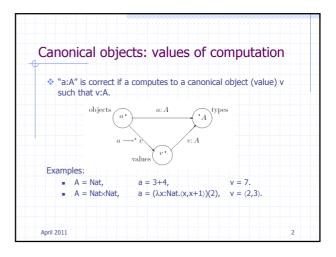
	computational meaning and inductive types
* Se	emantics
•	How to give meanings to (logical) sentences?
•	Model-theoretic semantics v.s. proof-theoretic semantics
	(More later)
🛠 Fo	or type theories:
٠	How to understand the judgements in a proof-theoretic semantics?
•	Eg, how to understand the basic judgement "a : A"?
	Ie, when is "a : A" a correct judgement?



 Typical types in type theory Logical propositions (as explained before) 	
 Logical propositions (as explained before) 	
♦ Inductive types	
♦ Universes	
Examples of inductive types	
♦ Finite types (0, 1, 2,)	
 Types of nats, lists, vectors, trees, 	
 Types of dependent pairs/tuples (modules) 	
 Types of ordinals, well-orderings, 	

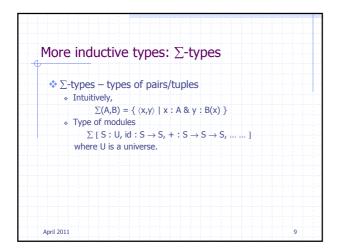
Type of natural numbers	
Formation $\overline{Nat:Type}$	
Introduction $\frac{n:Nat}{0:Nat} \frac{n:Nat}{n+1:Nat}$	
Elimination	
$\frac{c:C(0) f(n):C(n) \rightarrow C(n+1) \ [n:Nat]}{Rec(c,f) \ : \ \Pi x:Nat. \ C(x)}$	
Computation (behaviour of Rec, omitted)	
April 2011	4

Elimination rule explained	
Elimination	
$\frac{c:C(0) f(n):C(n) \rightarrow C(n+1) \; [n:Nat]}{Rec(c,f) \; : \; \Pi x:Nat. \; C(x)}$	
Elimination and induction:	
$\frac{C(0) \qquad C(n) \supset C(n+1) \ [n:Nat]}{\forall x. \ C(x)}$	
"If C holds for all canonical nats, then C holds for even	y nat."
General pattern (for all inductive types):	
C holds for all <i>canonical</i> objects of	
C holds for every object of	

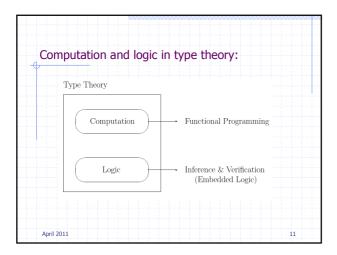
NOI	e inductive types: the Boolean type 2
	Formation $\overline{2:Type}$
	Introduction $\overline{true: 2}$ $\overline{false: 2}$
	Elimination
	$rac{c_1:C(true)}{\mathcal{E}_2(c_1,c_2)} : \Pi x: \mathcal{Q}.C(x)$
	Computation (omitted)

More inductive types: List(A) & Vect(A,n)	
* 1 :=+(A)	
	- type of lists of objects of type A
	: List(A) A,a,l) : List(A)
	n) – type of lists of length n
	.) : Vect(A,0)
V -	(A,n,a,l) : Vect(A,n+1)
Simple	
	of a list – what about hd(nil)? (to make it total)
	of a vector:
	$hd(n): Vect(A, n+1) \rightarrow A$
	$hd(n_{1}[a_{1},,a_{n+1}]) = a_{1}$

ype univers	es: a reflection principle
Collecting (th called a university)	e names of some) types into a type erse.
How to defin	e a type-valued function? For example,
f(0) = Nat
f($n+1) = f(n) \times Nat$
But the "type	" of Nat is <i>not</i> a type!
 Introduce a t 	ype universe U such that Nat : U, then
f :	$Nat \rightarrow U$
This is now "	legal".



Computation and logic in different languages:	
Computation	Programming Languages (eg, Pascal)
Logic	→ Inference & Verification (eg, Hoare Logic)
April 2011	



comp	utational meanings
Sen	nantics
* N	1odel-theoretic semantics
	Meanings of logical sentences are given by truth values in models.
	* Tarski,
⇒ F	Proof-theoretic semantics
	 Meanings of logical sentences are given by canonical proofs and computation.
	Gentzen, Prawitz, Dummett, Tait, Girard, Martin-Löf, Schroeder-Heister.

	cal propositions
Natural separation be	tween
 Logical propositions 	
 Inductive data types (eg, Nat, List(A),)
Philosophy behind the	e development of
* ECC/UTT (Luo 1989/1	994)
 Logic-enriched TTs (G 	ambino & Aczel 2006, Luo 2006)
Combining data types	with propositions
$\Sigma(Nat, positive)$	type of positive nats

	What kinds of types are there in modern TTs?
*	What is a type universe? What is the difference between a universe and an inductive type?
	Data types v.s. logical propositions
	 In what sense may one identify them in a TT? What are the caveats?
	 How can one separate them in TTs? What are the advantages?

*	T. Coquand C. Paulin-Mohring. Inductively defined types. Proc of the Inter Conf on Computer Logic (COLOG-88). LNCS 417, 1990.
۰.	M. Dummett. The Logical Basis of Metaphysics. Harvard University Press, 1993.
2	Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. OUP, 1994.
	 P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984. B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf's Type Theory. OUP
	1990.
	2011 1