
Parameterised Multiparty Session Types ?

Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu

Department of Computing, Imperial College London

Abstract. For many application-level distributed protocols and parallel algo-
rithms, the set of participants, the number of messages or the interaction struc-
ture are only known at run-time. This paper proposes a dependent type theory
for multiparty sessions which can statically guarantee type-safe, deadlock-free
multiparty interactions among processes whose specifications are parameterised
by indices. We use the primitive recursion operator from Gödel’s System T to
express a wide range of communication patterns while keeping type checking
decidable. We illustrate our type theory through non-trivial programming and
verification examples taken from parallel algorithms and Web services usecases.

1 Introduction

As the momentum around communications-based computing grows, the need for ef-
fective frameworks to globally coordinate and structure the application-level interac-
tions is pressing. The structures of interactions are naturally distilled as protocols. Each
protocol describes a bare skeleton of how interactions should proceed, through e.g. se-
quencing, choices and repetitions. In the theory of multiparty session types [3, 5, 13],
such protocols can be captured as types for interactions, and type checking can statically
ensure runtime safety and fidelity to a stipulated protocol.

One of the particularly challenging aspects of protocol descriptions is the fact that
many actual communication protocols are highly parametric in the sense that the num-
ber of participants and even the interaction structure itself are not fixed at design time.
Examples include parallel algorithms such as the Fast Fourier Transform (run on any
number of communication nodes depending on resource availability) and Web ser-
vices such as business negotiation involving an arbitrary number of sellers and buy-
ers. This paper introduces a robust dependent type theory which can statically ensure
communication-safe, deadlock-free process interactions which follow parameterised
multiparty protocols.

We illustrate the key ideas of our proposed parametric type structures through ex-
amples. Let us first consider a simple protocol where participant Alice sends a message
of type nat to participant Bob. To develop the code for this protocol, we start by speci-
fying the global type, which can concisely and clearly describe a high-level protocol for
multiple participants [3, 13, 17], as follows (below end denotes protocol termination):

G1 = Alice→ Bob : 〈nat〉.end

Upon agreement on G1 as a specification for Alice and Bob, each program can be im-
plemented separately. For type-checking, G1 is projected into end-point session types:
? The work is partially supported by EPSRC EP/G015635/1 and EP/F003757/1.

one from Alice’s point of view, !〈Bob,nat〉 (output to Bob with nat-type), and another
from Bob’s point of view, ?〈Alice,nat〉 (input from Alice with nat-type), against
which the respective Alice and Bob programs are checked to be compliant.

The first step towards generalised type structures for multiparty sessions is to allow
modular specifications of protocols using arbitrary compositions and repetitions of in-
teraction units (this is a standard requirement in multiparty contracts [21]). Consider the
typeG2 = Bob→ Carol : 〈nat〉.end. The designer may wish to compose sequentially
G1 and G2 together to build a larger protocol:

G3 = G1;G2 = Alice→ Bob : 〈nat〉.Bob→ Carol : 〈nat〉.end

We may also want to iterate the composed protocols n-times, which can be written by
foreach(i < n){G1;G2}, and moreover bind the number of iteration n by a dependent
product to build a family of global specifications, as in:

Πn.foreach(i < n){G1;G2} (1)

Beyond enabling a variable number of exchanges between a fixed set of participants, the
ability to parameterise participant identities can represent a wide class of the commu-
nication topologies found in the literature. For example, the use of indexed participants
W[i] (denoting the i-th worker) allows to specify a family of session types such that
neither the number of participants nor message exchanges are known before the run-
time instantiation of the parameters. The following type and diagram both describe a
sequence of messages from W[n] to W[0] (indices decrease in our foreach, see § 2):

Πn.(foreach(i < n){W[i+ 1]→ W[i] : 〈nat〉}) n // n-1 // . . . // 0 (2)

Here we face an immediate question: what is the underlying type structure for such
parametrisation, and how can we type-check each (parametric) end-point program?
The type structure should allow the projection of a parameterised global type to an end-
point type before knowing the exact shape of the concrete topology. In (2), if n ≥ 2,
there are three distinct communication patterns inhabiting this specification: the ini-
tiator (send only), the n − 1 middle workers (receive and send), and the last worker
(receive only). This is no longer the case when n = 1 (there is only the initiator and the
last worker) or when n = 0 (no communication). Can we provide a decidable projection
and static type-checking by which we can preserve the main properties of the session
types such as progress and communication-safety in parameterised process topologies?
The key technique proposed in this paper is a projection method from a dependent
global type onto a generic end-point generator which exactly captures the interaction
structures of parameterised end-points and which can represent the class of all possible
end-point types.

The main contributions of this paper follow:

– A new expressive framework to globally specify and program a wide range of para-
metric communication protocols (§ 2). We achieve this result by combining depen-
dent type theories derived from Gödel’s System T [18] (for expressiveness) and
indexed dependent types from [22] (for tractability to control parameters), with
multiparty session types.

– Decidable and flexible projection methods based on a generic end-point generator
and mergeability of branching types, enlarging the typability (§ 3.1).

i ::= i | n | i op i′ Indices
P ::= P ∧ P | i ≤ i′ Propositions
I ::= nat | {i :I | P} Index sorts
P ::= Alice | Worker | . . . Participants
p ::= p[i] | P Principals
S ::= nat | 〈G〉 Value type
U ::= S | T Payload type
K ::= {n0, ..., nk} Finite integer set

G ::= Global types
| p→ p′ : 〈U〉.G Message
| p→ p′ : {lk : Gk}k∈K Branching
| µx.G Recursion
| R G λi :I.λx.G′ Primitive recursion
| x Type variable
| G i Application
| end Null

R G λi :I.λx.G′ 0 −→ G
R G λi :I.λx.G′ (n+1) −→ G′{n/i}{R G λi :I.λx.G′ n/x}

Fig. 1. Global types and type reduction

– A dependent typing system that treats the full multiparty session types integrated
with dependent types. The resulting static typing system allows decidable type-
checking and guarantees type-safety and deadlock-freedom for well-typed pro-
cesses involved in parameterised multiparty communication protocols (§ 3).

– Applications featuring various process topologies, including the complex butterfly
network for the parallel FFT algorithm (§ 2.3, § 3.6). As far as we know, this is
the first time such a complex protocol is specified by a single type and that its
implementation can be automatically type-checked to prove communication-safety
and deadlock-freedom. We also extend the calculus with a new asynchronous join
primitive for session initialisation, applied to Web services use cases [19] (§ 3.6).

The complete formal definition of our system, including proofs and additional material
for examples and implementations can be found in [11].

2 Types and processes for parameterised multiparty sessions

2.1 Global types

Global types allow the description of the parameterised conversations of multiparty
sessions as a type signature. Our type syntax integrates three different formulations:
(1) global types from [3]; (2) dependent types with primitive recursive combinators
based on [18]; and (3) parameterised dependent types from a simplified Dependent ML
[1, 22].

The grammar of global types (G,G′, ...) is given in figure 1. Parameterised princi-
pals p, p′, q, ... can be indexed by one or more parameters, e.g. Worker[5][i+ 1]. Index
i ranges over index variables i, j, n, naturals n or arithmetic operations. A global in-
teraction can be a message exchange (p → p′ : 〈U〉.G), where p, p′ denote the sending
and receiving principals, U the payload type of the message and G the subsequent in-
teraction. Payload types U are either value types S (which contain base type nat and
session channel types 〈G〉), or end-point types T (which correspond to the behaviour of
one of the session participants and will be explained in § 3) for delegation. Branching
(p → p′ : {lk : Gk}k∈K) allows the session to follow one of the different Gk paths in

Mesh
W[n][m] //

��

//

��

. . . //

��//

��

//

��

. . . //

��
:

��

:

��

. . . :

��// // . . . // W[0][0]

Πn.Πm.

foreach(i < n){
foreach(j < m){
W[i+ 1][j + 1]→ W[i][j + 1] : 〈nat〉.
W[i+ 1][j + 1]→ W[i+ 1][j] : 〈nat〉};

W[i+ 1][0]→ W[i][0] : 〈nat〉};
foreach(k < m){W[0][k + 1]→ W[0][k] : 〈nat〉}

Fig. 2. Parameterised multiparty protocol on a mesh topology

the interaction (K is a ground and finite set of integers). µx.G is a recursive type where
type variable x is guarded in the standard way.

The interesting addition is the primitive recursion operator R G λi : I.λx.G′ from
Gödel’s System T [12] whose reduction semantics is given in figure 1. Its parameters
are a global type G, an index variable i with range I , a type variable for recursion x
and a recursion body G′.1 When applied to an index i, its semantics corresponds to the
repetition i-times of the body G′, with the index variable i value going down by one at
each iteration, from i−1 to 0. The final behaviour is given byGwhen the index reaches
0. The index sorts comprise the set of natural numbers and its restrictions by predicates
(P, P′, ..) that are, in our case, conjunctions of inequalities. op represents first-order
indices operators (such as +,−, ∗,...). We often omit I and end in our examples. Using
R, we define the product, composition, repetition and test operators (seen in § 1):

Πi.G = R end λi.λx.G{i+ 1/i} foreach(i<j){G} = R end λi.λx.G{x/end} j
G1;G2= R G2 λi.λx.G1{x/end} 1 if j then G1 else G2= R G2 λi.λx.G1 j

where we assume that x is not free in G and G1, and that the leaves of the syntax trees
of G1 and G are end. These definitions rely on a special substitution of each end by
x (for example, p→ p′{l1:!〈nat〉; end, l2:end}{x/end} = p→ p′{l1:!〈nat〉; x, l2:x}).
The composition operator appends the execution of G2 to G1; the repetition operator
above repeatsG j-times2; the boolean values are integers 0 (false) and 1 (true). Similar
syntactic sugar is defined for local types and processes. Note that composition and
repetition do not necessarily impose sequentiality: only the order of the asynchronous
messages and the possible dependency [13] between receivers and subsequent senders
controls the sequentiality. A parallel version of the sequence example of (§ 1 (2)) can
be written: Πn.(foreach(i < n){W[n− i]→ W[n− i− 1] : 〈nat〉}).

Mesh example The session presented in figure 2 describes a particular protocol over a
standard mesh topology [15]. In this two dimensional array of workers W, each worker
receives messages from his left and top neighbours (if they exist) before sending mes-
sages to his right and bottom (if they exist). Our session takes two parameters n and m
which represent the number of rows and the number of columns. Then we have two iter-
ators that repeat W[i+1][j+1]→ W[i][j+1] : 〈nat〉 and W[i+1][j+1]→ W[i+1][j] : 〈nat〉

1 We distinguish recursion and primitive recursion in order to get decidability results, see § 3.4.
2 This version of foreach uses decreasing indices. One can write an increasing version [11].

c ::= y | s[p] Channels
u ::= x | a Identifiers
v ::= a | n Values

p̂, q̂ ::= p̂[n] | P Principal values
m ::= (q̂,p̂,v) | (q̂,p̂,s[p̂’]) | (q̂,p̂,l) Messages in transit
h ::= ε |m · h Queue types

e ::= i | v | x | s[p] | e op e′ Expressions
P ::= Processes
| ū[p0, .., pn](y).P Init
| u[p](y).P Accept
| ā[p] : s Request
| c!〈p, e〉;P Value sending
| c?〈p, x〉;P Value reception
| c⊕ 〈p, l〉;P Selection
| c&〈p, {lk : Pk}k∈K〉 Branching

| µX.P Recursion
| 0 Inaction
| P | Q Parallel
| R P λi.λX.Q Primitive recursion
| X Process variable
| (P i) Application
| (νs)P Session restriction
| s:h Queues

Fig. 3. Syntax for user-defined and run-time processes

for all i and j. The communication flow goes from the top-left W[n][m] and converges
towards the bottom-right W[0][0] in n+m parallel message exchanges.

2.2 Process syntax and semantics

Syntax The syntax of expressions and processes is given in figure 3, extended from
[3], adding the primitive recursion operator and a new request process. Identifiers u can
be variables x or channel names a. Values v are either channels a or natural numbers
n. Expressions e are built out of indices i, values v, variables x, session end points (for
delegation) and operations over expressions. In processes, sessions are asynchronously
initiated by ū[p0, .., pn](y).P . It spawns, for each of the {p0, .., pn}, a request that is
accepted by the participant through u[p](y).P . Messages are sent by c!〈p, e〉;P to the
participant p and received by c?〈q, x〉;P from the participant q. Selection c⊕ 〈p, l〉;P ,
and branching c&〈q, {lk : Pk}k∈K〉, allow a participant to choose a branch from those
supported by another. Standard language constructs include recursive processes µX.P ,
restriction (νs)P and parallel composition P | Q. The primitive recursion operator
R P λi.λX.Q takes as parameters a process P , a function taking an index parameter i
and a recursion variable X . A queue s : h stores the asynchronous messages in transit.

An annotated P is the result of annotating P ’s bound names and variables as in
e.g. (νa : 〈G〉)Q or s?(x : 〈G〉)Q or R Q λi : I.λX.Q′. We omit the annotations unless
needed. We often omit 0 and the participant p from the session primitives. Requests,
session hiding and channel queues appear only at runtime, as explained below.

Semantics The semantics is defined by the reduction relation−→ presented in figure 4.
The standard definition of evaluation contexts (that allow e.g. W[3 + 1] to be reduced to
W[4]) is omitted. The metavariables p̂, q̂, .. range over principal values (where all indices
have been evaluated). [ZeroR] and [SuccR] are standard and identical to their global
type counterparts. The rule [Init] describes the initialisation of a session by its first
participant ā[p0, .., pn](y0).P0. It spawns asynchronous requests ā[p̂k] : s that allow
delayed acceptance by the other session participants (rule [Join]). After the connection,
the participants share the private session name s, and the queue associated to s (which

R P λi.λX.Q 0 −→ P [ZeroR]

R P λi.λX.Q n + 1 −→ Q{n/i}{R P λi.λX.Q n/X} [SuccR]

ā[p̂0, .., p̂n](y).P −→ (νs)(P{s[p̂0]/y} | s : ∅ | ā[p̂1] : s | ... | ā[p̂n] : s) [Init]

ā[p̂k] : s | a[p̂k](yk).Pk −→ Pk{s[p̂k]/yk} [Join]

s[p̂]!〈q̂, v〉;P | s : h −→ P | s : h · (p̂, q̂, v) [Send]

s[p̂]⊕ 〈q̂, l〉;P | s : h −→ P | s : h · (p̂, q̂, l) [Label]

s[p̂]?(q̂, x);P | s : (q̂, p̂, v) · h −→ P{v/x} | s : h [Recv]

s[p̂]&(q̂, {lk : Pk}k∈K) | s : (q̂, p̂, lk0) · h −→ Pk0 | s : h (k0 ∈ K) [Branch]

Fig. 4. Reduction rules

is initially empty by rule [Init]). The variables yp in each participant p are then replaced
with the corresponding session channel, s[p]. A more verbose, but symmetric, version of
[Init] (where any participant can start the session, not only p0) could also be used [11].

The rest of the session reductions are standard [3, 13]. The output rules [Send] and
[Label] push values, channels and labels into the queue of the session s. The rules
[Recv] and [Branch] perform the complementary operations. Note that these operations
check that the sender and receiver match. Processes are considered modulo structural
equivalence, denoted by ≡ (in particular, we note µX.P ≡ P{µX.P/X}).

2.3 Processes for parameterised multiparty protocols

We give here the processes corresponding to the interactions described in § 1 and § 2.1,
then introduce a parallel implementation of the Fast Fourier Transform algorithm.

Sequence from § 1 (2) The process below generates all participants using a recursor:

Πn.(if n = 0 then 0
else (R (ā[W[n], .., W[0]](y).y!〈W[n− 1], v〉; 0

| a[W[0]](y).y?(W[1], z); 0)

λi.λX.(a[W[i+ 1]](y).y?(W[i+ 2], z); y!〈W[i], z〉; 0 |X) n− 1)

When n = 0 no message is exchanged. In the other case, the recursor creates the n− 1
workers through the main loop and finishes by spawning the initial and final ones.

As an illustration of the semantics, we show the reduction of the above process for
n = 2. After several applications of the [SuccR] and [ZeroR] rules, we have:

ā[W[2], W[1], W[0]](y).y!〈W[1], v〉; | a[W[0]](y).y?(W[1], z); | a[W[1]](y).y?(W[2], z); y!〈W[0], z〉;

which, with [Init], [Join], [Send], [Recv], gives:

−→ (νs)(s : ε | s[W[2]]!〈W[1], v〉; | ā[W[1]] : s | ā[W[0]] : s |
a[W[0]](y).y?(W[1], z); | a[W[1]](y).y?(W[2], z); y!〈W[0], z〉;)

−→ (νs)(s : ε | s[W[2]]!〈W[1], v〉; | ā[W[1]] : s |
s[W[0]]?(W[1], z); | a[W[1]](y).y?(W[2], z); y!〈W[0], z〉;)

−→∗ (νs)(s : ∅ | s[W[2]]!〈W[1], v〉; | s[W[0]]?(W[1], z); | s[W[1]]?(W[2], z); s[W[1]]!〈W[0], z〉;)
−→∗ (νs)(s : ∅ | s[W[0]]?(W[1], z); | s[W[1]]!〈W[0], v〉;)
−→∗ ≡ 0

(a) Butterfly pattern
xk−N/2

$$HHHHHH
// Xk−N/2 = xk−N/2+

xk ∗ ωk−N/2
N

xk

::vvvvvvv
// Xk = xk−N/2 + xk ∗ ωk

N

(b) FFT diagram
x0 //'&%$!"#0

 AAAAAA
1 //'&%$!"#0

��0
000000000

2 //'&%$!"#0

��(
(((((((((((((((((((

3 //'&%$!"#0
X0 //

x4 //'&%$!"#1

>>}}}}}} //'&%$!"#1

��0
000000000 //'&%$!"#1

��(
(((((((((((((((((((
//'&%$!"#1

X1 //

x2 //'&%$!"#2

 AAAAAA //'&%$!"#2

FF���������� //'&%$!"#2

��(
(((((((((((((((((((
//'&%$!"#2

X2 //

x6 //'&%$!"#3

>>}}}}}} //'&%$!"#3

FF���������� //'&%$!"#3

��(
(((((((((((((((((((
//'&%$!"#3

X3 //

x1 //'&%$!"#4

 AAAAAA //'&%$!"#4

��0
000000000 //'&%$!"#4

KK��������������������
//'&%$!"#4

X4 //

x5 //'&%$!"#5

>>}}}}}} //'&%$!"#5

��0
000000000 //'&%$!"#5

KK��������������������
//'&%$!"#5

X5 //

x3 //'&%$!"#6

 AAAAAA //'&%$!"#6

FF���������� //'&%$!"#6

KK��������������������
//'&%$!"#6

X6 //

x7 //'&%$!"#7

>>}}}}}} //'&%$!"#7

FF���������� //'&%$!"#7

KK��������������������
//'&%$!"#7

X7 //

(c) Global type G =

Πn.
foreach(i < 2n){i→ i : 〈nat〉};
foreach(l < n){
foreach(i < 2l){
foreach(j < 2n−l−1){
foreach(k < 2){
foreach(k′ < 2){
i ∗ 2n−l + k ∗ 2n−l−1 + j

→ i ∗ 2n−l + k′ ∗ 2n−l−1 + j : 〈nat〉}}}}}

(d) Processes P (n, p, xp, y, rp) =

y!〈p, xp〉;
foreach(l < n){

if bitn−l(p) = 0

then y?〈p, x〉; y!〈p + 2n−l−1, x〉;
y?〈p + 2n−l−1, z〉; y!〈p, x+ z ω

g(l,p)
N 〉;

else y?〈p, x〉; y!〈p− 2n−l−1, x〉;
y?〈p− 2n−l−1, z〉; y!〈p, z + xω

g(l,p)
N 〉; };

y?〈p, x〉; rp!〈0, x〉;

where g(l, p) = p mod 2l

Fig. 5. Fast Fourier Transform on a butterfly network topology

Mesh from figure 2 The mesh example is more complex: when n and m are bigger
than 2, there are 9 distinct roles that each have a different pattern of communication.
We only list processes for (1) the centre workers W[i][j] (0 < i < n, 0 < j < m) who
are connected in all four directions, (2) the initiator W[n][m] from the top-left corner.
Below, f(i, j) represents the expression computed at the (i, j)-th element.

Pcentre(i, j) = a[W[i][j]](y).y?(W[i+ 1][j], z1); y?(W[i][j + 1], z2);
y!〈W[i− 1][j], f(i− 1, j)〉; y!〈W[i][j − 1], f(i, j − 1)〉; 0

Pstart(n,m) = ā[W[0][0]..W[n][m]](y).y!〈W[n− 1][m], f(n− 1,m)〉;

FFT We describe a parallel implementation of the Fast Fourier Transform algorithm
(more precisely the radix-2 variant of the Cooley-Tukey algorithm [10]).

Figure 5(a) illustrates the recursive principle of the algorithm, called butterfly, where
two different outputs can be computed in constant time from the results of the same two
recursive calls. The complete algorithm is illustrated by the diagram from figure 5(b).
It features the application of the FFT on a network of N = 23 machines on an hy-
percube network computing the discrete Fourier transform of vector x0, . . . , x7. Each
row represents a single machine at each step of the algorithm. Each edge represents a

T ::= End-point types
| !〈p, U〉;T Output
| ?〈p, U〉;T Input
| ⊕〈p, {lk : Ti}k∈K〉 Selection
| &〈p, {lk : Ti}k∈K〉 Branching

| µx.T Recursion
| R T λi :I.λx.T ′ Primitive recursion
| x Type variable
| T i Application
| end End

Fig. 6. End-point types

p→ p′ : 〈U〉.G� q = if q=p=p’ then !〈p, U〉; ?〈p, U〉;G � q
else if q=p then !〈p′, U〉;G � q
else if q=p’ then ?〈p, U〉;G � q
else G� q

p→ p′ : {lk : Gk}k∈K� q = if q=p then ⊕〈p′, {lk : Gk � q}k∈K〉
else if q=p’ then &〈p, {lk : Gk � q}k∈K〉
else tk∈KGk � q

R G λi :I.λx.G′� q = R G � q λi :I.λx.G′ � q

(µt.G)� p = µt.G � p
x� p = x

(G i) � p = (G� p) i
end � p = end

Fig. 7. Projection of global types to end-point types

value sent to another machine. The dotted edges represent the particular messages that
a machine sends to itself to remember a value for the next step. Each machine is suc-
cessively involved in a butterfly with a machine whose number differs by only one bit.
Note that the recursive partition over the value of a different bit at each step requires a
particular bit-reversed ordering of the input vector: the machine number p initially re-
ceives xp where p denotes the bit-reversal of p. Figure 5(c) gives the global session type
describing the interactions between 2n machines. The first iterator is the initialisation
step. Then we have an iteration over variable l for the n successive steps of the algo-
rithm. Figure 5(d) defines the processes that each of the machines runs. Each process
returns the final answer at rp.

3 Typing parameterised multiparty interactions

3.1 End-point types and end-point projections

The syntax of end-point types is given in figure 6. Output expresses the sending to p of
a value or channel of type U , followed by the interactions T . Selection represents the
transmission to p of a label lk chosen in {lk}k∈K followed by Tk. Input and branching
are their dual counterparts. The other types are similar to their global versions.

End-point projection: a generic projection The relation between end-point types
and global types is formalised by the projection relation. Since the actual participant
characteristics might only be determined at runtime, we cannot straightforwardly use
the definition from [3, 13]. Instead, we rely on the expressive power of the primitive
recursive operator: a generic end-point projection ofG onto q, writtenG � q, represents
the family of all the possible end-point types that a principal q can satisfy at run-time.

The general endpoint generator is defined in figure 7 using the derived construct
if then else . The projection p → p′ : 〈U〉.G � q leads to a case analysis: if the

participant q is equal to p, then the end-point type of q is an output of type U to p′;
if participant q is p′ then q inputs U from p′; else we skip the prefix. The first case
corresponds to the possibility for the sender and receiver to be identical. Projecting the
branching global type is similarly defined, but for the operator t explained below. For
the other cases (as well as for our derived operators), the projection is homomorphic.

Mergeability and injection of branching types We first recall the example from [13],
which explains that naı̈ve branching projection leads to inconsistent end-point types.

W[0]→ W[1] : {ok : W[1]→ W[2] : 〈bool〉, quit : W[1]→ W[2] : 〈nat〉}

We cannot project the above type onto W[2] because, while the branches behave differ-
ently, W[0] makes a choice without informing W[2] who thus cannot know the type of the
expected value. A solution is to define projection only when the branches are identical,
i.e. we change the above nat to bool in our example above.

In our framework, this restriction is too strong since each branch may contain differ-
ent parametric interaction patterns. To overcome this, we propose two methods called
mergeability and injection of branching types. Formally, the mergeability relation ./ is
the smallest congruence relation over end-point types such that:3 if ∀i ∈ (K ∩J).Tk ./
T ′j and ∀i ∈ (K \J)∪(J \K).lk 6= lj , then &〈p, {lk : Tk}k∈K〉 ./ &〈p, {lj : T ′j}j∈J〉.
When T1 ./ T2 is defined, we define the injection t as a partial commutative operator
over two types such that T t T = T for all types and that:

&〈p, {lk : Ti}k∈K〉 t&〈p, {lj : T ′j}j∈J〉 =
&〈p, {lk : Tk t T ′k}k∈K∩J ∪ {lk : Tk}k∈K\J ∪ {lj : T ′j}j∈J\K〉

The mergeability relation states that two types are identical up to their branching types
where only branches with distinct labels are allowed to be different. By this extended
typing condition, we can modify our previous global type example to add ok and quit
labels to notify W[2]. We get:

W[0]→ W[1] : {ok : W[1]→ W[2] : {ok : W[1]→ W[2]〈bool〉 },
quit : W[1]→ W[2] : {quit : W[1]→ W[2]〈nat〉}}}

Then W[2] can have the type &〈W[1], {ok : 〈W[1],bool〉, quit : 〈W[1],nat〉}〉which could
not be obtained through the original projection rule in [3, 13]. This projection is sound
up to branching subtyping (cf. Lemma 3.4).

3.2 Type system

This subsection introduces the type system. Because free indices appear both in terms
(e.g. participants in session initialisation) and in types, the formal definition of what
constitutes a valid term and a valid type are interdependent and both in turn require a
careful definition of a valid global type.

3 The idea of mergeability is introduced informally in the tutorial paper [8].

Judgements and environments One of the main differences with previous session
type systems is that session environments ∆ can contain dependent process types. The
grammar of environments, process types and kinds are given below.

∆ ::= ∅ |∆, c:T Γ ::= ∅ | Γ, P | Γ, u : S | Γ, i : I | Γ,X : τ τ ::= ∆ |Πi :I.τ

∆ is the session environment which associates channels to session types. Γ is the
standard environment which contains predicates and which associates variables to sort
types, service names to global types, indices to index sets and process variables to ses-
sion types. τ is a process type which is either a session environment or a dependent
type. We write Γ, u : S only if u 6∈ dom(Γ). We use the same convention for others.

Following [22], we assume given in the typing rules two semantically defined judge-
ments: Γ |= P (predicate P is a consequence of Γ) and Γ |= i : I (i : I follows from
the assumptions of Γ). We also inductively define well-formed types using a kind sys-
tem [11]. The judgement Γ ` U I κ means type U has kind κ. Kinds include proper
types for global, value, principal, end-point and process types (denoted by Type), and
the kind of type families, written by Πi : I.κ. Well-formedness of a term i and P in Γ
and environments is defined in the standard way [1].

3.3 Typing processes

We explain here (Figure 8) a selection of the process typing rules. Rules [TNAT] and
[TVAR] are standard (Γ ` Env means that Γ is well-formed). For participants, we check
their typing by [TID] and [TP] in a similar way as [22] where Γ ` κ means kinding κ
is well-formed. In [TPREC], we use the abbreviation [0..j] = {i : nat | i ≤ j}. Then
we define I− by [0..0]− = ∅ and [0..i]− = [0..i − 1]. This rule deals with the
changed index range within the recursor body. More precisely, we first check τ ’s kind.
Then we verify for the base case (j = 0) that P has type τ{0/j}. Last, we check the
more complex inductive case: Q should have type τ{i + 1/j} under the environment
Γ, i:I−, X :τ{i/j} where τ{i/j} of X means that X satisfies the predecessor’s type
(induction hypothesis). [TAPP] is the elimination rule for dependent types.

Since our types include dependent types and recursors, we need a notion of type
equivalence. We extend the standard method of [1, §2] with the recursor: [WF] is the
main rule definingG1 ≡ G2 and relies on the existence of a common weak head normal
form for the two types and [PREC] says two recursors are equated if either (1) each
subgraph is equated by ≡, or (2) they reduce to the same normal forms when applied to
a finite number of indices. Rule [TEQ] allows to type processes up-to type equivalence.

[TINIT] types a session initialisation on shared channel u, binding channel y and
requiring participants {p0, .., pn}. The premise verifies that the type of y is the first
projection of the global type G of u and that the participants in G (denoted by pid(G))
can be semantically derived as {p0, .., pn}. [TACC] allows to type the p-th participant to
the session initiated on u. The typing rule checks that the type of y is the p-th projection
of the global type G of u and that G is fully instantiated. The kind rule ensures that G
is fully instantiated (i.e. G′’s kind is Type). [TREQ] types the process that waits for an
accept from a participant: its type corresponds to the end-point projection of G.

Γ ` Env
[TNAT]

Γ ` nB nat

Γ ` κ
[TID]

Γ ` AliceB κ

Γ ` pBΠi :I.κ Γ |= i :I
[TP]

Γ ` p[i]B κ{i/i}

Γ, i : I−, X : τ{i/j} ` QB τ{i+ 1/j} Γ ` P B τ{0/j} Γ, j :I ` τ I κ
[TPREC]

Γ ` R P λi.λX.QBΠj :I.τ(
Γ ` G1 ≡ G2 Γ ` G′1 ≡ G′2 or
Γ ` R G1 λi :I.λx.G

′
1 n ≡ R G2 λi :I.λx.G

′
2n with Γ |= I = [0..m], 0 ≤ n ≤ m

[PREC]
Γ ` R G1 λi :I.λx.G

′
1 ≡wf R G2 λi :I.λx.G

′
2

Γ `whnf(G1)≡wf whnf(G2)
[WF]

Γ ` G1 ≡ G2

Γ `PBτ Γ `τ≡τ ′
[TEQ]

Γ ` P B τ ′
Γ `PBτ Γ `τ≤τ ′

[TSUB]
Γ ` P B τ ′

Γ,X : τ ` P B τ
[TREC]

Γ ` µX.P B τ

Γ,X : τ ` Env
[TVAR]

Γ,X : τ ` X B τ

Γ ` P BΠi :I.τ Γ |= i ∈ I
[TAPP]

Γ ` P iB τ{i/i}

Γ ` u : 〈G〉 Γ ` P B∆, y : G � p0

Γ ` pi B nat Γ |= pid(G) = {p0..pn}
[TINIT]

Γ ` ū[p0, .., pn](y).P B∆

Γ ` u : 〈G〉 Γ ` P B∆, y : G � p

Γ ` pB nat Γ |= p ∈ pid(G)
[TACC]

Γ ` u[p](y).P B∆

Γ ` a : 〈G〉 Γ ` pB nat Γ |= p ∈ pid(G)
[TREQ]

Γ ` ā[p] : sB s[p] : G � p

Γ ` eB S Γ ` P B∆, c : T
[TOUT]

Γ ` c!〈p, e〉;P B∆, c :!〈p, S〉;T

Fig. 8. Process typing

Recursion [TREC], variable ([TVAR]), output ([TOUT]), input, delegation, inaction,
branching/selection and the expression typing rules as well as the typing rules for
queues are similar to those in [3, 13].

3.4 Properties of typing

Ensuring termination of type-checking with dependent types is not an easy task since
type equivalences are often derived from term equivalences. We rely on the strong nor-
malisation of System T [12] for the termination proof.

Proposition 3.1 (Termination and Confluence) The head relation −→ on global and
end-point types (i.e. G −→ G′ and T −→ T ′ for closed types in Figure 2) are strong
normalising and confluent on well-formed kindings.

The following lemma is proved by defining the weight of the equality and showing the
weight of any premise of a rule is always less than the weight of the conclusion (the
weight for a recursor needs to be extended to allow the inductive equality rule).

Proposition 3.2 (Termination for Type-Equality Checking) Assuming that proving
the predicates Γ |= P appearing in type equality derivations is decidable, then type-
equality checking of Γ ` G ≡ G′ terminates. Similarly for other types.

Proposition 3.3 (Termination for Type-Checking) Assuming that proving the predi-
cates Γ |= P appearing in kinding, equality, projection and typing derivations is decid-
able, then type-checking of annotated process P , i.e. Γ ` P B ∅ terminates.

Proof. (Outline) By the standard argument from indexed dependent types [1, 22], for
the dependent λ-applications, we do not require equality of terms (i.e. we only need the
equality of the indices by the semantic consequence judgements). Hence to eliminate
the type equality rule bTEQc, we include the type equality check into bTINIT,TREQ,TACCc
(between the global type and its projected session type), and the input rule (between the
session type and the type annotating x). Similarly for recursive agents. Since α ≡ β
(for any type α and β) terminates, these checks always terminate. ut

To ensure the termination of Γ |= P, several solutions include the restriction of pred-
icates to linear equalities over natural numbers without multiplication (or to other de-
cidable arithmetic subsets) or the restriction of indices to finite domains, cf. [22].

3.5 Type soundness and progress

The following lemma states that mergeability is sound with respect to the branching
subtyping≤. By this, we can safely replace the third clause tk∈KGk � q of the branch-
ing case from the projection definition by u{T | ∀k ∈ K.T ≤ (Gk � q)}. This allows
us to prove subject reduction by including subsumption as done in [13].

Lemma 3.4 (Soundness of mergeability) Suppose G1 � p ./ G2 � p and Γ ` Gi.
Then there exists G such that G � p = u{T | T ≤ Gi � p (i = 1, 2)} where u denotes
the maximum element with respect to ≤.

As session environments record channel states, they evolve when communications pro-
ceed. This can be formalised by introducing a notion of session environments reduction.
These rules are formalised below modulo ≡.

– {s[p̂] :!〈q̂, U〉;T, s[q̂] :?〈p̂, U〉;T ′} ⇒ {s[p̂] : T, s[q̂] : T ′}
– {s[p̂] : ⊕〈q̂, {lk : Tk}k∈K〉} ⇒ {s[p̂] : ⊕〈q̂, lj〉;Tj}
– {s[p̂] : ⊕〈q̂, lj〉;T, s[q̂] : &(p, {lk : Tk}k∈K)} ⇒ {s[p̂] : T, s[q̂] : Tj}
– ∆ ∪∆′′ ⇒ ∆′ ∪∆′′ if ∆ ⇒ ∆′.

The first rule corresponds to the reception of a value or channel by the participant q̂;
the second rule treats the case of the choice of label lj while the third rule propagate
these choices to the receiver (participant q̂). Using the above notion we can state type
preservation under reductions as follows:

Theorem 3.5 (Subject Congruence and Reduction) If Γ ` P . τ and P −→∗ P ′,
then Γ ` P ′ . τ ′ for some τ ′ such that τ ⇒∗ τ ′.

Note that communication safety [13, Theorem 5.5] and session fidelity [13, Corollary
5.6] are corollaries of the above theorem. A notable fact is, in the presence of the asyn-
chronous join primitive, we can still obtain progress in a single multiparty session as
in [13, Theorem 5.12], i.e. if a program P starts from one session, the reductions at
session channels do not get a stuck. Formally we write Γ `? P B∆ if P is typable and

with a type derivation where the session typing in the premise and the conclusion of
each prefix rule is restricted to at most a singleton. Another element which can hinder
progress is when interactions at shared channels cannot proceed. We say P is well-
linked when for each P −→∗ Q, whenever Q has an active prefix whose subject is a
(free or bound) shared channels, then it is always reducible. The proof is similar to [13,
Theorem 5.12].4

Theorem 3.6 (Progress) If P is well-linked and without any element from the runtime
syntax and Γ `? P B ∅. Then for all P −→∗ Q, either Q ≡ 0 or Q −→ R for some R.

3.6 Typing examples
Repetition example - § 1 (1) This example illustrates the repetition of a message
pattern. Let G(n) = foreach(i < n){Alice → Bob : 〈nat〉.Bob → Carol : 〈nat〉}.
Following the projection from figure 7, Alice’s end-point projection of G(n) is5:

G(n) � Alice = R end λi.λx.!〈Bob, nat〉; x n

Let Alice(n) = ā[Alice, Bob, Carol](y).(R 0 λi.λX.y!〈Bob, e[i]〉;X n) and let
∆(n) = {y : (G(n) � Alice)} and Γ = n : nat, a : 〈G〉. We can prove that Γ `
Alice(n)B∅ from [TINIT] if we have Γ ` R 0 λi.λX.y!〈Bob, e[i]〉;X nB∆(n). This,
in turn, is given by [TPREC] and [TAPP] from Γ, i : I−, X : ∆(i) ` y!〈Bob, e[i]〉;X B
∆(i+ 1) and the trivial Γ ` 0B y : end. From [TVAR], we have Γ, i : I−, X : ∆(i) `
X B ∆(i). We conclude by [TOUT] and weak head normal form equivalence [WF] of
the types ∆(i + 1) and y :!〈Bob,nat〉; (R end λj.λx.!〈Bob,nat〉; x i). Bob(n) and
Carol(n) can be similarly typed.

Sequence example - § 1 (2) The sequence example consists of three roles (when
n ≥ 2): the starter W[n] sends the first message, the final worker W[0] receives the fi-
nal message and the middle workers first receive a message and then send another to
the next worker. We write below the generic projection for participant W[p] (left) and the
end-point type that naturally types the processes (right):

R end λi.λx.
if p = W[i+ 1] then !〈W[i], nat〉; x
else if p = W[i] then ?〈W[i+ 1], nat〉; x
else x n

if p = W[n] then !〈W[n− 1], nat〉; else
if p = W[0] then ?〈W[1], nat〉;else
if p = W[i] then ?〈W[i+ 1], nat〉;!〈W[i− 1], nat〉;

In order to type this example, we need to prove the equivalence of these two types.
For any instantiation of p and n, the standard weak head normal form equivalence rule
[WF] is sufficient. Proving the equivalence for all p and n requires either (a) to bound
the domain I in which they live, and check all instantiations within this finite domain;
or (b) to prove the equivalence through a meta-logic case analysis. In case (a), type
checking terminates, while case (b) allows to easily prove strong properties about a
protocol’s implementation.

4 We believe a stronger progress property for interleaved multiparty sessions ensured by the
interaction typing in [3] can be obtained in this framework, too (since our typing system is an
extension from the communication system in [3]).

5 For readability, in the following examples, we omit from the nested conditionals the impossible
cases.

FFT example - Figure 5 We prove type-safety and deadlock-freedom for the FFT
processes. Let Pfft be the following process:

Πn.(νa)(R ā[p0..p2n−1](y).P (2n − 1, p0, xp0 , y, rp0)

λi.λY.(ā[pi+1](y).P (i+ 1, pi+1, xpi+1 , y, rpi+1) | Y) 2n − 1)

As we reasoned above, each P (n, p, xp, y, rp) is straightforwardly typable by an end-
point type which is equivalent with the one projected from the global type G from
figure 5(c). Automatically checking the equivalence for all n is not easy though: we
need to rely on the finite domain restriction using [WF,PREC]. The following theorem
says once Pfft is applied to a natural number m, its evaluation always terminates with
the answer at rp. The proof is by the progress (Theorem 3.5), noting Pfft m is typable
by a single, multiparty dependent session (except the answering channel at rp).

Theorem 3.7 (Type safety and deadlock-freedom of FFT) For all m, ∅ ` Pfft mB∅;
and if Pfft m −→∗ Q, then Q −→∗ (r0!〈0, X0〉 | . . . | r2m−1!〈0, X2m−1〉) where the
rp!〈0, Xp〉 are the actions sending the final values Xp on external channels rp.

Web Service example - Figure 9 We program and type a real-world Web service use
case: Quote Request (C-U-002) is the most complex scenario described in [19], the
public document authored by the W3C Choreography Description Language Working
Group [21]. As described in Figure 9, a buyer interacts with multiple suppliers who in
turn interact with multiple manufacturers in order to obtain quotes for some goods or
services. The Requirements from Section 3.1.2.2 of [19] include the ability to reference
a global description from within a global description to support recursive behaviour
as denoted in STEP 4(b, d): this can be achieved by parameterised multiparty session
types.

We write the specification of the usecase program modularly, starting from the first
steps of the informal description above. Here, Buyer stands for the buyer, Supp[i] for
a supplier, and Manu[j] for a manufacturer. We alias manufacturers by Manu[i][j] to ex-
press the fact that Manu[j] is connected to Supp[i] (a single Manu[j] can have multiple
aliases Manu[i′][j], see figure 9). Then, we can write global types for each of the steps.
STEP 1 is a simple multicast (type G1). For STEP 2, we write first G2(i), the nested in-
teraction loop between the i-th supplier and its manufacturers (Ji gives all Manu[j] con-
nected to Supp[i]). Then G2 can describe the subsequent action within the main loop.
For STEP 3, for simplicity we assume the preference is given by the (reverse) ordering
of I . The first choice of G3 corresponds to the two cases of STEP 3. In the innermost
branch of G3, the branches ok, retryStep3 and reject correspond to STEP 4(a), (b) and
(c) respectively, while the type variable t models STEP 4(d). We can now compose these
subprotocols together. The full global type is then G = Πi.ΠJ̃.(G1 ; µt.(G2 ; G3))
where we have i suppliers, and J̃ gives the index sets Ji of the Manu[j]s connected with
each Supp[i].

For the end-point projection, we focus on the suppliers’ case. The projections of
G1 and G2 are straightforward. For G3 � Supp[n], we use the branching injection and
mergeability theory developed in § 3.1. After the relevant application of bTEQc, we
can obtain the projection written in Figure 9. To tell the other suppliers whether the

Supp[0] oo //gg
''OOOO Manu[0][0]

Buyer oo //
xx
88rrrrr

dd

$$JJJJJJ Supp[1]ff
&&MMMMM
Manu[0][1]
Manu[2][1]

Supp[2] oo //
xx
88qqqqq
Manu[1][2]
Manu[2][2]

: :

1. A buyer requests a quote from a set of suppliers.
G1 = foreach(i < n){Buyer→ Supp[i] : 〈Quote〉}

2. All suppliers receive the request to ask their respective
manufacturers for a bill of material items. The suppliers
interact with their manufacturers to build their quotes for
the buyer.
G2(i)=foreach(j :Ji){Supp[i]→ Manu[i][j] : 〈Item〉.

Manu[i][j]→Supp[i] : 〈Quote〉}
The eventual quote is sent back to the buyer.
G2 =foreach(i :I){G2(i); Supp[i]→ Buyer : 〈Quote〉}

3. EITHER
(a) The buyer agrees with one or more of the quotes and places the order(s). OR
(b) The buyer responds to one or more of the quotes by modifying and sending them back

to the relevant suppliers.
4. EITHER

(a) The suppliers respond to a modified quote by agreeing to it and sending a confirmation
message back to the buyer. OR

(b) The supplier responds by modifying the quote and sending it back to the buyer and the
buyer goes back to STEP 3. OR

(c) The supplier responds to the buyer rejecting the modified quote. OR
(d) The quotes from the manufacturers need to be renegotiated by the supplier. Go to STEP

2.

G3 = R t λi.λy.Buyer→ Supp[i] : {
ok : end
modify :Buyer→ Supp[i] : 〈Quote〉.

Supp[i]→ Buyer : {ok : end
retryStep3 : y
reject : end}} i

G3 � Supp[n] = &〈Buyer, {
ok : end
modify : ?〈Buyer,Quote〉;⊕〈Buyer,{

ok : end
retryStep3 : y
reject : end}〉}〉

Fig. 9. The Quote Request use case (C-U-002) [19] with the corresponding global types

loop is being reiterated or if it is finished, we can simply insert the following closing
notification foreach(j ∈ I \ i){Buyer→ Supp[j] : {close :}} before each end, and
a similar retry notification (with label retryStep3) before x. Finally, each end-point
type is formed by (G1 � Supp[n] ; µx.G2 � Supp[n] ; G3 � Supp[n]). While the global
types look sequential, actual typed processes can asynchronously join a session and be
executed in parallel (e.g., at STEP 1-2, no synchronisation is needed between Supp[i]).

We have explored the impact of parameterised type structures for communications
through implementations of the above use case and of several parallel algorithms in
Java with session types [14], including the Jacobi method (with sequence and mesh
topologies) and the FFT. We observe (1) a clear coordination of the communication
behaviour of each party with the construction of the whole multiparty protocol, thus re-
ducing the programming errors and ensuring deadlock-freedom; and (2) a performance
benefit against the original binary session version, reducing the overhead of multiple
binary session establishments (see [11]). Full implementation and integration of our
theory into [4, 14] is on-going work.

4 Related work

Dependent types The first use of primitive recursive functionals for dependent types
is in Nelson’s T π [18] for the λ-calculus, which is a finite representation of T ∞ by Tait
and Martin Löf [16, 20]. T π can type functions previously untypable in ML, and the fi-
nite representability of dependent types makes it possible to have a type-reconstruction
algorithm. We also use the ideas from the DML’s dependent typing system in [1, 22]
where type dependency is only allowed for index sorts, so that type-checking can be
reduced to a constraint-solving problem over indices. Our design choice to combine
both systems gives (1) the simplest formulation of sequences of global and end-point
types and processes described by the primitive recursor; (2) a precise specification for
parameters appearing in the participants based on index sorts; and (3) a clear integra-
tion with the full session types and general recursion, whilst ensuring decidability of
type-checking (if the constraint-solving problem is decidable). From the basis of these
works, our type equivalence does not have to rely on behavioural equivalence between
processes, but only on the strongly normalising types represented by recursors. None of
these works investigate families of global specifications using dependent types.

Types and contracts for multiparty interactions The work [7] presented an exe-
cutable global processes for Web interactions based on the binary session types. Our
work provides flexible, programmable global descriptions as types, offering a progress
for parameterised multiparty session, which is not ensured in [7]. Recent formalisms
for typing multiparty interactions include [6, 9]. These works treat different aspects of
dynamic session structures. Contracts [9] can type more processes than session types,
thanks to the flexibility of process syntax for describing protocols. However, typable
processes themselves in [9] may not always satisfy the properties of session types such
as progress: it is proved later by checking whether the type meets a certain form. Hence
proving progress with contracts effectively requires an exploration of all possible paths
(interleaving, choices) of a protocol. The most complex example of [9, § 3] (a group
key agreement protocol from [2]), which is typed as π-processes with delegations, can
be specified and articulated by a single parameterised global session type as:

Πn :I.(foreach(i < n){W[n− i]→ W[n− i+ 1] : 〈nat〉};
foreach(i < n){W[n− i]→ W[n+ 1] : 〈nat〉.W[n+ 1]→ W[n− i] : 〈nat〉})

Once the end-point process conforms to this specification, we can automatically guar-
antee communication safety and progress.

Conversation Calculus [6] supports the dynamic joining and leaving of participants.
Though the formalism in § 2.2 can operationally capture such dynamic features, the
aim of the present work is not the type-abstraction of dynamic interaction patterns.
Our purpose is to capture, in a single type description, a family of protocols over arbi-
trary number of participants, to be instantiated at runtime. The parameterisation gives
freedom not possible with previous session types: once typed, a parametric process
is ensured that its arbitrary well-typed instantiations, in terms of both topologies and
process behaviours, satisfy the safety and progress properties of typed processes. Pa-
rameterisation, composition and repetition are common idioms in parallel algorithms
and choreographic/conversational interactions, all of which are uniformly treatable in
our dependent type theory. Here types offer a rigorous structuring principle which can

economically abstract rich interaction structures, including parameterised ones.
Acknowledgements. We thank the reviewers, Lasse Nielsen and Dimitris Mostrous for
their useful comments for the paper and Kohei Honda for discussions.

References
1. D. Aspinall and M. Hofmann. Advanced Topics in Types and Programming Languages,

chapter Dependent Types. MIT, 2005.
2. G. Ateniese, M. Steiner, and G. Tsudik. Authenticated group key agreement and friends.

In CCS ’98: Proceedings of the 5th ACM conference on Computer and communications
security, pages 17–26, New York, NY, USA, 1998. ACM.

3. L. Bettini et al. Global progress in dynamically interfered multiparty sessions. In CON-
CUR’08, volume 5201 of LNCS, pages 418–433, 2008.

4. K. Bhargavan, R. Corin, P.-M. Deniélou, C. Fournet, and J. Leifer. Cryptographic protocol
synthesis and verification for multiparty sessions. In CSF, pages 124–140, 2009.

5. E. Bonelli and A. Compagnoni. Multipoint session types for a distributed calculus. In
TGC’07, volume 4912 of LNCS, pages 240–256, 2008.

6. L. Caires and H. T. Vieira. Conversation types. In ESOP, volume 5502 of LNCS, pages
285–300. Springer, 2009.

7. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred programming
for web services. In ESOP’07, volume 4421 of LNCS, pages 2–17, 2007.

8. M. Carbone, N. Yoshida, and K. Honda. Asynchronous session types: Exceptions and mul-
tiparty interactions. In SFM’09, volume 5569 of LNCS, pages 187–212. Springer, 2009.

9. G. Castagna and L. Padovani. Contracts for mobile processes. In CONCUR 2009, number
5710 in LNCS, pages 211–228, 2009.

10. J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of Computation, 19(90):297–301, 1965.

11. Online Appendix. http://www.doc.ic.ac.uk/˜yoshida/dependent/.
12. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts in

Theoretical Computer Science. CUP, 1989.
13. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In

POPL’08, pages 273–284. ACM, 2008.
14. R. Hu, N. Yoshida, and K. Honda. Session-Based Distributed Programming in Java. In

ECOOP’08, volume 5142 of LNCS, pages 516–541, 2008.
15. F. T. Leighton. Introduction to parallel algorithms and architectures: arrays, trees, hyper-

cubes. Morgan Kaufmann, 1991.
16. P. Martin-Lőf. Infinite terms and a system of natural deduction. In Compositio Mathematica,

pages 93–103. Wolters-Noordhoof, 1972.
17. D. Mostrous, N. Yoshida, and K. Honda. Global principal typing in partially commutative

asynchronous sessions. In ESOP’09, volume 5502 of LNCS, pages 316–332. Springer, 2009.
18. N. Nelson. Primitive recursive functionals with dependent types. In MFPS, volume 598 of

LNCS, pages 125–143, 1991.
19. Web Services Choreography Requirements (No. 11). http://www.w3.org/TR/

ws-chor-reqs.
20. W. W. Tait. Infinitely long terms of transfinite type. In Formal Systems and Recursive

Functions, pages 177–185. North Holland, 1965.
21. Web Services Choreography Working Group. Choreography Description Language. http:

//www.w3.org/2002/ws/chor/.
22. H. Xi and F. Pfenning. Dependent types in practical programming. In POPL, pages 214–227,

1999.

