-Step Look Ahead

In fact, if an accurate optimal value function is available, the agent need
only look one step ahead to compute the optimal action to take. That is, the

agent selects the action to perform by finding an action for which

P(x,a) + Y Pry(a)V()
y
is maximal. Note that a policy determined in this way from V will be optimal,
because this is just the optimality condition of dynamic programming. Even if

the estimated value function is not optimal, the size of tree needed to compute

an adequate policy may be substantially reduced.

61




Chapter 5 — Modes of Control of Behaviour

2.2. One Step Look Ahead

The special case of one-step look-ahead control is important because the
agent only needs to consider possible actions to take in the current state: the
agent needs to imagine what new states it might reach as a result of actions in
the current state, and it must estimate the values of these new states, but it need

not consider what actions to take in the new states.

It is possible that there are examples of agents that can consider the conse-
quences of actions in the current state, but which cannot consider systematically
what to do in subsequent states. For example, in playing chess one considers
the positions that would be reached after playing various sequences of moves:
the longer the sequence of moves, the more different the appearance of the
board would become, and the more difficult it is to consider what further

moves would be possible, and what the values of the positions are.

2.3. Discussion

Much research in artificial intelligence has been devoted to finding
methods of using an evaluation function to reduce the size of the tree of possi-
bilities that it is necessary to construct to determine the optimal action to take.
The formulation of the problem is, however, usually in terms of minimising
total distance to a goal state, rather than of maximising total discounted reward.

Pearl (1984) is a standard reference on this topic.

In conclusion, it is only feasible for an agent to choose its actions using

naive look ahead if
e The agent has accurate transition and reward models.

e The effects of actions are deterministic or nearly so.
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e The number of alternative actions at each stage is small.

e The agent seeks to find an optimal course of action for only a few steps

into the future.

e The agent has enough time to consider the tree of possible courses of

action.

If the agent has can compute a value function or an approximate value func-
tion, the amount of computation required may be greatly reduced, and the
method of look-ahead becomes more feasible. The limiting case is that of one-

step look-ahead, which requires an accurate value function.

3. Primitive Modes of Control

In primitive control, the agent does not consider future states. This means
that primitive control methods are suitable for simple animals in stochastic
environments. Although higher animals are capab'lc of considering the conse-
quences of their actions, this certainly does not mean that they govern all of
their behaviour using look-ahead. If actions must be chosen quickly, or if the
environment is stochastic, or if the effects of actions are poorly understood or
difficult to predict, then it is likely that higher animals may also use these

‘primitive’ control methods.

There are three basic types of primitive control: by policy, by action-
values, and by value function alone. The amount of information that the agent
may need to store in order to represent any of these three functions may on
occasion be far smaller than the amount of information that would be needed to
represent a transition or reward model. Furthermore, each type of primitive con-
trol may be learned, by methods that will be described in the following

chapters.
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3.1. Explicit Representation of Policy

The most direct way for the agent to choose what actions to perform is for
it to store a policy f explicitly. In effect, the agent then has a ‘situation-action
rule’: in any state x it performs the action f(x).

However, if an agent only has a representation of a policy, then it is not
able to compute values of states or action-values without considerable further
computation. As a result, efficient unsupervised learning of a policy alone may
be difficult, and some additional internal representation either of action-values

or of a value function may be helpful for learning.

3.2. Explicit Representation of Action Values

In choosing actions by one-step look-ahead with a value function, the
agent computes the action value for each possible action, and then chooses an

action with maximal action value. That is, the action value of an action is

Q(x,a) = p(x,a) + YXPn(@V(©)
h g

and the agent chooses an action a for which Q(x,a) is maximal. If the agent
were to store the values of the function Q explicitly, instead of computing them
by a one step look ahead, then it could choose the action a for which the stored
value of Q(x,a) was maximal. This is primitive control according to stored
action values.

This type of primitive control has the advantage that the agent represents
the costs of choosing sub-optimal actions. If special circumstances arise, so that
exceptional rewards or penalties attach to some actions, then the agent may

choose sub-optimal actions with action values that are as high as possible.

Note that the agent does not need to store the actual values: any function

of x and a that is monotonically increasing in Q(x,a) at x will serve as well,

64




Chapter 5 — Modes of Control of Behaviour

because the agent just chooses the action with maximal Q(x,a). It is, therefore,
still possible to represent a policy using an inaccurate action-value function

which has the same maxima at each state as the value function.

3.3. Control Using a Value Function Alone

Selfridge (1983) describes a mode of control of behaviour that he terms

run and rwiddle. Loosely, this may be defined as

If things are improving, then carry on with the same action.

If things are getting worse, then try doing somerhing—anything—else.

Perhaps the classic example of control of this type is that of the motion of
bacteria, described by Koshland (1979). Certain bacteria are covlcrcd in motile
cilia, and they can move in two ways: they may move roughly in a straight
line; or they can ‘tumble’ in place, so that they do not change position but they
do change direction. A bacterium alternates between these two types of motion.
The bacterium seeks to move from areas with low concentrations of nutrients to
areas with high concentrations. It does this by moving in the direction of
increasing concentration of nutrients. Too small to sense changes in concentra-
tion along its length, the bacterium can nevertheless sense the time variation of

concentration as it swims along in a straight line.

A bacterium will continue to swim in its straight-line mode as long as the
concentration of nutrients continues to increase. However, if the concentration
begins to fall, the bacterium will stop swimming in a straight line, and start
tumbling in place. After a short time, it will set off again, but in a new direc-
tion that is almost uncorrelated with the direction in which it was swimming
before. The result of this behaviour is that the bacteria tend to climb concentra-

tion gradients of desirable substances, and cluster around sources of nutrients.
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Although this is perhaps the most elegant example of run and twiddle
behaviour—and particularly impressive because it is so effective a strategy for
such a simple organism—run and twiddle may also be used by higher animals.
Selfridge (1983) describes the behaviour of moths following concentration gra-
dients of pheromones to find their mates as a form of ‘run and twiddle” with
some additional control rules. But even humans may use run and twiddle
sometimes: who has not tried a form of ‘run and twiddle' while, say, trying to
work the key in a difficult lock, or in trying to fly a steerable kite for the first
time, when one does not know which actions affect the motion of the kite?
Run and twiddle is a suitable control strategy if the agent cannot predict the
effects of its actions, or, perhaps, even represent adequately the actions that it is
performing.

It is necessary to distinguish between run and twiddle control by immedi-
ate rewards from control according to a value function and immediate rewards.
Consider some hypothetical bacteria that control their movement in the manner
described above. A bacterium’s aim is to absorb as much nutrient as possible:
the amount of nutrient absorbed per unit time is the ‘immediate reward’ for that
time. If the bacterium decides whether to tumble or to continue to move in a
straight line on the basis of the change in the concentration of nutrients, then it
is controlling its actions according to immediate rewards. In contrast, consider a
fly looking for rotten meat. The fly could find rotting meat by following con-
centration gradients of the smell of rotting meat, in a similar way to that in
which the bacteria followed the concentration gradients of nutrients. The meat,
however, is the reward—not the smell: the current smell may be used in the
definition of the current state, on which a value function may be defined. In this

case, therefore, the state might be defined as the current smell.

66




Chapter 5 — Modes of Control of Behaviour

One method of run and twiddle control using a value function works as
follows. The value of the current state is an estimate of the expected return.
Suppose an action a is performed on a state x, resulting in a new state y and an
immediate reward r. Let the value function be V. Then the return expected from
following the control policy at x is V(x). The return that results from perform-

ing a may be estimated as

r+yV(y)
The action is deemed successful if the resulting return is better than expected,

and it is deemed unsuccessful if return is less than expected. That is, a is suc-

cessful if
r+yV(y) =2 V(x)
and unsuccessful if
r+ yV(y) < V(x)
A control rule is ‘If the last action was successful, then repeat that action, oth-
erwise perform another action.’

This is a very simple method of control. More complex control rules are

possible. The essential feature of ‘run and twiddle’ control is that

e  The returns estimated using the evaluarion funcrion are used in choosing

subsequent actions.

As in action-value control, run and twiddle need not necessarily use the value
function itself: it may also use functions that are monotonically related to the
value function. Such a function of states might be called a desirability funcrion.
An alternative description of these control methods is as desirabiliry gradient
methods, since the control strategy is a form of stochastic hill-climbing of a

desirability function. Many such control methods are possible.
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A published example of an artificial learning system which chooses its
actions by a desirability-gradient method is that of Connell and Utgoff (1987),
who describe a learning system for the cart and pole problem described in
chapter 2. This problem is particularly simple in that there are only two possi-
ble actions in each state, so that it is suitable for desirability gradient control.
The desirability function is not a value function. It is constructed by using ad
hoc heuristic rules to identify a certain number of ‘desirable’ and ‘undesirable’
points in the state space during performance. The desirability function is con-
structed assigning a desirability of 1 to each desirable point, and of -1 to each
undesirable point, and then smoothly interpolating between the desirable and
undesirable points. The undesirable points are the states of the system after a
failure has occurred; the desirable points are states after which balancing con-
tinued for at least 50 time steps, and which satisfy certain other conditions. In
Connell and Utgoff’s system, the controller continues to perform the same
action until the desirabilities of successive states start to decline; when this hap-
pens, it switches to the other action. Their method was highly effective for the
cart and pole problem, but it is of course based on an ad hoc method of con-

structing a desirability function.

It is possible to learn value functions for run and twiddle methods by
incremental dynamic programming. I do not know of general, principled
methods for learning desirability functions of other kinds. It is possible that
Connell and Utgoff’s method of identifying desirable and undesirable states
during performance and then interpolating between them can be applied more

generally.
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4. Hybrid Modes of Control

A mode of control is simply a method of choosing an action on the basis
of a knowledge of the current state: given the current state, one or more alter-
native actions are rccommcnd;:d for performance. There is, therefore, no reason
why different modes of control may not be used as alternatives to one another.
An agent may have alternative modes of control that it can use, or else it may

use different modes of control in different parts of the state space.

For example, an agent may be able to predict the effects of some actions,
but be unable to predict the effects of others. It may, therefore, evaluate some
actions with one-step look-ahead, and it compare these values with stored

action-values for the other actions.

5. Learning Faster Modes of Control

This is an appropriate point to describe one type of learning which I am
notr going to consider further. This is the learning of a fast mode of control
using a slow mode of control to provide training data. This type of leaming is
analogous to the ‘imitate the teacher’ learning considered in chapter 2.

Suppose, for example, that an agent can use look-ahead to control its
actions, but that this mode of control is inconveniently slow, or that it con-
sumes valuable mental resources that could be employed on some other

activity. It would, therefore, be advantageous for the agent to acquire a faster or

computationally less expensive form of control.

While using the slow mode of control, the learner may collect a set of
situation-action pairs that may be used as training data for learning a faster
mode of control. The situation-action pairs, laboriously calculated by look-
ahead, for example, may be used to learn situation-action rules inductively.

Learning of this type has been studied in artificial intelligence, by Mitchell,
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Utgoff, and Banerji (1983).

Another approach has been suggested by Laird, Rosenbloom, and
Newell (1986) who propose ‘chunking’ as the general learning mechanism.
‘Chunking’ is the process of cacheing action sequences performed, and then
treating these store” action sequences as single actions. Once an action
sequence has been .. .nd by look-ahead search, and successfully applied, the
entire action sequence is associated with the starting state, generalised if possi-
ble, and then stored, ready to be applied again in the same situation.

The particular method of chunking has the limitation that as more and
more action-sequences are stored in this way, the search for an appropriate
action sequence may become more and more lengthy, so that th? actual speed
of the mode of control may sometimes get worse. An abstract model of this
phenomenon has recently been given by Shrager et al (1988).

Chunking appears to be a possible general learning mechanism—but is is
not plausible to claim that it is the general learning mechanism.

Learning a fast control mode using by (internal) observation of the perfor-
mance of a slow control mode may have considerable importance in learning

many skills. In skill-learning, slow closed-loop control is gradually altered to

the faster open-loop control.

6. Conclusion

There are, therefore, a number of possible modes of control of action, each
based on the use of a different type of internally represented knowledge. For

each control mode, there is at least one method of learning.

The possible modes of control of action can be divided according to
whether or not the agent can predict state-transitions and rewards—that is,

according to whether the agent can look ahead. From now on I will concentrate
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on those modes of control of action in which the agent cannot predict the

effects of its actions in the sense of predicting state-transitions or rewards.

These modes of control are:

¢ by using an explicitly represented policy, and choosing the action

recommended by the policy

¢ by using explicitly represented action-evaluations, and choosing

an action with maximal action-value

e by following the gradient of a desirability function, by
preferentially performing those actions that curfently appear

to lead to net increases in desirability.

These modes of control are in a sense more primitive than those in which the
agent uses an internal model of ‘its world to look ahead. One of the main con-
tributions of this research is to show that it is still possible to optimise these

primitive modes of control through experience, without the agent ever needing

to look ahead using an internal model.
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Chapter 6
Model-Based Learning Methods

Learning in which the agent uses a transition and a reward model will be
termed ‘model-based’ learning. There are essentially two possibilities: either the
learner knows the transition and reward models at the start, or else it acquires

them through experience.

1. Learning with Given Transition and Reward Models

Consider a learning problem in which an agent initially knows accurate
transition and reward models,. but does not know the optimal value function or
policy. In other words, suppose the agent has all the information it needs to cal-
culate the optimal solution by one of the standard dynamic programming
methods, but that it has not done so. This might not appear to be a leaming
problem at all: in principle, the agent could use its initial knowledge to calcu-

late the optimal solution. But this may not be possible.

One reason is that the agent may not have the leisure or the computational
ability to consider all states systematically in carrying out one of the conven-
tional optimisation methods. An animal might know the layout of its territory,
and, if located in any spot, it might know how to reach various nearby places:
however, it might be unable to use this knowledge to plan ahead because it
might be unable to consider alternative possible routes from a place different
from its current location. A specific reason an agent might not be able to com-
pute an optimal policy or course of action is that it may not be able to sys-

tematically consider alternative courses of action in states different from its
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current state: the ability to use the transition and reward models might be tied

to the agent’s current situation.

In other problems, it is completely impractical to compute the optimal pol-
icy at all, because the state-space is too large. The classic examples of such
problems are board games, in which the rules of the game are easy to state but
the winning strategy is hard to find. The whole problem of leaming to play a
game such as solitaire, draughts, or chess is not in understanding the rules but
in improving the quality of legal play.

In learning from experience, the agent will not be surprised by any
rewards it receives, or by any state-transitions it observes, since it already
possesses transition and reward models. The new information isl in the form of
the .sequcncc of states that are visited. One method of improving an initial
evaluation function is to carry out a value-iteration operation at each state
visited. The value-iteration can be neatly combined with look-ahead control of

action, since many of the same computations need to be performed for both.

Let the agent’s approximate current value function be U, and suppose the
agent controls its actions by one-step look-ahead. If the current state is x, then
the action chosen by one-step look-ahead according to U will be an action a

that maximises

p(x,a) + v U(T(x,a))

among actions a; possible in x; that is, an action with maximal estimated return
according to U. But the value iteration at x is to set U(x) to be equal to the

maximum estimated return according to U, that is:

U'(x) &« max p(x,a;) + Y U(T(x,a))

So the improvement of U using value-iteration can be done as a by-product of

one-step look-ahead control.
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If the agent performs a multi-step look-ahead search, so that it constructs a
large tree of possibilities, then it is also valid—indeed usually better—to com-

bine many-step look-ahead control with value iteration in the same way.

This type of ‘learning’ is just value-iteration carried out at the states the
agent happens to visit or to consider, rather than value iteration carried out sys-
tematically over the whole state space. If the agent does not repeatedly visit or
consider all states, then the learning may not converge to an optimal value
function because U/ may remain perpetually in error on states that the agent
does not visit. There is also no guarantee that each value iteration will be an
actual improvement of U towards the optimal value function: if U is correct for
some state x but in error for the successors of x, then the valﬁc iteration may
worsen U at x. But according to the local improvement theorem, U’(x) cannot
be in error by more than y times the maximal error of U. If there is a subset of
the state-space that the agent covers repeatedly, then the agent must develop an

optimal value function for the problem restricted to that set of states.

1.0.1. Samuel’s Checker-Playing Program

The classic implementation of this method of learning is Samuel’s (1963,
1967) program for playing checkers. This program refined its position-
evaluation heuristic during play by what was essentially value-iteration. Two

learning methods were used.

One method was to cache certain board positions encountered together
with their values estimated from a look-ahead search. The store of cached posi-
tions and values can be viewed as a partial function from states (board posi-
tions) to their estimated values—a partial implementation of U. If a cached
position is encountered during a look-ahead search, the search need not go

beyond the cached position—the cached value may be used as an estimate of
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the value of the look-ahead tree from the cached position, so that the effective
size of the look-ahead search is increased. Note that the values associated with
the cached positions should in principle be updated periodically because the
look-ahead search used to compute the cached value did not take advantage of
the positions and values cached subsequently: it is unclear whether Samuel’s
program did this. Cacheing and the recomputation of cached values is thus a
form of value iteration. The effect of the cacheing may be described either in
terms of increasing the effective size of look-ahead search, or equally in terms

of storing and improving an evaluation function by value iteration.

The disadvantage of cacheing in a game such as checkers is that it is
impractical to cache more than a tiny fraction of all positions. The second
learning method that Samuel’s program used was a method of developing and
improving a value function that could be applied to any position, not just to
cached positions. This was a parametrised function of certain features of board
positions, and the parameters could be altered by a gradient method to fit the
function to revised values. The parameters were incrementally adjusted during

play according to a value-iteration method.

This method of learning is similar to methods I will consider later. The
danger in adjusting a parametrised value function is that in changing the param-
eters, the value function changes for many positions other than the current posi-
tion. There is, therefore, the possibility that different adjustments will work in
opposite directions and the overall quality of the value function will deteriorate.
Samuel reports that he found that this method of adjustment of the evaluation
function was far from reliable, and that occasional manual interventions were

necessary.

A further danger of the value-iteration learning method is that in checkers,

where the payoff occurs at the end of the game only, values must be adjusted
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to be consistent over very long chains of moves. Although an approximate
value function might be locally near-consistent according to value-iteration, it
might nevertheless be largely wrong. This simply reflects the fact that value
iteration is not always guaranteed to improve the value function at every stage.
Samuel’s formulation of checkers did not use discounted rewards; in this case,
although value iteration would in principle be guaranteed to converge to the
optimal value function if the iteration could be carried out repeatedly over all
states, a single value-iteration, even over all states, could not even be

guaranteed to reduce the maximum error of the value function.

Samuel’s program did not really need to play games of checkers to learn
to improve its evaluation function: in principle, the learning could have been
done by performing value-iteration on an arbitrary collection of checkers posi-
tions, instead of doing it on the positions encountered during the games the
program played. As far as I know, Samuel did not try the experiment of com-
paring learning from an arbitrary collection of positions to learning from the
positions encountered during play, and it seems probable that leaming from
arbitrary positions would have been worse. On the other hand, if the arbitrary
positions were taken from games between human expert players, the learning

might have been better.

The reason why it may often be useful to perform value iteration at the
states encountered during performance is; that many arbitrarily generated states
might never be reached in actual performance. In chess, for example, only a
tiny proportion of random configurations of pieces on the board could plausibly
occur as game positions. Even if a chess-player developed an ability to choose
good moves from random positions, this hard-won skill might not be applicable
in actual play since the type of position encountered in games between people

would be qualitatively different.
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In spite of the limitations [ have mentioned, Samuel’s program worked
very well. In fact, it may still claim to be the most impressive ‘learning pro-
gram’ produced in the field of artificial intelligence, as it achieved near-expert
levels of perforrmance at a non-trivial game. I have argued that both of the
learning methods that Samuel used may be regarded as forms of value iteration
applied at the states the program visits during play. In the case of checkers, this
type of learning cannot be guaranteed to improve the value function, but the
analysis in terms of incremental dynamic programming provides a framework

for explaining both the program’s successes and its limitations.

1.1. Learning with Adaptive Transition and Reward Models -

A different type of learning problem arises when the learner does not pos-
sess accurate transition and reward models initially, and the leamning task is

both to learn transition and reward models and to optimise the value function.

A learner may have initial approximate transition and reward models, and
an initial approximate value function; it may improve both its models and its

value function through experience.

The problem of improving the transition and reward models is a problem
of inductive inference. In a finite system, the most general way of inferring the
transition and reward models is to visit all states repeatedly and to try out all
possible actions repeatedly in each state; it is then possible to keep counts, for
each state-action pair, of the numbers of transitions to each other state, and to
record the rewards received. The relative frequency of each transition may be
used to estimate its probability, and the records of rewards may be used to esti-
mate the expected reward as a function of state and action. The construction of
the transition and reward models is a problem of system identification, which

may be described as a problem of statistical estimation complicated by the need
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to visit a sufficient variety of states to obtain the necessary empirical data.

An obvious and straightforward approach to combining model estimation,
action, and learning is for an agent to maintain current estimated transition and
reward models that are incrementally updated according to experience. The
agent also maintains a current estimated value function, and the agent uses its
current estimated models and its current estimated value function to choose its
actions by look-ahead. Because both the models and the value function may be
in error, the problem of choosing an appropriate look-ahead method in the early

stages of learning is difficult.

However, as learning goes on, the transition and reward models will
become progressively more accurate, so that the learner’s po'licy and value

function approach optimality asymptotically.

1.2. Relationship to Self-Tuning Control

Many self-tuning control problems are of this type. In self-tuning control
theory, it is usual to assume that the structure of a model of the process is
known, and that what remains to be done is to estimate the values of a (rela-
tively small) number of initially unknown parameters. It is taken for granted
that once the parameter values of the model have been estimated, an appropri-
ate policy to follow may be computed immediately—the computation of a pol-
icy or value function from the estimated model is not regarded as a part of the
adaptive process. A common assumption is that an appropriate policy to follow
given uncertain estimates of the parameter values is a policy that would be
optimal if the estimated parameter values were correct; this is known as a ‘cer-
tainty equivalence’ assumption. If the estimation process is consistent so that
the parameter estimates do eventually converge to their true values, then ‘cer-

tainty equivalence control’ will ultimately converge to an optimal control
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policy, even if a certainty-equivalent policy is not optimal while the parameter
estimates are uncertain.

This method of empirical model identification combined with certainty
equivalent control is conceptually simple, but there is a snag that may some-
times arise. The problem is that the early estimates of the model parameters
may be in error, and if the agent (i.e. the controller) follows a certainty-
equivalent policy for the erroneous parameter estimates, then it may limit its
subsequent experience, so that the wrong parameter estimates are never
corrected, and performance never improves. To ensure that the learning agent
does obtain sufficiently varied experience for it to be sure of estimating the
parameter values correctly eventually, it may be necessary for the agent to per-

form experiments as part of its learning strategy.

A number of papers have been published in the control literature on self-
tuning control of Markov decision processes, mainly considering the average
reward criterion rather than the discounted reward criterion. Mandl (1974)
proved that a certainty-equivalence approach to self-tuning control of finite
Markov decision processes would converge under certain restrictive conditions.
Kumar and Becker (1982) criticise Mandl’s approach as requiring too restrictive
conditions, and they propose a method based upon intermittent experimentation,
with the intervals between experiments growing progressively longer. The
experiments they suggest consist of following the certainty equivalent control
policy for a randomly chosen set of parameter values until the starting state is
revisited (one of their requirements is that the chain should be recurrent for all
certainty equivalent policies). They prove that the average performance of their
self-tuning controller taken from the start of the run will tend to the optimal
possible value, although their controller will, of course, continue to behave

sub-optimally during its intermittent experiments.
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There are two differences between mainstream self-tuning control theory
and the learning methods I have described in this section. The first, and most
important, is that I regard the computation of the optimal value function as a
part of the learning process, rather than as something which can be done instan-
taneously. The second difference is one of emphasis: most self-tuning control
theory is concerned with linear systems or with non-linear systems for which it
is assumed that the form of the model is known, and that the values of only a
relatively small number of parameters need to be determined. In the problems
I wish to consider, the uncertainty about the form of the model may be much
greater. In problems with continuous state-spaces, the models will be con-
structed from large families of explicitly represented functions, and it will also

be possible to consider other problems in which the state-space is discrete.

80




Chapter 7
Primitive Learning

By ‘primitive’ learning, I mean learning in which the agent does not have
and does not estimate transition or reward models. Instead, the agent develops a
policy and evaluation function directly. In principle, the agent may develop an
optimal policy and value function without having to remember more than one
past observation, and without being able to predict the state-transitions or the
immediate rewards that result from its actions. Although such an agent has
only ‘primitive’ abilities, it may still be able to learn complex and effective pat-
terns of behaviour.

Primitive learning may be described as incremental dynamic programming
by a Monte-Carlo method: the agent’s experience—the state-transitions and the
rewards that the agent observes—are used in place of transition and reward
models. In primitive learning, the agent does not perform mental
experiments—it cannot, for it has no internal models. The agent performs actual

experiments instead.

Methods of primitive learning are described and discussed from section 3

to the end of the chapter; these are the main results of the thesis.

1. Importance of Primitive Learning

Primitive learning is important because it requires only simple computa-
tions and because the transition and reward models are often difficult to con-

struct and to represent if the environment is complex.
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Transition models, in particular, may be complex. If actions do not have
deterministic effects—if performing an action may lead to any of a number of
possible states—then the transition model is a mapping from state-action pairs
to probability distributions over states. A large amount of information may need
to be stored to represent this mapping, and a large number of experiments

might need to be performed to acquire it inductively.

For a finite Markov decision process, the reward model may have |S||A]
parameters, and the transition model may be larger with as many as [S/°/A|
parameters, where |S| and |A| are the numbers of possible states and actions
respectively. In contrast, a value function requires only |S| parameters, and even
a stochastic policy requires at most |S||A| parameters. Thus, as Howard (1960)
remarked, the practical applicability of the conventional approaches to policy
optimisation in finite Markov decision processes is severely limited by the need
to represent the transition model. Even if other methods of representing the
transition model are used, it will still often be the most complex data object in
the learning system, since it must represent a mapping from one large set

S x A into another large set—the set of probability distributions over S.

A more subtle reason why it may often be difficult to construct a suitable
transition model is the following. No model can represent the world
completely—in constructing any model, it is necessary to decide which aspects
of the world to ignore and which to represent. However, consider an agent that
is constructing a transition model with which to construct an optimal policy:
how can the agent know which aspects of the world are relevant for construct-
ing the optimal policy, and which are not? If the agent models the world in
unnecessary detail then it will waste resources. On the other hand, if the agent
models the world in too little detail, and so ignores some relevant aspects of

the state of the world, then a policy that is optimal according to its model may
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not in fact be optimal at all.

The trouble is that, in model-based learning, the agent in effect replaces
the real world with an internal model, and constructs an optimal policy by per-
forming mental experiments with its internal model. If the agent considers the
agreement of its model with the world and the optimality of its policy with
respect to the model separately, then it cannot determine whether its model is
an adequate representation of the world for the purposes of constructing an
optimal policy.

To determine what aspects of the world are relevant to the value of a
course of action, the agent must experiment in the world and keep track of the
returns that result from different states. The agent must actually observe the
returns that its policy brings, and it must choose to distinguish states according
to whether they lead to differing returns. As will become apparent, this is what

is done in primitive learning.

1.1. Information Available to the Learner

The learner’s task is to find an optimal policy after trying out various pos-
sible sequences of actions, and observing the rewards it receives and the
changes of state that occur. Thus an episode of the learner’s experience con-

sists of a sequence of triples of states, actions, and rewards:

vl Bl ) Bl

The x, are observed by the learner; the a, are chosen by the learner; and the r,

are measures of whether the learner is achieving its goals.
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For successful learning, the agent must obtain sufficient experience. In a
finite-state problem, the learner must try out each possible action in each state

repeatedly to be sure of finding the optimal policy.

The constraints on what experience the learner can easily obtain depend
on the learning problem. For example, a solitaire player may set up the pieces
in any position he chooses, and return to any previous position to study it, and
he may try out many different sequences of moves from the same board posi-
tion. A lion learning how to stalk and kill gazelles does not have this luxury:
if the lion charges too early so that the gazelle escapes, then it must start again
from the beginning, and find another gazelle and stalk it, until it faces a similar
situation and it can try creeping just a little closer before sta.rﬁng to charge.

The lion’s experience is hard won.

2. Methods of Estimating Values and Action-Values

All methods of primitive learning rely upon estimating values and action
values directly from experience. At all times, the agent will have a current pol-
icy: values and action values are estimated according to this policy. The first
technique to discuss, therefore, is the various methods of forming estimates of
expected returns. In this section of the chapter, I will develop a notation for
describing a family of estimators of returns; this notation will be convenient for

the concise description of learning methods in later parts of the chapter.

The simplest way to estimate expected returns is just to keep track of the
sum of discounted rewards while following the policy. Let us define the actual

return from time r as

L=r+ e +’Yz":+2+ TR o P R
That is, the actual return r, is the actual sum of discounted rewards obtained

after time ¢. The optimal policy is that policy which, if followed in perpetuity,
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will optimise the expected actual return from every state. For any given policy
5 VJ,- (x) is the expected value of the actual return that would be received after

starting in state x and following policy f thereafter.

Because v < 1, ¥* will approach zero as n becomes large, and because all
rewards are assumed to be bounded, for each value of y there will be some
number of time-steps n after which the remaining part of the actual return will
be negligible. Hence the agent may calculate an acceptably accurate value of

the actual return from time ¢ at time r+n—1. The n-step truncated return is

rin] =T err+2 B SR Yl_lrﬁn—l

If the rewards are bounded, then the maximal difference between the truncated
return and the actual return is bounded, and tends to zero as the number of

steps before truncation is increased.

Clearly, one method of estimating the value function for a given policy f
is to follow f and, for each state, to average its n-step truncated returns, for

some sufficiently large n.

There are three disadvantages of this method of estimating the value func-
tion:

e  The value of the truncated return is only available to the agent after a time
delay of n steps. To calculate the actual return from each state visited, the
agent must remember the last n states and the last n rewards.

¢  The truncated returns may have a high variance, so that many observations
are necessary to obtain accurate estimates.

¢ To use the truncated return from time ¢ to estimate the value of state x,

according to policy f, the agent must continue to follow policy f for at

least n steps after time r.

85




Chapter 7 — Primitive Learning

These problems may be avoided by using a different class of estimators; some
of these have been described by Sutton (1988), and he terms them ‘temporal
difference’ methods. These methods rely upon the agent maintaining a current
approximation to the value function. This approximate value function is
denoted by U. The agent seeks to make U approximate the value function

more closely, and U will change with time: U at time ¢ is denoted by U, .

The n-step truncated return r, + Yr,, + **° + Y 'r,,., does not take
into account the discounted rewards Y'r,,, + Y 'ra + - - that would be
received if the agent continued following its policy f. But the sum
Fisn * Yisns1 + °°° can be approximated by the agent as U, ,(x,,). This can

be used as a correction for the n-step truncated return. The corrected n-step

truncated return for time ¢ 1s

I'EH) BTph Wi tedizy Yl_lr:-m-l + Y Uben( Xtin )

If U were equal to V; , then the corrected truncated returns would be unbiased

estimators of V;, since
V@ = E[ R0 + W, KGsL) |
= E[ RG/0) + 1RAD + PV, K(x2) |
= E[R(xf,O) +YRELL) + - - ]

The reason that corrected truncated returns are useful estimators is that the
expected value of the corrected truncated return tends to be closer to V than U

is. Let K be defined as the maximum absolute error of U, that is

K = max | U(x) — V,(x) |
Then

max | E[r"”(x)] - V;(x) | <Y K
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This might be called the error-reduction property of corrected truncated
returns. For r{!); the proof is a special case of the local improvement theorem
proved in the chapter on dynamic programming; for r'” the proof is essentially
the same. Note that E[r((x)] is not necessarily closer to V,(x) than U(x) is for

all x—but the maximum error of E[r{”(x)] is less than the maximum error of
U.

One is not restricted to using r for just a single value of 7: it is possible
to use weighted averages of r for different values of n. These weighted aver-

ages of corrected truncated returns will still have the error-reduction property in

the following sense. If r'™ is a weighted sum of corrected truncated returns

™ = Fwyr®
i

where the weights w; sum to 1, then

max|E[r™] - V()| € T¥iwl K
% i
Note that ¥'¥|w] < 1 provided that all the w; are between 0 and 1.
i

An important case is to use a weighted sum in which the weight of r‘™ is
proportional to A" for some A between O and 1: this weighted sum will be

A

denoted by r*. This estimator has been investigated by Sutton (1988); [ will

describe his work in my notation.
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What Sutton terms the TD(A) return from time ¢ is
rd = (1D + @ + A2k 4+ -]

=r+y(=-M)U(x, )+

Yl[rni + ¥ (1=0) Uy (x40 ) +
'Y?l.[rﬂ_z + Y (l—l) UH—?,( X3 ) +

7}‘-[":4-3 =% Y[

Because r* is a weighted average of corrected truncated returns, it has the
error-reduction property. Note that U is time-indexed; in value estimation, U
may change slightly at each time step. However, the changes in U will be small

if the learning factor is small.
The expression above may be written recursively as
o= r +Y (10 Uy + YAy
The TD(0) return, with A = 0 is just
i =r o+ Y Ul
and if A is set to 1, the expression for the TD(1) return is
T =r+ Y+ Yrug +

which is just the actual return.

2.1. Choice of A as a Trade-Off between Bias and Variance

All these different estimators of the expected return may be defined, but
what use are they? In particular, how should one choose the values A? If the
agent follows the policy V; for long periods of time, then should it not use the

obvious method of truncated returns for some sufficiently large n? Although I
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have not developed any rigorous argument, the following considerations should

affect the choice of A.

The choice of values of A depends on a trade-off between bias and vari-
ance. If the values of U are close to those of V, then it is easy to show that the
variance will be lowest for A = 0, and highest for A = 1. However, low vari-
ance is obtained by truncating the sequence of discounted returns and adding a
value of U as a correction. If these corrections are wrong, then the estimates
will be biased. The optimal choice of A, therefore, depends upon how close the
current values of U are to Vy. It seems plausible that, to estimate V; by follow-
ing f and observing rewards, the fastest method is to use A = 1 to start with,
and then reduce A to zero as U becomes more accurate.

o have not done any quantitative analysis of this problem, but Sut-
ton (1988) reports some computational experiments for a related problem in
which A was kept constant throughout estimation, and he found that the most

rapid convergence during the time course of his experiment was obtained with

intermediate values of A.

2.2. Implementation Using Prediction Differences
Sutton (1988) defines the prediction difference at time t as
& =r+yUlxg) =Ulx )
The motivation for the term ‘prediction difference’ is that at time ¢ the agent
might predict the return from time r to be U/ x, ); at time r+1 the agent has
more information to go on in predicting the return from time #, as it has
observed r; and x,,, . It may, therefore, make a new prediction of the return
from time ¢ as r,+YU(x,, ). The prediction difference is the difference

between these two predictions. If U is equal to Vy for all states, then the
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expected value of all prediction differences is zero. (The individual prediction
differences actually observed will not be zero if the process is random so that

state transitions or rewards may vary.)

Now, as Sutton suggests, the difference between the TD(A) return and the

estimated value may be rewritten as

- 3 : VI
r:l —Ulx )=¢e+Yhey + 721-23:4-2 + 731 €3 t

# z (Yl)n[Ur+n(xr+n) i Ur+n—l(-x1+n)]

=1

If the learning factor is small, so that U is adjusted slowly, then the second

summatdon on the right hand side above will be small.

The usefulness of this way of calculating r} — U,( x, ) in terms of predic-
tion differences is that the agent can calculate the prediction difference for time
k at time k+1—a delay of only one time-step. Furthermore, if U is close to V,
the average value of the prediction differences will be small. Now, the natural

way to use r* to improve the estimated value function U is to use an update

rule
Upi( % ) = (1=)U x, ) + or>
=U(x )+oarr=Ulx, ))
=U(x )+ a[e, +hen + AP e+ - ]

Thus the update rule can be implemented by, at each time step, adding

appropriate fractions of the current prediction difference to previously visited

states.

One way of doing this is to maintain an ‘activity trace’ for each state
visited (Barto et al (1983) describe this as an ‘eligibility trace’—a trace of how

‘eligible’ the estimated value of a state is to be modified). When a state is
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visited, the activity becomes high; the activity then declines gradually after-
wards. The amount by which the estimated value of the state is adjusted is o
times the current activity of the state times the current prediction difference.
Let the ‘activity’ of a state x at time ¢ be C(x,r). The levels of activity of all

states may be updated at each time step by the following rules:
C(x, 1) =0 if x has never been visited.
Cx, ) =yAC(x, t-1) ifx, #x
Cl,=1+YyAC(x, +~1) ifx, =x

That is, 1 is added to the activity of the current state, and the activities of all
states decay exponentially with a time constant of YA. This form of the algo-
rithm may be natural to use in connectionist implementations, where the
memory of a recent visit to a state might take the form of ‘traces of activity’ in
a distributed representation of the state. This method is used in the learning

algorithm in Barto, _Sutton, and Anderson (1983).
The value updating rule suggested by Sutton is

Up1(x) = Ux) + & C(x, t+1) e,

This rule may be most suitable for connectionist implementations of incremen-
tal updating of value functions, where it may be natural to update all states at
each time step, but for implementations on sequential computers, it is inefficient
to update all states at each time step, and a more efficient way is to keep track
of the last n states visited for sufficiently large n. The size of n required will
depend on the value of A used: the smaller the value of A, the smaller the value
of n needed. If A = 0, then n = 1.

Sutton (1988) describes the use of these temporal difference estimators for

estimating value functions in Markov processes with rewards. He considers a
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more general formulation of the problem, in which the states of the Markov
process are described by linearly independent vectors, and the value function is
represented by a vector of adjustable weights. The value of any state is the

inner product of the state vector with the weight vector.

Sutton also suggests that these methods can be used in procedural leamn-
ing: the learning method of Barto, Sutton, and Anderson (1983) uses a
connectionist-style implementation of this method of estimating expected
returns. Sutton (1988) suggests widespread application of the method in
behavioural learning. Sutton and Barto (1988) suggest a model of classical con-
ditioning in terms of the animal leaming to estimate the expected total
discounted unconditioned stimulus that it will receive. The pmbaﬁi]ity of a clas-
sical response was assumed to be proportional to this estimate. In this model,
learning is continuous during experience, rather than occurring at the end of
each ‘trial’; this is an advantage, since the animal might not divide its flow of

experience into ‘trials’ in the same way that the experimenter would.

2.3. Estimating Values and Action Values in a Markov Decision Process

So far, a range of methods have been introduced for estimating expected
returns in a Markov process with rewards. In a decision process, in which
different actions are possible at each state, there is a complication: it is only

meaningful to estimate a return relative to some policy.

In the learning methods to be described, the agent seeks to estimate
returns relative to an internally represented policy—its esrimarion policy. In
some methods of learning the estimation policy is stochastic, in others, it is sta-
tionary. In some methods, the agent always follows its estimation policy; in

other methods, the agent may deviate from its estimation policy.
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If the agent always follows its estimation policy, then the estimation prob-
lem is the same as the previous problem for Markov processes with rewards.
But what if the agent does not follow its estimation policy f but instead follows
another policy g, or else does not follow a consistent policy at all? Can the

agent still estimate V; and Oy then?

Yes it can, by using different values of A at different time steps, with the
value of A depending on whether the current action is a policy action or not.

One may define
rp ey (1"}'&1) Ullxy) + er+1 l‘fll
=(1_7\-r+1)r£1) o 3-H-l(l";\-:+2)r§2) * }“:+1l:+2(1—kr+3}r£3) +

where A is the sequence of values A; ,A,, - , and where 0 < A, < 1 for all
t. A need not be defined in advance: A, may depend on the state and action at

time r. Since r® is a weighted average of corrected truncated returns, it has the

error reduction property.

The point of this definition is that by a suitable choice of A, the agent may
estimate the returns under one policy while behaving quite differently. Let the
agent divide the steps of its experience into two classes: ‘policy steps’ and
‘experimental steps’. If the agent’s estimation policy is stationary—that is,
there is a unique policy action for each state—then all steps in which the agent
performs the policy action are policy stéps, and all other steps are experimental
steps.

If the estimation policy is stochastic, so that the policy is to choose actions
by sampling from a probability distribution at each state, then the question of
whether a step is policy or experimental is not so clear cut. One method that
the agent can use is to accept or reject steps in such a way that, for each state,

the relative rates of acceptance of actions are kept approximately the same as
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the action probabilities according to the policy.

Suppose the agent immediately classifies each step of its experience either
as policy or as experiment. It must ensure that its estimated returns are not
contaminated by the effects of experimental actions. If the agent performs an
experimental action at time ¢, then it cannot use any of its experience after time
tin an estimate of the return from an action taken before time r. To do this, the

agent may define A by

A* if g, is a policy action
A, =
0 if a, is an experimental action
where A* is a chosen value between 0 and 1. The essential point is that if step
t is experimental, then A, must be zero. If A is defined in this way, then rj®
will be an estimate of Q,(x,, a,), uncontaminated by the effects of subsequent

experimental actions.

To see this, consider the recursive definition of r in terms of rf;:
=+ Y (heg) Ule) + Y Ay Ty

If step r+1 is experimental then A, =0 , so that the term on the right hand
side containing the subsequent return rf* is multiplied by 0. r{* is, therefore, an
estimate of Qs (x; ,a,), because after step v, it is constructed from U}, (x,,,) and
from any further policy steps from #+1 onwards. If some step r+n is an experi-
ment, A,,, = 0, and no further time steps contribute to the estimate. r has the

error reduction property, therefore.

Note that r is an estimate of the action-value of x, ,a,. The next state x,,
is always taken into account in forming the estimate. But if a, is experimental,
then it is not possible to use rf'L to estimate Vf(x, ). Let us therefore define uf\

as
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ut = (1-A)ULx) + Axd

The agent may estimate Vi (x,) only if the action at time r— a, — is a policy
acuon: the agent cannot use the rewards following a non-policy step to estimate

the value of the state according to the policy.
The above method of defining A is a special case of the more general

methods used for variance reduction in Monte-Carlo estimation in Markov

processes (see Rubinstein 1981, chapter 5).

3. Learning Action-Values

The problem of finding the optimal value function for a dcpision problem
is more complex than that of merely estimating values and returns: the optimal
policy is initially unknown, so that initially it is not possible to estimate the
optimal value function directly. Instead, learning is a process of improving a

policy and value function together.

One method of representing a policy and value function, as described in
chapter 5, is to store action values Q(x,a) for each state x and action a. The
values of Q at time r are denoted by Q,. From its values of Q, the agent may

estimate the value of a state x as
UP(x) = max{ Q,(x,a) }
The superscript Q in U2 is to indicate tﬁat U2 is calculated from Q. Q impli-
citly defines a current policy /2 which is
ﬁ?(x) = a such that Q,(x,a) = U‘,Q(x)

That is, the current policy is always to choose actions with maximal estimated

action value.
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How might the agent improve Q through its experience? The simplest
method is one-step Q-learning, in which the values of Q are adjusted according

o
Q1(xp,a) = (1-0)Q,(x, ,a) + or, + YU?(x:H))
= (1-0)Q,(x, ,a,) + ari)

where o is a ‘learning factor’, a small positive number. The values of Q for all
other combinations of x and a are left unchanged. .

Note that the actions that the agent should take are not specified. In fact,
the agent is free to take whatever actions it likes, but for it to be sure of finding
the optimal action value function eventually, it must try out each action in each
state ' many times.

Does this learning method work? It does indeed, because it is a form of
value iteration, one of the conventional dynamic programming algorithms
. described in chapter 4. As is explained in appendix 1, one-step Q-learning can
be viewed as incremental, Monte-Carlo value iteration: Q,,, is estimated from

U?, and U? is obtained by maximising Q, at each state.

Appendix 1 presents a proof that this learning method does work for finite
Markov decision processes. The proof also shows that the learning method will
converge rapidly to the optimal action-value function. Although this is a very
simple idea, it has not, as far as I know, been suggested previously. However,
it must be said that finite Markov decision processes and stochastic dynamic
programming have been extensively studied for use in several different fields
for over thirty years, and it is unlikely that nobody has considered this Monte-
Carlo method before.
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3.1. Learning Action Values using General Estimates of Returns

In fact, there is a family of methods of Q-learning, which use different
estimators of expected returns. The principle of all the methods is that the
values of Q are updated using estimates ri* of the action values. As before, A,

may be defined by

* if a, is a policy action
M = {0 otherwise
With A, defined in this way, returns are estimated only over sequences of policy
actions. A ‘softer’ definition of A, which is used in the second demonstration
program in chapter 11, is to make A, depend on the difference between the
estimated action value of the action performed and the estimated value of the
state. If Q,(x, ,a,) is much less than UP(x, ) then A, should be small, whereas if
Q,(x, ,a,) is nearly as large as UZ(x,) then A, should be nearly as large as A*.

One method of achieving this is to calculate A, thus:
Ae = exp( -NUPR) - O, .a) ) A*

where the parameter 7 is non-negative real number. If 1 is zero, then A, = A*
for all ¢, whereas if 1 is large then A, will be small if Q,(x,,a,) is even slightly
less than U?(x, )i

Note that the value of the estimated return r® will only become available
at some later time. As a result, O cannot be updated immediately according to

r —the update must be made later on, at time ++T, say:

Orurai(x,a) = (1-0)Qur(x,,a) + ard

or else the updates may be performed incrementally using the method of pred-
iction differences described in section 2.3 above. There is a potential problem
here: Q is being incrementally updated at each time step, but it is also being

used in calculating the estimates of returns r® on which the updates are based.
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That is, changes in Q may affect r*, which then affect the changes in @, and so
on: however, these effects are proportional to a?, and so will be negligible for

small ct.

This is a family of leaming methods that appear plausible—do they work?
Unfortunately, I have not been able to show that they will always work, for the
following reason. The difficulty is that if the values of Q differ from the
optimal values Q*, then the implicit policy € may differ from the optimal pol-
icy f*. The problem is that if Q is perturbed away from the optimal action
values O* by only a small amount, so that the implicit policy /2 differs from
the optimal policy, the value function for /2 may differ from the optimal value
function V by a larger amount. That is, a small perturbation of Q away from
the optimum may under some circumstances lead to instability. These instabili-
ties need not necessarily occur, but I have not been able to find useful condi-
tions under which they can be guaranteed not to occur. In computer implemen-

tations to be described later, the instabilities were not significant.

4. Learning a Policy and a Value Function

In previous work on what I have termed primitive learning methods, the
policy has been represented by action-weights, or action probabilities, rather
than by action-values. The values of szares were represented explicitly, but
action-values were mnot. Methods of this type have been described by
Michie (1967), Widrow et al (1972), Mendel and McLaren (1972), Wit-
ten (1977), Barto, Sutton, and Anderson (1983) and Sutton (1984), Wheeler and
Narendra (1986), and Anderson (1987), and also by Liepins et al (1989), and
Hampson (1983).

These previous methods divide naturally into two types: learning a policy

alone, and learning a policy together with a value function.
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4.1. Learning a Policy Alone

The agent maintains and adjusts a representation of a policy during learn-
ing. The policy is stochastic. Different actions may be performed on different
visits to the same state, so that the agent has the opportunity to compare the
effects of different actions. After an action has been performed, the agent uses
its subsequent experience to form an estimate of the expected return from that
action that results from following the current policy. The agent then gradually
increases the probabilities of those actions that lead to high estimated returns,
and it reduces the probabilities of actions that lead to lower expected returns.
Provided that the agent’s estimates of expected returns are unbiased, this leamn-
ing process can be viewed as a form of incremental, Monte-Carlo policy

improvement.

Wheeler and Narendra (1986) propose an interesting method for the case
of a finite Markov decision process in which the aim is to maximise long-run
average reward, rather than expected discounted reward. Their estimate of the
expected return was obtained by a recurrence method. If the state at time ¢ is x,
and action a is performed, and the next time at which the process returns to
state x is +7, they use

Ty ® e vidinadrgrsy
y i

as an unbiased estimate of the expected average return that would result from a
policy of performing a in x, and of following the current policy elsewhere. Of
course, the policy is changing slowly at all states during the estimation of
expected average returns, but Wheeler and Narendra give a proof that the sys-
tem can be made to converge to an optimal policy with as high a probability as

desired.
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They represent the policy directly as a set of action-probabilities at each
state. They assume that the Markov processes for all possible policies are
recurrent, and that the estimated returns lie between O and 1. They update the
state probabilities by the Lg_; rule (Narendra and Thathachar (1974) or Laksh-

mivarahan (1981) are surveys of stochastic learning automata).

Widrow et al (1972) considered a sequential task (playing Blackjack) that
always finished after a finite number of actions; when the task finished, the
agent received a reward depending on the outcome. The return that was to be
maximised by an optimal policy was the expected terminal reward. The termi-
nal reward actually obtained was used as the estimate of expected terminal
reward for each action taken during each bidding sequence. Thc action proba-
bilities were adjusted so that actions taken became more probable if the reward

was high, and the probabilities became lower if the reward was low.

Barto, Sutton, and Anderson (1983) implemented a method of this type
with discounted returns for the pole-balancing problem as a method to com-
pare with their adaptive heuristic critic algorithm. The results were disappoint-
ing. However, their formulation of the pole-balancing task had a larger number
of states than either blackjack bidding or the demonstration problems used by
Wheeler and Narendra—and it is possible that for some choice of very small
learning parameters, the method would work after a large number of training
runs. In addition, the formulation of the pole-balancing problem used was not
actually a Markov process, since the cart and pole system moves deterministi-
cally in response to actions, and the state-space was partitioned into quite

coarse regions.
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4.2. Learning a Policy with a Value Function

In the leamning methods described by Witten (1977), Barto, Sutton, and
Anderson (1983) and Sutton (1984), and Anderson (1987), the agent acquires
both a policy and a value function. The estimated value function is used to pro-
vide TD(A) returns that are of lower variance than observed returns, and which
are available within a shorter time. A possible drawback, however, is that these

estimates may be biased if the estimated value function happens to be in error.

In Witten’s method there are two concurrent adaptive processes: improve-
ment of the policy and estimation of the value function for the current policy.

At each time-step, the value function is adjusted by
U1 () = (1=o)U(x, ) + aulr, + YU (x111))

Witten proposes that the policy at each state should be adjusted by an
unspecified learning automaton, using r, + YU,(x,;) as the reward. Witten
recommends that the learning rate of the value function should be much higher
than that for the policy, so that on the time scale of the policy adjustment, the
mean value of U at each state can be assumed to be equal to V. He then proves
that, under these conditions, there is a unique optimal value function and class
of optimal policies, but he does not point out any connection with dynamic pro-
gramming.

There are two differences between the adaptive heuristic critic algorithm
and Witten’s method: the AHC algorithm uses TD(A) returns, rather than just
TD(0) returns, and the policy is adjusted according to a reinforcement com-
parison method (Sutton (1984)). That is, the quantity that is used to adjust the
policy is the difference between the TD(A) estimated return from the state x and
the estimated value of x. Sutton (1984) showed in a number of simulation
experiments that learning automata that used the difference between the rein-

forcement from the environment and an estimate of the expected reinforcement
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under the current policy appeared to converge considerably faster than conven-

tional learning automata.

[ have not been able to prove that either of these policy learning methods
will necessarily work, nor have I been able to construct any problem for which,
using stochastic approximation rather than learning automata, the methods
would fail. I think it very probable that it is possible to give conditions under
which these methpds could be guaranteed to work, but the proof techniques
used for action-value estimation cannot be applied in this case, because the

action-values themselves are not represented.
The reason for the difficulty is that there are two concurrent adaptive
processes—value estimation and policy improvement—and there is a possibility

that these may interact during learning to prevent convergence.

4.3. Representing a Policy by a Single Action at Each State

A still simpler way to represent a policy is to store a single action for
each state: the policy is then stored as a function from states to actions. In this
case, the agent does not need to determine which action has the highest
strength in the current state—it simply uses its stored policy to compute an
appropriate action. Note that this representation of the policy may require very
much less information than either the action strength or the action-value
representations. This is a genuinely simpler leaming method: if many actions
are possible in each state, this method of representing the policy could have
considerable advantages. As far as I know, the following learning method has

not been suggested before.

If the possible actions at each state themselves form a vector space, the
choice of action may be improved by a gradient method, in the following way.

Let the current policy be f. Suppose the agent is in some state x, and it
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performs the action g, different from the policy action f{x). One method of

adjusting the policy is according to the rule

fura1 @) = fur(x) + B = Uprlx )@, = frur(x))
where [ is a learning factor, a small number greater than zero. The effect of
this adjustment rule is that if r — U, {(x,) is positive, so that the estimated
return from performing a, was greater than the estimated value of X, —in other
words, if @, was ‘unexpectedly good’—then the policy action for x, is adjusted

towards a,.
This learning rule may be extended to cover some stochastic policies. If
the stochastic policy is to perform an action
X +C
where { is a (vector) random variable of zero mean, then the same adjustment
rule for f may be used.

A modification of this adjustment rule is to have two learning factors [*
and B~ If r* > Uy(x,), so that g, is better than expected, then B* is used in the
adjustment rule; if the action is worse than expected, the learning factor B~ is

used. Both B* and B~ are greater than 0, and
pr> B~
The learning rule becomes

perlee ) + B - Unx ) @ = foop(xy) ) if 1t > Upplx,)
Sursa1 () =
110 ) + BT = Upg(x,)) a = fur(x)) if rf} S Upp(x)
The motivation for modifying the adjustment rule in this way is that if f and U
are nearly optimal, then experimental, non-policy actions will usually lead to

estimated retumns that are lower than U(x). If B~ is large, then each experiment
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will cause f(x) to change: experiments will, therefore, cause random perturba-
tions of f(x) about the optimum. If B~ is made small in comparison to B* then
the random perturbations caused by sub-optimal experiments will be smaller
and more quickly corrected. This technique of asymmetric learning factors has
been widely used for stochastic leamming automata (Barto and Anandan 1985,
and the review by Lakshmivarahan 1981). Widrow (1972) uses asymmetric
learning factors for analogous reasons, and reports a greatly increased speed of
convergence.

The estimated value function, U may be modified using the estimator for

values u :

Urs1(x) = (1-o)Upp{x, ) + o
= (1= U 7(x,) + A{(1-A)Upq(x; ) + Arp ]
Once again, A may be defined so that u® is an estimated return according to f.

Note that the processes of adjusting U and f are quite separate, and

different estimators for the returns may be used in each.

Should this method work? One limitation to note immediately is that the
policy is updated by a gradient method at each state. If, therefore, at any time
there is more than one maximum in the action-value function at a state, then it
is possible for the policy action at that state to converge to a sub-optimal local

maximum.

Apart from this difficulty, the ‘learning method’ may be subject to the
same instabilities as the action-strength methods of the previous section: I do
not know under what conditions it can be guaranteed to converge to the
optimal value function and policy. Later on, however, I will describe an imple-
mentation of this learning method, and, for that example, it appears to work

rather well.
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5. Learning a Value Function Alone

Finally, perhaps the simplest learning method of all is to learn a value
functions alone, under desirability-gradient control of action. Once again, a pos-

sible learning rule is
Uirei(x) = (1=a)U  pix, ) + C(uf\

As before, this may be implemented in either the sequential or the connectionist
style. For this method to be valid, u? must be constructed according to the
desirability gradient control policy. There is no adjustment to the policy
because the agent does not have one: U itself is used in the contol of action.
Whether this learning process will converge will, I believe, depend on the par-

ticular desirability gradient control method used.

The reader may wonder whether learning a value function in this way is
really a form of instrumental learning. For learning of this simple type, the dis-
tinction between instrumental and classical conditioning begins to break down,
but a distinction can nevertheless be maintained in principle, as follows. Some
simple organisms may behave according to the same control policy all the time:
others may sometimes behave according to a particular desirability-gradient
method, and sometimes not. For the learning to be instrumental, it must only
happen while the agent is following its desirability-gradient policy. If there are
temporal correlations of states and rewards that occur during times that the
agent is not using its control method, then these cannot be attributed to the
method of control, and so should not cause changes in the value function in
instrumental learning. Hence if the agent learns from temporal correlations that
occur when the agent is not following its control policy, then it is classical

rather than instrumental conditioning.
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This is a simple method of learning that could be used by simple organ-
isms, in the following way. Suppose that some fly had the ability to follow
certain odour gradients in the air, using a desirability-gradient method. Some
odours might be innately attractive, and generally useful for the fly to follow.
However, for any particular habitat, there might be some other odours that it
would be useful for the fly to learn about: these secondary odours would pro-
vide indications of the presence of the innaﬁ:[y attractive odours. This type of
learning, therefore, might more conventionally be described as a form of classi-

cal conditioning of odours.

6. Restricted Experience and Meta-Stable Policies

In chapter 4 on dynamic programming, one of the conclusions was that
there is only one optimal value function V, and the optimisation process will
always find V. In primitive learning one of the conditions for success is that the
- agent should repeatedly try all possible actions in each possible state. But at
intermediate stages of learning, the agent’s policy may lead it to visit only a

part of the state-space: this can result in a mera-stable policy.

A meta-stable policy is one that is sub-optimal, but which, if followed,
prevents the agent from gaining the experience necessary to improve it. Meta-
stable policies occur frequently in everyday life: sitting in a comner at parties,
for example, is a strategy that may prevent people from learning to enjoy them.

All the previously published primitive learning methods I have cited have

one aspect in common:
e The agent always behaves according to its current estimation policy.

Each action the agent takes is used to adjust the estimated value function, and
the policy is stochastic so that the agent necessarily experiments with different

actions in following the policy. This approach of combining experiment with
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value estimation might be called the ‘random policy trick’—a ‘trick’ because it
simplifies the learning algorithm, in that it is not necessary to specify any
further what the agent should do. This ‘trick’, however, may severely limit the

performance of the learning algorithm.

The random policy trick restricts the amount of experimentation that the
agent can do during the later stages of learning, and it governs the nature of the
experimentation at all stages. As the estimation policy approaches the optimal
policy, the agent will perform fewer and fewer experimental actions, and
further improvement of the policy will become slow. Worse still, at intermedi-
ate stages of learmning the policy may be sub-optimal and almost deterministic in
some parts of the state space. In such regions of the state-space, there will be a
low level of experiment, so that changes in the policy in these regions will be
slow. To see how this may happen, consider the following simple example

problem, illustrated in the diagram overleaf.

The dots labelled with letters represent states, which are named A to F.
The arrows between the dots represent possible actions. For example, the
arrows from A to C and from A to B signify that, in state A, the agent has the
choice of two actions: to move to state C or to move to state B. Whenever the
agent reaches state B it receives a reward of 1, and whenever it reaches state F
it receives a reward of 2. The agent wishes to find a policy that optimises

expected return according to a discount factor of 0.9; otherwise, the agent

receives no rewards.

In this decision process, there are two loops of states that the agent can
traverse. The loop on the right, passing from state A to state B and back again,
gives low level of return. The loop on the left, from A to C to D to E to F to
A, yields a high reward at F. This path yields a high level of return provided

that the agent goes all the way round it. The optimal policy is to follow the
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The optimal policy is to follow the loop ACDEFACbEFA...

But if the initial policy at A, C, D, and E is to choose

either action with equal probability, then the probability

of AB will initially increase, since F is seldom reached.

If the agent must follow its estimation policy, then acquiring

the optimal policy may take a very long time.
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path ACDEF repeatedly. However, at states C, D, and E the agent has a choice

of either continuing along the optimal path, or of returning to A with a small

reward.

Consider the course of learning according to the random policy trick if the
initial policy i.s, at each state, to choose all possible actions with equal probabil-
ity. On this initial policy, the action value of going from A to B is higher than
the action value of going from A to C, because if the agent goes from A to C,
it is likely to return to A from either C, D, or E with no reward, whereas if it
goes from A to B, then it will always receive the sure but sub-optimal return.
Initially, therefore, any primitive learning system will adjust its estimation pol-
icy at A so that going to B becomes more probable than goirig to C. As the
agent accumulates more experience, it will find, on the occasions that it reaches
E, that it is much better to go to F than to go to A, and it will adjust its value
estimate for E upwards. When the value estimate for E is high, the agent will
find, when it visits D, that it obtains a better return from going to E than from
going to A, and it will adjust its policy accordingly. In this way, the estimation
policy will be adjusted towards the optimal policy and the values will be

adjusted towards the optimal values starting with E, then D, then C, and finally
A.

However, during a substantial initial part of this learning process, the
action value at A of going to B will be highcr than the action value of going to
C, and the estimation policy will be adjusted to favour B over C. If the agent is
following its estimation policy, it will visit C less and less often. Provided that
the probability of going from A to C does not decrease too quickly, the agent
will eventually obtain enough experience of the path from C to recognise its
value, and, once the estimated value of C has risen above the estimated value

of B, the probability of going from A to C will start to rise. Ultimately, the
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estimation policy will converge to the optimal policy.

The point of this example is, however, that learning may take an
indefinitely long time if the agent always follows its estimation policy because
the the rate of visiting C may become very small. It is possible to make the
learning indefinitely slow by increasing the number of states in the chain

between C and the state F in which the agent receives the reward.

What this example demonstrates is that the speed of learning depends crit-
ically on the agent’'s pattern of experience during the course of leamning. To
return briefly to the example, consider how much more quickly the agent might
learn if it were repeatedly placed in random states, so that it visited D, E, and F
more frequently, and would as a result have the opportunity to improve its pol-

icy and value function at D and E.

This small, artificial example is not a contrived or exceptional case: it is a
simple example of a general difficulty. In learning, the agent needs to improve
its policy, to estimate expected returns, and, depending on the learning method,
to construct a value function or an action-value function. In primitive learning,
an agent can only improve its current policy by trying out alternative actions,
and altering its policy if it finds actions that yield higher returns. Yet, in most
of the learning methods, this requirement to experiment is at odds with the
requirement to follow the policy. The policy may become almost deterministic
while it is still sub-optimal, and further learning is then very slow.

Not only must an agent try out a sufficient variety of actions in the states
that it visits: it must visit all the possible states. In justifying their leamning
methods, Wheeler and Narendra (1986) and Witten (1977) both need to assume
that the agent will repeatedly visit all states while following any policy: but this
assumption is resﬁﬁtive, and in many problems it is simply not true. If, under

some policies, the agent does not visit certain areas of the state space, then the
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agent cannot improve its policy in those areas. It is then possible for the
agent’s policy to be optimal for the decision problem restricted to the regions
of state space that it frequently visits; in this case, policy improvements could
only be made in the areas that the agent does not visit. The learning system can

settle into a metastable state, at a sub-optimal policy.

[f the learner must always follow its estimation policy, then this problem
of meta-stability will be particularly acute, because the leamer’s behaviour is so
restricted. If the learner uses a method that allows it to make experiments, then
the learner can porenrially get the experience that it needs to improve its policy,

but it need not necessarily do so.

Another, perhaps clearer, example of meta-stability m.ighf be termed the
‘secret tunnel’ problem in route finding. When I drive to work, I travel South
across London and down to Surrey. I know the alternative routes, and in South
London and North Surrey, I can follow an optimal policy. My choice of route
is to some extent stochastic, but the areas I may visit during the journey are
quite limited, being restricted to a narrow ellipse surrounding the optimal route.
I have found this route through experience: when I first started making the jour-
ney, I tried alternative routes over a wider area, but now I have narrowed it
down. There are, therefore, vast areas of England that I never visit during my
journeys to work. It is possible that, if I were to travel a few miles North, I
might, if I turned down some unpmmiﬂng side-street, find the entrance to a
secret tunnel beneath London, that would take me directly, unimpeded by
traffic, to work. If such a tunnel existed, my present policy would be sub-
optimal and meta-stable: if I continued to follow it, I should never find the
secret tunnel. To guarantee to find the optimal route, I would have to make
experiments, so that eventually, over a long period of time, I would explore

every byway and eventually find the tunnel.
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If such a tunnel existed, my current policy would be meta-stable in the
sense that I would never find the tunnel during my current explorations near the
route I now take: however, if I ever found the tunnel (or if I was led to i), I
would change my current policy. Note that the optimal policy may be quite
different from the meta-stable policy even on those parts of the state space that
are visited while following the meta-stable policy: for example, if the secret
tunnel existed, it would be better for me to turn back and head for the secret

tunnel from up to half of my current route to work.

Meta-stability is a general phenomenon in learning by animals, machines,
and people. The difficulty may be overcome to some extent by allowing the
agent to perform actions inconsistent with its current policy. This allows the
agent to reach parts of the state space that it might not otherwise experience,
and to perform more experimental actions, and so be able to adapt its policy
more quickly. However, there is no general method for obtaining suitable
experience in an efficient way. As I will argue in the next chapter, the experi-

mental strategy is an important type of prior knowledge for a learning agent.

7. Summary and Discussion

In this chapter, I have discussed a number of different plausible learning
methods for Markov decision processes; but only for one of them—one-step
Q-learning—have I been able to give a proof (in appendix 1) that it will con-
verge to the optimal value function and policy. I have not been able to find
proofs of convergence for the other leamning methods: I believe that the
methods will generally work, but I have not been able to find conditions on the
behavioural policy during learning that would ensure that the methods are
stable. The problem in proving that a learning method will converge is that, for

the proof to be useful, the behaviour of the agent must be allowed to vary
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almost arbitrarily, and some patterns of behaviour might cause instabilities that

would prevent convergence.

Finally, the problem of meta-stable policies affects all of these learning
methods. Unless the agent tries all actions in all states, no primitive learning
method can be guaranteed to converge to an optimal solution. No local experi-
mental strategy can succeed in eliminating this problem in general. One of the
roles of prior knowledge and of advice is to induce the agent to try out useful

actions, and to visit states of high value.
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Chapter 8
Possible Forms of Innate Knowledge

It is notorious that it is difficult to learn something unless there is a sense
in which one almost knows it already. Empirical observations need to be com-
bined with prior knowledge, and the practical usefulness of any learning
methods will be in proportion to how much use they can make of innate

knowledge, and to how easily innate knowledge can be provided.

In the study of animal leamning, one of the most important questions is that
of what innate knowledge animals have, of what form it is encoded in, and of
how it affects learning. In the introduction I argued that once members of a
species rely on acquiring some valuable skill by learning, there will be selective
advantage in that skill becoming innate. That is, animals that have some innate
characteristics that enable them to learn the skill faster or more reliably will
have an advantage over those individuals that do not learn the skill as fast or as
surely. What types of innate characteristics, or ‘knowledge’, might individuals
be provided with that would enable them to learn a behavioural strategy faster?
Any candidate theory of animal learning should provide a variety of ways in

which innate knowledge could be encoded and used.

1. Types of Innate Knowledge in Incremental Dynamic Programming

There are, perhaps, six types of innate ‘knowledge’ that may affect the
speed of learning by incremental dynamic programming. They are

e  physical capacities
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*  subjective reward systems

e methods of representation and approximation of functions

“ initial policies, value functions, and models

¢  bounds and constraints on policies, value functions, and models
e tendencies to experiment

I will consider these types of innate characteristics in turn. ‘Innate knowledge’
is, perhaps, an inapposite term: ‘innate characteristic that affects learning’

would be better, but is longer.

1.1. Physical Capacities

Appropriate physical capacities may help learning in the same way that
good tools can help carpentry. For example, if a bird has an appropriately
shaped bill for opening a certain type of seed, then the precision with which the
necessary actions must be performed to open a seed might be much less than
would be necessary for a bird with an unsuitably shaped bill. Both birds might,
if they were both skilled, be able to open the same seeds in the same time and
with the expenditure of the same amount of energy: however, the bird with the
well adapted beak might be able to learn the skill more quickly because the
necessary policy might be simpler and require less precision to represent.

In sum, a physical adaptation may give an animal an advantage in many
different ways—and one of these ways is in making a valuable strategy easier
to learn. To call this a form of innate ‘knowledge’ is to stretch the term
‘knowledge’ a little far, but the effect of a more suitable bill might be the same

as that of an innate cognitive ability.
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1.2. Subjective Reward Systems

So far, [ have usually implied that the immediate rewards that an animal
receives for its actions are the primary reinforcers that directly affect its

chances of survival: food, water, expenditure of energy, avoidance of danger,

and so on.

However, an animal may have innate subjective reward systems to guide
its learning. Certainly, to predict an animal’s natural behaviour according to the
optimality argument, a behavioural ecologist will wish to argue that a certain
pattern of behaviour optimises an animal’s eventual reproductive success: the
behaviour may do this by optimising some necessary intermediate criterion,
such as the rate of energy intake. However, although the anirﬁal's behaviour
may -bc optimal or near-optimal from the behavioural ecologist’s point of view,
the animal itself may not be trying to optimise the behavioural ecologist’s cri-
terion. The animal may have innate ‘likes and dislikes’, and it may award itself
subjective rewards and punishments according to this innate scheme, and it
might then learn to behave so as to maximise the expected discounted sum of

these subjective rewards and punishments.

If so, the animal will be learning according to a special-purpose method,
in the sense of McNamara and Houston (1985): in the animals’ natural environ-
ment the subjective rewards and punishments might be good guides to
behaviour, but it might be possible to construct artificial environments in which
the subjective reward system was misleading and would lead the animals to

learn to behave sub-optimally.

As a hypothetical example of how a subjective reward system might aid
learning, suppose that there were animals constructed just like the cart and pole
mentioned in chapter 2. Suppose that these animals experienced pain and possi-

ble injury whenever they fell over. Then the primary reinforcers that would
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motivate the animals to keep balancing are the primary punishments that occur
when they fall over. However, these primary reinforcers would provide rather
unhelpful information as to how to keep balancing—indeed, this is why the
pole balancing problem is interesting. Although the animals could in principle
learn to balance using these primary reinforcers alone, an individual that had an
innate preference to be near the middle of the track, nearly vertical, and moving
slowly, and which awarded itself a subjective reward whenever it was in this
position, would learn to balance more quickly and with less injury than its less
fastidious competitors.

An innate subjective reward system, then, can serve as an encoding for
useful behavioural strategies: an encoding that is ‘decrypted’ by associative
learning in an appropriate environment. Animals must have innate subjective
reward systems that enable them to recognise the primary reinforcers—food,
injury, sex—when they occur. The development of further innate subjective

rewards may, therefore, also be possible.

1.3. Methods of Representation and Approximation of Functions

The aspects of the state of the environment that the agent can distinguish,
the range of actions that it can encode, and the types of functional relationship
that it can construct, are all innate characteristics that can affect the rate of
learning. In particular, the method of apﬁroximation of functions that the agent
uses in constructing its policy and value function incrementally will affect the

generalisations that it makes to states that it has not previously encountered.

This is the type of prior knowledge that can be included in pattern recog-
nition systems: what features to use, what class of function to construct to fit

the observational data.
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1.4. Initial Policies, Value Functions, and Models

In incremental dynamic programming, the agent’s starting state will affect
the amount of learning that it needs to do. All the learning algorithms I have
described consist of the gradual modification of an initial strategy. Clearly, if

the initial strategy happens to be optimal, then it does not have to be modified

at all.

In the same way, if an agent were to construct a model of the world
empirically, then the closer its initial model is to predicting events correctly, the

less learning has to occur.

This type of innate ‘knowledge’ should be carefully distinguished from the

next type, to which it might appear superficially similar.

1.5. Bounds and Constraints on Policies, Value Functions, and Models

The difference between a constraint and an initial state is that a constraint
applies throughout the whole course of learning, whereas the initial state is
altered during learning, and may eventually be entirely lost. A constraint, in

contrast, may influence any stage, or all stages of learning.

One possible type of constraint that incremental dynamic programming
can take advantage of is a constraint on the value function. For example, sup-
pose one of the hypothetical pole-balancing animals happened to fall over, or
be blown over, when it was standing still in the middle of its track. It might,
erroneously, assign a low value to that state, which under the optimal policy is
very safe. One type of innate knowlege that could help to prevent such a mis-
take and to speed up the learning is to place innate bounds on the value func-
tion: the constraint might, for example, prevent the value function in the safe

states from ever falling below some limit value.
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The strongest form of innate constraint on the policy is that the policy, or
a part of the policy, may be innately fixed, so that the agent has innate

responses to certain situations.

A crucial difference between a constraint and an initial state is that a poor
initial state need not prevent an agent from attaining optimality in the end,
whereas if the agent has innate constraints that are inconsistent with the optimal

policy and value functon then it can never reach optimality.

1.6. Tendencies to Experiment

Finally, an agent may have innate knowledge in the form of tendencies to
experiment. These tendencies may be general, in the form of curiosity or the

lack of it, or they may be specific.

Specific innate knowledge may be encoded as specific tendencies to exper-
iment. These tendencies are quite a different form of innate behaviour than an
innate policy: they are rendencies only, not constraints. These behavioural ten-
dencies may lead the agent to perform potentially useful actions that it may
then incorporate into its policy, or they may simply be actions that lead the

agent to regions of state space where it will obtain useful experience.

A tendency to experiment might be very difficult to distinguish experimen-
tally from an innate behaviour—but from the point of view of the learning
algorithm, an innate behaviour is an unchangeable inheritance, while if experi-
ments do not work the animal’s policy is unaffected, and the experiments may

eventually be abandoned if their estimated action value becomes too low.

The distinction between tendencies to experiment, innate constraints, and
starting values is delicate but important. A tendency to experiment may affect
learning at any stage, and may speed up or slow down learning, but it does not

in principle affect the capacity to learn the optimal policy in the end. A starting
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policy or value function may greatly affect the course of learning, but its effect
will decline as time goes on. Innate constraints have a permanent effect, and
may aid learning in environments to which the constraints are appropriate, but

may prevent learning in inappropriate environments.

1.6.1. Particular Importance of Recommendations of Actions

Tendencies to experiment may be a particularly important type of prior
knowledge for learning systems because they provide a particularly useful type
of information—information as to which actions it might be profitable to per-

form in the current situation.

The point is that in primitive learning, an agent can only determine the
consequences of an action by performing it. If many actions are possible in a
particular state, the agent must revisit the state many times and try out the
many different actions before it can be confident that it knows which action is
best. This is a slow process if there are many possible actions, because an
animal may only observe the results of one action at a time.

A tendency to experiment might be encoded in the form of recommenda-

tions for action, perhaps as an ‘if-then rule’:

IF the current state is of a certain type
THEN try performing a certain action
(if it has not been tried often already, and if

the estimated action value of it is not too low)

The IF part of the rule is a description that the current state should satisfy; and
many types of description are possible. The description may be couched either
as a direct description of the state, or it may be couched in terms of charac-
teristics of the state that may tﬁcmselvcs have been learned. In particular, the

state-description might be one such as
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[F the current state has been found to be correlated
with the imminent occurrence of event F,

THEN try performing action B.

Innate knowledge in this form might be useful because an agent cannot help
bu.t collect more information about correlations of events with states than it can
collect about the effects of actions in states, because the agent must revisit a
state many times before it can learn the effects of all acdons, whereas on each
visit it may observe subsequent events, and so improve its knowledge of corre-
lations.

The crucial point is that it is possible for an agent to learn many different
types of correlation in parallel, but the agent can only perform one action at a
time. Thus prior information in the form of recommendations for action based
upon correlations of events with states could be an important type of innate

knowledge to provide.

2. Advice and Imitation

This discussion would not be complete without considering how an agent
could make use of observations of other agents or advice from a teacher. The
ability to experiment without corrupting the existing policy and value function
allows an agent to try out advice, or to imitate another agent during learning.
The actions advised, or the actions the agent performs while imitating another
agent more skilled than itself, may be performed as experiments, so that the
advice or imitation may be incorporated into the policy if it turns out a success,

or it may be ignored and rejected if it fails.

This raises the possibility of automatic controllers with a manual override

such that a human operator could take control and try out a strategy of his own
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devising. The automatic controller could observe the actions of the human con-
roller, and would analyse the action sequence as if it were a sequence of
experiments that the automatic controller had performed itself. If the human
operator managed to perform better than the automatic controller’s current pol-
icy during the period of manual control, the automatic controller could use its

observations to improve its internally represented policy and value function.

3. Restrictive and Advisory Innate Knowledge

In this chapter, I have described various ways in which innate ‘knowledge’
could be provided to affect learning by incremental dynamic programming.
Such knowledge can be provided in a much greater variety of wéys than is pos-
sible in simpler learning processes, such as supervised learning in pattern

recognition.

There are two points that [ wish to emphasise most. First, the main limita-
tion of the primitive learning methods is likely to be the amount of experiment-
ing that is required: the main use of prior knowledge may be to reduce the

amount of experiment needed by recommending actions.

Second, behaviour need not be either innate or learned—it can be innarely
learned, in that the agent learns the behaviour with the help of innate
knowledge. This innate knowledge may be either restricrive or advisory. Res-
trictive innate knowledge limits the range of behaviours that the agent can ever
learn, while advisory knowledge may affect the rate of learning, but it does not
in principle affect the range of behavioural strategies that the agent could ulti-

mately acquire.
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1. Limitations of Learning Methods Described So Far.

The learning methods so far described are suitable only for small prob-
lems. The methods rely for their success on visiting a sufficient variety of
states and trying out sufficient actons: if the state-space or the number of pos-
sible actions is large, then the learning methods will take an impractical amount

of time and experiment.

Besides the limitation on the size of the state-space, there is also a limit
on the values of y for which learning is practical. The limit is not so much
because of learning time—the action replay argument of appendix 1 shows that
the amount of experience necessary is proportional to the number of steps that
have to be considered. Instead, the limitation is that if y is very close to 1, then
the action values must be represented to high precision, the difference between

the action values of optimal and sub-optimal actions is proportional to (1-Y).

Indeed, up until now, I have deliberately avoided the question of what
value the discount factor y should have-. I have done this because there is no
straightforward optimality argument. Certainly it is sometimes possible to con-
struct an argument that an animal should seek to optimise discounted returns.
Suppose that an animal forages for limited periods of time; a foraging period
ends when the animal is interrupted, and interruptions occur randomly at a con-
stant rate. Once an animal has been interrupted, it must start foraging anew,

and it cannot return to the state where it left off in the previous session. In this
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case, it is clear that if the animal knows that it could obtain a reward r after a
further n time steps provided that the foraging session continues until then, then
it should value that future reward less than a reward of the same size that could
be obtained immediately, because the animal might not obtain the future reward
because the foraging period might be cut off by an interruption. If the probabil-
ity of continuing the session until the next time step is Y < 1, then the animal
will be able to obtain a reward ~ steps into the future only with probability v
It should, therefore, value a reward r that could be obtained n steps hence at

only Y* r.

This optimality argument for seeking to optimise discounted rewards is
only sometimes relevant to foraging, and where it applies, the discount factor is
a probability of interruption per unir rime. However, the difficulty of learmning is
proportional to the discount factor per decision that the agent makes. Although
an agent may be subject to random interruptions, so that a time-based discount
factor is appropriaté, it may still need to make far too many decisions between

interruptions for learning to be feasible using the time based discount factor.

One possible response to this difficulty is to suppose that animals might
seek to optimise their policies relative to a short time horizon, even though a
longer time horizon (a larger discount factor) would be more appropriate for

their needs. But this is not a sufficient argument.

As behaviour is analysed in more detail, the rate at which an animal
appears to take decisions becomes larger. If the whole of an animal’s detailed
behaviour were to be described in terms of a single Markov decision process,
the state-space would be enormous and the rate at which the animal would take
decisions would be so great that it would not be plausible to explain learning in

terms of incremental dynamic programming in the one decision process.
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One way of reducing the apparent complexity of behaviour is to analyse it
in terms of a hierarchy of strategies. In this chapter, I will present one method
of constructing hierarchies of Markov decision processes, and I will describe
how it is possible for the controller at each level of the hierarchy to learn

independently of the others.

2. Hierarchical Control

In a control hierarchy, an action at the top level consists of an instruction
to a lower level of control; in response to the top-level instruction, the lower
level of control may carry out one or more actions, and each action at the
lower level may be an instruction to a still lower level of control; and so on. In
the language I have been using, once an ‘action’ has been chosen by the top
level, it then forms part of the srare for the lower level of control. The lower
level of control chooses actions on the basis of its current state, which consists
of the action specified by the top level, and other information, such as the

appearance of the surroundings, recent history, and so on. An example may

make this clearer.

Suppose that a navigator and a helmsman are sailing a ship together. The
navigator knows the intended destination, and he is responsible for deciding
how to get there. To do this, he plots possible routes on a chart, estimates
expenses and times, and, by look-ahead, he chooses an initial course to take.
The navigator then tells the helmsman in which direction to steer the ship. The
helmsman’s responsibility is to steer the ship in the direction chosen by the
navigator. Suppose that in order to change the direction in which the ship is
sailing, the helmsman has to perform a number of actions such as moving the
rudder and adjusting the sails, and that the helmsman may have to perform

several such actions over a period of time to achieve a change of direction; the
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heading of the ship may drift, so that the helmsman may have to take intermit-
tent actions to keep the ship on the specified course. The navigator is the top

level controller, and the helmsman is the lower level controller.

This example can be described in terms of two interacting Markov deci-
sion processes, one at the top level, and one at the lower level. The navigator's

decision process is the following:

. The state consists of the position of the ship, and the direction of the

wind.

¢ The actions consist of sailing in a chosen direction for a certain (given)

interval of time.

. There is a fixed cost during each time interval, and a large reward is

received when the ship arrives at its port of destination.

The navigator makes decisions at fixed intervals of time, and each decision is a
choice of a direction in which to sail. The information that is relevant to the
navigator’s dcc.ision is the position of the ship, and the direction of the wind,
for this determines what directions are feasible, and how fast the ship will sail
on each possible course. If the intervals at which the navigator makes his deci-
sions are much longer than the time needed for the helmsman to change course,
then the navigator need not take the current direction of the ship into account in
deciding in which direction to sail next. One might imagine, for example, an
18th century navigator in mid-ocean, who would take his position laboriously
with a sextant at noon every day, and who would then issue orders to the
helmsman as to what course to steer for the next twenty four hours, after which
he would retire to his cabin. If, on the other hand, the ship were sailing in a
harbour, and the navigator needed to give commands at short intervals, then he
would need to incorporate the current direction and speed of the ship into his

description of state.
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The helmsman’s environment may also be described as a Markov decision

process, in which

¢  The current state consists of the current direction of the ship, the direction
of the wind, the configuration of the rudder and sails, and the navigator’s

current orders.
e  The actions are to alter the configuration of the rudder and sails.

e  The rewards are given by the navigator: the navigator punishes the helms-
man when the ship is going in the wrong direction and rewards him when
it is going in the right direction.

Suppose that the helmsman behaves in such a way as to maximise his expected

discounted rewards. The rewards may come at every time step—if the naviga-

tor is sitting on the ship’s bridge monitoring prbgress, for example. Even in
this case, the helmsman’s optimal strategy may sometimes be to take a punish-
ment now for more rewards later on: if the helmsman is changing course, it

may sometimes be more efficient to turn the ship through more than 180

degrees. Alternatively the rewards may come at longer intervals—for instance,

if the navigator emerges from his cabin at random intervals and either praises
or berates the helmsman according to the current heading of the ship. If both
the navigator and the helmsman follow optimal policies in their respective Mar-

kov decision processes, the progress of the ship will be smooth.

As [ have described this example, the navigator at the top level is using a
sophisticated model-based mode of control. The helmsman might be using a
more ‘primitive’ explicitly represented policy, or perhaps a hybrid method. But
an important point is that any mode of control may be used at any level.

For example, the navigator could be completely lost and could be trying to
find land by following the concentration gradient of flotsam using the search

strategy of E. Coli. In this case the mode of control at the top level would be
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more ‘primitive’ than that at the lower level. But in general one might expect
model based methods to be used at the higher levels of control, for two rea-
sons. First, at higher levels decisions are made at a lower rate, so that there is
time for more computation for each decision. Second, at higher levels, obser-
vational data on the effects of actions is acquired more slowly, so that primitive

learning methods are less suitable as they require more observational data.

The point of formulating a control hierarchy in this way is that the control
problem at each level is that of controlling a Markov decision process. The
control system should be designed in such a way that simultaneous optimal per-
formance at each level results in good performance of the whole system.

The coupling between the levels is achieved by links between the decision
processes, rather than by direct links between the controllers. An action in the
higher process is a command for the lower process, which causes the lower
controller to pursue a certain policy. This command, however, does not go
directly to the lower controller—it affects the decision problem at the lower

level, in two ways.

First, the higher action causes a change in the state of the lower decision
process. This change in state affects the action that the lower controller takes.
Second, the change in state does not have meaning by itself: the commands
from the higher controller are given meaning by alterations in the reward sys-

tem for the lower process.

2.1. Supervisory and Delegatory Control

It is worth discussing one distinction that marks a striking difference
between natural and artificial systems: the difference between delegarory and
supervisory hierarchical control. In delegatory control, the top level passes a

command to the lower level, and the lower level then seeks to carry out the
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command. The lower level then has the responsibility for transferring control
back to the higher level: control is returned to the higher level when the lower
level has successfully carried out the command, or perhaps when the lower
level has decided either that it has failed, or that the command is impossible to
complete. The point is that once the command has been given, the lower level
is in control until it passes control back to the top level. In this sense the top-

level delegares control to the lower level.

This type of hierarchical control is natural for sequential programming
languages. It has, however, the drawback that the lower level may not correctly
pass control back to the top level: the top level of a program may (all too
often) wait indefinitely for an errant function call to return. This type of
behaviour, so common in sequential machines, is totally uncharacteristic of

animals and people.

In supervisory hierarchical control, the top level retains the initiative. The
- current top-level command is part of the state for the lower level; if the top-
level changes its command, the state for the lower level changes, and the lower
level may as a result choose a different action. On the ship, the navigator may
keep track of the state from his point of view—which is the current position—
and he may then issue new instructions when the ship reaches appropriate posi-
tions. The navigator may change his current command at any time in response
to unexpected circumstances. Control does not pass to the helmsman once the
navigator has given his command, and then back to the navigator only when
the helmsman has finished: the navigator retains his initiative and supervises

continually at the top level.

While learning is possible, I believe, in both types of control hierarchy,
this distinction is important because in artificial intelligence hierarchical control

is often tacitly assumed to be delegatory rather than supervisory. But the
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concept of ‘flow of control’ in a computer program is one that is alien to

natural systems, which appear to be inherently concurrent.

3. Learning in a Control Hierarchy

In a control hierarchy, the controller at each level may seek to learn to
optimise its policy, independently of the others. If this learning is successful,
the result will be that all controllers will acquire optimal policies in the Markov
decision problems at their levels of control: this oprimality ar each level must
be carefully distinguished from global optimality of the entire control system.
In this section, I will consider how optimality at each level can be achieved by

learning.

It might initially seem that, since each controller has its own decision pro-
cess to control, learning of optimality at each level is possible with no addi-
tional constraints; but two types of difficulty can arise. Both difficulties are the
result of the freedom of behaviour that learning by incremental dynamic pro-
gramming allows—the learner acquires the capacity for optimal behaviour, but
it need not always behave optimally. The definition of optimality at each level

needs to be made more precise:

e A hierarchical control system is optimal at each level if, when all controll-
ers follow their estimation policies, all of the estimation policies are
optimal.

The point of this definition is that the effects of the actions of a high level con-

troller are defined relative to the behaviour of a lower level controller. A high

level action consists of changing the state and reward system of a low level
controller: the effect of a particular performance of a high level action is what
the low level controller actually does in response to the changed state—but if

low level controllers are to be able to learn they must be free to experiment.
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In terms of the ship example, the system is optimal at each level if

i)  for each possible command of the navigator, the helmsman has acquired a

policy that is optimal with respect to obtaining the navigator’s rewards.

ii) the navigator’s policy is optimal, provided that the helmsman always fol-

lows his optimal policy for the current command.

The simple vision is that each level of the control hierarchy should be a Mar-
kov decision process; if this is so, then each controller may learn to control its
own decision process independently of the other controllers. But there are two
potential complications which may destroy the Markov properties of the deci-
sion problems—Ilower controllers may experiment instead of following their
orders, and higher levels may directly and arbitrarily affect the state transitions

at the lower levels. Both of these problems may be solved.

3.1. Lower Controllers may Behave Sub-Optimally

If the helmsman does not follow his optimal policy for the current com-
mand, but persists in experimenting with different directions, then the navigator
may be disappointed if he follows a policy that would be optimal on the
assumption that the helmsman always obeyed orders. But the helmsman needs
to be free to experiment if he is to be able to learn; and if the helmsman
chooses a wild series of experiments so that he does not follow the same policy
each time the navigator issues a command, then he may prevent the navigator

from experiencing a Markov decision problem.

How can this difficulty be overcome? One approach is to stipulate that
lower levels of control must always follow their orders to the best of their abil-
ity; but this would make it more difficult for the lower levels to learn optimal
policies. A less severe restriction would be to allow the lower levels some lim-

ited freedom to experiment: this requirement might be formalised by allowing
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the lower levels to pursue a stochastic policy with the probabilities dependent
upon currently estimated action values. But this suggestion has an ad hoc
flavour, and does not permit the arbitrary experimentation or advice-following

that incremental dynamic programming should allow.

Another possibility is that higher levels of control should be able to com-
mand lower levels of control to follow their current estimation policies if neces-
sary, but that they should sometimes allow the lower levels some ‘time off’ in
which to improve their policies by experiment. In a hierarchy of several levels
of control, if the nth controller from the top wanted to learn by experiment,
then all controllers above it would be switched off, and all controllers below it

would be instructed to follow orders.

A more flexible idea would be for the lower controller to pass a message
saying "I am experimenting now" to the higher controller whenever it deviated
from its policy by more than a certain amount. When the upper controller
received such a message, it would simply not use the current stage of experi-
ence as one of its training observations. The lower controller would still have
the freedom to behave as it liked—but it would have to declare its experiments
to the controller above. This system has the virtue that experiments are
allowed at any time during normal performance of the whole system. It would
also be compatible with allowing occasional directives from higher levels to
lower levels saying "Follow your optimal policies!". In this way the experience
of the higher controller may be made Markovian in that the effects of its

actions may be made consistent.
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3.2. Higher Controllers may give Non-Markovian Commands

The second problem is more subtle. Recall that the effect of a high level
acuon is to alter the state of the low level controller. If the low level controller
is simultaneously performing actions of its own, it might ‘conclude’ that the
change in state was caused by its own actions, and not by the high level action.
Would this matter? It might indeed, because the high level controller has com-
plete freedom of action, and it is therefore possible that it might issue com-
mands in such a way that the effects of actions in the lower decision process
appeared non-Markovian. The entire discussion of learning methods has relied
heavily upon the Markov property, and if state-transitions and rewards are
non-Markovian, then the learning algorithms can no longer be guaranteed to

work.

A simple solution to this problem is to require that when the higher level
controller initiates a new action, it should send a message to the lower con-
troller saying "High level action now changing”. While this message is in
force, the lower controller should not use observations of its state-transitions,
actions, and rewards as training data in optimising its policy, because the high
level action changes may be arbitrary and need not be Markovian with respect

to the low level state space.

Provided that high level action changes are occurring for only a small pro-
portion of the time, this solution is valid, in that it prevents the lower level con-

troller from corrupting its learning process with non-Markovian data.

But there is a much more interesting solution. The lower level controller
seeks to protect its learning from non-Markovian data that is caused by arbi-

trary actions of the higher level controller.

Just suppose, for a moment, that the high level actions were in fact proba-

bilistically chosen, and dependent only upon the current lower level state
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(which includes the current higher level action), and the current lower level
action. If this were so, then the higher level actions would appear to be caused
by the lower level states and actions, and higher level action’s effect on the
state transitions and reward would appear to be caused by the lower level
actions. If the lower level actions and states drove the higher level controller in
this way, then the effects of the higher level actions would be Markovian with
respect to the lower level process, and there would be no need to protect the
lower level learning from the effects of the higher level actions.

This odd situation in which the lower level process controlled the higher
level process should not actually occur in practice, but the lower level con-
troller can observe correlations of the high level actions with its current state
and its choice of action, and the lower level controller may then use the corre-
lations to predict the higher level actions from the lower level state and action.
If the higher level controller always chose the actions the lower level process
predicted, then the lower level process would seem to control the higher level

controller, and all the lower level data could be used in learning.

If the lower level controller can make strong predictions about the higher
level actions, then it can, in effect, alter the definition of its Markov decision
process so that the effects of lower level actions include the predicted higher
level actions: to ensure that its learning data is Markovian, the lower level con-

troller then only needs to reject those observations in which the high level

action was not predicted.

The lower level controller may, therefore, learn to predict the upper
controller’s actions, and then optimise its policy relative to its predictions. 1
have not yet determined under what circumstances this method of learning

would be stable.
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4. The Sequence of Learning

Initially, neither the top-level controller—or ‘master’—nor the lower level
controller—or ‘slave’—possesses an optimal policy. The first stage of learning
is that the master may perform arbitrary actions, and the slave learns to obey
some of the master’s commands. During this first stage, the master may possi-
bly not be able to learn anything, since the slave does not know how to obey
the commands. Even if the master does alter its policy, the slave’s policies will
be changing, so that there is no guarantee that the master’s initial policy

changes will produce any lasting improvements.

In the second stage, the slave has learned to obey enough commands well
enough for the master to start to improve its policy; as the master improves its
policy, it will tend to give the commands it finds useful more often than the
commands that it does not find useful. The slave will, therefore, gain more
experience with the commands that the master finds useful, and its performance

on these will further improve.

Ultimately, the master and slave will acquire stable or meta-stable policies.
One reason why the slave’s policy may be meta-stable is that it may not gain
enough experience to learn to obey commands that the master did not initially
find useful; the master may cease to give these commands frequently, so that
the slave continues to have little experience with them. Note that the slave can-
not correct this deficit in its experience by initiating its own experiments,
because the szare in which it may gain the relevant experience is that in which
the master has given the appropriate command; hence it is partly the master’s
responsibility to ensure that the slave receives a sufficient variety of opportuni-

ties of experience.

Note also that the master’s policy may be optimal with respect to the

slave’s current abilities, but that the slave’s policy may be meta-stable in that it
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cannot obey certain potentially useful commands. Thus, even though from the
master’s point of view, its policy is optumal, the masters policy may be meta-
stable if the slave has not yet learned certain abilities.

As the master’'s policy ceases to change rapidly, the slave may, if it has
the ability to do so, learn to predict the master’s commands on the basis of its
own state (and, perhaps, action). In doing this, the slave is altering its own
decision problem, and it may adapt its policy accordingly. This changes the
way in which it obeys commands, and so causes the master to adapt its policy
also. I do not know under what conditions this mutual adaptation of master and

slave is convergent, beneficial, or stable.

5. Discussion

In this chapter, I have presented informally a method of formulating
hierai'chica.l control problems as coupled Markov decision problems, with auto-
nomous controllers at each level. Provided that the controllers are able to com-
municate in some simple ways, it is in principle possible for all the controllers
to converge to optimal policies for their own decision problems. This hierarch-
ical learning provides a mechanism for developmental self-organisation of a
hierarchy of skills, using the method of incremental dynamic programming at
each level. The rewards at each level may be determined both by the level
above, and also by the environment: at each level of the hierarchy, therefore,

the development of the skills may take account of environmental constraints.

There are also possibilities for mutual adaptation of the controllers in cou-
pled decision problems, and there are, of course, many more possible
configurations of coupled Markov decision problems besides a simple hierar-
chy. There are fascinating possibilities for further research here. Unfortunately

I have not yet implemented any examples of these hierarchical control systems.
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Function Representation

1. Limitations of Finite Problems

So far, I have only discussed problems in which there are finite numbers
of states and actions. This is because, in a finite problem, each action value
may be adjusted separately, and the learning methods are easier to describe and
to analyse. Although in principle, problems with continuous sets of states or
actions may be approximated as finite problems, the finite approximation may
need to contain a large number of adjustable parameters—one for each state-
action pair, perhaps. At each step of learning, only one or a few of these
parameters may be adjusted significantly. Learning will, therefore, be slow if

there are many states.

Conventional implementations of dynamic programming use a finite-state
approximation. The state-space is typically a region in a Euclidean space, and
the value function is usually represented explicitly, by storing values at each of
a regular grid of locations over the state space. (Action values are computed
temporarily for each state, but, once the maximal action value has been deter-
mined, the other values are not usually stored.) With this method of representa-
tion, the amount of storage required is proportional to the number of points on
the grid. For a high-dimensional state-space, one is faced with the choice of
either having a coarse grid which may represent the function inaccurately, or
else having a very large number of grid points with a correspondingly large
requirement for storage, and also for calculation, since repeated calculations are

necessary to obtain the value at each grid point. This is the ‘curse of
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dimensionality’ that limits the applicability of dynamic programming in practice
(Bellman and Dreyfus 1962). For learning by incremental dynamic program-
ming, the most important constraint is the amount of experience that is needed:
this corresponds roughly to the constraint on the amount of calculation in con-

ventional implementations.

The natural and straightforward representation of a function as values at
points on a grid gives, for most practical applications, a representation with far
too many independently adjustable parameters. But this difficulty of represent-
ing a function on a high dimensional space may often be finessed by choosing
a more compact form of representation than that of storing the value at each
point on a regular grid. For example, Omohundro (1987) dcscribés a number of
representations for functions on multi-dimensional spaces in which standard
computer science techniques are used to store the function economically. How-
ever, the methods of representing functions that have recently attracted enor-

mous interest are ‘artificial neural networks’.

An ‘artificial neural network’ is a (usually simulated) collection of small
processing elements that are intended to model, or to have an analogous func-
tion to, neurons or small collections of neurons. Each element, or ‘cell’, is con-
nected to many other cells; these connections may be one-way or two-way.
Each connection has a numeric weight, which may be adjusted during ‘leamn-
ing’. (Part of) the current state of each cell consists of a numeric ‘level of
activation’.

The level of activation of a cell depends upon the levels of activity of the
other cells from which it receives inputs, and upon the weight attached to each
of these inputs. A cell’s level of activation may affect other cells through its
outputs. Changes in activity of some of the cells may therefore have effects

that propagate through the system.
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In a neural network, there are two forms of computation, short-term, and
long-term. The short term computations are the changes in the levels of activa-
tion of the cells that follow a change in the inputs to the net. The long term
computations consist of slow adjustment of the weights to improve the agree-

ment of the short term computations with training examples.

In recent years, a number of new forms of computation and training
methods for neural nets have been published; a number of these are described
in, for example, Rumelhart and McClelland (1986); a good, concise review of
various types of neural net is in Lippman (1987).. What all of these methods
have in common is that they can all be viewed as devices for approximating
functions; the approximation is achieved by presenting the network with train-
ing examples, each of which is an example of an input paired with the desired
corresponding output. In the majority of the current work on ‘neural networks’,
it is assumed that a neural network is a device that ‘learns’ to compute a func-

tion from training examples.

The point I want to make here is that it is widely assumed that at the level
above individual neurons, the computational modules of the nervous system are
collections of neurons that learn functional mappings from training examples.
This assumption may be right, half right, or plain wrong—nobody can know
yet. But, in primitive learning, the basic computational modules that are
required are modules to learn the action value function, or to learn a value
function and a policy, or a value function alone, from ‘training examples’ that
are extracted from observations of experience. In this rather shallow sense, the
learning methods I have described appear to be fully compatible with current

assumptions about neural computation.

There is, however, a problem. All methods of representing functions that

require less storage than is required by grids must necessarily also have fewer
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adjustable parameters, for it is the adjustable parameters that must be stored.
The effect of this is that each adjustment during learning will affect a whole
region in state-space, and not the value stored for just one point. If an adjust-
ment is made, for example, to a stored estimated value function as a result of
an observation of an action taken from point x, the adjustment will not just
alter the estimated value for point x but also the estimated values for many
other points y. Which other points have their estimated values adjusted, and
how, will depend on the particular approximation and adjustment method used.
In incremental dynamic programming, the overall effect of the adjustments may

be either to speed up or else to hinder or prevent convergence.

So the problem is: what types of parameter estimation and function
representation will work with the types of incremental adjustments that are pro-
vided by the learning methods? And for what classes of Markov decision
processes can each function estimation method be used? This is not so much a
single problem as a field of research. I have not attempted to tackle this prob-
lem theoretically, but I have implemented a demonstration using one particular

function approximation method—the ‘CMAC’.

2. Function Representation Using the CMAC

The CMAC (or ‘Cerebellar Model Articulation Computer’) was proposed
by Albus (1981), partly as a speculative model of the mode of information
storage in the cerebellum, and partly as a practically useful method for the
storage and incremental approximation of functions, for use in robot control. [
will consider the CMAC purely as a method for the local approximation of
Ifunctions, for which it is undeniably useful, rather than as a neural model, in
which role its status is questionable. Considered mathematically, it is a method

of approximating scalar or vector functions over a multi-dimensional space
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using pre-defined step functions. The advantage of the method is computational
speed and simplicity, rather than accuracy or storage economy.

A CMAC works as follows. The purpose is to maintain and adjust a
representation of a function on a space: that is, for each point x in the space,
the CMAC specifies a scalar or vector value U(x). To store the values, the
space is partitioned into rectangular regions, or riles. A riling of the space is a
covering of the space by non-overlapping tiles, such that each point in the
space is contained in exactly one tile. The tiles may be denoted ¢, , 75, - - - If
the tiles are chosen to be rectangular, and aligned with the coordinate axes,
then 1t is very easy to compute which tile any given point x is in.

A CMAC for a given space consists of

* a number of tilings of the space, so that each point in the space is con-

tained in a number of overlapping tiles.

e an array u[1], - - , u[n] of scalar or vector values, which are adjusted

incrementally during approximation.
e  a hash function hash which maps each tile to an element of w.

Suppose there are 10 different tilings, which are:
QYsf3.Has

Iy s %2323 A3y

10,1 » f10,2 » 103 » * 7

The tilings overlap, so that each point in the space will then be in exactly ten
tiles, one tile from each tiling. The method given by Albus, and the method I
have used, is to choose similar tilings, but to displace them relative to each

other, so that no two tilings have their tile boundaries in the same place. A
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point travelling through the space will, therefore, cross tile boundaries at fre-
quent intervals: in other words, the space is finely partitioned into small

regions, with one region for each combination of overlapping tiles.

A finite number of adjustable parameters are used to store the function—
they are u[l1], - -+ , u[n] , and their values are stored in an array. Now, each
tiling is infinite in extent, so that it is not possible to store a separate parameter
for each tile: the solution is that each tile is mapped to an arbitrarily chosen
element in the array. This mapping is defined using a hash function, and it is
fixed when the CMAC is constructed. The effect is that each array element—
each adjustable parameter—is associated with one in n of the tiles, selected in a
pseudo-random fashion throughout the space. To visualise this fér a two dimen-
sionai space, consider some parameter u[i]; if the tiles mapped to u[i] were
coloured in, then on looking at the space the visual effect would be that a pat-
tern of tiles would be coloured in, approximately one in # tiles being coloured,
" and this pattern would stretch as far as the eye could see. If the tiles mapped to
some other array element were also coloured in, a second such pattern of
coloured tiles would appear, and no tile would be coloured twice, since each
tile is mapped to exactly one array element. Let us represent the mapping from
tiles to array elements as hash. If the tile ¢; is mapped to the kth element of the

array, then this is denoted by hash(r;) = k.

To compute the function represented by the CMAC at a given point x in
the space, the following steps are carried out. (Assume that the CMAC has

been constructed with 10 tilings.)
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Computing the Function

1. The 10 tiles containing x are found.

Let thembes; , - - , 110,iy

2. The array elements corresponding to each of the tiles are determined.

Let

kl = ha.sh(fl"")

kyo = hash(tyg ;)

3. The values of the array elements are then averaged, to yield the

answer. That is,

U6 = == utiy + -+ +ulkigl |

Note once more that the array ¥ may store either scalar or vector values. That
is, U(x) is equal to the average of the array values associated with the tiles that
contain x. This method of storing a function is an example of the method of
‘coarse coding’ as described by Sejnowski in Rumelhart and McClel-

land (1986).

The method of adjustment that Albus (1981) recommends, and which I
have used, is the following. Suppose that a ‘training example’ is presented,
consisting of a point x and a desired value v. The parameter values of the

CMAC are adjusted as follows.
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Incremental Approximation

1. The value U(x), and the array indices &, , - - , kjp are determined

exactly as in computing the function.

(5]

If [U(x) = v| < € , where ¢ is a predetermined small positive constant, then
no further adjustment is made, otherwise adjust each array element accord-

ing to

ulk,] ulky] + o (v — Ux))

ulkyp] + a (v — U)

where a is a predetermined positive learning factor, less than 1. If the
desired values v are subject to noise, then o should be small.
The effect of this adjustment method can be more clearly seen if we consider
the set of tiles that contain a point x, as illustrated overleaf. The values associ-
ated with all these tiles are adjusted by the same amount, so that the values for
points near x and contained in all 10 tiles will change by a(v-U(x)), while the

values for points further from x and contained in only one of the tiles contain-
ing x will change by an amount %(v—U(x)).

A notation for the adjustment of a CMAC U, at a point x, towards a

desired value v, with a learning factor « is
U = adjust( U, x, alpha, V)

This notation is intended to indicate that there is a process of adjustment that
will affect U in a region surrounding x; the CMAC function after the adjust-
ment is U’

How large must the u array be? That is, how many adjustable parameters

are necessary? It will (usually) only be desired to approximate the function
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P.

This diagram shows the collection of CMAC squares that contain P.

Each CMAC square is associated with a stored value.

The value of the function at point P is the average of the values stored
for the squares that contain P.

When the CMAC value is adjusted for point P, the values stored for all
the squares that contain P are adjusted.

The value for point Q, which is contained in only two of the
CMAC squares, will only be slightly affected by the adjustment.
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over a finite region A of the space. The number of array elements needed
depends on the size of the region A, and on the variability of the function in
this region. If the array is too small, then many tiles within A will be mapped
to each array element, and there may not be enough degrees of freedom to
represent the function accurately over A. If, on the other hand, the array is so
large that, on average, fewer than one tile in A is mapped to each array ele-
ment, then there are (almost) enough degrees of freedom to adjust the value

associated with each tile in A separately.

Onmne practical advantage of the CMAC is that it is not necessary to know
beforehand the region A of the space on which the approximation will be made.
The training examples presented define the region over which the function is

approximated.

Provided that the array u is large enough, the CMAC can be viewed as a
local approximation method, in which a training example for a point x will
affect the values only of other points near x. From a purely practical point of
view, the great advantage of using a CMAC is that, unlike most other proposed

‘artificial neural networks’, it works fast and reliably.
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Two Demonstrations

In this chapter, I will describe two demonstration implementations of
learning methods. The point of the demonstrations is first to show that the
learning methods do produce improvements in performance in some simple
problems, and second to demonstrate some qualitative characteristics of incre-
mental dynamic programming. The first demonstration is of a synthetic ‘route-
finding’ problem, and the second demonstration is analogous to a Skinner box

with various simple reinforcement schedules.

The programs have been written in Pascal, and run on a Sun 3 worksta-
tion. The random number generator used is not the system supplied routine, but

a subtractive generator recommended by Press et al (1986).

1. A Route-Finding Problem

The learning method described in chapter 7, section 4.3, is that of learning
a value function and a policy, with policy improvement by a gradient method at
each state. This method is interesting because the policy representation is
- economical—only one action need bc- stored for each state, rather than the

storage of a value for each state-action pair.

The aim of the first demonstration is to display the functioning of the

learning method as clearly as possible; it is not intended to model any particu-

lar real problem.
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1.1. The State Space

The state space chosen is a square in the Euclidean plane, with sides of
length 2, centred at the origin, and aligned with the coordinate axes. This
enables the estimated value function and policy to be readily displayed: the
value function is displayed as a 3D plot, and the policy is displayed by drawing

the action vectors at each of a grid of points over the state space.

At any time, the current state of the agent is a point in this square.

1.2, Actions and their Effects

At any point in the square, the set of possible actions is.the set of two

Ax
dimensional vectors |:Ay] , where Ax and Ay are arbitrary real numbers. These

are the actions the agent can choose to perform. Broadly, the effect of an action

Ax
_ [Ay] taken at a point (x,y) is to move to a point (x + Ax, y + Ay), with the pro-

viso that the agent must always remain inside the square of the state-space.

If the agent makes a move that would take it out of the square, it is
stopped at the edge. Suppose the agent is at state (x,y), and it chooses to make

Ax
the move [Ay]' If it were unconstrained, it would ‘land’ at point

(x + Ax, y + Ay); for brevity, suppose this point is (x,y"). The agent cannot

leave the square: its moves are curtailed by the rule

-1 if x' < -1
o | ifx'>1
x"  otherwise
.
1 fY <1
y=491 ify'>1
y"  otherwise
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The effect of this rule can be seen in the diagram overleaf.

1.3. Rewards and Penalties

There are two sources of rewards and penalties. First, the agent is given a
reward or penalty whenever it is in a specified region in the state space. In the
coming example there is a ‘target’—a small rectangle in the upper right hand
quadrant of the state space; if the agent is in the target at time ¢, then it

receives a large reward at time ¢ whatever action it performs.

Second, each move the agent takes has an immediate cost. The cost of a

move is a function of its length. If the length is d, then the cost c(d) is

od)=c d + cyd?

where ¢, and ¢, are positive numbers that are kept constant for the duration of

each run of the program.

The cost is a function of the length of the intended move, rather than of
the actual distance travelled. The reason for this choice is that if an intended
move leads outside the square, then the cost of a longer intended move is still
greater than the cost of a shorter move in the same direction, so that the agent
could reduce the cost of its action by reducing the lengths of its intended
moves, even though the actual moves might all be cut off at the boundary of

the state space, so that the actual distances travelled would be the same.

The cost function was chosen to be a combined quadratic and linear func-
tion of the length of the move for the following reasons. The quadratic term
was included to penalise long moves, so that to reach a target a long way away,
the optimal strategy would be to take a sequence of short moves rather than a
single long move. If the cost of a move were simply a multiple of the square

of its length, the cost of small moves would be very small, and there would be
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~

The agent cannot leave the square: if it attempts to move

outside the square, its move is curtailed, as shown.
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no incentive for the agent to reduce the size of small moves on grounds of cost.
To give the agent an incentive to reduce the size of even small moves, part of

the cost was made proportional to the length of the move.

2. Demonstration of Action-Gradient Learning

The learning problem is set up as follows. The target is a small rectangle,
placed in the ‘top right hand comer’ of the state space, and it is drawn as a
small rectangle in the policy diagrams. If the agent performs any action when it

is in the target,
* the agent receives a large reward, and

¢ the action the agent takes does not have its normal effect: instead, the
effect is that the agent moves to a randomly chosen position in the state
space. The landing position is chosen from a uniform distribution over the

whole state space.

The point of re-positioning the agent in a randomly chosen position in the state

space is to ensure that it gets experience of all parts of the state space.

2.1. The Learning Algorithm

Both the policy f and the value function U are represented using CMACs,
as described in chapter 10. These functions are, therefore, defined at all points
in the state space. It is not possible to assign new values or actions to states
individually; instead, the CMACs must be adjusted according to the method

described in chapter 10.

All cells in the CMAC initially contain zero for the value function and the
zero vector for the policy, so that the initial policy of the agent is the zero vec-
tor throughout the state space, and the initial estimated value is also everywhere

Zero.
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Actions are chosen by calculating the policy action for the current posi-
tion, and then adding a randomly generated deviarion vector. That is, the

action chosen at time ¢ is
a, = fi(x,) + b,

where f,(x,) is the policy action, and b, is a randomly generated vector of uni-
formly distributed direction. The mean length of the deviation vectors b, is
denoted by b. The value of b is supplied to the program at the start of a run.

The lengths of the deviation vectors b, are independent, and exponentially dis-
ributed, so that the probability density for b having length [ is % e, for

[ > 0. The point of adding the deviation vectors is that in order to improve its
policy, the agent must perform actions that are different from those recom-
mended by the policy: this mechanism for adding deviation vectors to policy
actions is just one simple way of achieving this. The exponential distribution
was chosen simply because it is convenient, but I have also implemented the
method with deviation vectors of constant length and random direction, and the
behaviour of the learning system is similar. There is no reason to suppose that
other distributions should not also give qualitatively similar behaviour, provided

that the frequency of large deviations is not too great.

Estimated returns are computed as follows. The value of A, depends upon
the length of b,, which is the random vector added to the policy action. That
is,

A, =exp(-n [b])
where M is the rejection factor, as described in chapter 7, section 3.1. 1 is kept
constant throughout a learning run. The effect of 1 is to control the extent to
which large deviations are rejected in estimating returns. If 7 is zero, then A, is

always equal to 1, and all sequences of actions count equally in estimating
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returns.

The estimate of return used in policy-adaptation is r(r), and the estimate of
return used in value-adaptation is u(r). r(z) and u(s) are defined in a way that is
similar, but not identical, to r* and u}. r(¢) is an estimate of the action value
of x, , a, and u(r) is an estimate of the value of x,. The difference between
them is that if @, deviates greatly from the policy action, A, will be close to
zero, and u(z) will be close to the existing estimated value of x, , so it will not

cause any change in the estimated value function U. The definitions are:
() =r + (1) ¥ Upear(xery)
+ Mt ¥ Pt + Mt (AP Upr(x) + -
L PRRELY WV winl WYRE L WOILERY WOV il /My 9
and the definition of u(?) is
u(r) = (1=-A)Upn(x) +
A+ A=A YU () +
+ Ada1 Vit + At (1A )V Uin(xi) +
+ A A+ A M Y U Fw)

where M is the ‘learning period’ for r and N is the ‘learning period’ for u. The
point of these ‘learning periods’ is that they put an upper limit on the number
of previous states it is necessary for the agent to store. The estimates r(r) and
u(z) can be computed at times r+M and +N respectively. A second difference
between these estimators and the estimators r’ and u* described in chapter 7 is
that r(z) and u(z) use U,y and U,y respectively throughout. This difference
between the two methods of calculation was caused by an oversight in the cod-
ing of the program; I do not believe that this difference in the method of calcu-

lation makes a significant difference to the results.
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The learning rules are, in the notation of chapter 10, page 144:
Usner = adjust( Upn» % , &, U({)

and

fr+M+1 = adeSt( f:+M s Xp B(r(f)"Ur-v-M(xr D .a;)
where B = B* if r(r) 2 Upplx, ), and B = B if r(r) < U, yy(x,).

The values of M, «, B, M, and N, and of all the other parameters men-

tioned below, may be supplied to the program at the start of each run.

3. Results

The behaviour of the program is consistent and reliable over a wide range
of parameter values. I will show results from one run, and comment on them in
some detail; results obtained using other parameter values and other random
seeds are qualitatively similar. In informal experimentation with this and other
learning problems, I have found that the changes in the parameters have the

following qualitative effects, if the other parameters are kept the same:

- If the size of the CMAC patches is increased, learning is faster, but the

final result becomes worse, since the representation is coarser.

e If the discount factor is made too close to 1, the policy may become

unstable.

e Using a low policy learning factor for negative prediction differences

improves the final policy.

e If the leamning factors for the policy are made too large, the policy

becomes unstable.

¢ 1 seems to have surprisingly little effect in this problem.
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The parameter values used in the run for which results are presented were

as follows:

Learning Parameters

Discount Factor 0.9

Learning Factors

o 0.5
p* 0.1
B~ 0.025

Learning Periods
for value function (N) 2 time steps

for actions (M) 1 time step

Other Parameters
Rejection Factor 5.0

Mean Action Perturbation b 0.1

CMAC Parameters

Size of CMAC squares 0.2

Initial value 0 everywhere
Initial action 0 everywhere
Size of CMAC table 40,000

Note that the returns used for adjusting actions are computed over only one

time step: the reason for this is that the adjustment of the actions is a gradient

descent process for finding a maximum, whereas the adjustment of the values is
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a process of finding a mean value. The adjustment of actions, therefore, is more

sensitive to noise in the estimated returns than is the value adjustment.

The run for which results are presented was selected arbitrarily, and the
learning method will work over a wide range of parameter values. The main
limitation is that if the leaming factor for actions is too large, or if the discount

factor is chosen to be too close to 1, the process becomes unstable.

The CMAC table may appear large for such a simple problem: in fact, the
table may be reduced to little more than 1% of that size without undue degra-

dation of the results.

The costs and rewards are as follows

Costs and Rewards

Reward on landing in target 10.0

Move cost as a function of length  -0.3/ - 3/2

At the start, the policy is to stay still everywhere, and the estimated value
function is everywhere 0. The agent’s initial performance, therefore, takes the
form of a random walk in the state space, each step being just the deviation
vector b,. The program displays the path of the agent in the state space with
animated graphics. A printout of the screen showing an example of the early
random performance is overleaf. It is f"ollowed by plots of the policy and value
function after 3, 10, 100, and 1000 successes, a ‘success’ being what happens
when the agent lands in the target. In the screen printout, the stippled rectangle
in the top right hand corner of the graphics area is the target; the black disc is
the starting position of the agent « : that trial, and the sequence of jumps that

the agent has made is shown as a line. Note that the agent may jump over the

target without landing in it.
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The course of learning may be described as follows. Since experimental
actions are imperfectly separated from policy actions—that is, the rejection fac-
tor is not equal to infinity—the agent’s estimation policy is in effect stochastic.
It therefore finds that it accumulates costs during its initial random walk, and in
those parts of the state space that it has visited during its random walk, the
value function is reduced below zero, and slight modifications may be made to
the policy.

Eventually, the agent lands in the target. On the next move, it experiences
a large reward, and it lands in a randomly chosen point in the state space. The
initial effect is that a peak in U develops over the target. The first actions that
receive rewards are those taken in the target, but because all actions in the tar-
get have the same effect, these actions are reinforced equally in all directions
(on average). However, once a peak in U has developed over the target,
actions that lead the agent to ‘climb the sides’ of this peak will be reinforced,
so that the actions now turn in the direction of the gradient of U. The U
‘mountain’ gradually spreads across the state-space, and the policy adjustments

shift the arrows to point up its slopes.

After 100 successes (a ‘success’ being what occurs when the agent lands
in the target), the hill of U has spread across most of the state space. An
interesting phenomenon is visible at this stage. The estimated value function as
it spreads is not a symmetrical cone with its peak over the target; instead, it is
shaped more like a mountain, with spurs radiating out from it. This is no
accident of the particular run, but it is something that occurs consistently in
every run, often to a more marked extent than is visible in the results shown.
The reason that it happens can be seen from the diagram showing the policy
after 100 successes: this shows that there are ‘well worn paths’ leading into the

target. These are ‘paths’ in the state space along with the policy leads the agent
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to the target relatively efficiently; because the policy is relatively efficient on
the paths, the value of U on the paths is relatively high. The policy adjustment
method tends to direct the policy arrows towards regions of state space with
relatively high estimated value. The result is that the policy tends to change so
as to direct the agent towards the existing well-worn paths: the effect of this is
to cause the agent to travel along the well worn paths still more often, so that
the policy on the well worn paths becomes yet more efficient.

After 1000 successes, the policy is to move towards the target from all
parts of the state space. I then introduced an ‘obstacle’ into the problem. The
obstacle consisted of a rectangle in the middle of the state space, with the pro-
perty that if the agent was in the obstacle, then the lengths of its moves were
reduced by a factor of 10, but the cost of a move remained the same. That is, if
the agent was in the obstacle and chose to perform an action that would nor-
mally cause it to travel a distance of 1 unit, then it would pay the cost of trav-
elling 1 unit, while in fact travelling only 0.1 units. This penalty applies only to
moves that start when the agent is in the obstacle: the agent can jump over the
obstacle with no penalty. The obstacle has two effects on the problem: first, it
costs the agent more to travel through the obstacle because each move inside
the obstacle carries a cost penalty, and second, if the agent enters the obstacle,
it may need more time steps to reach the target, so that the target reward is
discounted more. Once the obstacle rhas been introduced, therefore, the agent

should alter its policy so as to either travel round it or else to jump over it.

Note that the agent cannot ‘sense’ that it is in an obstacle: all it knows is
its position in the state space. Nor does the agent notice that it travels a shorter
distance than before when it is in the obstacle. All it notices is the difference in

the estimated return from actions.
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Plots of the policy and value function 500 and 5000 successes after the

introduction of the obstacle are overleaf.

500 successes after the introduction of the obstacle, the value function in
the region of the obstacle is greatly reduced, but the policy is not yet much
changed. For instance, note that if the agent starts to the left of the obstacle, it
still travels straight into it. The estimated value function for states to the left of
the obstacle is, as a result, negative. The value function for the extreme bottom
left hand corner still appears high, possibly because it has not yet been visited

often enough to be reduced to a level appropriate to the changed problem.

But 5000 steps after the introduction of the obstacle, the estimated value
of states at the bottom left has recovered somewhat, as the pollicy now leads the
agent around or over the obstacle from virtually all points in the state-space
outside the obstacle. Within the obstacle itself, however, the value is still low

because of the time taken and cost paid in escaping.

One reason that leamning proceeds so smoothly in this demonstration is
that the agent is repeatedly placed in randomly and uniformly chosen positions
in the state space. The agent will, therefore, gain experience of all parts of the
state space eventually. It will, of course, visit those parts of the state space near
to the target more often than it visits the edges of the state space, because the

agent travels to the vicinity of the target on every trial.
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4. A Learning Problem Analogous to Conditioning

The second computational demonstration is analogous to a simple form of
conditioning. The problem chosen is that at each time step an agent may
choose either to perform or not to perform a certain action (such as ‘pressing a
lever’ or ‘pecking a key’). If the agent performs the action, there is a small
cost; if the agent does not perform it, the cost is zero. This is a reasonable
assumption, since performing a response such as a lever press or a peck will
cost an animal more energy than sitting still. I will call the action ‘pecking’.
Occasionally, the agent may receive a large reward, analogous to the delivery

of food to a hungry animal in a Skinner box.

To determine the optimal policy in a Skinner box with ﬁo prior knowledge
of the reinforcement schedule is not a trivial problem. This demonstration
shows the operation of a Q-leamning algorithm faced with a range of different
reinforcement schedules. The following schedules of reinforcement are imple-

mented.

Fixed Interval (FI)

At any time the reward is either available or unavailable. When the
reward is available, the agent receives the reward only if it pecks, and
when the reward is unavailable, the agent does not receive a reward
whether it pecks or not. If a reward is made available at the rth time step,

the agent will receive it if it pecks at time ¢.

The fixed interval schedule may be described as follows: for the n—1
steps following each reward the agent receives, the reward is unavailable.
On the nth step, the reward is made available again, and the reward
remains available until the agent pecks, and so receives it; the cycle then

begins again. The agent may, therefore, receive a reward on at most one in
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n time steps.

In this and subsequent schedules, the agent cannot perceive whether
the reward is available or not, and there is no perceptible change other

than the passage of time to show that a reward has become available.

Variable Interval (VI)

If the agent receives a reward at time r, the reward becomes unavail-

able. On each subsequent step, from time #+1 onwards, if the reward is
still unavailable, then it is made available with probability —;11—; if the

reward has already become available, then it stays available until the agent
pecks and receives it. The effect of this schedule is that the lengths of the
times during which the rewards are unavailable are exponentially distri-
buted, and if the agent pecked on every time step, the mean interval

between rewards would be n.

Classical Fixed Interval (CFI)

The agent receives a reward on every nth step, whatever it does.

174




Chapter 11 — Two Demonstrations

Classical Variable Interval (CVI)

On each step, the agent receives a reward with probability E ! what-
n

ever it does, and independently of what happened on previous steps.

Fixed Ratio (FR)

The agent receives a reward on every nth peck, regardless of how

much time has passed.

These are the objecrive problems that the agent may face. What remains to be

done is to define the agent’s subjective problem.

What [ am going to do is to construct a simple and straightforward imple-
mentation of Q-learning for conditioning. I do not want to claim that the imple-
mentation that follows is a realistic model of animal learning in conditioning
experiments: animal learning is likely to be considerably more sophisticated

than the algorithm presented here.

The Subjective State Space

It is reasonable to suppose that, since rewards come at infrequent intervals,
receiving a reward is a salient event for the agent. One dimension of the
agent’s state space, therefore, is a measure of the elapsed time since the last
reward. The only other information the agent has is the history of its pecks, and
the second dimension of the state-space is a measure of the number of pecks

since the last reward.

An intuitively reasonable restriction is that the region of state space the
agent may ‘visit’ is bounded, since one would not expect an agent to distin-

guish an infinite range of states.
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Let the agent’s measure of elapsed time since the last reward be m. At
time 7, the value of m is m, . If the agent receives a reward at time r, then on
the time step 7+1 immediately following, m,,; is zero. On each subsequent time

step until the next reward, m is increased, but it never gets larger than 1:
megg = 1 - 0.95 (1. s mr)

if the agent does not receive the reward at time r. That is, the difference
between m and 1 is reduced by a factor of 0.95 at each time step, until the

agent receives a reward, in which case m is reset to zero.

Let p be the measure of the amount of pecking since the last reward. p is

calculated in a similar way to m:

1-0.95(1-p,) if the agent pecks at time ¢

Pl = otherwise

Hence the agent’s subjective state space can be represented as a triangle,
with vertices at (0,0), (1,0), and (1,1); the time axis is horizontal, and the peck
axis is vertical. Each time the agent receives a reward, it returns to the origin,
so that if a reward is received at time ¢, (0,0) is the state at time r+1. If the last
reward was at time ¢, and the time is now r+i, and the agent has performed

pecks since the last reward, then the state is
my; = 1‘0-95£-1
pH-l' — 1—0-9SJ
In the program, I have also provided that the state changes may be subject
to small random perturbations. On each state transition, both m and of p may
have small random quantities added to them: the random quantities are drawn

independently from uniform distributions of zero mean, and the widths of the

uniform distributions may be set as required for m and for p separately. The
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effect of this that m and p accumulate random error, and this reduces the
amount of information the agent retains about the past, since the agent’s
‘memory’ is its current position in the state space. Adding small random per-
turbations ensures that the accuracy of this memory declines gradually with
time.

For this problem, I have used the method of learning action values, both
to demonstrate it, and because the considerations in appendix 1 suggest that
one-step Q-learning should be reliable. For each action, the action-value func-
tion Q is approximated over the state space using a CMAC, just as the value

function was approximated in the previous demonstration.

5. The Learning Method

The method of one-step Q-learning was used, as described in section 4 of

chapter 7. The updating rule is
QH-I = adjust( Q.'s<xr L] ag)n a, r: # 'Y U;Q(x:+1) d,) )

where <x, , a> is the state-action pair for which Q, is adjusted. and  is a
learning factor. Only the action values are represented, and the estimated value

of a state is taken to be the maximum of the estimated action values That is,

U9(x) = max { O(x,a) }

where U9(x) is the estimated value of the state x. Taking the maximum of esti-
mates as an estimate of the maximum is dubious statistical practice, but the
argument in Appendix 1 shows that this method of estimating the value can be
used in a convergent learning algorithm, although it is likely that a less biased
estimator of the maximum of the action values would give better performance.

But in this problem there are only two possible actions, so the bias is minimal.
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In addition, results are presented for two demonstrations in which the

learning rule is

Q:+M+l == adeSt( Qr+M » X o, O, r(-’) )

with r(z) defined as in the previous demonstration, and with the learning period

M equal to 3. In calculating r(r), A, was calculated according to

A., = exp[ —T](U?(I, —Q,(x, @) ) ]

where 7 is the rejection factor, as before.

6. Behavioural Policy and Occupancy

The agent chooses its actions as follows. At each timc' t, the agent com-
putes the estimated action values of pecking and of not pecking; then with pro-
bability 1-m, it chooses the action with higher estimated value, and with proba-
bility w, it ‘experiments’, and chooses the action with lower estimated value.
The probability of experimenting—n,—depends on the number of times that the
agent has previously visited the current region of state space. If the agent has
visited the current region many times, the probability of experimenting will be
low; if the region near x, is relatively unexplored, the probability of experiment

will be high.

The program keeps track of the number of visits to each part of the state
space with a CMAC function Y—the occupancy—which is incremented by a
fixed amount at the current state on each time step. That is, Y is initially zero

everywhere, and at each time step it is adjusted
Y., = adjust(Y,,x, ,1,Y,(x)+c)

where ¢ is an amount kept constant during each run. That is, ¢ is added to the
value of Y stored for each CMAC patch containing x, , so that the value of

Y,(x) will be proportional to the number of visits to points in state space near x
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prior to time r.

The occupancy Y is used to control both the probability of experiment 7,
and the learning factor a,. Intuitively, it is reasonable to arrange that both =&
and « should be larger if the current state is in a little-explored part of the state
space, in well-explored parts of state-space, © and o should be small. In the

program, this is arranged by calculating ® and « at each time step according to

T

Sen T+Y(x) To

and

T
o = ——
ad = 2 e
where 7y and o are parameters that set the initial values of w and o, and 7 is a
positive number called the rare parameter which determines how rapidly © and
a decline with increasing occupancy. If T is small, ®© and o will decline rapidly
with increasing occupancy; if T is large, they will decline more slowly. T, T,

and oty are parameters that are passed to the program at the start of a run.

Note that the probability of experiment does not depend on the difference
between the estimated action values for the current state. Better methods of
setting 7 might take into account both the current occupancy and the difference

in action values.

7. Choice of Parameters

In the demonstrations, I have selected the following parameter values as
the ‘default’ values; these are the values the parameters have unless it is

specifically stated otherwise.

The rewards and costs are:
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Rewards and Costs

Cost of a peck in FI, CFI, VI, CVI schedules -0.5
Cost of a peck in FR schedule -0.25
Cost of doing nothing 0
Reward 10.0
Max. reward frequency 1in 10

That is, rewards are once every 10 time steps in the FI schedule; the reward is
set with probability 0.1 in the VI schedule; rewards are given every 10 time
steps in the CFI schedule; the chance of receiving a reward is 1 in 1O in the
CVI schedule; and 10 pecks are needed to obtain a reward in the FR schedule.
It is reasonable for the default peck cost to be less in the FR schedule because
10 pecks are required to obtain a reward in this schedule, whereas in all the
other schedules a reward can be had for just one peck, or for no pecks at all.

Unless otherwise stated, the parameter values used for the learning method

are
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Learning Parameters

k4 0.95
o 2 0.5
T 0.5
g 100

c 0.25
M 1

The values of ¢, and of the CMAC patch size (below), and of the parameters
determining state transitions are arranged so that the highest levels of occu-

pancy (near the origin) are approximately equal to the number of trials.

~

The parameter values for the state space are:

State-Space Parameters

Time Measure Factor 0.95
Peck Measure Factor 0.95
Span of Added Noise  +0.025

The CMAC parameters are:

CMAC Parameters

Side of a CMAC Patch 0.2
Number of Patches

Containing each Point 10
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8. Results

All the results presented were obtained by performing 50 runs with the
same parameter values but starting with a different random seed in each run.
Each run consisted of a number of trials: a trial is a sequence of actions start-
ing from the state (0,0), and ending either when the agent receives a reward, or
else after 100 time steps, whichever comes soonest. The number of trials on
which learning took place in each run was 20T, so that when T=100, each run
had 2000 learning trials. The number of learning trials was made proportional
to T in this way so that values of n and o would reach similar levels by the

end of runs with different values of the rate parameter 7.

In each run, after the 20T learning trials, the expeﬁﬁent and leamning
pa..ramcters Ty and oy were set to zero, so that no more learning or experimen-
mﬁon took place. Then the state transitions for each of twenty ‘test trials’ were
recorded. The point of this is that in these test trials, the agent followed the
estimate of the optimal policy that it had constructed during the learning trials;

the agent adopts its ‘subjectively optimal’ strategy.

The records of performance in the test trials for each set of parameter
values used are presented as graphs of the average cumulative number of pecks
plotted against the elapsed time since the previous reward. The average cumula-
tive number of pecks was obtained by averaging the records of all 20 test trials
for all 50 runs for each combination of parameter values. The average cumula-
tive number of pecks after n time-steps was calculated by averaging the cumu-
lative number of pecks in all trials that had not yet ended after n time steps; tri-
als that ended before n time steps did not contribute to the average at n time

steps.

The value function U2(x) and the difference between the estimated action

values of pecking and of not pecking Q(x, peck) — Q(x, no peck) were also
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recorded for a grid of points over the state space at the end of the learning tri-
als in each run. These data are presented as contour plots over the state space.
Each contour plot depicts the average of 50 surfaces, one from each run with

the same parameters.

The contour plots of the differences in estimated action values enable one
to see trends in the policies found: if the value is negative, then not pecking is
the preferred action, whereas if the value is positive, then pecking is preferred.
Contour lines for negative values are dotted; those for positive values are solid;
this enables areas of state space in which different actions are preferred to be

easily distinguished.
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Summary of Plots

Plot Number  Schedules Parameters Plot Type

1 All All default Performance

2 All No noise Performance

3 All M=3 n=0 Performance

4 All M=3 n=20 Performance

5 FI T =30, 100, 300 Performance

6 FI All default Value Function
7 FI All default QO Difference

8 CFI T= 30, 100, 300 " Performance

9 CF1 All default Value Function
10 CFI All default Q Difference
11 VI Not applicable Expected Return
12 VI T = 30, 100, 300 Performance
13 VI Peck Cost = -0.125, -0.5, -2  Performance
14 VI All default Value Function
15 \'at All default Q Difference
16 VI Peck Cost = -2 Value Function
17 Vi Peck Cost = -2 Q Difference
18 % T = 30, 100, 300 Performance
19 CVI All default Value Function
20 CVI All default Q Difference
21 FR T = 30, 100, 300 Performance
22 FR All default Value Function
23 FR All default Q Difference
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Classtcal Fixed Interval Schedule
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Classitcal Fixed Interval Schedule
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Vartable Interval Schedule
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Vartable Interval Schedule
Averaged Performance
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Vartable Interval Schedule
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Vartable Interval Schedule
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Vartable Interval Schedule
Value Function
Peck B88t-&8t Gt~—2

25 3
20 1

154

10 |

0 5 10 1S 20 25

Time

Plot 16




Number of Pecks

Chapter 11 — Two Demonstrations

VcrchLé Interval Schedule
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Classtcal Varitable Interval Schedule
Averaged Performance
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Classical Vartable Interval Schedule
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Classtcal Vartable Interval Schedule
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Fixed Ratio Schedule
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Fiuxed Ratio Schedule
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8.1. General Comparisons

Plots 1 to 4 each show the averaged performance for all five schedules
under different conditions. Plot 1 shows performance with the ‘default parame-
ters’. Plot 2 shows performance with the default parameters except that no
noise is added to state transitions. Plot 3 shows performance with the default
parameters (and with noisy state transitions) except that the leamning period M
is set to 3, and the rejection factor 7m is set to zero. The parameters for plot 4
are the same as those for plot 3, except that the rejection factor 7 is set to 20.

With the default parameters, performance is not optimal under any

schedule, but there is some adaptation to each.

Plot 2 shows some striking differences from the first plot. The increased
angularity of the curves is because there is now no variation in performance
between trials, since state transitions are deterministic. The most notable
phenomenon is the very consistent learning in the fixed interval and classical
fixed interval schedules: in each of these schedules, all 50 runs resulted in
identical final performance. In both the FI and the CFI schedules, the agent
always pecked on the first step, which is sub-optimal: I am at a loss to explain

this. After the first step, the performance was optimal under both schedules.

Plot 3, with the learning period M = 3, shows better performance than plot
1 in all schedules except the classical variable interval. The most striking
improvement in performance is in the fixed ratio schedule, where now the
optimal policy is followed in the majority of trials: the mean number of pecks
after 10 time steps is over 9, so that in most trials the agent pecks continuously
until it receives a reward, which is the optimal policy with these parameters
(see plot 11). In the VI schedule, the agent makes on average approximately 5
pecks in 15 time steps, which is the optimal policy (I will discuss the optimal
VI policy below). In both the FI and CFI schedules, there is a small
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improvement over plot 1, in that there fewer pecks on the first time step. Only

with the CVT schedule is performance approximately the same as in plot 1.

A plausible explanation for the superiority of the condition M=3 is that
under this condition values may be propagated back through the state space fas-
ter than is possible with M=1. That is, the transfer of information about state

values in one-step Q is slower than in three-step Q-learning,

Plots 3 and 4 are very similar: the rejection factor 1 appears to have little
effect on learning under any of the reinforcement schedules. One reason for this
apparent lack of effect is that the performance is nearly optimal on all except
for the classical variable interval schedule, so that there is perhaps little scope

for any effects of N on performance to emerge. However, performance in the

CVI schedule is similar for all four conditions.

8.2. The FI and CFI Schedules

The pronounced FI ‘scallop’ is apparently the result of state transition
noise making it difficult for the agent to judge the passage of time; under these
circumstances, the agent may mis-judge when to peck for the reward. In
optimal performance, therefore, the agent will sometimes peck too soon and
sometimes too late. With the parameter values used, the cost of pecking one
step too soon is less than the cost of pecking one step too late, so we may
expect the agent to start pecking earlier than later, and this is what apparently
happens. This explanation is supported by the fact that there is no ‘scallop’ in

the classical fixed interval schedule—see plot 8.

For the fixed interval and classical fixed interval schedules, the rate of
learning had little effect. One reason for this may be that except for the initial
peck, the performance achieved may have been the best possible given the state

space and the level of state transition noise. No differences will be observed if
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near-optimal performance is reached under all conditions.

8.3. The VI Schedule

The VI schedule deserves a special discussion for two reasons: first, the
determination of the optimal policy is more complex than for the other
schedules; and second, the state space used in the experiments is not adequate

for the VI schedule, yet nevertheless passable performance has been achieved.

First, what is the optimal policy under the VI reinforcement schedule? It
is easy to show that the form of the optimal policy is to peck periodically, with
some constant interval between pecks. An adequate state space for the VI
schedule is a measure of how much time has elapsed since the last peck. This
information, however, is not carried in the state space used by the learning
algorithm. The learning algorithm cannot, therefore, necessarily be expected to
find the optimal policy.

The optimal interval between pecks will depend on the probability that the
reward is set during each time step, the cost of a peck, and the value of a
reward. Let the reward be r, the cost of a peck be ¢, the probability of the
reward being set on each time step be p, and let the expected return on the first
step after a peck, for a policy of pecking on every nth step, be r. Then

f T% [ (=p)c + (1=(1=p)r ]
Plot 11 shows the theoretical values of r calculated according to this equation
are plotted against n for r=10, p=0.1, ¥=0.95, and for various values of c¢. For
the default parameters, with peck-cost equal to -0.5, the optimal inter-peck
interval is 3 time steps, with an interval of 2 time steps being very nearly
optimal. 'I‘hc expected return from a policy of pecking on every step is over
25% below the expected return from the optimal policy.

210




Chapter 11 — Two Demonstrations

Plot 12 shows the effect of different values of learning rate T: slower
learning, with T=300, has the effect of leading the agent to peck on almost

every turn. Final performance appears to get worse with increasing 7.

Plot 13 shows the average performance with three different values of the
cost of a peck, and the rest of the parameters at their default values. Although
optimal performance is not achieved in any condition, in each case performance
is in the region of 25% below optimal; this is encouraging, considering that the

state-space is not adequate.

Plot 17—the difference in action values obtained when the peck cost is set
to -2—shows how this behaviour was achieved. The agent ‘tracks’ the zero
contour; if it is on the left hand side of the zero contour, not pecking is pre-
fcrred; and the state-transitions take the agent horizontally to the right at each
time step. When the agent crosses the zero contour, pecking is the preferred
acdon, and the state transition takes the agent upwards and to the right, so that
it may find itself on the left hand side of the zero-contour again. The result is
that the agent will tend to peck intermittently. How can the agent develop such
a policy, when the state-space does not make the necessary distinctions? The
answer, I believe, is that when the experiment-choice parameter has become
small, the agent does not take just any route to a given point in state space: the
agent has a habitual path in the state space, so that its position on the path indi-
cates not only the information carried by the state itself, but also the fact that

the agent followed its current policy to get where it is.

8.4. The CVI Schedule

In the classical variable interval schedule, the agent should optimally not
peck at all, and it should merely accept the rewards that are intermittently given

to it. Why, then, does the agent in these experiments keep on pecking, albeit at
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a lower rate than in the operant variable interval schedule? A plausible
explanation—and one which is confirmed by examining the contour plots of the
value function and the difference of action values below—is that the optimal
policy is extreme: not to peck at all. In the early stages of learning, the agent
will experiment by pecking on about half of all steps; the states in which it
receives the rewards will be states in which it has already pecked several times.
It is in these areas of state space that the value function will at first increase;
and it is to these areas of state space that the agent will tend to return. When
the agent experiments by pecking less, it enters regions of state space where the
estimated value function is still low; when this happens, the one-step ahead
estimate of eventual return is low, so that not pecking appca.fs to be a bad
choice. Once a ‘path habit’ in state space has formed, the associated ridge in
the value function will move only slowly. The initial adventitious correlation of
past pecking with rewards will thus cause the agent to develop a ‘superstition’
(Skinner 1948) that the pecking leads to the rewards. Superstitions of this type
are difficult for an agent to get rid of if it is restricted to making short term

estimates of returns.

8.5. The FR Schedule

The appearance of the performance for the FR schedule in plot 21 is
deceptive because of the averaging: the FR curve is the result of averaging
many curves that start off with few pecks and finish with a peck on every time
step. The initial periods of procrastination under the FR schedule are of

different lengths, so that the average of the curves has a sigmoid shape.

The optimal policy in the FR schedule is either not to peck at all, or else
to peck at every opportunity. So why should the agent procrastinate in this

way? A plausible explanation is that the agent starts off pecking in 50% of the
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time steps, so that it collects its reward after 10 pecks and, on average, 20 time
steps. A peak in the value function starts to develop in this area of state
space—this peak is visible in plot 22. A ‘mountain’ of the value function will
spread across the state space; the ‘well worn path’ on which a ‘spur’ of the
mountain will develop will consist of procrastinating for a time, and then of
pecking continuously. The first path that consistently leads to rewards tends to
persist. With M=1, it takes a considerable time for the good news that after 10
pecks there will be a large reward to percolate back to the states corresponding
to one or two pecks. In these states, pecks appear to be costly, so that in the
initial stages of learning, the agent leamns not to peck at early times, and to
peck continuously at a later time in the trial. This can be seen by examining
the zero contour in plot 23—the shape of the zero contour is similar to that for

the FI schedule.

9. Discussion

The Q-learning algorithm is capable of acquiring near-optimal policies
under a variety of reinforcement schedules. The most significant findings are
first that a longer learning period (M=3) gives a considerable improvement in
performance. Second, even though the state space is inadequate for the VI rein-
forcement schedule, the average performance is not grossly sub-optimal, and it
varies with peck-cost appropriately.

But, I believe, the main message of these results is that the course of
learning is strongly affected by adventitious correlations and by the initial pol-
icy and value function. The state-action combinations that happen to precede
rewards will tend to be repeated, whether the actions caused the reward or not.
Because there is no way for the agent to find out which actions are necessary

and which are unnecessary other than by systematic trial and error, some of the
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agent’s actions will appear ‘superstitious’ to a more knowledgeable observer,
but the agent cannot avoid this during the early stages of learning.

The learning method might be improved by making A, depend on Y; A
should be close to 1 for small ¥, and A should be smaller at states with large Y.
Setting A adaptively in this way might combine the best features of one-step

and many-step Q-learning.
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Chapter 12
Conclusion

1. What has been Achieved?

A family of simple algorithms for associative learning has been described
systematically; these algorithms may be implemented as computer programs,
and they can be applied to models of problems that have been given to animals.
The algorithms themselves have been developed by an argument from first prin-
ciples, and not with the intention of explaining particular experimental results.
They can be motivated, and in one case justified, as forms of incremental
dynamic programming, and they can be viewed as methods for optimising short
to medium term averages of rewards and costs that result from action. The
algorithms can also be viewed as direct implementations of associative learning
according to the law of effect. They can be applied to a wide range of simple
tasks, and not just to the tasks that have been used in the study of animal learn-
ing.

The value of the incremental dynamic programming approach is that it
provides a framework according to which a variety of learning algorithms may
be described in common terms. The framework makes clear both the potential

scope and also the limitations of the learning methods.
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2. Further Work

The first area in which further work is needed is in enabling autonomous
agents to tune the values of the parameters for their learning algorithms. If, for
example, an agent chooses a learning factor that is too small, then it will make
insufficient use of its experience; but if the learning factor is too large, the pol-
icy learning may become unstable. An autonomous learning agent needs to
have some method of choosing its suitable values for its learning parameters

itself.

A second area that requires further work is that of methods of representa-
tion and approximation of functions. [ have used only one method—the
CMAC—which is crude and simple. An important question is that of what
other representations may be used in conjunction with these learning methods.
In partcular, are there connectionist methods of learning functional mappings
that could be used as component modules of strategy learning mechanisms?

Third, the life of even a simple animal cannot be treated as a single Mar-
kov decision problem, because the learning problem becomes too complex. I
feel that the most interesting possibility for further work is that of linking Mar-
kov decision problems together, into hierarchies and other configurations, in
such a way that the control of each decision process can be learned individu-
ally. One attraction of this approach is that there are likely to be mathematical
methods for studying the interactions between linked decision problems.

Although I have not yet implemented any such program, the approach appears

most promising.
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3. Computational Theories of Intelligence

As I said at the beginning of the introduction, the fields of cognitive sci-
ence and artificial intelligence have been concerned mainly with analysing and
modelling the abilities of humans, rather than those of animals. Many exam-
ples of human performance in performing various cognitive tasks have been
analysed, and computer programs have been constructed that can solve some of
the same problems that people can solve, in apparently similar ways. Has this
led us much closer to an understanding of human intelligence?

[ do not think so, because there is an insidious methodological problem
with this approach. The problem is that when researchers set out to study
people’s higher thought processes, they set their subjects tasks to perform, and
then study their subjects’ performance on those rasks. The result of the work is
a computational theory of how people perform those rasks. The computational
theory consists of a description of hypothetical ‘cognitive operations’ that peo-
ple perform in accomplishing the tasks; ideally, this description should take the
form of a computer program, in which certain blocks of code or defined pro-
cedures correspond to and perform the same role as the cognitive operations
that the subjects perform. In other words, the computer program serves as a

description of an algorithm that the subjects follow in performing the task.

The methodological problem is that what has been achieved is to describe
the algorithm that the subjects have chosen to use: what has not been done is to
explain how the subjects decided what mental algorithm to use. The mental

algorithm is merely a product of the subjects’ intelligence.

A classic example is also one of the clearest: after reading Newell and
Simon’s (1972) study of cryptarithmetic, one feels one has learned some useful
tips on how to solve cryptarithmetic problems, but very little about people.

Newell and Simon devised an elegant notation to describe what people do in
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solving DONAILD + GERALD = ROBERT, in terms of formulating goals and
subgoals, and searching, more or less systematically, for assignments of digits
to letters that are consistent with the sum given. This is an excellent descrip-
tion of whar people do while they are tackling a cryptarithmetic problem, and
the computational model can no doubt be used to predict which cryptarithmetic
problems should be easy and which should be difficult, what errors people usu-
ally make, how long people should take to find solutions on different problems,
and so on. But the computational theory has absolutely nothing to say about
why people choose to proceed in that way, or why they believe that the pro-
cedure they use should lead to a solution if one exists. Newell and Simon
describe what their subjects did, but they do not describe how or why their sub-
jects approached the problem in that way, which is a much more interesting

question.

In later work, such as that of Laird, Rosenbloom, and Newell (1986), there
is an attempt to construct a system that is able to formulate problem descrip-
tions of this type by solving a higher level problem of the same form. This is
perhaps the only significant attempt so far in the field of Al to give a general
theory of intelligence, but I do not think that the attempt comes close to suc-
cess because, as far as I can see, the problem formulations that the program

finds have to be built into the program beforehand in a rather specific way.

The basic problem in the computer modelling of human thought is that the
researcher faces a dilemma: the model he or she constructs needs to be simple
enough to be supported by the experimental evidence that ca.r; be collected, and
yet a model can only be plausible as an explanation if it can be presented as a

part of, or as a product of, some vastly more complex and unknown system.

But animal cognition is likely to be simpler, and that of very simple

animals is much simpler. In this thesis [ have set out systematically a range of
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ways in which simple agents might control their behaviour, and a range of
learning algorithms that such agents might use to optimise their behaviour
according to certain plausible criteria. It should be feasible to construct com-
puter simulations of autonomous agents that learn to fend for themselves in
simulated environments. Indeed, Wilson (1987) has already attempted to do
this. Although considerable work would be needed, it seems by no means an
impossible objective to construct a relatively simple, autonomous, learning pro-
gram that shows, in simulation, a similar range of associative learning abilities

to those that have been demonstrated in the rat.

A promising approach to the study of intelligence is to start off by consid-
ering what simple intelligences are. The aim should be to give general abstract
definitions of simple forms of intelligence, and to construct such intelligences

in their entirety.
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Appendix 1
Convergence of One-Step Q-Learning

The agent learns using an initial estimate of O, and data from experience,

which consists of observations of the form

== 7y

which are respectively the state, the acton taken at the state, the immediate
reward received, and the subsequent state reached. Let us assume that the
agent’s data consists of an infinite sequence of observations, numbered
1,2,3, - -+ which are used successively to update Q. Let the nth observation in

the liskbe {x, a, 7, ¥, )k

The observations are assumed to be independent observations of state-
transitions and rewards in a Markov process. There is no assumption that the
observations come from a connected sequence of actions—x,,,; does not have
to be the same as y,. The observations, therefore, can be collected from short
disconnected sequences of behaviour, and the choices of actions at states may
be arbitrary. The only constraint on the sequence of observations is that there

must be sufficient observations of each action at each state: this will be made

precise below.

To show that the learning method converges, I will first show how to con-
struct a notional Markov decision process from the data: this notional decision
process is a kind of ‘action replay’ of the data. Next, I will show that the Q
values produced by the one-step Q-learning method after n training examples
have been used are the exact optimal action values for the start of the action-

replay process for n training examples. Finally, I will show that, as more data
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is used, the optimal action-value function at the start of the ‘action replay’ pro-
cess converges to the optimal action-value function of the real process. For
brevity, I will refer to the action-replay process as ARP and to the real process

as RP.

L. Using the Observations to Adjust Q During O-Learning

Recall that the one-step Q-learning method is as follows. The initial values
of Q, before any adjustments have been made, are Qy(x,a) for each state x and
action a. After the nth observation has been used to update Q, the values of Q

are written Q,, . The estimated value of a state x at the nth stage is
Un(x) = m:x { Qn(x,a) }
The nth observation, forn=1,2,3, - - is

e O 7% %]

and it is used to calculate Q, from Q,_; by

(1-atp) Qp (@) + 0, [, +Y UL, (yy)] ifx=x, and a=a,
Qn(x,a) = 0

n—1(x,a) otherwise

The learning factor o, may depend on x, and a,. I will discuss the require-

ments that the learning factors must satisfy later.

2. The ‘Action-Replay’ Markov Decision Process

The action replay process is a purely notional Markov decision process,
which is used as a proof device. This process is constructed progressively from
the sequence of observations. The ARP consists of layers of states, numbered
0,12 -, n . In each layer—in the kth layer, say—there is a state

<x,k> in the ARP corresponding to each state x in the RP. That is, the state in
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the kth layer of the ARP corresponding to state x in the RP is <x,k>. The &t

layer of states of the ARP is constructed when the kth observation is processed.

At the state <x,k>, the same actions are possible as at state x in the RP but

their effects are different.

Actions in the ARP are defined in the following way. The essential idea is
that an action in the ARP is a ‘replay’ of an observation. The ARP is a
‘model” of the RP, in which performing an action a in state x is simulated by
recalling an observation [ x @ r y ] of performing a in x, and then using the

observed r and y as the simulated reward and new state respectively.

To make this more precise, suppose that one is at state {.x,k:> in the ARP,
and one wishes to perform action a. To do this, one must find one of the first &
observations to ‘replay’; an observation is eligible for replaying if it was
obécwcd before observation k& and if it is of the form [ x a. . ], where the x
and the a correspond to the state <x,k> one is at and the action one wishes to
perform respectively. If the [th observation, which is [ x a r; y; 1, is eligible,
and is selected for replay, the reward obtained is r;, and the next state in the
ARP reached is <y, [-1>. At this new state <y, /-1>, one may repeat the pro-
cess: one may choose an action to perform— b, say—and then one may look
for a suitable observation to replay. This time, however, only the first / obser-
vations are eligible. With each action taken in the ARP, the list of observations
that are eligible for replay becomes shorter, until finally there is no observation
eligible for replay. When there is no eligible action left, as must eventually
happen, a final payoff is given, which is Qy(z,c), where z and ¢ are the state
one is at and the action one is trying to perform when one runs out of actions
to replay. Starting at any state in the ARP, it is, therefore, only possible to per-

form a finite number of actions before running out of observations to replay.
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I have not yet explained exactly how observations are selected for replay.
this is done according to the following (randomised) algorithm, which I will
first describe in words, and which I will then give in ‘pseudocode’. To perform
a in <x, k>, one first checks whether the kth observation is eligible. If not, one
examines the k—1th observation, then the k-2th, and so on, until one finds a an
cligible observation—number /, say. Let &, be the learning factor that was
used when Q was adjusted when observation / was processed. Then, one takes
a random choice: with probability o; one ‘replays’ observation /, in that one
goes to <y, I-1> and one takes an immediate reward r;. If the random decision
goes the other way, one continues to scan back along the list of observations
until another eligible observation is found, and then one repeats the random
choice. If one reaches the beginning of the list of observations, and then one
takes the immediate reward Qy(x,a), and no further actions are possible, so that

the ARP terminates.

To put this another way, let the current state be <x,k> and let the action to

be performed be a, and let the eligible observations be numbered n, , n, , . . .,

n; , where
n<m< - <ms<k
Then the probability of replaying observation n; is «; ; the probability of

replaying observation n;_; is (1-o)a;_, , and so on. The probability of not

replaying any of the eligible actions is
(11— ) -+ - (1-0y)

If no eligible action is selected for replay, the ARP terminates, with a final

payoff of Qy(x,a).

Procedural instructions for performing action a in state <x,k> may be

given recursively as

223




To perform a in <x,0>,
terminate the ARP with an immediate reward of Qy(x,a),

and halt.

To perform a in <x,k>, for k > 0,
if x =x, and a = g,
then
begin
either (with probability o)
g0 to <y, k—=1> with an immediate reward of r,
and halt,
or (with probability 1 - ay)
perform a in <x, k-1>
end
else

perform a in <x, k=1>,

The ARP is a decision process: if performing a in <x,k> leads to the state
<y,k—m>, then one may choose to perform any of the actions possible in the RP
at y in <y,k—m>. It is not possible to perform an infinite sequence of actions in
the ARP—no matter what actions are chosen, if one starts at level k, each
action will lead to a new state at a lower level, until finally one reaches level O

and the process terminates.

The return of a sequence of replays of observations ky , kp , ..., k, (
such thatky > ky > * - >k, ) is
Ty ¥ Y+ "0+ Yok, + Yae1Qol Vi, » @)

where a is the action chosen in the last state <y, , k,~1> reached before the
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ARP terminates.

It is straightforward to show that Q, defines the optimal action values for
ARP at stage n. Let Q*,gp be the optimal action-value function for the ARP;
that is Q* sgp(<x,n>,a) is the optimal action value for action a at state <x,n> of

the ARP, and let U*,gp be the optimal value function of the ARP.

The ‘Action-Replay’ Theorem:
For all x, a, Q,(x,a) is the optimal action value at stage n of the
ARP. That is,
Qn(x,a) = Q* srp(<x,n>,a)
for all x, a, and for all n 2 0.
Proof:

By induction. From the construction of the ARP, Qo(x,a) is the

optimal—indeed the only possible—action value of <x,0>, a. So
Qo(x,a) = Q* \gp(<x,0>,a)
Hence the theorem holds for n = 0.

Suppose that the values of Q, ;, as produced by the one-step Q-
learning rule, are the optimal action values for the ARP at stage n—1, that
is

Q,-1(x,a) = Q*ARF(Q,H—1>,0)

for all x, a. This implies that U,_,(x) are the optimal values at the n—Ith

stage, that is

U*ARP(Q’R_I->) = max Qn—l(xra)
a
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Recall that Q, is calculated from Q,_; in the following way. Except
for the value for the state-action pair x,, a, , at stage n, Q is unaltered by
the learning procedure, so that Q,(x,a) = Q,,_(x,a) for all x, a not equal to
Xyiia, s And

On(xp ap) = Qu(rp, + YU, 1) + (10, O (X, G4)

Now, consider the nth stage of the ARP. For all x, a not equal to x,, a, ,

performing a in <x,n> in the ARP gives exactly the same results as per-

forming a in <x,n—1>; therefore,
Q* arp(<x,n>,a) = Q* spp(<x,n—-1>,a)
for x, a not equal to x,, a,. Hence
Q* Arp(<x,n>,a) = Q,(x,a)
for all x, @ not equal to x,, a, respectively.

Now, consider the optimal action value of <x,n>, a, in the ARP.

Performing a, in <x,,n> has the effect of

¢  with probability a,, yielding immediate reward r,, and new state

<yn.n—1>, or
¢  with probability 1-c,, the same effect as performing a, in <x,, n—1>.
Hence the optimal action value in the ARP of <x,, a,> is

O* ARp(Xplt>,8,) = Oy (r + Y U*ARp(<ynn—1>))

+ (1-0)Q* ARp(<Xnon—1>, @)

a‘?l (rn + YUII—I(-)’J'I)) 1 (Iﬂ-arl)Qn-—l(xn: an)

Il

Qn(*n37)

Hence, by induction,
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Qn(xl a) = Q*ARP(Q,!&,H)

for all x, @, and n 2 0, which was to be proved.

3. C?nvergence of O* ,pp to O*

Under what conditions will the optimal action values for the action replay
process at the nth stage converge to the optimal action values for the real pro-
cess as n —» oo ?

Sufficient conditions are that for each state-action pair x , a :

®  There is an infinite number of observations of the form [ x a Ty ]

*  The learning factors @, for observations of the form [ x a r, Y. ] are posi-

tive, decrease monotonically with increasing n, and tend to zero as n — oo

®  The sum of the learning factors @, for observations of the form [ x a ¥
] is infinite.

Note that it is required that the learning factors decrease monotonically for

observations of the form [ x a . . ] for each x, a—the learning factors need not

decrease monotonically in along the sequence of observations.

To demonstrate that these conditions are sufficient, the method is to show
that if one starts from the nth layer of the replay process, then the replay pro-
cess will approximate the real process to any given degree of accuracy for any
given finite number of stages, provided that n is chosen to be large enough.
The replay process ‘approximates’ the real process in the sense that, for any k,
the state <x,k> in the replay process corresponds to the state x in the real pro-

cess; and actions and rewards in the replay process correspond directly with

actions and rewards in the real process.
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Let the depth of a state-action pair d(<x,k>, a) in the replay process be the
sum of the learning factors for all observations of the form [ x a r; y; ] with
[ € k. If one follows the procedure for performing a in <x,k> in the replay pro-
cess, the probability of reaching <x,0> becomes arbitrarily small as d(<x,k>, a)
becomes large.

There are a finite number of state-action pairs, and according to the third
assumption above, the d(<x,n>, a) tends to infinity as » tends to infinity. For

any given D, and any given g, it is possible to choose n such that

max { O, } <E
m>n

Given any such n, it is then possible to choose n’ such that

min { d(<x,n">,a) — d(<x,n>,a) } > D
x,a

For any & and any D, it is possible to choose a sequence of values
ny,ny,ny, - such that the depths of all state-action pairs increase by D
between each value of n in the sequence. It is, therefore, possible to choose an
n so large that the minimum possible number of ‘replayed’ observations is
larger than any chosen k with a probability as close to one as desired, and such
that the maximum leamning factor a is so small that the transition probabilities
and reward means of the ARP are, with a probability as close to 1 as desired,
uniformly as close as desired to the transition probabilities and reward means of
the RP. Hence it is possible to choose an » so large that Q* ,pp at the nth level
of the ARP is, with a probability as close to 1 as desired, uniformly as close as
desired to the corresponding optimal action values of the RP; and this is what

needed to be shown.
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