
III. Computational meaning and inductive types

�Semantics

� How to give meanings to (logical) sentences?

� Model-theoretic semantics v.s. proof-theoretic semantics

� (More later)

� For type theories:

� How to understand the judgements in a proof-theoretic
semantics?

� Eg, how to understand the basic judgement “a : A”?

� Ie, when is “a : A” a correct judgement?

April 2011 1

Canonical objects: values of computation

� “a:A” is correct if a computes to a canonical object (value) v
such that v:A.

Examples:

� A = Nat, a = 3+4, v = 7.

� A = Nat×Nat, a = (λx:Nat.〈x,x+1〉)(2), v = 〈2,3〉.

April 2011 2

Inductive types

�Typical types in type theory

� Logical propositions (as explained before)

� Inductive types

� Universes

�Examples of inductive types
� Finite types (0, 1, 2, ...)

� Types of nats, lists, vectors, trees, …

� Types of dependent pairs/tuples (modules)

� Types of ordinals, well-orderings, ...

April 2011 3

Type of natural numbers

April 2011 4

Elimination rule explained

“If C holds for all canonical nats, then C holds for every nat.”

�General pattern (for all inductive types):

C holds for all canonical objects of …
==

C holds for every object of …

April 2011 5

More inductive types: the Boolean type 2

April 2011 6

More inductive types: List(A) & Vect(A,n)

� List(A) – type of lists of objects of type A
� nil(A) : List(A)

� cons(A,a,l) : List(A)

�Vect(A,n) – type of lists of length n
� nilV(A) : Vect(A,0)

� consV(A,n,a,l) : Vect(A,n+1)

�Simple example:
� Head of a list – what about hd(nil)? (to make it total …)

� Head of a vector:

hd(n) : Vect(A,n+1) → A

hd(n,[a1,…,an+1]) = a1

April 2011 7

Type universes: a reflection principle

�Collecting (the names of some) types into a type
called a universe.

�How to define a type-valued function? For example,

f(0) = Nat

f(n+1) = f(n) x Nat

But the “type” of Nat is not a type!

� Introduce a type universe U such that Nat : U, then

f : Nat → U

This is now “legal”.

April 2011 8

More inductive types: ∑-types

�∑-types – types of pairs/tuples

� Intuitively,

∑(A,B) = { 〈x,y〉 | x : A & y : B(x) }

� Type of modules

∑ [S : U, id : S → S, + : S → S → S, … …]

where U is a universe.

April 2011 9

Computation and logic in different languages:

April 2011 10

Computation and logic in type theory:

April 2011 11

Computational meanings

�Semantics

� Model-theoretic semantics
� Meanings of logical sentences are given by truth values in models.

� Tarski, …

� Proof-theoretic semantics
� Meanings of logical sentences are given by canonical proofs and

computation.

� Gentzen, Prawitz, Dummett, Tait, Girard, Martin-Löf, Schroeder-Heister.

April 2011 12

Data types v.s. logical propositions

�Natural separation between
� Logical propositions

� Inductive data types (eg, Nat, List(A), …)

�Philosophy behind the development of
� ECC/UTT (Luo 1989/1994)

� Logic-enriched TTs (Gambino & Aczel 2006, Luo 2006)

�Combining data types with propositions
� Eg, ∑-types:

∑(Nat, positive) -- type of positive nats

∑(Man, handsome) -- type of handsome men

April 2011 13

Revision Questions

�What kinds of types are there in modern TTs?

�What is a type universe? What is the difference
between a universe and an inductive type?

�Data types v.s. logical propositions

� In what sense may one identify them in a TT? What are the
caveats?

� How can one separate them in TTs? What are the
advantages?

April 2011 14

Selected References

� T. Coquand C. Paulin-Mohring. Inductively defined types. Proc of the Inter Conf on
Computer Logic (COLOG-88). LNCS 417, 1990.

� M. Dummett. The Logical Basis of Metaphysics. Harvard University Press, 1993.

� Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. OUP, 1994.

� P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

� B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf's Type Theory. OUP,
1990.

April 2011 15

