
Secure Implementations for
Typed Session Abstractions

Ricardo Corin, Pierre-Malo Deniélou,
Cédric Fournet, Karthik Bhargavan, James Leifer

INRIA—Microsoft Research Joint Centre

Malo

http://www.msr-inria.inria.fr/projects/sec/sessions/

http://www.msr-inria.inria.fr/projects/sec/sessions/
http://www.msr-inria.inria.fr/projects/sec/sessions/
http://www.msr-inria.inria.fr/projects/sec/sessions/

Distributed applications

• How to program networked independent sites?
– Each site has its own code & security concerns

– Sites may interact, but they do not trust one another

• Communication abstractions can help
– Hide implementation details (message format, routing,…)

– Basic communication patterns,
e.g. RPCs or private channels

– Sessions,
(aka protocols,
or contracts,
or workflows)

C S

C S
O

O S

Session types

• Active area for distributed programming

– From pi calculus to web services, operating systems, ...

– General strategy: enforce protocol compliance by typing
If all programs are well-typed, session runs follow their spec

• Secure implementation?

– Needs protection against network attackers (e.g. SSL)

– Needs protection from partially-trusted remote parties

– Defensive implementations must monitor one another,
giving up most benefits of abstraction

Compiling session types to protocols

• We extend F# (a variant of ML)
with session types that express message flows

Well-typed programs always play their roles

• We compile session type declarations to crypto protocols
that shield our programs from any coalitions of remote peers

Remote sites can be assumed to play their roles
(without trusting their code)

F+S

Networking &

Cryptography

Session

code (F#)

Application

code

Concrete

Crypto

F# compiler

Symbolic

Model

[BFGT’06]

Symbolic

CryptoA compiler from

sessions to F#

formally

verified

code

concrete code

(.NET runtime)

Application

code

Session

types

An extension of F#

with session types

Compiling session types to protocols

Expressing sessions

• Terminology:

– Roles: represent session participants

– Principals: instantiate roles at runtime

– Messages: consist of labels and payloads

• Two ways to represent sessions:

– As a graph: useful for global reasoning on sessions

– As a collection of local roles:
useful for the language semantics and implementation

– The two representations are interconvertible

Example

C

Accept Confirm

Request Contract
O S

C

OC

S OOffer

Abort
Reject

Change

“Customer C negotiates

delivery of an item with a

store S; the transaction is

registered by an officer O.”

A small session language

Our formal
subset of
F# with
sessions

F

S
+

F+S semantics

• The source F+S semantics models a centralized session monitor

– layered semantics
roles

sessions

expressions (…)
configurations (…)

– constitutes our global specification for sessions

– does not exist in F, our target language

Global session integrity

• For any run,

– for any choice of good and bad principals,
for any session:

– there exists a valid path in the session graph

– that is consistent with all the messages
sent and received by the good principals

• Session integrity holds by design in F+S

– Generalizes correspondence properties (=path properties)

• Our compiler generates cryptographic code to enforce this in F

Global session integrity

• Examples that could break integrity:

2. Only possible after C sent accept

(remote party attack)

C

Accept Confirm

Request Contract
O S

C

OC

S OOffer

AbortReject

Change

1. Only possible once

(network attack)

Implementability conditions

• Some sessions are always vulnerable

• We detect them and rule them out

– They can be turned into safe sessions
but only with extra messages

C
Request

S

C

O

Offer

Reject

Security protocol

• We combine standard mechanisms

– X509 digital signatures

– Logical timestamps for loop control

– Anti-replay cache

• Per principal, based on session identifier Hash(S, a, N) + role

• Which evidence to sign & forward?

Forwarding history

• Complete history

– Every sender countersigns the whole history so far

– Every receiver checks signatures and
simulates the history vs. session spec

– Large overhead (unbounded crypto processing)

• We can do much better

Visibility

• Visibility = minimum information needed to update local role

– The sequence of last labels from all peers since last message send

– Any less information would break integrity

• Can be computed statically from the session graph

– More work for the compiler = less runtime tests

– This actually simplifies formal proofs!

C

Accept Confirm

Request Contract
O S

C

OC

S OOffer

AbortReject

Change

Visible:

Accept-Confirm
Visible:

1. Request-Contract

2. Change

Our session compiler

• Generates interface (types for all messages)

• Generates specific sending and receiving code
for each visible sequence

– Checks exactly what is expected

– Zero dynamic graph computation

• 5000 lines in F# + dual F# libraries

Dual libraries *BFGT’06+

• Crypto library:

• Principals library:

• Dual implementations

– Symbolic: using algebraic datatypes and type abstraction

– Concrete: using actual system (.NET) operations

Integrity theorems

• Configuration =
Libraries + Session Declarations + User Code + Opponent Code

counter-example if

we allowed session forks: C
Request

S

C

O

Offer

Reject

Discussion

• Session types are an active area of study

– we address their secure implementation

• Protocol verification:

– We verify our implementation code—not just a simplified model

– Our results hold for any number of (concurrent) sessions

– Even for a single session, this is beyond
automated verification tools (loops and branching)

– Crypto is Dolev-Yao but not far from computational model

– Integrity, not liveness (so no progress or global termination)

• Related work on secure implementations of process calculi,
on automated protocol transformations

Conclusion

• Cryptographic protocols can sometimes be derived
(and verified) from application security requirements

– Strong, simple security model

– Safer, more efficient than ad hoc design & code

• Future work?

– Data binding and correlation

– More dynamic principals

– Secure marshalling for richer types

• Try it out today!
http://www.msr-inria.inria.fr/projects/sec/sessions/

http://www.msr-inria.inria.fr/projects/sec/sessions/
http://www.msr-inria.inria.fr/projects/sec/sessions/
http://www.msr-inria.inria.fr/projects/sec/sessions/

