Secure Implementations for
Typed Session Abstractions

Ricardo Corin, Pierre-Malo Deniélou,
Cédric Fournet, Karthik Bhargavan, James Leifer

INRIA—Microsoft Research Joint Centre
http://www.msr-inria.inria.fr/projects/sec/sessions/



http://www.msr-inria.inria.fr/projects/sec/sessions/
http://www.msr-inria.inria.fr/projects/sec/sessions/
http://www.msr-inria.inria.fr/projects/sec/sessions/

Distributed applications

* How to program networked independent sites?
— Each site has its own code & security concerns
— Sites may interact, but they do not trust one another

« Communication abstractions can help
— Hide implementation details (message format, routing,...)

— Basic communication patterns, —

e.g. RPCs or private channels C — S

— Sessions, O
(aka protocols, C . S —
or contracts, \\ O S

or workflows)




Session types

* Active area for distributed programming
— From pi calculus to web services, operating systems, ...

— General strategy: enforce protocol compliance by typing
If all programs are well-typed, session runs follow their spec

e Secure implementation?
— Needs protection against network attackers (e.g. SSL)
— Needs protection from partially-trusted remote parties

— Defensive implementations must monitor one another,
giving up most benefits of abstraction



Compiling session types to protocols

 We extend F# (a variant of ML)
with session types that express message flows

Well-typed programs always play their roles

 We compile session type declarations to crypto protocols
that shield our programs from any coalitions of remote peers

Remote sites can be assumed to play their roles
(without trusting their code)



Compiling session types to protocols

= Networking &

A compiler from | = Cryptography
sessions to F# "'----f----------

Session
types

formally
verified
code

Session
code (F#)

F# compiler

An extension of F#

with session types

concrete code | I
(.NET runtime) —




Expressing sessions

 Terminology:
— Roles: represent session participants
— Principals: instantiate roles at runtime
— Messages: consist of labels and payloads

* Two ways to represent sessions:
— As a graph: useful for global reasoning on sessions

— As a collection of local roles:
useful for the language semantics and implementation

— The two representations are interconvertible



Example

Accept __ Confirm

offer _~,C
Request Contract /
C =94 5 L g Change

Abort
—

Reject ™ C

session S3 =
role store:string =

T c 9 . : .
Customer C negotiates Contract:string; mu start.

delivery of an item with a I(Offer:string;

store S; the transaction is ?( Change:string; start

registered by an officer O.” + Accept; !Confirm )
+ Reject )

role officer=. ..
role customer=...



A small session language

T = Payload types
int | string base types
p o= Role processes
(fi:7i 5 Di)i<k send
Y fiiTi s pi)i<k receive
XD recursive declaration
X recursion
0 end
Y= Sessions
(ri:Ti = Di)i<n initial role processes p; for the roles r;

~ I ~ [
(SEND) N fi:Ti; Di)ick —r Di (RECEIVE) ?(fi:T: ; Di)ick ——r Di



Our formal
subset of

F# with
sessions

T = Type expressions

t type variable
int, string, unit base types
T chan channel types
17 — 15 arrow type
V= Values (also used as Patterns)
x variable
0,1,...,Alice,Bob,...,() constants for base types
l.e,n,. .. names for functions, channels, nonces
flor, ... ) constructed term (when f has arity k)
e = Expressions
v value
lvy...vg function application
match v with (|v; — €;)i<k value matching
F let x = €1 in eo value definition
let (I; xzo ...z, = %’)i<k ine mutually-recursive function definition
+ type (t; = (|fj, of 1T';,)j, <k i<k inmautually-recursive datatype definition
session S =X ine session type definition
S Sty (v) session entry
s.p(e) session role (run-time only)
E[] == Evaluation contexts
] top level
let x = E-] ines sequential evaluation
s.p(E]-]) in-session evaluation (run-time only)
P .= Processes
e running thread
P|P parallel composition

0 nert process



F+S semantics

* The source F+S semantics models a centralized session monitor

— layered semantics
—roles
_ , ~ fi : ~ i
(SEND) 1{fg 2T ; pi}i(.:; —p P (RECEIVE) ‘?Ucz 1T Pi)i<k f_}r Pi

—>sessions _
pL, p,s.p g psp
(STEP) 7 (SENDS) —
S.p —s p,8.p N
Py 8P s Py 8P p:s.p (9(v),w) —e p',s.p" (w)

—>expressions (...)
—>configurations (...)

— constitutes our global specification for sessions
— does not exist in F, our target language



Global session integrity

* Foranyrun,

— for any choice of good and bad principals,
for any session:

— there exists a valid path in the session graph

— that is consistent with all the messages
sent and received by the good principals

* Session integrity holds by design in F+S
— Generalizes correspondence properties (=path properties)

* Our compiler generates cryptographic code to enforce thisin F



Global session integrity

 Examples that could break integrity:

1. Only possible once (remote party attack)

(network attack)

{ 2. Only possible after C sent accept ]

Accept _ Confirm
C > P>

o‘ffey
C Requesl O Contract= S Change

Abort

Reject ™ C O



Implementability conditions

 Some sessions are always vulnerable

Offer C
Request
c==g

Reject * O

e We detect them and rule them out

— They can be turned into safe sessions
but only with extra messages



Security protocol

* We combine standard mechanisms
— X509 digital signatures
— Logical timestamps for loop control
— Anti-replay cache
* Per principal, based on session identifier Hash(S, a, N) + role

 Which evidence to sign & forward?



Forwarding history

 Complete history
— Every sender countersigns the whole history so far

— Every receiver checks signatures and
simulates the history vs. session spec

— Large overhead (unbounded crypto processing)

e We can do much better



Visibility

* Visibility = minimum information needed to update local role
— The sequence of last labels from all peers since last message send
— Any less information would break integrity

* Can be computed statically from the session graph
— More work for the compiler = less runtime tests

— This actually simplifies formal proofs! Visible:
Visible: Accept-Confirm
1. Request-Contract
2. Change Accept . Confirm
C " S "0

C Requesl O Contract= S Change

Reject C Abort O




Our session compiler

Generates interface (types for all messages)

Generates specific sending and receiving code
for each visible sequence

— Checks exactly what is expected
— Zero dynamic graph computation

5000 lines in F# + dual F# libraries



Dual libraries [BFGT'06]}

Crypto library:

type bytes val genskey: name — keybytes

type keybytes val genvkey: keybytes — keybytes

val nonce: name — bytes val sign: bytes — keybytes — bytes

val hash: bytes — bytes val verify: bytes — bytes — keybytes — bool

Principals library:

val skey : principal — keybytes val safe : principal — bool

val vkey : principal — keybytes val psend® : (principal * bytes) chan
val psend : principal — bytes — unit val chans® : (principal * bytes chan) list
val precv : principal — bytes val skeys® : (principal * bytes) list

Dual implementations
— Symbolic: using algebraic datatypes and type abstraction
— Concrete: using actual system (.NET) operations



Integrity theorems

Configuration =
Libraries + Session Declarations + User Code + Opponent Code

Theorem 1 (Security, reduction-based). If L M3 U O’ may fail in F for some O’

where w does not occur, then L S U O may fail in F+S for some O where w does not
occur.

_ Offer C
counter-example if

we allowed session forks:

C Requesg S

Reject ™ (O

Theorem 2 (Security, labelled-transition based). Let 1 be a valid implementation of
H. For all transitions W= W’ in E, where ¢ represents the observable trace of those
transitions, there exists W° valid implementation of H°, such that W5, W° —¥
W"and W' —5p W and H X« H° with ¢ the translation of ).



Discussion

* Session types are an active area of study
— we address their secure implementation

* Protocol verification:
— We verify our implementation code—not just a simplified model
— Our results hold for any number of (concurrent) sessions

— Even for a single session, this is beyond
automated verification tools (loops and branching)

— Crypto is Dolev-Yao but not far from computational model
— Integrity, not liveness (so no progress or global termination)

* Related work on secure implementations of process calculi,
on automated protocol transformations



Conclusion

* Cryptographic protocols can sometimes be derived
(and verified) from application security requirements

— Strong, simple security model
— Safer, more efficient than ad hoc design & code

* Future work?
— Data binding and correlation
— More dynamic principals
— Secure marshalling for richer types

* Tryit out today!
http://www.msr-inria.inria.fr/projects/sec/sessions/



http://www.msr-inria.inria.fr/projects/sec/sessions/
http://www.msr-inria.inria.fr/projects/sec/sessions/
http://www.msr-inria.inria.fr/projects/sec/sessions/

