Modern Type Theories for NL Semantics

Zhaohui Luo
Royal Holloway, Univ. of London
Natural Language Semantics

- Semantics – study of meaning (communicate = convey meaning)

- Various kinds of theories of meaning
 - Meaning is reference (“referential theory”)
 - Word meanings are things (abstract/concrete) in the world.
 - c.f., Plato, ...
 - Meaning is concept (“internalist theory”)
 - Word meanings are ideas in the mind.
 - c.f., Aristotle, ..., Chomsky.
 - Meaning is use (“use theory”)
 - Word meanings are understood by their uses.
 - c.f., Wittgenstein, ..., Dummett, Brandom.
Formal semantics

❖ Model-theoretic semantics
 ❖ Meaning is given by denotation.
 ❖ c.f., Tarski, ..., Montague.
 ❖ e.g., Montague grammar (MG)
 ❖ NL \rightarrow simple type theory \rightarrow set theory

❖ Proof-theoretic semantics
 ❖ In logics, meaning is inferential use (proof/consequence).
 ❖ c.f., Gentzen, Prawitz, ..., Martin-Löf.
 ❖ e.g., Martin-Löf’s meaning theory
Simple example for MTS and PTS

- Model-theoretic semantics
 - John is happy. \(\Rightarrow \) happy(john)
 - John is a member of the set of entities that are happy.
 - Montague’s semantics is model-theoretic – it has a wide coverage (powerful).

- Proof-theoretic semantics
 - How to understand a proposition like happy(john)?
 - In logic, its meaning can be characterised by its uses – two respects:
 - How it can be arrived at (proved)?
 - How it can be used to lead to other consequences?

(*)
Montague’s semantics and MTT-semantics

- **Formal semantics (MG)**
 - Montague Grammar Church’s simple type theory (Montague, 1930–1971), dominating in linguistic semantics since 1970s
 - Other development of formal semantics in last decades (e.g., Discourse Representation Theory & Situation Semantics)

- **MTT-semantics: formal semantics in modern type theories**
 - Early use of dependent type theory in formal semantics (cf, Ranta 1994)
 - Recent development (since 2009) – full-scale alternative to MG
 - Advantages: both model/proof-theoretic, proof technological support, ...
 - Refs at http://www.cs.rhul.ac.uk/home/zhaohui/lexsem.html, including
 - Chatzikyriakidis and Luo (eds.) Modern Perspectives in Type Theoretical Semantics. Springer, 2017. (Collection on rich typing in NL semantics)
TTs as foundational languages for NL semantics

What is a type theory?
- \(a : A \)
 - \(a \) is an object of type \(A \)
 - the most basic “judgement” to make in type theory

The worlds of types – examples:
- Simply typed \(\lambda \)-calculus (with \(A \rightarrow B \))
- Church’s simply type theory as in Montague’s semantics (\(A \rightarrow B \) with HOL of formulas like \(P \supset Q \) and \(\forall x:A.P \))
- Richer types (eg, in MTTs: dependent, inductive, ...; see latter)

Logical language (often part of type theory)
- In Church/Montague: formulas & provability/truth
- In modern type theories (MTTs): formulas-as-types & proofs-as-objects
 E.g., \(\forall x:\text{Man. handsome}(x) \rightarrow \neg \text{ugly}(x) \) can be seen as a type (later)
What typing is not:

- “a : A” is not a logical formula.
 - 7 : Nat, j : Man, ...
 - Different from logical formulae nat(7)/man(j), where nat/man are predicates. (Note: whether a formula is true is undecidable, while the : judgement is.)
- “a : A” is different from the set-theoretic membership relation “a \in S” (the latter is a logical formula in FOL).

What typing is related to (some example notions):

- Meaningfulness (ill-typed \Rightarrow meaningless)
- Semantic/category errors (eg, “A table talks.” – later)
- Type presuppositions (Asher 2011)
This course – MTTs in NL semantics

- **MTTs – Modern Type Theories**
 - Rich type structures
 - much richer than simple type theory in MG
 - Proof-theoretically specified by rules
 - proof-theoretic meanings (e.g., Martin-Löf’s meaning theory)
 - Embedded logic
 - based on propositions-as-types principle

- **Informally, MTTs, for NL semantics, offer**
 - “Real-world” modelling as in model-theoretic semantics
 - Effective inference based on proof-theoretic semantics

Remark: New perspective & new possibility not available before!
An episode: MTT-based technology and applications

- Proof technology based on type theories
 - Proof assistants
 - MTT-based: ALF/Agda, Coq, Lego, NuPRL, Plastic, ...
 - HOL-based: Isabelle, HOL, ...

- Applications of proof assistants
 - Math: formalisation of mathematics – eg,
 - 4-colour theorem (on map colouring) in Coq
 - Kepler conjecture (on sphere packing) in Isabelle/HOL
 - Computer Science:
 - program verification and advanced programming
 - Computational Linguistics
 - E.g., MTT-sem based NL reasoning in Coq (Chatzikyriakidis & Luo 2014)
A focus of the course

- However, this course
 - is not one on MTT-semantics only;
 - is one on MTTs with examples in MTT-semantics!

- Reason for this focus:
 - Learning MTTs is laborious, even for logic-oriented semanticists
 - New logical concepts: judgement, context, inductive & dependent types, universe, subtyping, ...
 - Hope: making learning MTTs (hence MTT-semantics) easier!

- Goal: learning MTTs as well as MTT-semantics
Overview of the Course

❖ This lecture:
 ❖ Introduction to MTT-semantics (a first taste)

❖ Each lecture from L2-5 will consist of two parts:
 ❖ Some key MTT concepts/mechanisms
 ❖ Introduction of some MTT types with several applications in MTT-semantics.
 ❖ Example: Lecture 2 of “Judgements and Π-polymorphism” introduces these in MTTs and then uses Π-polymorphism to model coordination, predicate-modifying adverbs (quickly) and subsective adjectives (large).

❖ Goal: learn MTTs with examples in MTT-semantics
Material available on the web:

- Lecture slides
- Course proposal (good summary, but the organisation and descriptions of lectures are)
- Papers/books on MTT-semantics available at
 http://www.cs.rhul.ac.uk/home/zhaohui/lexsem.html
I. Type-theoretical semantics: introduction

- Introduction to MG and MTT-semantics, starting with examples
- Two basic semantic types in MG/MTT-semantics

<table>
<thead>
<tr>
<th>Category</th>
<th>MG’s type</th>
<th>MTT-semantic type</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (sentence)</td>
<td>t</td>
<td>Prop</td>
</tr>
<tr>
<td>IV (verb)</td>
<td>e→t</td>
<td>A→Prop (A: “meaningful domain”)</td>
</tr>
</tbody>
</table>
Simple example

- John talks.
 - Sentences are (interpreted as) logical propositions.
 - Individuals are entities or objects in certain domains.
 - Verbs are predicates over entities or certain domains.

<table>
<thead>
<tr>
<th></th>
<th>Montague</th>
<th>MTT-semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>john</td>
<td>e</td>
<td>Human</td>
</tr>
<tr>
<td>talk</td>
<td>e→t</td>
<td>Human→Prop</td>
</tr>
<tr>
<td>talk(john)</td>
<td>t</td>
<td>Prop</td>
</tr>
</tbody>
</table>
Three issues: a first taste

❖ Selection restriction
 ❖ (*) The table talks.
 ❖ Is (*) meaningful?
 ❖ In MG, yes: (*) has a truth value
 ❖ talk(the table) is false in the intended model.
 ❖ In MTT-semantics, no: (*) is not meaningful
 ❖ since “the table” : Table and it is not of type Human and, hence,
 talk(the table) is ill-typed as talk requires that its argument be of type
 Human.
 ❖ So, in MTT-semantics, meaningfulness = well-typedness
Subtyping

- Necessary for a multi-type language such as MTTs
- Example: What if John is a man in “John talks”?
 - john : Man
 - talk : Human \rightarrow Prop
 - talk(john)? (john is not of type Human ...?)
- Problem solved if Man ≤ Human
 - A ≤ B and a : A \rightarrow a : B
 - Man ≤ Human and john : Man \rightarrow john : Human
 - Hence, talk(john) : Prop

Later (Lecture 3): “coercive subtyping”, and we use it in modelling various linguistic features such as sense selection & copredication.
Propositions as types in MTTs

- Formula A is provable/true if, and only if, there is a proof of A, i.e., an object p of type A ($p : A$).

<table>
<thead>
<tr>
<th>formula</th>
<th>type</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \Rightarrow B$</td>
<td>$A \rightarrow B$</td>
<td>If ..., then ...</td>
</tr>
<tr>
<td>$\forall x : A. B(x)$</td>
<td>$\Pi x : A. B(x)$</td>
<td>Every man is handsome.</td>
</tr>
</tbody>
</table>

MTTs have a consistent logic based on the propositions-as-types principle.
Two more basic MG/MTT-semantic types

<table>
<thead>
<tr>
<th>Category</th>
<th>MG’s Type</th>
<th>MTT-semantic type</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>t</td>
<td>Prop</td>
</tr>
<tr>
<td>IV</td>
<td>e→t</td>
<td>A→Prop</td>
</tr>
<tr>
<td>CN (book, man)</td>
<td>e→t</td>
<td>types (Book, ∑x:Man.handsome(x))</td>
</tr>
<tr>
<td>Adj (CN/CN)</td>
<td>(e→t)→(e→t) or e→t</td>
<td>A→Prop (A: meaningful domain)</td>
</tr>
</tbody>
</table>
Adjective modifications of CNs

One of the possible/classical classifications:

<table>
<thead>
<tr>
<th>classification</th>
<th>property</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersective</td>
<td>Adj(N) \Rightarrow Adj & N</td>
<td>handsome man</td>
</tr>
<tr>
<td>Subsectional</td>
<td>Adj(N) \Rightarrow N</td>
<td>large mouse</td>
</tr>
<tr>
<td>Privative</td>
<td>Adj(N) \Rightarrow \negN</td>
<td>fake gun</td>
</tr>
<tr>
<td>Non-committal</td>
<td>Adj(N) \Rightarrow ?</td>
<td>alleged criminal</td>
</tr>
</tbody>
</table>
Intersective adjectives

- Example: handsome man

<table>
<thead>
<tr>
<th></th>
<th>Montague</th>
<th>MTT-semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>man</td>
<td>man : e→t</td>
<td>Man : Type</td>
</tr>
<tr>
<td>handsome</td>
<td>handsome : e→t</td>
<td>Man→Prop</td>
</tr>
<tr>
<td>handsome man</td>
<td>(\lambda x.) man(x) & handsome(x)</td>
<td>(\Sigma)(Man,handsome)</td>
</tr>
</tbody>
</table>

- In general:

<table>
<thead>
<tr>
<th></th>
<th>Montague</th>
<th>MTT-semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNs</td>
<td>predicates</td>
<td>types</td>
</tr>
<tr>
<td>Adjectives</td>
<td>predicates</td>
<td>predicates</td>
</tr>
<tr>
<td>CNs modified by intersective adj</td>
<td>Predicate by conjunction</td>
<td>(\Sigma)-type</td>
</tr>
</tbody>
</table>
adjective : CNs → CNs

- In MG, predicates to predicates.
- In MTT-semantics, types to types.

Proposals in MTT-sem (Chatzikyriakidis & Luo, FG13 & JoLLI17)

<table>
<thead>
<tr>
<th>classification</th>
<th>example</th>
<th>types employed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersective</td>
<td>handsome man</td>
<td>Σ-types (of pairs)</td>
</tr>
<tr>
<td>Subsectional</td>
<td>large mouse</td>
<td>Π-types (polymorphism)</td>
</tr>
<tr>
<td>Privative</td>
<td>fake gun</td>
<td>disjoint union types</td>
</tr>
<tr>
<td>Non-committal</td>
<td>alleged criminal</td>
<td>belief contexts</td>
</tr>
</tbody>
</table>
Σ-types: a taste of dependent types

- First, we start with “product types” of pairs:
 - A x B of pairs (a,b) such that a:A and b:B
 - Rules to specify these product types:
 - Formation rule for A x B
 - Introduction rule for pairs (a,b) : A x B
 - Elimination rules for projections \(\pi_1(p) \) and \(\pi_2(p) \)
 - Computation rule: \(\pi_1(a,b)=a \) and \(\pi_2(a,b)=b \).

- This generalises to Σ-types of “dependent pairs” (next page)
“Family” of types
- Type-valued function
 - Dog(John) = \{d\}, Dog(Mary)={d_1, d_2}, ...
 - Dog : Human \rightarrow \text{Type}

\Sigma\text{-types of “dependent pairs”:}
- \Sigma(A,B) of dependent pairs (a,b) such that a:A and b:B(a), where A:Type and B : A \rightarrow \text{Type}.

Rules for \Sigma\text{-types:}
- Formation rule for \Sigma(A,B) for B : A \rightarrow \text{Type}
- Introduction rule for dependent pairs (a,b) : \Sigma(A,B)
- Elimination rules for projections \(\pi_1(p) : A \) and \(\pi_2(p) : B(\pi_1(p)) \)
- Computation rule: \(\pi_1(a,b)=a \) and \(\pi_2(a,b)=b \).
“handsome man” is interpreted as type \(\Sigma(\text{Man}, \text{handsome}) \)

So,
- A handsome man is an object of the above type
- It is a pair \((m, p)\) such that \(m : \text{Man}\) and \(p : \text{handsome}(m)\), i.e., \(m\) is a man and \(p\) is a proof that \(m\) is handsome.
II. Judgements and Π-polymorphism

II.1. Overview of Modern Type Theories
- Difference from simple type theory
- Example MTTs
- Judgements (basic “statements” in MTTs)

II.2. Dependent product types (Π-types)
- Basic constructions
- \rightarrow-types as special cases of Π-types (examples in semantics)

II.3. Universes – Π-polymorphism and examples like
- Coordination
- Quantifiers and Adverbs (predicate modifying)
- Subsective adjectives (e.g., large)
II.1. Modern Type Theories: overview

- Simple v.s. Modern Type Theories
- Church’s simple type theory (1940)
 - As in Montague semantics
 - Types ("single-sorted"): e, t, e→t, ...
 - HOL (e.g., membership of `sets’)
- Modern type theories
 - Many types of entities – “many-sorted”
 - Table, Man, Human, $\sum x: \text{Man}.\text{handsome}(x)$, Phy•Info, ...
 - Dependent types: “types segmented by indexes”
 - List \rightarrow Vect(n) with n:Nat (lists of length n)
 - Event \rightarrow Evt(h) with h:Human (events performed by h)
- Examples of MTTs:
 - Martin-Löf’s TT (predicative; non-standard FOL; proof assistants Agda/NuPRL)
 - CICp (Coq) & UTT (Luo 1994) (impredicative; HOL; Coq/Lego/Plastic/Matita)
Predicativity/impredicativity: technical jargon

- This refers to a possibility of forming a logical proposition “circularly”:
 - $\forall X: \text{Prop}.X : \text{Prop}$
 - Quantifying over all propositions to form a new proposition.
 - Is this OK? Martin-Löf thinks not, while Ramsey (1926) thinks yes (it is circular, but it is not vicious.)

- Allowing the above leads to impredicative type theories, which have in particular, Prop:
 - Impredicative universe of logical propositions (cf, t in MG)
 - Internal totality (a type, and can hence form types, eg Table $\rightarrow \text{Prop}$, Man $\rightarrow \text{Prop}$, $\forall X: \text{Prop}.X, ...$)
A statement in an MTT is a judgement, one of whose forms (the most important form) is

\((*)\) \(\Gamma \vdash a : A\)

which says that “\(a\) is of type \(A\) under context \(\Gamma\)”.

- **Types** represent collections (they are different from sets, although they both represent collections) or propositions.
- \(\Gamma \equiv x_1 : A_1, \ldots, x_n : A_n\) is a context, which is a sequence of “membership entries” declaring that \(x_i\) is a variable of type \(A_i\).
 - When \(\Gamma\) is empty, (*) is non-hypothetical; (in this case, we may just write \(a : A\) by omitting “\(\Gamma \vdash\”).)
 - When \(\Gamma\) is non-empty, (*) is hypothetical.
Examples of judgements

- John is a man.

 \Rightarrow john : Man, where Man is a type.

 (non-hypothetical)

- If John is a student, he is happy.

 \Rightarrow j : Student \vdash p : happy(j) (for some p)

 (hypothetical)

- Truth of a formula:

 - “happy(j) true”

 - The above is a shorthand for “p : happy(j) for some p”
Other forms of judgements (1)

❖ Γ valid
 ❖ Γ is a valid ("legal") context
 ❖ When is $\Gamma \equiv x_1 : A_1, \ldots, x_n : A_n$ valid? (1) x_i’s are different; (2) A_i’s are types in the prefix on their left.

❖ Question:
 ❖ Why is this necessary?
 ❖ In traditional logics, we do not need this – just consider a set of formulas – this would seem enough ...
 ❖ Answer: because we have dependent types – it is possible that x_i’s occur freely in the A_j’s after them!
 ❖ Eg, we can have a context
 $$x: \text{Man}, \ldots, y: \text{handsome}(x), \ldots$$
Situations represented as contexts: an example

- **Beatles’ rehearsal**
 - **Domain:** \(\Sigma_1 \equiv D : \text{Type}, \)

 \[\begin{array}{c}
 \text{John} : D, \quad \text{Paul} : D, \quad \text{George} : D, \quad \text{Ringo} : D, \quad \text{Brian} : D, \quad \text{Bob} : D
 \end{array} \]
 - **Assignment:** \(\Sigma_2 \equiv B : D \rightarrow \text{Prop}, \ b_J : B(\text{John}), \ ... , \ b_B : \neg B(\text{Brian}), \ b'_B : \neg B(\text{Bob}), \)

 \[\begin{array}{c}
 G : D \rightarrow \text{Prop}, \ g_J : G(\text{John}), \ ... , \ g_G : \neg G(\text{Ringo}), \ ...
 \end{array} \]
 - **Context representing the situation of Beatles’ rehearsal:**
 \[\Sigma \equiv \Sigma_1, \ \Sigma_2, \ ... , \ \Sigma_n \]
 - **We have, for example,**

 \(\Sigma \vdash G(\text{John}) \text{ true } \) and \(\Sigma \vdash \neg B(\text{Bob}) \text{ true } \)

 i.e., under \(\Sigma \), “John played guitar” & “Bob was not a Beatle”.
Other forms of judgements (2)

- $\Gamma \vdash A$ type
 - A is a type under Γ.
 - E.g. when is $A \times B$ or $\sum x:A.B$ a valid type?
- $\Gamma \vdash A = B$ and $\Gamma \vdash a = b : A$ (equality judgements)
 - A and B are (computationally) the same types.
 - a and b are (computationally) the same objects of type A.
 - E.g., do we have $\pi_1(a,b) = a$?

Now let’s illustrate by types of pairs.
Σ-types: a taste of dependent types

First, we start with “product types” of pairs:

- A x B of pairs (a,b) such that a:A and b:B
- Rules to specify these product types:
 - Formation rule for A x B
 - Introduction rule for pairs (a,b) : A x B
 - Elimination rules for projections π₁(p) and π₂(p)
 - Computation rule: π₁(a,b)=a and π₂(a,b)=b.

This generalises to Σ-types of “dependent pairs” (next page)
“Family” of types
 - $B[x]$ type – type “indexed” by $x : A$
 - $Dog[x]$ type for $x : \text{Human}$
 - $Dog[John] = \{d\}$, $Dog[Mary] = \{d_1, d_2\}$, ...
 (Here, $\{\ldots\}$ are finite types.)

Σ-types of “dependent pairs”:
 - $\Sigma x:A.B[x]$ of dependent pairs (a,b) such that $a:A$ and $b:B[a]$.

Rules for Σ-types:
 - Formation rule for $\Sigma x:A.B$
 - Introduction rule for dependent pairs $(a,b) : \Sigma x:A.B[x]$
 - Elimination rules for projections $\pi_1(p) : A$ and $\pi_2(p) : B[\pi_1(p)]$
 - Computation rule: $\pi_1(a,b) = a$ and $\pi_2(a,b) = b$.
“handsome man” is interpreted as type
\(\Sigma x : \text{Man}. \text{handsome}(x) \)

So,

- A handsome man is an object of the above type.
- It is a pair \((m, p)\) such that \(m : \text{Man}\) and \(p : \text{handsome}(m)\), i.e., \(m\) is a man and \(p\) is a proof that \(m\) is handsome.
Judgements v.s. Formulas/Types

- First, judgements are **not** formulas/propositions.
 - Propositions correspond to types (P in p : P).
 - For example, “P is true” corresponds to “p : P for some p”.
- You may think judgements as meta-level statements that cannot be used “internally”.
 - For example, unlike a formula, you cannot form, for example, \(\neg J \) for a judgement J.
 - This is similar to subtyping judgements \(A \leq B \). Such assumptions may be considered in “signatures” – see my LACL14 invited talk/paper and work in Lungu’s thesis (2017).

We stop here: Further discussions are out of the scope here, but relevant papers are available, if requested.
II.2. Dependent product types (Π-types)

- **Informally** (borrowing set-theoretical notations, formal rules next slide),
 \[\Pi x : A. B[x] = \{ f \mid \text{for any } a : A, f(a) : B[a] \} \]
- **Examples**
 - \(\lambda x : \text{Nat.}[1,\ldots,x] : \Pi x : \text{Nat. Vect}(x) \)
 - \(\forall x : \text{Student. work_hard}(x) \)
 - This is just another notation for \(\Pi x : \text{Student. work_hard}(x) \)
 - \(\forall x : \text{Man. handsome}(x) \supset \neg \text{ugly}(x) \)
- **Notational conventions:**
 - \(A \to B \) stands for \(\Pi x : A. B(x) \) when \(x \notin \text{FV}(B) \).
 - \(P \supset Q \) stands for \(\forall x : A. B(x) \) when \(x \notin \text{FV}(Q) \).
 - In other words, \(A \to B / P \supset Q \) are just special cases of \(\Pi \)-types.
\(\Pi \)-types/\(\forall \)-propositions

\[
\begin{align*}
(\Pi_T) & \quad \Gamma \vdash A \ \text{type} \quad \Gamma, \ x : A \vdash B[x] \ \text{type} \\
& \quad \Gamma \vdash \Pi x : A. B[x] \ \text{type} \\
(\Pi_P) & \quad \Gamma \vdash A \ \text{type} \quad \Gamma, \ x : A \vdash P[x] \ \text{prop} \\
& \quad \Gamma \vdash \Pi x : A. P[x] \ \text{prop} \\
(\lambda) & \quad \Gamma, \ x : A \vdash b : B \\
& \quad \Gamma \vdash \lambda x : A. b : \Pi x : A. B[x] \\
(app) & \quad \Gamma \vdash f : \Pi x : A. B[x] \quad \Gamma \vdash a : A \\
& \quad \Gamma \vdash f(a) : B[a]
\end{align*}
\]

\(\Pi_T \) for \(\Pi \)-types and \(\Pi_P \) for universal quantification
Π-polymorphism – a first informal look

- Use of Π-types for polymorphism – an example:
 - How to model predicate-modifying adverbs (e.g., quickly)?
 - Informally, it can take a verb and return a verb.
 - Montague:

 \[
 \text{quickly} : (\text{e} \to \text{t}) \to (\text{e} \to \text{t}) \\
 \text{quickly(run)} : \text{e} \to \text{t}
 \]
 - MTT-semantics, where \(A_q \) is the domain/type for quickly:

 \[
 \text{quickly} : (A_q \to \text{Prop}) \to (A_q \to \text{Prop})
 \]

 What about other verbs? \(A_{\text{talk}} = \text{Human}, ... \) Can we do it generically with one type of all adverbs?
 - Π-types for polymorphism come for a rescue:

 \[
 \text{quickly} : \Pi A : \text{CN}. (A \to \text{Prop}) \to (A \to \text{Prop})
 \]
 - Question: What is CN?

 Answer: CN is a universe of types – next slide.
II.3. Universes and \(\Pi \)-polymorphism

- **Universe of types**
 - Martin-Löf introduced the notion of universe (1973, 1984)
 - A universe is a type of types (Note: the collection Type of all types is not a type itself – logical paradox if one allowed \(\Pi \)-quantification over Type.)

- **Examples**
 - Math: needing to define type-valued functions
 - \(f(n) = \underbrace{N \times \ldots \times N}_{n \text{ times}} \)
 - MTT-semantics: for example,
 - CN is the universe of types that are (interpretations of) CNs. We have: Human : CN, Book : CN, \(\Sigma \text{(Man, handsome)} : \text{CN}, \ldots \)
 - We can then have: quickly : \(\Pi A : \text{CN}. (A \rightarrow \text{Prop}) \rightarrow (A \rightarrow \text{Prop}) \)
 - Note: one cannot have \(\Pi A : \text{Type} \ldots \), since Type is not a type.
Modelling subsective adjectives

- Nature of such adjectives
 - Their meanings are dependent on the nouns they modify.
 - Eg, “a large mouse” is not a large animal

- This leads to our following proposal:

 - large : $\Pi A:CN. (A \rightarrow Prop)$
 - CN – type universe of all (interpretations of) CNs
 - Π is the type of dependent functions
 - large(Mouse) : Mouse \rightarrow Prop
 - $[\text{large mouse}] = \sum x: \text{Mouse}. \text{large(Mouse)}(x)$

 - skilful : $\Pi A:CN_H. (A \rightarrow Prop)$
 - CN_H – sub-universe of CN of subtypes of Human
 - skilful(Doctor) : Doctor \rightarrow Prop
 - Skilful doctor = $\sum x: \text{Doctor}. \text{skilful(Doctor)}(x)$
 - Excludes expressions like “skilful car”.

ESSLLI 2017
Another example – type of quantifiers

- Generalised quantifiers
 - Examples: some, three, a/an, all, ...
 - In sentences like: “Some students work hard.”

- With \(\Pi \)-polymorphism, the type of binary quantifiers is:
 \(\Pi A:CN. (A \rightarrow Prop) \rightarrow Prop \)

For Q of the above type

\[
N : CN, \ V : N \rightarrow Prop \rightarrow Q(N,V) : Prop
\]

E.g., Student : CN, work_hard : Human \(\rightarrow Prop \)

\(\Rightarrow \) Some(Student, work_hard) : Prop

Note: the above only works because Student \(\leq \) Human – subtyping, a topic to be studied in the next lecture.
Modelling NL coordination

- Examples of conjoinable types
 - John walks and Mary talks. (sentences)
 - John walks and talks. (verbs)
 - A friend and colleague came. (CNs)
 - Every student and every professor came. (quantified NPs)
 - Some but not all students got an A. (quantifiers)
 - John and Mary went to Italy. (proper names)
 - I watered the plant in my bedroom but it still died slowly and agonizingly. (adverbs)
- Question: can we consider coordination generically?
Consider a universe LType

- LType – the universe of “linguistic types”, with formal rules in the next slide.

Example types in Ltype:
- Type CN of common nouns
- Type of predicate-modifying adverbs:
 $\Pi A:CN. (A \rightarrow \text{Prop}) \rightarrow (A \rightarrow \text{Prop})$
- Type of quantifiers:
 $\Pi A:CN. (A \rightarrow \text{Prop}) \rightarrow \text{Prop}$
- ...

\[
\begin{align*}
\text{PType} & : \text{Type} \\
\text{Prop} & : \text{PType} \\
\text{LTType} & : \text{Type} \\
\text{CN} & : \text{LTType} \\
\end{align*}
\]

\[
\begin{array}{c}
A : \text{LTType} \\
P(x) : \text{PType} \\
\Pi x : A . P(x) : \text{PType} \\
A : \text{CN} \\
\end{array}
\]

\[
\begin{array}{c}
\text{A} : \text{PType} \\
\text{A} : \text{LTType} \\
\end{array}
\]

Fig. 1. Some (not all) introduction rules for \(\text{LTType} \).
Then, coordination can be considered generically:

- Every (binary) coordinator is of the following type:
 \[\Pi A : LType. A \rightarrow A \rightarrow A \]

- For example,
 \[\Pi A : LType. A \rightarrow A \rightarrow A \]

- We can then type the coordination examples we have considered.

- Remark: of course, there are further considerations such as collective readings verses distributive readings – beyond our discussions here.
Plan of Lecture III

- Brief recap of \(\Pi\)-types and polymorphism
 - Illustrate the use of \(\Pi\) and universes by GQs/coordination
- Subtyping in MTTs and applications
 - Subsumptive v.s. coercive subtyping
 - Uses of coercive subtyping in
 - Sense selection
 - Copredication
 -
 - Adequacy of coercive subtyping for MTTs

Let’s start with two slides seen yesterday.
II.2. Dependent product types (Π-types)

- Informally (borrowing set-theoretical notations, formal rules next slide),

\[\Pi x : A. B[x] = \{ f \mid \text{for any } a : A, f(a) : B[a] \} \]

- Examples
 - $\lambda x : \text{Nat.}[1,\ldots,x] : \Pi x : \text{Nat.}\text{Vect}(x)$
 - $\forall x : \text{Student. work_hard}(x)$
 - This is just another notation for $\Pi x : \text{Student. work_hard}(x)$
 - $\forall x : \text{Man. handsome}(x) \supset \neg \text{ugly}(x)$

- Notational conventions:
 - $A \rightarrow B$ stands for $\Pi x : A. B(x)$ when $x \notin \text{FV}(B)$.
 - $P \supset Q$ stands for $\forall x : A. B(x)$ when $x \notin \text{FV}(Q)$.
 - In other words, $A \rightarrow B/P \supset Q$ are just special cases of Π-types.
II.3. Universes and Π-polymorphism

❖ Universe of types
 ❖ Martin-Löf introduced the notion of universe (1973, 1984)
 ❖ A universe is a type of types (Note: the collection Type of all types is not a type itself – logical paradox if one allowed Π-quantification over Type.)

❖ Examples
 ❖ Math: needing to define type-valued functions
 ❖ f(n) = N x ... x N (n times)
 ❖ MTT-semantics: for example,
 ❖ CN is the universe of types that are (interpretations of) CNs. We have:
 Human : CN, Book : CN, Σ(Man, handsome) : CN, ...
 ❖ We can then have: quickly : ΠA:CN. (A→Prop)→(A→Prop)
 ❖ Note: one cannot have ΠA:Type..., since Type is not a type.
Another example – type of quantifiers

- Generalised quantifiers
 - Examples: some, three, a/an, all, ...
 - In sentences like: “Some students work hard.”

- With \(\Pi\)-polymorphism, the type of binary quantifiers is:

\[
\Pi A: \text{CN}. \ (A \to \text{Prop}) \to \text{Prop}
\]

- For \(Q\) of the above type
 \[
 N : \text{CN}, \ V : N \to \text{Prop} \\
 \Rightarrow \ Q(N,V) : \text{Prop}
 \]

- E.g., for Some of the above type
 \[
 \text{Student} : \text{CN}, \ \text{work_hard} : \text{Human} \to \text{Prop} \\
 \Rightarrow \ \text{Some(Student,work_hard)} : \text{Prop}
 \]

Note: This only works because \(\text{Student} \subseteq \text{Human}\) – subtyping, a topic to be studied later.
Modelling NL coordination

- Examples of conjoinable types
 - John walks and Mary talks. (sentences)
 - John walks and talks. (verbs)
 - A friend and colleague came. (CNs)
 - Every student and every professor came. (quantified NPs)
 - Some but not all students got an A. (quantifiers)
 - John and Mary went to Italy. (proper names)
 - I watered the plant in my bedroom but it still died slowly and agonizingly. (adverbs)
-

- Question: can we consider coordination generically?
Consider a universe LType

- LType – the universe of “linguistic types”, with formal rules in the next slide.

Example types in LType:

- Prop of logical propositions (sentence coordination)
- Type of predicates (verb coordination)
- CN of common nouns (CN coordination)
- Type of predicate-modifying adverbs:
 \[\Pi A:CN. (A \rightarrow Prop) \rightarrow (A \rightarrow Prop) \] (adverb coordination)
- Type of quantifiers:
 \[\Pi A:CN. (A \rightarrow Prop) \rightarrow Prop \] (quantifier coordination)

...
\[
\begin{align*}
\text{PType} & : \text{Type} & \text{Prop} & : \text{PType} & A : \text{LType} & P(x) : \text{PType} \ [x:A] \\
\text{LType} & : \text{Type} & \text{CN} & : \text{LType} & A : \text{CN} & A : \text{PType} \\
\end{align*}
\]

Fig. 1. Some (not all) introduction rules for \text{LType}.
Then, coordination can be considered generically:

- Every (binary) coordinator is of the following type:
 \[\Pi A : \text{LType. } A \rightarrow A \rightarrow A \]
- For example,
 \[\text{and : } \Pi A : \text{LType. } A \rightarrow A \rightarrow A \]

With this typing for coordinators like and, we can then type the coordination examples we have considered.

Remark: Further considerations such as collective verses distributive readings can be dealt with similarly – beyond our discussions here.
III. Subtyping

- Basics on subtyping
 - Subsumptive v.s. coercive subtyping
 - Adequacy for MTTs
- Importance and applications of subtyping in NL sem.
 - Crucial for MTT-semantics
 - Several uses, including
 - Sense selection via overloading
 - Dot-types for copredication

(Here, we shall illustrate applications first and, if time allows, adequacy issue afterwards.)
Subsumptive subtyping: traditional notion

- Subsumptive subtyping:
 \[
 a : A \quad A \leq B
 \]
 \[
 \quad a : B
 \]

 This is called the “subsumption rule”.

- Fundamental principle of subtyping
 \[\text{If } A \leq B \text{ and, wherever a term of type } B \text{ is required, we can use a term of type } A \text{ instead.}\]

 For example, the subsumption rule realises this.
Coercive subtyping: basic idea

- A ≤ B if there is a coercion c from A to B:

 ![Diagram showing coercion from A to B]

 Eg. Even ≤ Nat; Man ≤ Human; ∑(Man, handsome) ≤ Man; ...

- Subtyping as abbreviations:
 a : A ≤c B
 ⇒ “a” can be regarded as an object of type B
 ⇒ C_B[a] = C_B[c(a)], ie, “a” stands for “c(a)”

- This is more general than subsumptive subtyping and adequate for MTTs as well.
Coercive subtyping: summary

- Inadequacy of subsumptive subtyping
 - Canonical objects
 - Canonicity: key for MTTs (TTs with canonical objects)
 - Subsumptive subtyping violates canonicity.

- Adequacy of coercive subtyping for MTTs
 - Coercive subtyping preserves canonicity & other properties.
 - Conservativity (Soloviev & Luo 2002, Luo, Soloviev & Xue 2012)

- Historical development and applications in CS
 - Implementations in proof assistants: Coq, Lego, Plastic, Matita
III.1. Modelling Advanced Linguistic Features

- **MTTs**
 - Very useful in modelling various linguistic features

- **Why? Partly because of**
 - Rich/powerful typing mechanisms
 - Subtying
 -
Remark on anaphora analysis

- Various treatments of “dynamics”
 - DRTs, dynamic logic, ...
 - MTTs provide a suitable (alternative) mechanism.

- Donkey sentences
 - Eg, “Every farmer who owns a donkey beats it.”
 - Montague semantics
 \[
 \forall x. \text{farmer}(x) \land [\exists y. \text{donkey}(y) \land \text{own}(x,y)] \Rightarrow \text{beat}(x,?y)
 \]
 - Modern TTs (\(\Pi\) for \(\forall\) and \(\Sigma\) for \(\exists\); Sundholme):
 \[
 \Pi x:\text{Farmer}\Pi z: [\Sigma y: \text{Donkey}. \text{own}(x,y)] \text{beat}(x,\pi_1(z))
 \]

- But, this is only an interesting point ... We shall focus on several other things.
Uses of coercive subtyping in MTT-semantics

1. Needs for subtyping in MTT-semantics
2. Sense enumeration/selection via. overloading
3. Linguistic coercions
4. Dot-types and copredication
1. Subtyping: basic need in MTT-semantics

- What about, eg,
 - “A man is a human.”
 - “A handsome man is a man”?
 - “Paul walks”, with \(p = [\text{Paul}] : [\text{handsome man}] \)?

- **Solution: coercive subtyping**
 - \(\text{Man} \leq \text{Human} \)
 - \([\text{handsome man}] = \sum_{x: \text{Man}} \text{handsome}(x) \leq_{\pi_1} \text{Man} \)
 - \([\text{Paul walks}] = \text{walk}(p) : \text{Prop} \)

 because

 \(\text{walk} : \text{Human} \rightarrow \text{Prop} \)

 and

 \(p : [\text{handsome man}] \leq_{\pi_1} \text{Man} \leq \text{Human} \)
2. Sense selection via overloading

- Sense enumeration (cf, Pustejovsky 1995 and others)
 - Homonymy
 - Automated selection
 - Existing treatments (eg, Asher et al via +\-types)

- For example,
 1. John runs quickly.
 2. John runs a bank.

with homonymous meanings

1. \([\text{run}]_1\) : Human \(\rightarrow\) Prop
2. \([\text{run}]_2\) : Human \(\rightarrow\) Institution \(\rightarrow\) Prop

“run” is overloaded – how to disambiguate?
Overloading via coercive subtyping

- Overloading can be represented by coercions
 Eg.
 \[\begin{align*}
 c_1 : [\text{run}]_1 : & \text{Human} \to \text{Prop} \\
 \text{run} : & 1_{\text{run}} \\
 c_2 : [\text{run}]_2 : & \text{Human} \to \text{Institution} \to \text{Prop}
 \end{align*} \]

- Homonymous meanings can be represented so that automated selection can be done according to typings.
3. Linguistic Coercions

- Basic linguistic coercions can be represented by means of coercions in coercive subtyping:
 - (*) Julie enjoyed a book.
 - (**) \(\exists x \): Book. enjoy(j, x)
 - enjoy : Human \(\rightarrow \) Event \(\rightarrow \) Prop
 - Book \(\leq_{\text{reading}} \) Event
 - (*) Julie enjoyed reading a book.

- Local coercions to disambiguate multiple coercions:
 - coercion Book \(\leq_{\text{reading}} \) Event in (**)
 - coercion Book \(\leq_{\text{writing}} \) Event in (**)
Dependent typing

- What about (example by Asher in [Asher & Luo]):

 (♯) Jill just started War and Peace, which Tolstoy finished after many years of hard work. But that won’t last because she never gets through long novels.

- Overlapping scopes of “reading” and “writing”.

- A solution with dependent typing

 - Evt : Human → Type

 Evt(h) is the type of events conducted by h : Human.

 - start, finish, last : ∏h: Human. (Evt(h) → Prop)

 - read, write : ∏h: Human. Book → Evt(h)

 - Book ⪯_{c(h)} Evt(h), where c(h,b)=writing if “h wrote b” & c(h,b)=reading if otherwise (parameterised coercion over h)
Then, (\#) is formalised as

\[
\begin{align*}
&\text{start}(j,wp) \\
&\quad \land \text{finish}(t,wp) \\
&\quad \land \neg \text{last}(j,wp) \\
&\quad \land \forall lb : LBook. \text{finish}(j, \pi_1(lb))
\end{align*}
\]

which is (equal to)

\[
\begin{align*}
&\text{start}(j,\text{reading}(j,wp)) \\
&\quad \land \text{finish}(t,\text{writing}(t,wp)) \\
&\quad \land \neg \text{last}(j,\text{reading}(j,wp)) \\
&\quad \land \forall lb : LBook. \text{finish}(j, c(j,\pi_1(lb)))
\end{align*}
\]

as intended.
Plan of Lecture IV

- Logic in an MTT
 - Propositions-as-types, consistency, and HOL in UTT
- Brief recap of coercive subtyping
 - Explain the inadequacy of subsumptive subtyping for MTTs
- Two applications of coercive subtyping
 - Copredication via dot-types
 - Dot-types in MTTs for copredication
 - Disjoint union types (A+B)
 - Modelling privative adjective modifications (e.g., fake gun)
IV.1. Logics in MTTs – propositions as types

- Curry-Howard correspondence (1958, 1969):
 - Formulae as types
 - Proofs as objects

<table>
<thead>
<tr>
<th>formula</th>
<th>type</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>P ⊨ Q</td>
<td>P → Q</td>
<td>If ... then ...</td>
</tr>
<tr>
<td>∀x:A.P(x)</td>
<td>Πx:A.P(x)</td>
<td>Every man is handsome.</td>
</tr>
</tbody>
</table>

Eg: λx:P.x : P→P
Curry-Howard correspondence: basic example

- Theorem.
 \[\vdash^{\mathcal{L}} \text{ for the implicational intuitionistic logic and} \]
 \[\vdash \text{ for the simply typed } \lambda \text{-calculus.} \]

 Then,
 - if \(\Gamma \vdash M : A \), then \(e(\Gamma) \vdash^{\mathcal{L}} A \), where \(e(\Gamma) \) maps \(x:A \) to \(A \);
 - if \(\Delta \vdash^{\mathcal{L}} A \), then \(\Gamma \vdash M : A \) for some \(\Gamma \) & \(M \) such that \(e(\Gamma) \equiv \Delta \).
Implicational propositional logic

\[(Ax)\] \quad \frac{}{\Gamma, \ A \vdash A}

\[(\rightarrow I)\] \quad \frac{}{\Gamma, \ A \vdash B} \quad \frac{}{\Gamma \vdash A \rightarrow B}

\[(\rightarrow E)\] \quad \frac{\Gamma \vdash A \rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B}

where \(\Gamma \) is a set of formulas \(A \).
Simply-typed λ-calculus (rules as before)

(Var)
\[\Gamma, \ x : A \vdash x : A \]

(Abs)
\[\Gamma, \ x : A \vdash b : B \]
\[\Gamma \vdash \lambda x : A. b : A \to B \]

(App)
\[\Gamma \vdash f : A \to B \quad \Gamma \vdash a : A \]
\[\Gamma \vdash f(a) : B \]

where Γ is a set of assumptions of the form $x : A$.
Logic in impredicative type theories

- Prop – universe of logical propositions

\[
\begin{align*}
\Gamma \vdash valid \\
\hline \\
\Gamma \vdash Prop : Type & \quad \Gamma \vdash A : Prop \\
\hline \\
\Gamma \vdash A : Type
\end{align*}
\]

Notational notes:
In these three slides, “A : Type” stands for “A type”.
Π-types/universal quantification with Prop

(Πₜ)

\(\Gamma \vdash A : Type \quad \Gamma, x : A \vdash B : Type\)

\(\Gamma \vdash \Pi x : A.B : Type\)

(Πₚ)

\(\Gamma \vdash A : Type \quad \Gamma, x : A \vdash P : Prop\)

\(\Gamma \vdash \Pi x : A.P : Prop\)

(λ)

\(\Gamma, x : A \vdash b : B\)

\(\Gamma \vdash \lambda x : A.b : \Pi x : A.B\)

(app)

\(\Gamma \vdash f : \Pi x : A.B \quad \Gamma \vdash a : A\)

\(\Gamma \vdash f(a) : [a/x]B\)

Πₜ for Π-types and Πₚ for universal quantification
Logical operators in, e.g., UTT

\[\forall x:A.P[x] \quad =_{df} \quad \Pi x:A.P[x] \]
\[P_1 \supset P_2 \quad =_{df} \quad \forall x:P_1.P_2 \]
\[\text{true} \quad =_{df} \quad \forall X:\text{Prop}. \quad X \supset X \]
\[\text{false} \quad =_{df} \quad \forall X:\text{Prop}. \quad X \]
\[P_1 \& P_2 \quad =_{df} \quad \forall X:\text{Prop}. \quad (P_1 \supset P_2 \supset X) \supset X \]
\[P_1 \lor P_2 \quad =_{df} \quad \forall X:\text{Prop}. \quad (P_1 \supset X) \supset (P_2 \supset X) \supset X \]
\[\neg P_1 \quad =_{df} \quad P_1 \supset \text{false} \]
\[\exists x:A.P[x] \quad =_{df} \quad \forall X:\text{Prop}. \quad (\forall x:A.(P[x] \supset X)) \supset X. \]
Why are these definitions reasonable?
- Usual introduction/elimination rules are all derivable.

Examples
- Conjunction
 - If P and Q are provable, so is P & Q.
 - If P & Q is provable, so are P and Q.
- Falsity
 - false has no proof in the empty context (logical consistency).
 - false implies any proposition.
An episode: logic-enriched type theories

❖ Curry-Howard naturally leads to *intuitionistic* logics.
 ❖ What about, say, *classical* logics?
❖ But:
 ❖ Type-checking and logical inference are orthogonal.
 ❖ They can be independent with each other.
 ❖ In particular, the embedded logic of a type theory is not necessarily intuitionistic.
 ❖ Type theories are not just for constructive mathematics.
❖ A possible answer to the above question:
 ❖ Logic-enriched type theories (LTTs)
IV.2. Subtyping: recap and the adequacy issue

Let’s start with three slides seen yesterday – the basic concepts in subsumptive subtyping and coercive subtyping.
Subsumptive subtyping: traditional notion

Subsumptive subtyping:

\[
\begin{align*}
\text{a : A} & \quad A \leq B \\
\text{------------------------------} \\
\text{a : B}
\end{align*}
\]

This is called the “subsumption rule”.

Fundamental principle of subtyping

If $A \leq B$ and, wherever a term of type B is required, we can use a term of type A instead.

For example, the subsumption rule realises this.
Coercive subtyping: basic idea

- $A \leq B$ if there is a coercion c from A to B:

 Eg. Even \leq Nat; Man \leq Human; Σ(Man, handsome) \leq Man; ...

- Subtyping as abbreviations:

 $a : A \leq_c B$

 “a” can be regarded as an object of type B

 $C_B[a] = C_B[c(a)]$, ie, “a” stands for “c(a)”

- This is more general than subsumptive subtyping and adequate for MTTs as well.
Adequacy of subtyping

Question:

Is subsumptive subtyping adequate for MTTs (or type theories with canonical objects)?

Answer:

No (canonicity fails)!

(Hence coercive subtyping.)
Canonicity

Example:
- $A = \text{Nat}, a = 3+4, v = 7.$
Definition

Any closed object of an inductive type is computationally equal to a canonical object of that type.

This is a basis of MTTs – type theories with canonical objects.

- This is why the elimination rule is adequate.
- For Σ-types, for example, its elimination rules say that any closed object in a Σ-type is a pair.
Canonicity for subsumptive subtyping?

Q: If $A \leq B$ and $a : A$ is canonical in A, is it canonical in B?
Canonicity is lost in subsumptive subtyping.

Eg,

\[
\frac{A \leq B}{\text{List}(A) \leq \text{List}(B)}
\]

- nil(A) : List(B), by subsumption;
- But nil(A) \neq \text{any canonical B-list nil(B) or cons(B,b,l)}.
- The elim rule for List(B) is inadequate: it does not cover nil(A)
Coercive subtyping: summary

- Inadequacy of subsumptive subtyping
 - Canonical objects
 - Canonicity: key for MTTs (TTs with canonical objects)
 - Subsumptive subtyping violates canonicity.

- Adequacy of coercive subtyping for MTTs
 - Coercive subtyping preserves canonicity & other properties.
 - Conservativity (Soloviev & Luo 2002, Luo, Soloviev & Xue 2012)

- Historical development and applications in CS
 - Implementations in proof assistants: Coq, Lego, Plastic, Matita
IV.3. Dot-types and copredication

- **Copredication** (Asher, Pustejovský, ...)
 - John picked up and mastered the book.
 - The lunch was delicious but took forever.
 - The newspaper you are reading is being sued by Mia.
 - ...
 - ...

- **How to deal with this in formal semantics**
 - Dot-objects (eg, Asher 2011, in the Montagovian setting)
 - It has a problem: subtyping and CNs-as-predicates strategy do not fit with each other ...
Subtyping problem in the Montagovian setting

- Problematic example (in Montague semantics)
 - [heavy] : (Phy → t) → (Phy → t)
 - [book] : Phy • Info → t
 - [heavy book] = [heavy][[book]]?
 - In order for the above to be well-typed, we need
 Phy • Info → t ≤ Phy → t
 By contravariance, we need
 Phy ≤ Phy • Info
 But, this is not the case (the opposite is)!
- In MTT-semantics, because CNs are interpreted as types, things work as intended (see next slide).
In MTT-semantics, CNs are types – we have:

“John picked up and mastered the book.”

\[
\text{[pick up]}: \text{Human} \rightarrow \text{PHY} \rightarrow \text{Prop}
\]

\[
\leq \text{Human} \rightarrow \text{PHY} \cdot \text{INFO} \rightarrow \text{Prop}
\]

\[
\leq \text{Human} \rightarrow [\text{book}] \rightarrow \text{Prop}
\]

\[
\text{[master]}: \text{Human} \rightarrow \text{INFO} \rightarrow \text{Prop}
\]

\[
\leq \text{Human} \rightarrow \text{PHY} \cdot \text{INFO} \rightarrow \text{Prop}
\]

\[
\leq \text{Human} \rightarrow [\text{book}] \rightarrow \text{Prop}
\]

Hence, both have the same type (in LType) and therefore can be coordinated by “and” to form “picked up and mastered” in the above sentence.

Remark: CNs as types in MTT-semantics – so things work.

Question: How to introduce dot-types like PHY • INFO in an MTT?
Dot-types in MTTs

- What is $A \bullet B$?
 - Inadequate accounts (as summarised in (Asher 08)):
 - Intersection type
 - Product type

- Proposal (SALT20, 2010)
 - $A \bullet B$ as type of pairs that do not share components
 - Both projections as coercions

- Implementations
 - Coq implementations (Luo/LACL11,
 - Implemented in proof assistant Plastic by Xue (2012).
Key points of a dot-type

- A dot-type is not an ordinary type (e.g., not an inductive type).
- To form $A \bullet B$, A and B cannot share components:
 - E.g., “Phy\bulletPhy” and “(Phy\bulletInfo)\bulletPhy” are not dot-types.
 - This is in line with Pustejovsky’s view that dot-objects “appear in selectional contexts that are contradictory in type specification.” (2005)
- $A \bullet B$ is like $A \times B$ but both projections are coercions:
 - $A \bullet B \leq_{\pi_1} A$ and $A \bullet B \leq_{\pi_2} B$
 - This is OK because of the non-sharing requirement. (Note: to have both projections as coercions would not be OK for product types $A \times B$ since coherence would fail.)
\[
\begin{align*}
A : \text{Type} & \quad B : \text{Type} \quad \mathcal{C}(A) \cap \mathcal{C}(B) = \emptyset \\
\hline
A \bullet B : \text{Type} \\
\end{align*}
\]

\[
\begin{align*}
a : A & \quad b : B \\
\langle a, b \rangle : A \bullet B \\
p_1(c) : A & \quad p_2(c) : B \\
c : A \bullet B \\
\hline
p_1(\langle a, b \rangle) = a : A & \quad p_2(\langle a, b \rangle) = b : B \\
\end{align*}
\]

\[
\begin{align*}
A \bullet B : \text{Type} \\
A \bullet B <_{p_1} A : \text{Type} \\
\end{align*}
\]

\[
\begin{align*}
A \bullet B : \text{Type} \\
A \bullet B <_{p_2} B : \text{Type} \\
\end{align*}
\]
Another example

❖ “heavy book”
 ❖ [heavy] : Phy → Prop
 ≤ Phy•Info → Prop
 ≤ Book → Prop
 ❖ So, the following is well-formed:
 [heavy book] = Σ(Book, [heavy])
IV.4. Disjoint union types

- Disjoint union types
 - \(A+B \) with two injections \(\text{inl} : A \rightarrow A+B \) and \(\text{inr} : B \rightarrow A+B \)
 - Rules for \(A+B \) – formation/introduction/elimination/computation rule(s)
Recall the following slide on adjectives:

- **adjective : CNs → CNs**
 - In MG, predicates to predicates.
 - In MTT-semantics, types to types.
- **Proposals in MTT-sem** *(Chatzikyriakidis & Luo, FG13 & JoLLI17)*

<table>
<thead>
<tr>
<th>classification</th>
<th>example</th>
<th>types employed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersective</td>
<td>handsome man</td>
<td>Σ-types (of pairs)</td>
</tr>
<tr>
<td>Subsective</td>
<td>large mouse</td>
<td>Π-types (polymorphism)</td>
</tr>
<tr>
<td>Privative</td>
<td>fake gun</td>
<td>disjoint union types</td>
</tr>
<tr>
<td>Non-committal</td>
<td>alleged criminal</td>
<td>belief contexts</td>
</tr>
</tbody>
</table>
Privative adjectives

- “fake gun”
 - G_R – type of real guns
 - G_F – type of fake guns
 - $G = G_R + G_F$ – type of all guns
 - Declare inl and inr both as coercions: $G_R \leq_{\text{inl}} G$ and $G_F \leq_{\text{inr}} G$

- Now, eg,
 - Can define “real gun” or “fake gun” inductively as predicates of type $G \rightarrow \text{Prop}$ so that $\neg [\text{real gun}](g)$ iff $[\text{fake gun}](g)$.
 - We can interpret, for $f : G_F$, “f is not a real gun” as $\neg [\text{real gun}](f)$, which is logically equivalent to $[\text{fake gun}](f)$, which is True.
 - Note that, in the above, $[\text{real gun}](f)$ and $[\text{fake gun}](f)$ are only well-typed because $G_R \leq_{\text{inr}} G$ and $G_F \leq_{\text{inr}} G$.
V. Advanced Topics

- Advanced topics in MTT-semantics
 - Dependent types in event semantics
 - MTT-semantics is both model-theoretic & proof-theoretic
 - Dependent Categorial Grammars
 - Syntactic analysis corresponding to MTT-semantics
 - Two papers: Lambek dependent types (Luo 2015) and Linear dependent types (Luo and Zhang 2016)
 -

We shall consider the first two in this lecture.

(BTW, references for all lectures are available – see the last several slides of this lecture.)
V.1. Dependent Event Types

- This part is based on the slides for my last week’s presentation of the following paper:

I. Dependent event types

- C_e: DETs in simple type theory (Montague’s setting)
- UTT[E]: DETs in modern type theories (MTT-semantics)
- Adequacy of C_e: embedding into UTT[E]
- Comparison of traditional event semantics, C_e and UTT[E]

II. Event quantification problem: an example

- EQP in traditional event sem. and solutions in C_e and UTT[E]
Davidson’s event semantics

- Consider:
 - (*) John buttered the toast.
 \[[(*)] = \text{butter}(j,t), \text{where butter : } e^2 \rightarrow t. \]
 - (**) John buttered the toast with the knife at midnight.
 \[(?) [(**)] = \text{butter}(j,t,k,m), \text{where butter : } e^4 \rightarrow t \]
 \[(?) [(**)] = m(k(\text{butter}(j)))(t), \text{where butter : } e \rightarrow e \rightarrow t, m/k : (e \rightarrow t) \rightarrow (e \rightarrow t) \]

- Davidson’s original motivation (1967): better treatment of adverbial modifications – e.g., butter : \(e^2 \rightarrow \text{Event} \rightarrow t \), and
 - \[[(*)] = \exists e: \text{Event}. \text{butter}(j,t,e) \]
 - \[[(**)] = \exists e: \text{Event}. \text{butter}(j,t,e) \& \text{with}(e,k) \& \text{at}(e,m) \]
 - Note: \[[(**)] \supset [(*)] \], among many other desirable inferences.
 (No need for meaning postulates, needed in both (?)-approaches.)

- Neo-Davidson semantics (1980s): eg, butter : \(\text{Event} \rightarrow t \) and
 - \[[(*)] = \exists e: \text{Event}. \text{butter}(e) \& \text{agent}(e)=j \& \text{patient}(e)=t. \]
I. Dependent event types

- Refined types of events: Event \Rightarrow Evt(...)
- Event types dependent on agents/patients
 - For a:Agent and p:Patient, consider dependent event types Event, $\text{Evt}_A(a)$, $\text{Evt}_P(p)$, $\text{Evt}_{AP}(a,p)$
 - Note: the subscripts A, P and AP are just symbols.
- Subtyping ($a:A$ and $A \leq B \Rightarrow a:B$) between DETs:

```
\text{Evt}_A(a) \leq \text{Evt}_{AP}(a,p) \leq \text{Evt}_P(p) \leq \text{Event}
```

WoLLIC 2017
Dependent event types in Montagovian setting

- Eg. John talked loudly.
 - talk, loud : Event→t
 - agent : Event→e→t

- (neo-)Davidsonian event semantics
 $\exists e : Event. \text{talk}(e) \& \text{loud}(e) \& \text{agent}(e, j)$

- Dependent event types in Montagovian setting:
 $\exists e : Evt_A(j). \text{talk}(e) \& \text{loud}(e)$
 which is well-typed because $Evt_A(j) \leq \text{Event}$.
C_e: Underlying formal system

- C_e extends Church's simple type theory (1940) (as used by Montague in MG), by dependent event types
- Church's STT

\[
\begin{align*}
\text{e type} & \quad \text{t type} & \quad x : A \ [x : A] & \quad P \ true \ [P \ true] \\
\frac{A \ type \ B \ type}{A \ \rightarrow \ B \ type} & \quad \frac{b : B \ [x : A] \ x \ \notin \ FV(B)}{\lambda x : A. b : A \ \rightarrow \ B} & \quad \frac{f : A \ \rightarrow \ B \ \ a : A}{f(a) : B} \\
\frac{P : t \quad Q : t}{P \ \supset \ Q : t} & \quad \frac{Q \ true \ [P \ true]}{P \ \supset \ Q \ true} & \quad \frac{P \ \supset \ Q \ true \ \ P \ true}{Q \ true} \\
\frac{A \ type \ P : t \ [x : A]}{\forall(A, x. P) : t} & \quad \frac{P \ true \ [x : A]}{\forall(A, x. P) \ true} & \quad \frac{\forall(A, x. P[x]) \ true \ \ a : A}{P[a] \ true}
\end{align*}
\]
Dependent event types in C_e
UTT[E]: Dependent event types in MTT-sem

- UTT[E]: UTT with coercions in E
 - UTT: a modern type theory (Luo 1994)
 - E characterising subtyping for DETs
- Dependent event types in MTT-semantics

\[
\begin{align*}
\text{John talked loudly.} \\
\text{talk} : \Pi h : \text{Human. } \text{Evt}_A(h) \to \text{Prop.} \\
\text{loud} : \text{Event} \to \text{Prop.} \\
[\text{John talked loudly}] = \exists e : \text{Evt}_A(j). \text{talk}(j, e) \& \text{loud}(e).
\end{align*}
\]
UTT[E]: formal presentation in LF

- **Constant types/families:**
 - \(\text{Entity}: \text{Type} \)
 - \(\text{Agent}, \text{Patient}: \text{Type} \).
 - \(\text{Event}: \text{Type} \),
 \(\text{Evt}_A: (\text{Agent})\text{Type} \),
 \(\text{Evt}_P: (\text{Patient})\text{Type} \), and
 \(\text{Evt}_{AP}: (\text{Agent})(\text{Patient})\text{Type} \).

- **Coercive subtyping in E for DETs:**
 \[
 \text{Evt}_{AP}(a, p) \leq_{c_1[a,p]} \text{Evt}_A(a), \quad \text{Evt}_{AP}(a, p) \leq_{c_2[a,p]} \text{Evt}_P(p), \\
 \text{Evt}_A(a) \leq_{c_3[a]} \text{Event}, \quad \text{Evt}_P(p) \leq_{c_4[p]} \text{Event},
 \]

 where \(c_3[a] \circ c_1[a, p] = c_4[p] \circ c_2[a, p] \).

- **UTT[E]** has nice properties such as normalisation and consistency (Luo, Soloviev & Xue 2012).
Faithful embedding of C_e into $UTT[E]$

- **Definition (embedding of C_e into $UTT[E]$)**
 - $[x] = x$; $[e] = \text{Entity}$; $[t] = \text{Prop}$
 - $[A \rightarrow B] = [A] \rightarrow [B]$;
 $[\lambda x:A.b] = \lambda ([A], T, [x:A].[b])$, if $[b] : T$
 - $[f(a)] = \text{app}(S, T, [f],[a])$, if $[f] : S \rightarrow T$ and $[a] : S_0 \leq S$
 - $[P \supseteq Q] = [P] \supseteq [Q]$; $[\forall (A,x.P)] = \forall ([A],[x:A].[P])$

- **Theorem (embedding is “faithful”)**
 - $\Gamma \vdash A \text{ type} \Rightarrow [\Gamma] \vdash [A] : \text{Type}$.
 - $\Gamma \vdash a : A \Rightarrow [\Gamma] \vdash [a] : A_0$ for some A_0 s.t. $[\Gamma] \vdash A_0 \leq_d [A]$ for some d.
 - $\Gamma \vdash P \text{ true} \Rightarrow [\Gamma] \vdash p : [P]$, for some p.
 - $\Gamma \vdash A \leq B \Rightarrow [\Gamma] \vdash [A] \leq_c [B] : \text{Type}$, for some unique c.

- **Corollary:** C_e inherits nice properties from $UTT[E]$ including, e.g., normalisation and logical consistency.
Comparison (John talked loudly)

- (neo-)Davidsonian event semantics
 - talk, loud : Event→t and agent : Event→e→t.
 \[\exists e : Event. \text{talk}(e) \& \text{loud}(e) \& \text{agent}(e, j) \]

- Dependent event types in Montagovian setting:
 - talk, loud : Event→t and agent : Event→e→t.
 \[\exists e : \text{Evt}_A(j). \text{talk}(e) \& \text{loud}(e) \]
 which is well-typed because \(\text{Evt}_A(j) \leq \text{Event} \).

- Dependent event types in MTT-semantics:

 \[\text{talk} : \prod h : \text{Human}. \text{Evt}_A(h) \rightarrow \text{Prop}. \]
 \[\text{loud} : \text{Event} \rightarrow \text{Prop}. \]
 \[[\text{John talked loudly}] = \exists e : \text{Evt}_A(j). \text{talk}(j, e) \& \text{loud}(e). \]

 Note: talk’s type requires that e have a dependent event type.
II. Event quantification problem

- A form of incompatibility between event semantics and MG (Champollion, Winter-Zwarts, de Groote-Winter).

- No man talked.

\[(\text{neo-})\text{Davidson (even the incorrect (\#) is legal)\]

\[\begin{align*}
(1) & \quad \neg \exists x : e. \man(x) & \lor \exists e: \text{Event. talk}(e) & \land \text{agent}(e, x) \\
(2) & \quad (\#) \exists e : \text{Event.} \quad \neg \exists x : e. \man(x) & \land \text{talk}(e) & \land \text{agent}(e, x)
\end{align*}\]

DETs in Montague (the incorrect (*) is illegal)

\[\begin{align*}
(3) & \quad \neg \exists x : e. \man(x) & \lor \exists e : Evt_A(x). \text{talk}(e) \\
(4) & \quad (*) \exists e : Evt_A(x). \quad \neg \exists x : e. \man(x) & \land \text{talk}(e)
\end{align*}\]

But, we still have a problem, albeit a small one ...
What if one changes $\text{Evt}_A(x)$ into Event?
That still would not prevent the following incorrect semantics:

$$\exists e: \text{Event}. \neg \exists x : e. \text{man}(x) \land \text{talk}(e)$$

MTT-semantics helps:

$$\text{DETs in MTT-sem}$$

(5) $\neg \exists x : \text{Man} \exists e : \text{Evt}_A(x). \text{talk}(x, e)$
(6) (*) $\exists e : \text{Evt}_A(x). \neg \exists x : \text{Man}. \text{talk}(x, e)$

Note: talk’s type “dictates” the use of $\text{Evt}_A(x)$: talk(x,e) would not be well-typed if $e : \text{Event}$ only (and not of type $\text{Evt}_A(x)$). So, something like (#) would not be available.
Future work related to DETs: questions

- Why thematic roles as indexes of DEPs?
 - Conceptual precedency/dependency of existence?
 - Evt\textsubscript{A}(a) for a:Agent
 - “a exists” in order for an event in Evt\textsubscript{A}(a) to exist ...

- Several questions on DETs
 - Dependency on other kinds of parameters than thematic roles?
 (eg, Evt(h) where h:Human in (Asher & Luo 12))
 - Potential applications of DETs (not just event quantification problem.)
 - Other forms of dependent event types
V.2. MTT-sem is both model-/proof-theoretic

- The above claim was first made in the following talk/paper:

- Since then, further discussions and developments have been made, although the basic theme and arguments have remained the same.

Let’s start by revisiting two slides in Lecture 1.
Formal semantics

- **Model-theoretic semantics**
 - Meaning is given by denotation.
 - c.f., Tarski, ..., Montague.
 - e.g., Montague grammar (MG)
 - NL \rightarrow simple type theory \rightarrow set theory

- **Proof-theoretic semantics**
 - In logics, meaning is inferential use (proof/consequence).
 - c.f., Gentzen, Prawitz, ..., Martin-Löf.
 - e.g., Martin-Löf’s meaning theory
Simple example for MTS and PTS

- **Model-theoretic semantics**
 - John is happy. \(\Rightarrow\) happy(john)
 - John is a member of the set of entities that are happy.
 - Montague’s semantics is model-theoretic – it has a wide coverage (powerful).

- **Proof-theoretic semantics**
 - How to understand a proposition like happy(john)?
 - In logic, its meaning can be characterised by its uses – two respects:
 - How it can be arrived at (proved)?
 - How it can be used to lead to other consequences?

(*)
Example argument for traditional set-theoretic sem.

- Or, an argument against non-set-theoretic semantics
- “Meanings are out in the world”
 - Portner’s 2005 book on “What is Meaning” – typical view
 - Assumption that set theory represents (or even is) the world

Comments:

- This is illusion! Set theory is just a theory in FOL, not “the world”.
- A good/reasonable formal system can be as good as set theory. (For example, if set theory is good enough, then so is an MTT.)
Claim:

Formal semantics in Modern Type Theories is both model-theoretic and proof-theoretic.

- **NL → MTT** (representational, model-theoretic)
 - MTT as meaning-carrying language with its types representing collections (or “sets”) and signatures representing situations

- **MTT → Meaning theory** (inferential roles, proof-theoretic)
 - MTT-judgements, which are semantic representations, can be understood proof-theoretically by means of their inferential roles (c.f., Martin-Löf’s meaning theory)
Traditional model-theoretic semantics:
Logics/NL \rightarrow Set-theoretic representations

Traditional proof-theoretic semantics of logics:
Logics \rightarrow Inferences

Formal semantics in Modern Type Theories:
NL \rightarrow MTT-representations \rightarrow Inferences

Remark: This was not possible without a language like MTTs; in other words, MTTs offer a new possibility for NL semantics!
Justifications of the claim

- Model-theoretic characteristics of MTT-semantics
 - Signatures – context-like but more powerful mechanism to represent situations (“incomplete worlds”)
- Proof-theoretic characteristics of MTT-semantics
 - Meaning theory of MTTs – inferential role semantics of MTT-judgements

Remark: The proof-theoretic characteristics is easier to justify; what about the model-theoretic ones? A focus of some recent work such as those on signatures.
In MTT-semantics, MTT is a representational language.

- Types represent collections (c.f., sets in set theory) – see earlier slides on using rich types in MTTs to give semantics.
- Signatures represent situations (or incomplete possible worlds).
Signatures

- Types and signatures/contexts are embodied in judgements:
 \[\Gamma \vdash_{\Sigma} a : A \]
 where \(A \) is a type, \(\Gamma \) is a context and \(\Sigma \) is a signature.

- New: Signatures, similar to contexts, are finite sequences of entries, but
 - their entries are introducing constants (not variables; i.e., cannot be abstracted – c.f, Edinburgh LF (Harper, Honsell & Plotkin 1993)), and
 - besides membership entries, allows more advanced ones such as manifest entries and subtyping entries (see later).
Situations represented as signatures

- **Beatles’ rehearsal: simple example**
 - **Domain:** \(\Sigma_1 \equiv D : Type,\)
 \[
 \begin{align*}
 & John : D, \quad Paul : D, \quad George : D, \quad Ringo : D, \\
 & Brian : D, \quad Bob : D
 \end{align*}
 \]
 - **Assignment:** \(\Sigma_2 \equiv B : D \rightarrow Prop, \quad b_J : B(John), \ldots, \quad b_B : \neg B(Brian), \quad b'_B : \neg B(Bob), \)
 \[
 \begin{align*}
 & G : D \rightarrow Prop, \quad g_J : G(John), \ldots, \quad g_G : \neg G(Ringo), \ldots
 \end{align*}
 \]
 - **Signature representing the situation of Beatles’ rehearsal:**
 \[\Sigma \equiv \Sigma_1, \quad \Sigma_2, \ldots, \quad \Sigma_n\]
 - **We have, for example,**
 \[\Gamma \vdash_{\Sigma} G(John) \text{ true and } \Gamma \vdash_{\Sigma} \neg B(Bob) \text{ true.}\]
 “John played guitar” and “Bob was not a Beatle”.

Remark: the same as a slide in Lecture 2, except that we now use signatures, rather than contexts.
This shows that, by means of membership entries, we already can do things we would usually do in models (in set theory):

- Declaring types (say, D is a type, representing a collection)
- Declaring objects of a type (say John : D)
- Remark: In a many-sorted FOL, one may declare a FOL-language with sorts and constants, not different sorts/constants in the same language.

However, we need to further increase the representational power – manifest fields and subtyping assumptions in signatures.
Manifest entries

- More sophisticated situations
 - E.g., infinite domains
- In signatures, we can have a manifest entry:

 \[x \sim a : A \]

where \(a : A \).

- Informally, it assumes \(x \) that behaves the same as \(a \).
Manifest entries: formal treatment

- Manifest entries are just abbreviations of special membership entries:
 - \(x \sim a : A\) abbreviates \(x : 1_A(a)\) where \(1_A(a)\) is the unit type with only object \(*_A(a)\).
 - with the following coercion:
 \[
 \frac{\Gamma \vdash \Sigma A : Type \quad \Gamma \vdash \Sigma a : A}{\Gamma \vdash \Sigma 1_A(a) \leq_{\xi_{A,a}} A : Type}
 \]
 where \(\xi_{A,a}(z) = a\) for every \(z : 1_A(a)\).
 - So, in any hole that requires an object of type \(A\), we can use \(x\) which, under the above coercion, will be coerced into \(a\), as intended.
Manifest entries: examples

\[\Sigma_1 \equiv D : Type,\]
\[\text{John} : D, \text{Paul} : D, \text{George} : D, \text{Ringo} : D, \text{Brian} : D, \text{Bob} : D\]
\[\Sigma_2 \equiv B : D \rightarrow Prop, b_J : B(\text{John}), ..., b_B : \neg B(\text{Brian}), b'_B : \neg B(\text{Bob}),\]
\[G : D \rightarrow Prop, g_J : G(\text{John}), ..., g_G : \neg G(\text{Ringo}), ...\]

\[D \sim a_D : Type, B \sim a_B : D \rightarrow Prop, G \sim a_G : D \rightarrow Prop,\]

where

\[a_D = \{\text{John, Paul, George, Ringo, Brian, Bob}\}\]
\[a_B : D \rightarrow Prop, \text{the predicate ‘was a Beatle’},\]
\[a_G : D \rightarrow Prop, \text{the predicate ‘played guitar’},\]

with \(a_D\) being a finite type and \(a_B\) and \(a_G\) inductively defined.
(Note: Formally, “Type” should be a type universe.)
Infinity:

- Infinite domain D represented by infinite type Inf
 \[D \sim \text{Inf} : \text{Type} \]
- Infinite predicate with domain D:
 \[f \sim f\text{-defn} : D \rightarrow \text{Prop} \]
 with $f\text{-defn}$ being inductively defined.
- "Animals in a snake exhibition":
 \[\text{Animal}_1 \sim \text{Snake} : \text{CN} \]
Subtyping entries in signatures

- Subtyping entries in a signature:
 \[c : A \leq B \]
 This is to declare \(A \leq c B \), where \(c \) is a functional operation from \(A \) to \(B \).
- Eg, we may have
 \[D \sim \{ \text{John, ... } \} : \text{Type}, c : D \leq \text{Human} \]
- Note that, formally, for signatures,
 - we only need “coercion contexts” but do not need “local coercions” [Luo 2009, Luo & Part 2013];
 - this is meta-theoretically simpler (Lungu 2017)
Concluding Remarks

- Using contexts to represent situations: historical notes
 - Ranta 1994 (even earlier?)
 - Further references [Bodini 2000, Cooper 2009, Dapoigny/Barlatier 2010]

- We introduce “signatures” with new forms of entries: manifest/subtyping entries
 - Manifest/subtyping entries in signatures are simpler than manifest fields (Luo 2009) and local coercions (Luo & Part 2013).

- Preserving TT’s meta-theoretic properties is important (eg, consistency of the embedded logic).

- Summary
 - NL \rightarrow MTT (model-theoretic)
 - MTT \rightarrow meaning theory (proof-theoretic)
References (1)

- J. Belo. Dependentely Sorted Logic. LNCS 4941.
- P. Bodini. Formalizing Contexts in Intuitionistic Type Theory. Fundamenta Informaticae 4(2).
References (2)

References (3)

- S. Chatzikyriakidis and Z. Luo. Formal Semantics in Modern Type Theories. ISTE/Wiley Science Publishing Ltd. (to appear)
- Dapoigny and Barlatier. Modelling Contexts with Dependent Types. Fundamenta Informaticae 104. 2010.
References (4)

References (5)

References (6)
