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Abstract. For many application-level distributed protocols and parallel algo-
rithms, the set of participants, the number of messages or the interaction struc-
ture are only known at run-time. This paper proposes a dependent type theory for
multiparty sessions which can statically guarantee type-safe, deadlock-free multi-
party interactions among processes whose specifications are parameterised by in-
dices. We use the primitive recursion operator from Gödel’s System T to express
a wide range of communication patterns while keeping type checking decidable.
To type individual distributed processes, a parameterised global type is projected
onto a generic generator which represents a class of all possible end-point types.
We prove the termination of the type-checking algorithm in the full system with
both multiparty session types and recursive types. We illustrate our type theory
through non-trivial programming and verification examples taken from parallel
algorithms and Web services usecases.

1 Introduction

As the momentum around communications-based computing grows, the need for ef-
fective frameworks to globally coordinate and structure the application-level interac-
tions is pressing. The structures of interactions are naturally distilled as protocols. Each
protocol describes a bare skeleton of how interactions should proceed, through e.g. se-
quencing, choices and repetitions. In the theory of multiparty session types [3, 6, 23],
such protocols can be captured as types for interactions, and type checking can statically
ensure runtime safety and fidelity to a stipulated protocol.

One of the particularly challenging aspects of protocol descriptions is the fact that
many actual communication protocols are highly parametric in the sense that the num-
ber of participants and even the interaction structure itself are not fixed at design time.
Examples include parallel algorithms such as the Fast Fourier Transform (run on any
number of communication nodes depending on resource availability) and Web services
such as business negotiation involving an arbitrary number of sellers and buyers. This
nature is important, for instance, for the programmer of a parallel algorithm where the
size or shape of the communication topology, or the number of available threads might
be altered depending on the number of available cores in the machine. Another scenario
is web services where the participant sets may be known at design time, or instanti-
ated later. This paper introduces a robust dependent type theory which can statically
ensure communication-safe, deadlock-free process interactions which follow parame-
terised multiparty protocols.

? The work is partially supported by EPSRC EP/G015635/1 and EP/F003757/1.
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We illustrate the key ideas of our proposed parametric type structures through ex-
amples. Let us first consider a simple protocol where participant Alice sends a message
of type nat to participant Bob. To develop the code for this protocol, we start by spec-
ifying the global type, which can concisely and clearly describe a high-level protocol
for multiple participants [3, 23, 30], as follows (end denotes protocol termination):

G1 = Alice→ Bob : 〈nat〉.end

The flow of communication is indicated with the symbol → and upon agreement on
G1 as a specification for Alice and Bob, each program can be implemented sepa-
rately, e.g. as y!〈100〉 (output 100 to y) by Alice and y?(z); 0 (input at y) by Bob. For
type-checking, G1 is projected into end-point session types: one from Alice’s point of
view, !〈Bob,nat〉 (output to Bob with nat-type), and another from Bob’s point of view,
?〈Alice,nat〉 (input from Alice with nat-type), against which the respective Alice
and Bob programs are checked to be compliant.

The first step towards generalised type structures for multiparty sessions is to allow
modular specifications of protocols using arbitrary compositions and repetitions of in-
teraction units (this is a standard requirement in multiparty contracts [39]). Consider the
typeG2 = Bob→ Carol : 〈nat〉.end. The designer may wish to compose sequentially
G1 and G2 together to build a larger protocol:

G3 = G1;G2 = Alice→ Bob : 〈nat〉.Bob→ Carol : 〈nat〉.end

We may also want to iterate the composed protocols n-times, which can be written by
foreach(i < n){G1;G2}, and moreover bind the number of iteration n by a dependent
product to build a family of global specifications, as in (Πn binds variable n):

Πn.foreach(i < n){G1;G2} (1)

Beyond enabling a variable number of exchanges between a fixed set of participants, the
ability to parameterise participant identities can represent a wide class of the commu-
nication topologies found in the literature. For example, the use of indexed participants
W[i] (denoting the i-th worker) allows to specify a family of session types such that
neither the number of participants nor message exchanges are known before the run-
time instantiation of the parameters. The following type and diagram both describe a
sequence of messages from W[n] to W[0] (indices decrease in our foreach, see § 2):

Πn.(foreach(i < n){W[i+ 1]→ W[i] : 〈nat〉}) n // n-1 // . . . // 0 (2)

Here we face an immediate question: what is the underlying type structure for such
parametrisation, and how can we type-check each (parametric) end-point program?
The type structure should allow the projection of a parameterised global type to an
end-point type before knowing the exact shape of the concrete topology.

In (1), corresponding end-point types are parameterised families of session types.
For example, Bobwould be typed byΠj.foreach(i < j){?〈Alice,nat〉; !〈Carol,nat〉},
which represents the product of session interactions with different lengths. The choice is
made when j is instantiated, i.e. before execution. The difficulty of the projection arises
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in (2): if n ≥ 2, there are three distinct communication patterns inhabiting this speci-
fication: the initiator W[n] (send only), the n − 1 middle workers (receive then send),
and the last worker W[0] (receive only). This is no longer the case when n = 1 (there is
only the initiator and the last worker) or when n = 0 (no communication at all). Can
we provide a decidable projection and static type-checking by which we can preserve
the main properties of the session types such as progress and communication-safety in
parameterised process topologies? The key technique proposed in this paper is a pro-
jection method from a dependent global type onto a generic end-point generator which
exactly captures the interaction structures of parameterised end-points and which can
represent the class of all possible end-point types.

The main contributions of this paper follow:

– A new expressive framework to globally specify and program a wide range of para-
metric communication protocols (§ 2). We achieve this result by combining depen-
dent type theories derived from Gödel’s System T [31] (for expressiveness) and
indexed dependent types from [40] (for parameter control), with multiparty session
types.

– Decidable and flexible projection methods based on a generic end-point generator
and mergeability of branching types, enlarging the typability (§ 3.1).

– A dependent typing system that treats the full multiparty session types integrated
with dependent types (3).

– Properties of the dependent typing system which include decidability of type-checking.
The resulting static typing system also guarantees type-safety and deadlock-freedom
(progress) for well-typed processes involved in parameterised multiparty commu-
nication protocols (§ 4).

– Applications featuring various process topologies (§ 2,§ 5), including the complex
butterfly network of the parallel FFT algorithm (§ 2.6, § 5.5). As far as we know,
this is the first time such a complex protocol is specified by a single type and that
its implementation can be automatically type-checked to prove communication-
safety and deadlock-freedom. We also extend the calculus with a new asynchronous
primitive for session initialisation and apply it to Web services usecases [36] (§ 5.6).

Section 2 gives the definition of the parameterised types and processes, with their
semantics. Section 3 describes the type system. The main properties of the type system
are presented in Section 4. Section 5 shows typing examples. Section 6 concludes and
discusses related work.

This article is a full version expanded from [42], with complete definitions and addi-
tional results with detailed proofs. It includes more examples with detailed explanations
and verifications, as well as expanded related work. Some additional material related to
implementations and programming examples can be found in [18].

2 Types and processes for parameterised multiparty sessions

2.1 Global types

Global types allow the description of the parameterised conversations of multiparty ses-
sions as a type signature. Our type syntax integrates elements from three different theo-
ries: (1) global types from [3]; (2) dependent types with primitive recursive combinators
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based on [31]; and (3) parameterised dependent types from a simplified Dependent ML
[1, 40].

i ::= i | n | i op i′ Indices
P ::= P ∧ P | i ≤ i′ Propositions
I ::= nat | {i :I | P} Index sorts
P ::= Alice | Worker | . . . Participants
p ::= p[i] | P Principals
S ::= nat | 〈G〉 Value type
U ::= S | T Payload type
K ::= {n0, ..., nk} Finite integer set

G ::= Global types
| p→ p′ : 〈U〉.G Message
| p→ p′ : {lk : Gk}k∈K Branching
| µx.G Recursion
| R G λi :I.λx.G′ Primitive recursion
| x Type variable
| G i Application
| end Null

Fig. 1. Global types

R G λi :I.λx.G′ 0 −→ G
R G λi :I.λx.G′ (n+1) −→ G′{n/i}{R G λi :I.λx.G′ n/x}

Fig. 2. Global type reduction

The grammar of global types (G,G′, ...) is given in Figure 1. Parameterised princi-
pals p, p′, q, ... can be indexed by one or more parameters, e.g. Worker[5][i+ 1]. Index
i ranges over index variables i, j, n, naturals n or arithmetic operations. A global in-
teraction can be a message exchange (p → p′ : 〈U〉.G), where p, p′ denote the sending
and receiving principals, U the payload type of the message and G the subsequent in-
teraction. Payload types U are either value types S (which contain base type nat and
session channel types 〈G〉), or end-point types T (which correspond to the behaviour of
one of the session participants and will be explained in § 3) for delegation. Branching
(p → p′ : {lk : Gk}k∈K) allows the session to follow one of the different Gk paths in
the interaction (K is a ground and finite set of integers). µx.G is a recursive type where
type variable x is guarded in the standard way (they only appear under some prefix)
[35].

The main novelty is the primitive recursive operator RG λi :I.λx.G′ from Gödel’s
System T [20] whose reduction semantics is given in Figure 2. Its parameters are a
global type G, an index variable i with range I , a type variable for recursion x and
a recursion body G′.1 When applied to an index i, its semantics corresponds to the
repetition i-times of the body G′, with the index variable i value going down by one at
each iteration, from i−1 to 0. The final behaviour is given byGwhen the index reaches
0. The index sorts comprise the set of natural numbers and its restrictions by predicates
(P, P′, ..) that are, in our case, conjunctions of inequalities. op represents first-order
indices operators (such as +, −, ∗,...). We often omit I and end in our examples.

1 We distinguish recursion and primitive recursion in order to get decidability results, see § 4.1.
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Using R, we define the product, composition, repetition and test operators as syn-
tactic sugar (seen in § 1):

Πi.G = R end λi.λx.G{i+ 1/i} foreach(i<j){G} = R end λi.λx.G{x/end} j
G1;G2= R G2 λi.λx.G1{x/end} 1 if j then G1 else G2= R G2 λi.λx.G1 j

where we assume that x is not free in G and G1, and that the leaves of the syntax trees
of G1 and G are end. These definitions rely on a special substitution of each end by
x (for example, p→ p′{l1:!〈nat〉; end, l2:end}{x/end} = p→ p′{l1:!〈nat〉; x, l2:x}).
The composition operator (which we usually write ‘;’) appends the execution of G2 to
G1; the repetition operator above repeats G j-times2; the boolean values are integers 0
(false) and 1 (true). Similar syntactic sugar is defined for local types and processes.

Note that composition and repetition do not necessarily impose sequentiality: only
the order of the asynchronous messages and the possible dependencies [23] between
receivers and subsequent senders controls the sequentiality. For example, a parallel ver-
sion of the sequence example of (§ 1 (2)) can be written in our syntax as follows:

Πn.(foreach(i < n){W[n− i]→ W[n− i− 1] : 〈nat〉}) (3)

where each worker W[j] sends asynchronously a value vj to its next worker W[j − 1]
without waiting for the message from W[j + 1] to arrive first (i.e. each choice of vj is
independent from the others).

2.2 Examples of parameterised global types

We present some examples of global types that implement some communication pat-
terns specific to typical network topologies found in classical parallel algorithms text-
books [27].

Ring - Figure 3(a) The ring pattern consists of n+1 workers (named W[0], W[1],. . . ,W[n])
that each talks to its two neighbours: the worker W[i] communicates with the worker
W[i − 1] and W[i + 1] (1 ≤ i ≤ n − 1), with the exception of W[0] and W[n] who share
a direct link. The type specifies that the first message is sent by W[0] to W[1], and the
last one is sent from W[n] back to W[0]. To ensure the presence of all three roles in the
workers of this topology, the parameter domain is set to n ≥ 2.

Multicast - Figure 3(b) The multicast session consists of Alice sending a message
to n workers W. The first message is thus sent from Alice to W[0], then to W[1], until
W[n−1]. Note that, while the index i bound by the iteration foreach(i < n){Alice→
W[n − 1 − i] : 〈nat〉} decreases from n − 1 to 0, the index n − 1 − i in W[n − 1 − i]
increases from 0 to n− 1.

2 This version of foreach uses decreasing indices. One can write an increasing version, see
§ 2.2.
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(a) Ring

0 // 1 // . . . // nee

Πn :I.(foreach(i < n){W[n− i− 1]→ W[n− i] : 〈nat〉};
W[n]→ W[0] : 〈nat〉.end)

(b) Multicast

Alice

���������

yyrrrrrrrrrrr

""EEEEEEEE

0 1 · · · n− 1

Πn :I.foreach(i < n){Alice→ W[n− 1− i] : 〈nat〉}; end

(c) Mesh
W[n][m] //

��

//

��

. . . //

��//

��

//

��

. . . //

��
:

��

:

��

. . . :

��// // . . . // W[0][0]

Πn.Πm.

foreach(i < n){
foreach(j < m){
W[i+ 1][j + 1]→ W[i][j + 1] : 〈nat〉.
W[i+ 1][j + 1]→ W[i+ 1][j] : 〈nat〉};

W[i+ 1][0]→ W[i][0] : 〈nat〉};
foreach(k < m){W[0][k + 1]→ W[0][k] : 〈nat〉}

Fig. 3. Parameterised multiparty protocol on a mesh topology

Mesh - Figure 3(c) The session presented in Figure 3(c) describes a particular protocol
over a standard mesh topology [27]. In this two dimensional array of workers W, each
worker receives messages from his left and top neighbours (if they exist) before send-
ing messages to his right and bottom (if they exist). Our session takes two parameters n
and m which represent the number of rows and the number of columns. Then we have
two iterators that repeat W[i + 1][j + 1] → W[i][j + 1] : 〈nat〉 and W[i + 1][j + 1] →
W[i+ 1][j] : 〈nat〉 for all i and j. The communication flow goes from the top-left worker
W[n][m] and converges towards the bottom-right worker W[0][0] in n+m steps of asyn-
chronous message exchanges.

2.3 Process syntax

The syntax of expressions and processes is given in Figure 4, extended from [3], adding
the primitive recursion operator and a new request process. Identifiers u can be variables
x or channel names a. Values v are either channels a or natural numbers n. Expressions
e are built out of indices i, values v, variables x, session end points (for delegation) and
operations over expressions. Participants p can include the indices which are substi-
tuted by values and evaluated during reductions (see the next subsection). In processes,
sessions are asynchronously initiated by ū[p0, .., pn](y).P . It spawns, for each of the
{p0, .., pn}, a request that is accepted by the participant through u[p](y).P . Messages
are sent by c!〈p, e〉;P to the participant p and received by c?(q, x);P from the partici-
pant q. Selection c⊕ 〈p, l〉;P , and branching c&(q, {lk : Pk}k∈K), allow a participant
to choose a branch from those supported by another. Standard language constructs in-
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c ::= y | s[p] Channels

u ::= x | a Identifiers

v ::= a | n Values

p̂, q̂ ::= p̂[n] | P Principal values

m ::= (q̂,p̂,v) | (q̂,p̂,s[p̂’]) | (q̂,p̂,l) Messages in transit

h ::= ε |m · h Queue types
e ::= i | v | x | s[p] | e op e′ Expressions

P ::= Processes
| ū[p0, .., pn](y).P Init
| u[p](y).P Accept
| ā[p̂] : s Request
| c!〈p, e〉;P Value sending
| c?(p, x);P Value reception
| c⊕ 〈p, l〉;P Selection
| c&(p, {lk : Pk}k∈K) Branching
| (νa)P Shared channel restriction

| µX.P Recursion
| 0 Inaction
| P | Q Parallel
| R P λi.λX.Q Primitive recursion
| X Process variable
| (P i) Application
| (νs)P Session restriction
| s:h Queues

Fig. 4. Syntax for user-defined and run-time processes

clude recursive processes µX.P , restriction (νa)P and (νs)P , and parallel composition
P | Q. The primitive recursion operator R P λi.λX.Q takes as parameters a process
P , a function taking an index parameter i and a recursion variable X . A queue s : h
stores the asynchronous messages in transit.

An annotated P is the result of annotating P ’s bound names and variables by their
types or ranges as in e.g. (νa : 〈G〉)Q or s?(p, x :U);Q or R Q λi : I.λX.Q′. We omit
the annotations unless needed. We often omit 0 and the participant p from the session
primitives. Requests, session restriction and channel queues appear only at runtime, as
explained below.

2.4 Semantics

The semantics is defined by the reduction relation −→ presented in Figure 5. The stan-
dard definition of evaluation contexts (that allow e.g. W[3 + 1] to be reduced to W[4])
is in Figure 6. The metavariables p̂, q̂, .. range over principal values (where all indices
have been evaluated). Rules [ZeroR] and [SuccR] are standard and identical to their
global type counterparts. Rule [Init] describes the initialisation of a session by its first
participant ā[p0, .., pn](y0).P0. It spawns asynchronous requests ā[p̂k] : s that allow
delayed acceptance by the other session participants (rule [Join]). After the connection,
the participants share the private session name s, and the queue associated to s (which
is initially empty by rule [Init]). The variables yp in each participant p are then replaced
with the corresponding session channel, s[p]. An equivalent, but symmetric, version of
[Init] (where any participant can start the session, not only p0) can be also used. Rule
[Init] would then be replaced by the following:

ā[p̂0, .., p̂n] −→ (νs)(s : ε | ā[p̂0] : s | ... | ā[p̂n] : s)

The rest of the session reductions are standard [3, 23]. The output rules [Send] and [La-
bel] push values, channels and labels into the queue of the session s. Rules [Recv] and
[Branch] perform the complementary operations. Note that these operations check that
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R P λi.λX.Q 0 −→ P [ZeroR]

R P λi.λX.Q n + 1 −→ Q{n/i}{R P λi.λX.Q n/X} [SuccR]

ā[p̂0, .., p̂n](y).P −→ (νs)(P{s[p̂0]/y} | s : ∅ | ā[p̂1] : s | ... | ā[p̂n] : s) [Init]

ā[p̂k] : s | a[p̂k](yk).Pk −→ Pk{s[p̂k]/yk} [Join]

s[p̂]!〈q̂, v〉;P | s : h −→ P | s : h · (p̂, q̂, v) [Send]

s[p̂]⊕ 〈q̂, l〉;P | s : h −→ P | s : h · (p̂, q̂, l) [Label]

s[p̂]?(q̂, x);P | s : (q̂, p̂, v) · h −→ P{v/x} | s : h [Recv]

s[p̂]&(q̂, {lk : Pk}k∈K) | s : (q̂, p̂, lk0) · h −→ Pk0 | s : h (k0 ∈ K) [Branch]

P −→ P ′ ⇒ P e −→ P ′ e P −→ P ′ ⇒ (νr)P −→ (νr)P ′ [App,Scop]

P −→ P ′ ⇒ P | Q −→ P ′ | Q [Par]

P ≡ P ′ and P ′ −→ Q′ and Q ≡ Q′ ⇒ P −→ Q [Str]

e −→ e′ ⇒ E [e] −→ E [e′] [Context]

Fig. 5. Reduction rules

E[ , . . . , ] ::= Evaluation contexts
| op e | v op Expression
| (P ) Application
| ā[p̂1, .., p̂n, , pn+1, .., pm](y).P Request
| a[ ](y).P Accept
| s[ ]!〈p, e〉;P | s[p̂]!〈 , e〉;P | s[p̂]!〈q̂, 〉;P Send
| s[ ]⊕ 〈p, l〉;P | s[p̂]⊕ 〈 , l〉;P Selection
| s[ ]?(p, x);P | s[p̂]?( , x);P Receive
| s[ ]&(p, {lk : Pk}k∈K) | s[p̂]&( , {lk : Pk}k∈K) Branching

Fig. 6. Evaluation contexts

the sender and receiver match. Processes are considered modulo structural equivalence,
denoted by≡ (in particular, we note µX.P ≡ P{µX.P/X}), whose definition is found
in Figure 7. Besides the standard rules [29], we have a rule for rearranging messages
when the senders or the receivers are different, and a rule for the garbage-collection of
unused and empty queues.

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) (νrr′) P ≡ (νr′r) P

(νr) 0 ≡ 0 (νs) s : ∅ ≡ 0 (νr) P | Q ≡ (νr) (P | Q) if r /∈ fn(Q)

s : (q̂, p̂, z) · (q̂′, p̂′, z′) · h ≡ s : (q̂′, p̂′, z′) · (q̂, p̂, z) · h if p̂ 6= p̂′ or q̂ 6= q̂′

µX.P ≡ P{µX.P/X}

r ranges over a, s. z ranges over v, s[p̂] and l.

Fig. 7. Structural equivalence
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2.5 Processes for parameterised multiparty protocols

We give here the processes corresponding to the interactions described in § 1 and § 2.1,
then introduce a parallel implementation of the Fast Fourier Transform algorithm. There
are various ways to implement end-point processes from a single global type, and we
show one instance for each example below.

Repetition A concrete definition for the protocol (1) in § 1 is:

Πn.(R end λi.λx.Alice→ Bob : 〈nat〉.Bob→ Carol : 〈nat〉.x n)

Then Alice and Bob can be implemented with recursors as follows (we abbreviate
Alice by a, Bob by b and Carol by c).

Alice(n) = ā[a, b, c](y).(R 0 λi.λX.y!〈b, e[i]〉;X n)
Bob(n) = a[b](y).(R 0 λi.λX.y?(a, z); y!〈c, z〉;X n)
Carol(n) = a[c](y).(R 0 λi.λX.y?(b, z);X n)

Alice repeatedly sends a message e[i] to Bob n-times. Then n can be bound by λ-
abstraction, allowing the user to dynamically assign the number of the repetitions.

λn.((νa)(Alice(n) | Bob(n) | Carol(n))) 1000

Sequence from § 1 (2) The process below generates all participants using a recursor:

Πn.(if n = 0 then 0
else (R (ā[W[n], .., W[0]](y).y!〈W[n− 1], v〉; 0

| a[W[0]](y).y?(W[1], z); 0)

λi.λX.(a[W[i+ 1]](y).y?(W[i+ 2], z); y!〈W[i], z〉; 0 |X) n− 1)

When n = 0 no message is exchanged. In the other case, the recursor creates the n− 1
workers through the main loop and finishes by spawning the initial and final ones.

As an illustration of the semantics, we show the reduction of the above process for
n = 2. After several applications of the [SuccR] and [ZeroR] rules, we have:

ā[W[2], W[1], W[0]](y).y!〈W[1], v〉; 0 | a[W[0]](y).y?(W[1], z); 0 | a[W[1]](y).y?(W[2], z); y!〈W[0], z〉; 0

which, with [Init], [Join], [Send], [Recv], gives:

−→ (νs)(s : ε | s[W[2]]!〈W[1], v〉; 0 | ā[W[1]] : s | ā[W[0]] : s |
a[W[0]](y).y?(W[1], z); 0 | a[W[1]](y).y?(W[2], z); y!〈W[0], z〉; 0)

−→ (νs)(s : ε | s[W[2]]!〈W[1], v〉; 0 | ā[W[1]] : s |
s[W[0]]?(W[1], z); 0 | a[W[1]](y).y?(W[2], z); y!〈W[0], z〉; 0)

−→∗ (νs)(s : ∅ | s[W[2]]!〈W[1], v〉; 0 | s[W[0]]?(W[1], z); 0 | s[W[1]]?(W[2], z); s[W[1]]!〈W[0], z〉; 0)
−→∗ (νs)(s : ∅ | s[W[0]]?(W[1], z); 0 | s[W[1]]!〈W[0], v〉; 0)
−→∗ ≡ 0
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Ring - Figure 3(a) The process that generates all the roles using a recursor is as fol-
lows:

Πn.(R ā[W[0], ..., W[n]](y).y!〈W[1], v〉; y?(W[n], z);P

a[W[n]](y).y?(W[n− 1], z); y!〈W[0], z〉;Q
λi.λX.(a[W[i+ 1]](y).y?(W[i], z); y!〈W[i+ 2], z〉; |X) n− 1)

We take the range of n to be n ≥ 2.

Mesh - Figure 3 (c) In this example, when n and m are bigger than 2, there are 9
distinct patterns of communication.

We write below these processes. We assume the existence of a function f(z1, z2, i, j)
which computes from z1 and z2 the value to be transmitted to W[i][j]. We then desig-
nates the processes based on their position in the mesh. The initiator W[n][m] is in the
top-left corner of the mesh and is implemented by Ptop-left. The workers that are living
in the other corners are implemented by Ptop-right for W[n][0], Pbottom-left for W[0][m] and
Pbottom-right for the final worker W[0][0]. The processes Ptop, Pleft, Pbottom and Pright re-
spectively implement the workers from the top row, the leftmost column, the bottom
row and the rightmost column. The workers that are in the central part of the mesh are
played by the Pcenter(i, j) processes.

Ptop-left(z1, z2, n,m) = ā[W[n][m], ..., W[0][0]](y).y!〈W[n− 1][m], f(z1, z2, n− 1,m)〉;
y!〈W[n][m− 1], f(z1, z2, n,m− 1)〉; 0

Ptop-right(z2, n) = a[W[n][0]](y).y?(W[n][1], z1); y!〈W[n− 1][0], f(z1, z2, n− 1, 0)〉; 0
Pbottom-left(z1,m) = a[W[0][m]](y).y?(W[1][m], z2); y!〈W[0][m− 1], f(z1, z2, 0,m− 1)〉; 0
Pbottom-right(m) = a[W[0][0]](y).y?(W[1][0], z1); y?(W[0][1], z2); 0

Ptop(z2, n, k) = a[W[n][k + 1]](y).y?(W[n][k + 2], z1);
y!〈W[n− 1][k + 1], f(z1, z2, n− 1, k + 1)〉; y!〈W[n][k], f(z1, z2, n, k)〉; 0

Pbottom(k) = a[W[0][k + 1]](y).y?(W[1][k + 1], z1); y?(W[0][k + 2], z2);
y!〈W[0][k], f(z1, z2, 0, k)〉; 0

Pleft(z1,m, i) = a[W[i+ 1][m]](y).y?(W[i+ 2][m], z2); y!〈W[i][m], f(z1, z2, i,m)〉;
y!〈W[i+ 1][m− 1], f(z1, z2, i+ 1,m− 1)〉;

Pright(i) = a[W[i+ 1][0]](y).y?(W[i+ 2][0], z1); y?(W[i+ 1][1], z2);
y!〈W[i][0], f(z1, z2, i, 0)〉; 0

Pcenter(i, j) = a[W[i+ 1][j + 1]](y).y?(W[i+ 2][j + 1], z1); y?(W[i+ 1][j + 2], z2);
y!〈W[i][j + 1], f(z1, z2, i, j + 1)〉; y!〈W[i+ 1][j], f(z1, z2, i+ 1, j)〉; 0

The complete implementation can be generated using the following process:

Πn.Πm.(R (R Ptop-left(z1, z2, n,m)|Pbottom-right(m)|Ptop-right(z2, n)|Pbottom-left(z1,m))
λk.λZ.(Ptop(z2, n, k)|Pbottom(k)|Z)

m− 1)
λi.λX.(R Pleft(z1,m, i)|Pright(i)|X

λj.λY.(Pcenter(i, j)|Y )
m− 1)

n− 1)

10



(a) Butterfly pattern
xk−N/2

$$HHHHHH
// Xk−N/2 = xk−N/2+

xk ∗ ωk−N/2N

xk

::vvvvvvv
// Xk = xk−N/2 + xk ∗ ωkN

(b) FFT diagram
x0 //'&%$ !"#0

  AAAAAA
1 //'&%$ !"#0

��0
000000000

2 //'&%$ !"#0

��(
(((((((((((((((((((

3 //'&%$ !"#0
X0 //

x4 //'&%$ !"#1

>>}}}}}} //'&%$ !"#1

��0
000000000 //'&%$ !"#1

��(
(((((((((((((((((((
//'&%$ !"#1

X1 //

x2 //'&%$ !"#2

  AAAAAA //'&%$ !"#2

FF���������� //'&%$ !"#2

��(
(((((((((((((((((((
//'&%$ !"#2

X2 //

x6 //'&%$ !"#3

>>}}}}}} //'&%$ !"#3

FF���������� //'&%$ !"#3

��(
(((((((((((((((((((
//'&%$ !"#3

X3 //

x1 //'&%$ !"#4

  AAAAAA //'&%$ !"#4

��0
000000000 //'&%$ !"#4

KK��������������������
//'&%$ !"#4

X4 //

x5 //'&%$ !"#5

>>}}}}}} //'&%$ !"#5

��0
000000000 //'&%$ !"#5

KK��������������������
//'&%$ !"#5

X5 //

x3 //'&%$ !"#6

  AAAAAA //'&%$ !"#6

FF���������� //'&%$ !"#6

KK��������������������
//'&%$ !"#6

X6 //

x7 //'&%$ !"#7

>>}}}}}} //'&%$ !"#7

FF���������� //'&%$ !"#7

KK��������������������
//'&%$ !"#7

X7 //

(c) Global type G =

Πn.
foreach(i < 2n){i→ i : 〈nat〉};
foreach(l < n){
foreach(i < 2l){
foreach(j < 2n−l−1){
foreach(k < 2){
foreach(k′ < 2){
i ∗ 2n−l + k ∗ 2n−l−1 + j

→ i ∗ 2n−l + k′ ∗ 2n−l−1 + j : 〈nat〉}}}}}

(d) Processes P (n, p, xp, y, rp) =

y!〈p, xp〉;
foreach(l < n){

if bitn−l(p) = 0

then y?(p, x); y!〈p + 2n−l−1, x〉;
y?(p + 2n−l−1, z); y!〈p, x+ z ω

g(l,p)
N 〉;

else y?(p, x); y!〈p− 2n−l−1, x〉;
y?(p− 2n−l−1, z); y!〈p, z + xω

g(l,p)
N 〉; };

y?(p, x); rp!〈0, x〉; 0

where g(l, p) = p mod 2l

Fig. 8. Fast Fourier Transform on a butterfly network topology

2.6 Fast Fourier Transform

We describe a parallel implementation of the Fast Fourier Transform algorithm (more
precisely the radix-2 variant of the Cooley-Tukey algorithm [14]). We start by a quick
reminder of the discrete fourier transform definition, followed by the description of an
FFT algorithm that implements it over a butterfly network. We then give the corre-
sponding global session type. From the diagram in (b) and the session type from (c), it
is finally straightforward to implement the FFT as simple interacting processes.

The Discrete Fourier Transform The goal of the FFT is to compute the Discrete
Fourier Transform (DFT) of a vector of complex numbers. Assume the input con-
sists in N complex numbers ~x = x0, . . . , xN−1 that can be interpreted as the co-
efficients of a polynomial f(y) =

∑N−1
j=0 xj y

j . The DFT transforms ~x in a vector
~X = X0, . . . , XN−1 defined by:

Xk = f(ωkN )

with ωkN = eı
2kπ
N one of the n-th primitive roots of unity. The DFT can be seen as

a polynomial interpolation on the primitive roots of unity or as the application of the
square matrix (ωijN )i,j to the vector ~x.
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FFT and the butterfly network We present the radix-2 variant of the Cooley-Tukey
algorithm [14]. uses a divide-and-conquer strategy based on the following equation (we
use the fact that ω2k

N = ωkN/2):

Xk =
∑N−1
j=0 xj ω

jk
N

=
∑N/2−1
j=0 x2j ω

jk
N/2 + ωkN

∑N/2−1
j=0 x2j+1 ω

jk
N/2

Each of the two separate sums are DFT of half of the original vector members, separated
into even and odd. Recursive calls can then divide the input set further based on the
value of the next binary bits. The good complexity of this FFT algorithm comes from
the lower periodicity of ωN/2: we have ωjkN/2 = ω

j(k−N/2)
N/2 and thus computations ofXk

and Xk−N/2 only differ by the multiplicative factor affecting one of the two recursive
calls.

Figure 8(a) illustrates this recursive principle, called butterfly, where two different
intermediary values can be computed in constant time from the results of the same two
recursive calls.

The complete algorithm is illustrated by the diagram from Figure 8(b). It features
the application of the FFT on a network of N = 23 machines on an hypercube network
computing the discrete Fourier transform of vector x0, . . . , x7. Each row represents
a single machine at each step of the algorithm. Each edge represents a value sent to
another machine. The dotted edges represent the particular messages that a machine
sends to itself to remember a value for the next step. Each machine is successively
involved in a butterfly with a machine whose number differs by only one bit. Note that
the recursive partition over the value of a different bit at each step requires a particular
bit-reversed ordering of the input vector: the machine number p initially receives xp
where p denotes the bit-reversal of p.

Global Types Figure 8(c) gives the global session type corresponding to the execu-
tion of the FFT. The size of the network is specified by the index parameter n: for
a given n, 2n machines compute the DFT of a vector of size 2n. The first iterator
R (. . .) λk.λu.k → k : 〈nat〉.u concerns the initialisation: each of the machines sends
the xp value to themselves. Then we have an iteration over variable l for the n succes-
sive steps of the algorithm. The iterators over variables i, j work in a more complex
way: at each step, the algorithm applies the butterfly pattern between pairs of machines
whose numbers differ by only one bit (at step l, bit number n − l is concerned). The
iterators over variables i and j thus generate all the values of the other bits: for each l,
i ∗ 2n−l + j and i ∗ 2n−l + 2n−l−1 + j range over all pairs of integers from 2n − 1
to 0 that differ on the (n − l)th bit. The four repeated messages within the loops then
correspond exactly to the four edges of the butterfly pattern.

Processes The processes that are run on each machine to execute the FFT algorithm
are presented in Figure 8(d). When p is the machine number, xp the initial value, and y
the session channel, the machine starts by sending xp to itself: y!〈xp〉;. The main loop
corresponds to the iteration over the n steps of the algorithm. At step l, each machine
is involved in a butterfly corresponding to bit number n − l, i.e. whose number differs
on the (n − l)th bit. In the process, we thus distinguish the two cases corresponding

12



to each value of the (n − l)th bit (test on bitn−l(p)). In the two branches, we receive
the previously computed value y?(x); .., then we send to and receive from the other
machine (of number p + 2n−l−1 or p − 2n−l−1, i.e. whose (n − l)th bit was flipped).
We finally compute the new value and send it to ourselves: respectively by y!〈x +
z ω

g(l,p)
N 〉;X or y!〈z+xω

g(l,p)
N 〉;X . Note that the two branches do not present the same

order of send and receive as the global session type specifies that the diagonal up arrow
of the butterfly comes first. At the end of the algorithm, the calculated values are sent
to some external channels: rp!〈0, x〉.

3 Typing parameterised multiparty interactions

This section introduces the type system, by which we can statically type parameterised
global specifications.

3.1 End-point types and end-point projections

T ::= End-point types
| !〈p, U〉;T Output
| ?〈p, U〉;T Input
| ⊕〈p, {lk : Tk}k∈K〉 Selection
| &〈p, {lk : Tk}k∈K〉 Branching

| µx.T Recursion
| R T λi :I.λx.T ′ Primitive recursion
| x Type variable
| T i Application
| end End

Fig. 9. End-point types

A global type is projected to an end-point type according to each participant’s view-
point. The syntax of end-point types is given in Figure 9. Output expresses the sending
to p of a value or channel of type U , followed by the interactions T . Selection rep-
resents the transmission to p of a label lk chosen in {lk}k∈K followed by Tk. Input
and branching are their dual counterparts. The other types are similar to their global
versions.

End-point projection: a generic projection The relation between end-point types
and global types is formalised by the projection relation. Since the actual participant
characteristics might only be determined at runtime, we cannot straightforwardly use
the definition from [3, 23]. Instead, we rely on the expressive power of the primitive
recursive operator: a generic end-point projection ofG onto q, writtenG � q, represents
the family of all the possible end-point types that a principal q can satisfy at run-time.

The general endpoint generator is defined in Figure 10 using the derived construct
if then else . The projection p → p′ : 〈U〉.G � q leads to a case analysis: if the
participant q is equal to p, then the end-point type of q is an output of type U to p′;
if participant q is p′ then q inputs U from p′; else we skip the prefix. The first case
corresponds to the possibility for the sender and receiver to be identical. Projecting the
branching global type is similarly defined, but for the operator t explained below. For
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p→ p′ : 〈U〉.G� q = if q=p=p’ then !〈p, U〉; ?〈p, U〉;G � q
else if q=p then !〈p′, U〉;G � q
else if q=p’ then ?〈p, U〉;G � q
else G� q

p→ p′ : {lk : Gk}k∈K� q = if q=p then ⊕〈p′, {lk : Gk � q}k∈K〉
else if q=p’ then &〈p, {lk : Gk � q}k∈K〉
else tk∈KGk � q

R G λi :I.λx.G′� q = R G � q λi :I.λx.G′ � q
(µx.G)� p = µx.G � p

x� p = x
(G i) � p = (G� p) i
end � p = end

Fig. 10. Projection of global types to end-point types

the other cases (as well as for our derived operators), the projection is homomorphic. We
also identify µx.x as end (µx.x is generated when a target participant is not included
under the recursion, for example, p → p′ : 〈U〉.µx.q → q′ : 〈U〉.x � p =!〈p, U〉;µx.x)
and µx.T as T if x 6∈ ftv(T ).

Mergeability of branching types We first recall the example from [23], which ex-
plains that naı̈ve branching projection leads to inconsistent end-point types.

W[0]→ W[1] : {ok : W[1]→ W[2] : 〈bool〉, quit : W[1]→ W[2] : 〈nat〉}

We cannot project the above type onto W[2] because, while the branches behave differ-
ently, W[0] makes a choice without informing W[2] who thus cannot know the type of the
expected value. A solution is to define projection only when the branches are identical,
i.e. we change the above nat to bool in our example above.

In our framework, this restriction is too strong since each branch may contain dif-
ferent parametric interaction patterns. To overcome this, below we propose a method
called mergeability of branching types.3

Definition 3.1 (Mergeability) The mergeability relation ./ is the smallest congruence
relation over end-point types such that:

∀i ∈ (I ∩ J).Ti ./ T ′j ∀i ∈ (I \ J) ∪ (J \ I).li 6= lj

&〈p, {lk : Ti}k∈K〉 ./ &〈p, {lj : T ′j}j∈J〉

When T1 ./ T2 is defined, we define the operation t as a partial commutative operator
over two types such that T t T = T for all types and that:

&〈p, {lk : Tk}k∈K〉 t&〈p, {lj : T ′j}j∈J〉 =
&〈p, {lk : Tk t T ′k}k∈K∩J ∪ {lk : Tk}k∈K\J ∪ {lj : T ′j}j∈J\K〉

and homomorphic for other types (i.e. C[T1]t C[T2] = C[T1 t T2] where C is a context
for local types).

3 The idea of mergeability is introduced informally in the tutorial paper [12].
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The mergeability relation states that two types are identical up to their branching types
where only branches with distinct labels are allowed to be different. By this extended
typing condition, we can modify our previous global type example to add ok and quit
labels to notify W[2]. We get:

W[0]→ W[1] : {ok : W[1]→ W[2] : {ok : W[1]→ W[2]〈bool〉 },
quit : W[1]→ W[2] : {quit : W[1]→ W[2]〈nat〉}}}

Then W[2] can have the type &〈W[1], {ok : 〈W[1],bool〉, quit : 〈W[1],nat〉}〉which could
not be obtained through the original projection rule in [3, 23]. This projection is sound
up to branching subtyping (it will be proved in Lemma 4.7 later).

3.2 Type system (1): environments, judgements and kinding
This subsection introduces the environments and kinding systems. Because free indices
appear both in terms (e.g. participants in session initialisation) and in types, the formal
definition of what constitutes a valid term and a valid type are interdependent and both
in turn require a careful definition of a valid global type.

Environments One of the main differences with previous session type systems is that
session environments ∆ can contain dependent process types. The grammar of environ-
ments, process types and kinds are given below.

∆ ::= ∅ |∆, c:T Γ ::= ∅ | Γ, P | Γ, u : S | Γ, i : I | Γ,X : τ τ ::= ∆ |Πi :I.τ

∆ is the session environment which associates channels to session types. Γ is the
standard environment which contains predicates and which associates variables to sort
types, service names to global types, indices to index sets and process variables to ses-
sion types. τ is a process type which is either a session environment or a dependent
type. We write Γ, u : S only if u 6∈ dom(Γ ) where dom(Γ ) denotes the domain of Γ .
We use the same convention for others.

Γ ` Env well-formed environments
Γ ` κ well-formed kindings
Γ ` α I κ well-formed types
Γ ` α ≡ β type equivalence

Γ ` α ≈ β type isomorphism
Γ ` eB U expression
Γ ` pB Up participant
Γ ` P B τ processes

Fig. 11. Judgements (α, β, ... range over any types)

Judgements Our type system uses the judgements listed in Figure 11.
Following [40], we assume given in the typing rules two semantically defined judge-

ments: Γ |= P (predicate P is a consequence of Γ ) and Γ |= i : I (i : I follows from
the assumptions of Γ ).

We write Γ ` J for arbitrary judgements and write Γ ` J, J ′ to stand for both
Γ ` J and Γ ` J ′. In addition, we use two additional judgements for the runtime
systems (one for queues Γ `{s} s : h . ∆ and one for runtime processes Γ `Σ P . ∆)
which are similar with those in [3] and listed in the Appendix. We often omit Σ from
Γ `Σ P . ∆ if it is not important.
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Kinding The definition of kinds is given below:

κ ::= Πj : I.κ | Type Up ::= nat | Πi :I.Up

We inductively define well-formed types using a kind system [18]. The judgement Γ `
α I κmeans type U has kind κ. Kinds include proper types for global, value, principal,
end-point and process types (denoted by Type), and the kind of type families, written
by Πi :I.κ. The kinding rules are defined in Figure 14 and Figure 13 in this section and
Figure 20 in the Appendix. The environment well-formedness rules are in Figure 12.

The kinding rules for types, value types, principals, index sets and process types
are listed in Figure 13. In bKMARc in the value types, ftv(G) denotes a set of free type
variables in G. The condition ftv(G) = ∅ means that shared channel types are always
closed. Rule bKINDEXc forms the index sort which contains only natural number (by
the condition 0 ≤ i). Other rules in Figure 13 and the rules in Figure 12 are standard.

We next explain the global type kinding rules from Figure 14. The local type kinding
in Figure 20 in Appendix is similar.

Rule bKIOc states that if both participants have nat-type, that the carried type U and
the rest of the global type G′ are kinded by Type, and that U does not contain any free
type variables, then the resulting type is well-formed. This prevents these types from
being dependent. The rule bKBRAc is similar, while rules bKREC,KTVARc are standard.

Dependent types are introduced when kinding recursors in bKRCRc. In bKRCRc,
we need an updated index range for i in the premise Γ, i : I− ` G′ I Type since
the index substitution uses the predecessor of i. We define I− using the abbreviation
[0..j] = {i :nat | i ≤ j}:

[0..0]− = ∅ and [0..i]− = [0..i− 1]

Note that the second argument (λi :I−.λx.G′) is closed (i.e. it does not contain free
type variables). We use bKAPPc for both index applications. Note that bKAPPc checks
wether the argument i satisfies the index set I . Other rules are similarly understood
including those for process types (noting ∆ is a well-formed environment if it only
contains types T of kind Type).

−
bENULc

∅ ` Env

Γ |= P
bEPREc

Γ, P ` Env

Γ ` S I Type u 6∈ dom(Γ )
bESORTc

Γ, u :S ` Env

Γ ` I i 6∈ dom(Γ )
bEINDEXc

Γ, i : I ` Env

Γ ` τ I κ X 6∈ dom(Γ )
bVENVc

Γ,X : τ ` Env

Fig. 12. Well-formed environments

3.3 Type system (2): type equivalence

Since our types include dependent types and recursors, we need a notion of type equiv-
alence. We extend the standard method of [1, §2] with the recursor. The rules are found
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Type

Γ ` Env
bKBASEc

Γ ` Type

Γ, i :I ` κ
bKSEQc

Γ ` Πi :I.κ

Value Types

Γ ` G I Type ftv(G) = ∅
bKMARc

Γ ` 〈G〉 I Type

Γ ` Env
bKNATc

Γ ` nat I Type

Γ ` Env
bKBOOLc

Γ ` bool I Type

Principals

Γ ` Env
bKPNATc

Γ ` nat I Type

Γ, i :I ` Up I κ
bKPRODc

Γ ` Up I Πi :I.κ

Index Sets

Γ ` Env
bKINATc

Γ ` nat

Γ, i :I |= P ∧ 0 ≤ i
bKIINDEXc

Γ ` {i :I | P ∧ 0 ≤ i}

Process Types

Γ ` Env
bKPNULc

Γ ` ∅ I Type

Γ ` ∆ I Type Γ ` T I Type
bKPCHc

Γ ` ∆, c : T I Type

Γ, i : I ` τ I κ
bKPPRODc

Γ ` Πi :I.τ I Πi :I.κ

Fig. 13. Kinding system for types, values, principals, index sets and process types

Γ ` pB nat Γ ` p′ B nat Γ ` G′ I Type Γ ` U I Type
bKIOc

Γ ` p→ p
′ : 〈U〉.G′ I Type

Γ ` pB nat, Γ ` p
′ B nat ∀k ∈ K, Γ ` Gk I Type

bKBRAc
Γ ` p→ p

′ : {lk : Gk}k∈K I Type

Γ ` G I κ{0/j} Γ, i : I− ` G′ I κ{i+ 1/j}
bKRCRc

Γ ` R G λi :I−.λx.G′ I Πj :I.κ

Γ ` G I Type
bKRECc

Γ ` µx.G I Type

Γ ` κ
bKVARc

Γ ` x I κ

Γ ` Env
bKENDc

Γ ` end I Type

Γ ` G I Πi :I.κ Γ |= i : I
bKAPPc

Γ ` G i I κ{i/i}

Fig. 14. Kinding rules for global types
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in Figure 15 and applied following the order appeared in Figure 15. For example,
bWFBASEc has a higher priority than bWFAPPc, and bWFRECc has a higher priority than
bWFRECFc. We only define the rules for G. The same set of rules can be applied to T
and τ .

Rule bWFBASEc is the main rule defining G1 ≡ G2 and relies on the existence of a
common weak head normal form for the two types.

Rules bWFIOc and bWFBRAc say if subterms are equated and each type satisfies the
kinding rule, then the resulting global types are equated.

Rule bWFPRECc says the two recursive types are equated only if the bodies are
equated. Note that we do not check whether unfolded recursive types are equated or
not.

Rule bWFRVARc and bWFENDc are the base cases.
Two recursors are equated if either (1) each subgraph is equated by≡ (rule bWFRECc),

or if not, (2) they reduce to the same normal forms when applied to a finite num-
ber of indices (rule bWFRECFc). Note that rule bWFRECc has a higher priority than
rule bWFRECFc (since it is more efficient without reducing recursors). If R G1 λi :
I.λx.G′1 ≡wf R G2 λi : I.λx.G′2 is derived by applying bWFRECc under finite I , then
the same equation can be derived using bWFRECFc. Thus, when the index range is finite,
bWFRECc subsumes bWFRECFc. On the other hand, bWFRECc can be used for infinite
index sets.

Similarly, bWFBASEc has a higher priority than bWFAPPc. This ensures that the
premise of bWFRECFc always matches with bWFBASEc, not with bWFAPPc (it avoids the
infinite application of rules bWFRECFc and bWFAPPc). A use of these rules are given in
the examples later. Other rules are standard.

Type equivalence with meta-logic reasoning The set of rules in Figure 15 are de-
signed with algorithmic checking in mind (see § 4.2). In some examples, in order to
type processes with types that are not syntactically close, it is interesting to extend the
equivalence classes on types, at the price of the decidability of type checking.

We propose in Figure 16 an additional equivalence rule that removes from rule
bWFRECFc the finiteness assumption on I . It allows to prove the equivalence of two
recursor-based types if it is possible to prove meta-logically that they are extensionally
equivalent. This technique can be used to type several of our examples (see § 5).

3.4 Typing processes

We explain here (Figure 17) the typing rules for the initial processes. Rules [TNAT]
and [TVAR] are standard. Judgement Γ ` Env (defined in Figure 12) in the premise
means that Γ is well-formed. For participants, we check their typing by [TID] and [TP]
in a similar way as [40]. Rule [TPREC] deals with the changed index range within the
recursor body. More precisely, we first check τ ’s kind. Then we verify for the base case
(j = 0) that P has type τ{0/j}. Last, we check the more complex inductive case: Q
should have type τ{i + 1/j} under the environment Γ, i:I−, X :τ{i/j} where τ{i/j}
of X means that X satisfies the predecessor’s type (induction hypothesis). Rule [TAPP]
is the elimination rule for dependent types.
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Γ ` whnf(G1) ≡wf whnf(G2)
bWFBASEc

Γ ` G1 ≡ G2

Γ ` U1 ≡ U2 Γ ` G1 ≡ G2 Γ ` p→ p′ : 〈Ui〉.Gi I Type
bWFIOc

Γ ` p→ p
′ : 〈U1〉.G1 ≡wf Γ ` p→ p

′ : 〈U2〉.G2

∀k ∈ K. Γ ` G1k ≡ G2k Γ ` p→ q : {lk : Gjk}k∈K I Type (j = 1, 2)
bWFBRAc

Γ ` p→ q : {lk : G1k}k∈K ≡wf p→ q : {lk : G2k}k∈K

Γ ` G1 ≡ G2

bWFPRECc
Γ ` µx.G1 ≡wf µx.G2

Γ ` Env
bWFRVARc

Γ ` x ≡wf x

Γ ` Env
bWFENDc

Γ ` end ≡wf end

Γ ` G1 ≡ G2 Γ, i :I ` G′1 ≡ G′2
bWFRECc

Γ ` R G1 λi :I.λx.G
′
1 ≡wf R G2 λi :I.λx.G

′
2

Γ ` G1 ≡ G2

Γ ` R G1 λi :I.λx.G
′
1 n ≡ R G2 λi :I.λx.G

′
2 n Γ |= I = [0..m] 1 ≤ n ≤ m

bWFRECFc
Γ ` R G1 λi :I.λx.G

′
1 ≡wf R G2 λi :I.λx.G

′
2

Γ ` G1 ≡wf G2 Γ |= i1 : I = i2 : I Γ ` Giii I κ (i = 1, 2)
bWFAPPc

Γ ` G1i1 ≡wf G2i2

Fig. 15. Global type equivalence rules

Γ ` G1 ≡ G2

∀n ∈ I.Γ ` R G1 λi :I.λx.G
′
1 n ≡ R G2 λi :I.λx.G

′
2 n
bWFRECEXTc

Γ ` R G1 λi :I.λx.G
′
1 ≡ R G2 λi :I.λx.G

′
2

Fig. 16. Global type equivalence rule
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Γ |= 0 ≤ i op i
′

[TIOP]
Γ ` i op i

′ B nat

Γ ` Env
[TNAT]

Γ ` nB nat

Γ, i : I ` Env
[TVARI]

Γ, i : I ` iB nat

Γ ` κ
[TID]

Γ ` AliceB κ

Γ ` pBΠi :I.κ Γ |= i :I
[TP]

Γ ` p[i]B κ{i/i}

Γ, i : I−, X : τ{i/j} ` QB τ{i+ 1/j} Γ ` P B τ{0/j} Γ, j :I ` τ I κ
[TPREC]

Γ ` R P λi.λX.QBΠj :I.τ

Γ `PBτ Γ `τ≡τ ′
[TEQ]

Γ ` P B τ ′
Γ ` P BΠi :I.τ Γ |= i : I

[TAPP]
Γ ` P iB τ{i/i}

Γ,X : τ ` P B τ
[TREC]

Γ ` µX.P B τ

Γ,X : τ ` Env Γ ` τ ≈ τ ′
[TVAR]

Γ,X : τ ` X B τ ′

Γ ` u : 〈G〉 Γ ` P B∆, y : G � p0

Γ ` pi B nat Γ |= pid(G) = {p0..pn}
[TINIT]

Γ ` ū[p0, .., pn](y).P B∆

Γ ` u : 〈G〉 Γ ` P B∆, y : G � p

Γ ` pB nat Γ |= p ∈ pid(G)
[TACC]

Γ ` u[p](y).P B∆

Γ ` a : 〈G〉 Γ ` pB nat Γ |= p ∈ pid(G)
[TREQ]

Γ ` ā[p] : sB s[p] : G � p

Γ ` eB S Γ ` P B∆, c : T
[TOUT]

Γ ` c!〈p, e〉;P B∆, c :!〈p, S〉;T

Γ, x : S ` P B∆, c : T
[TIN]

Γ ` c?(p, x);P B∆, c :?〈p, S〉;T

Γ ` P B∆, c : T
[TDELEG]

Γ ` c!〈p, c′〉;P B∆, c :!〈p, T ′〉;T, c′ : T ′

Γ ` P B∆, c : T, y : T ′

[TRECEP]
Γ ` c?(p, y);P B∆, c :?〈p, T ′〉;T

Γ ` P B∆, c : Tj j ∈ K
[TSEL]

Γ ` c⊕ 〈p, lj〉;P B∆, c : ⊕〈p, {lk : Tk}k∈K〉

∀k ∈ K,Γ ` Pk B∆, c : Tk
[TBRA]

Γ ` c&(p, {lk : Pk}k∈K)B∆, c : &〈p, {lk : Tk}k∈K〉

Γ, a : U ` P B∆
[TNU]

Γ ` (νa)P B∆

Γ ` ∆ ∆ end only
[TNULL]

Γ ` 0B∆

Γ ` P B∆ Γ ` QB∆′
[TPAR]

Γ ` P | QB∆,∆′

Fig. 17. Initial expression and process typing
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Rule [TEQ] states that typing works up to type equivalence where ≡ is defined
in the previous subsection. Recursion [TREC] rule is standard. In rule [TVAR], ∆ ≈
∆′ denotes the standard isomorphism rules for recursive types (i.e. we identify µx.T
and T{µx.T/x}), see Appendix A.1. Note that we apply isomorphic rules only when
recursive variables are introduced. This way, we can separate type isomorphism for
recursive types and type equalities with recursors.

Rule [TINIT] types a session initialisation on shared channel u, binding channel y
and requiring participants {p0, .., pn}. The premise verifies that the type of y is the first
projection of the global type G of u and that the participants in G (denoted by pid(G))
can be semantically derived as {p0, .., pn}.

Rule [TACC] allows to type the p-th participant to the session initiated on u. The
typing rule checks that the type of y is the p-th projection of the global type G of u and
that G is fully instantiated. The kind rule ensures that G is fully instantiated (i.e. G′’s
kind is Type). Rule [TREQ] types the process that waits for an accept from a participant:
its type corresponds to the end-point projection of G.

The next four rules are associate the input/output processes to the input/output types,
and delegation input/output processes to session input/output types. Then the next two
rules are branching/selection rules.

Rule [TNULL] checks that ∆ is well-formed and only contains end-type for weak-
ening (∆ end only means ∀c ∈ dom(∆).∆(c) = end). Rule [TPAR] puts in parallel
two processes only if their sessions environments have disjoint domains. Other rules are
standard.

4 Properties of typing

We study the two main properties of the typing system: one is the termination of type-
checking and another is type-soundness. The proofs require a careful analysis due to
the subtle interplay between dependent types, recursors, recursive types and branching
types.

4.1 Basic properties

We prove here a series of consistency lemmas concerning permutations and weakening.
They are invariably deduced by induction on the derivations in the standard manner.

We use the following additional notations: Γ ⊆ Γ ′ iff u : S ∈ Γ implies u :
S ∈ Γ ′ and similarly for other mappings. In other words, Γ ⊆ Γ ′ means that Γ ′ is a
permutation of an extension of Γ .

Lemma 4.1 1. (Permutation and Weakening) Suppose Γ ⊆ Γ ′ and Γ ′ ` Env. Then
Γ ` J implies Γ ′ ` J .

2. (Strengthening) Γ, u : U, Γ ′ ` J and u 6∈ fv(Γ ′, J) ∪ fn(Γ ′, J). Then Γ, Γ ′ ` J .
Similarly for other mapping.

3. (Agreement)
(a) Γ ` J implies Γ ` Env.
(b) Γ ` G I κ implies Γ ` κ. Similarly for other judgements.
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(c) Γ ` G ≡ G′ implies Γ ` G I κ. Similarly for other judgements.
(d) Γ ` P B τ implies Γ ` τ I κ. Similarly for other judgements.

4. (Exchange)
(a) Γ, u :U, Γ ′ ` J and Γ ` U ≡ U ′. Then Γ, u :U ′, Γ ′ ` J . Similarly for other

mappings.
(b) Γ, i :I, Γ ′ ` J and Γ |= i :I = i :I ′. Then Γ, i :I ′, Γ ′ ` J .
(c) Γ, P, Γ ′ ` J and Γ |= P = P′. Then Γ, P′, Γ ′ ` J .

Proof. By induction on the derivations. We note that the proofs are done simultane-
ously. For the rules which use substitutions in the conclusion of the rule, such as [TAPP]
in Figure 17, we require to use the next substitution lemma simultaneously. We only
show the most interesting case with a recursor.
Proof of (3)(b). Case bKRCRc: Suppose Γ ` RG λi :I−.λx.G′ I Πj :I.κ is derived
by bKRCRc in Figure 14. We prove Γ ` Πj : I.κ. From Γ, i : I− ` G′ I κ{i + 1/j}
in the premise of bKRCRc, we have Γ, i : I− ` κ{i+ 1/j} by inductive hypothesis. By
definition of I−, this implies Γ, j : I ` κ. Now by bKSEQc, we have Γ ` Πj : I.κ, as
desired. ut

The following lemma which states that well-typedness is preserved by substitution of
appropriate values for variables, is the key result underlying Subject Reduction. This
also guarantees that the substitution for the index which affects to a shared environment
and a type of a term, and the substitution for a process variable are always well-defined.
Note that substitutions may change session types and environments in the index case.

Lemma 4.2 (Substitution lemma) 1. If Γ, i : I, Γ ′ `Σ J and Γ |= n : I , then
Γ, (Γ ′{n/i}) `Σ J{n/i}.

2. If Γ,X : ∆0 `Σ P . τ and Γ ` Q : ∆0, then Γ `Σ P{Q/X} . τ .
3. If Γ, x : S `Σ P . ∆ and Γ ` v : S, then Γ `Σ P{v/x} . ∆.
4. If Γ `Σ P . ∆, y : T , then Γ `Σ P{s[p̂]/y} . ∆, s[p̂] : T .

Proof. By induction on the derivations. We prove the most interesting case: if Γ, i :
I, Γ ′ `Σ P .τ and Γ ` n.nat with Γ |= n : I , then Γ, (Γ ′{n/i}) `Σ P{n/i}.τ{n/i}
when the last applied rule is [TPREC]. Assume

Γ, k : J, Γ ′ ` R P λi.λX.QBΠj :I.τ with Γ |= n : J

is derived from [TPREC]. This is derived by:

Γ, k : J, Γ ′, i : I−, X : τ{i/j} ` QB τ{i+ 1/j} (4)

Γ, k : J, Γ ′ ` P B τ{0/j} (5)

Γ, k : J, Γ ′, j :I ` τ I κ (6)

From (4) Γ, Γ ′{n/k}, i : I−{n/k}, X : τ{i/j}{n/k} ` Q{n/k}B τ{i+ 1/j}{n/k} (7)

From (5) Γ, Γ ′{n/k} ` P{n/k}B τ{0/j}{n/k} (8)

From (6) Γ, Γ ′{n/k}, j :I{n/k} ` τ{n/k} I κ{n/k} (9)

From (7), (8) and (9), by [TPREC], we obtain Γ, Γ ′{n/k} ` (R P λi.λX.Q){n/k}B
(Πj :I.τ){n/k} as required. ut

22



4.2 Termination of equality checking and type checking

This subsection proves the termination of the type-checking (we assume that we use
the type equality rules in Figure 15). Ensuring termination of type-checking with de-
pendent types is not an easy task since type equivalences are often derived from term
equivalences. We rely on the strong normalisation of System T [20] for the termination
proof.

Proposition 4.3 (Termination and confluence) The reduction relation −→ on global
and end-point types (i.e. G −→ G′ and T −→ T ′ for closed types in Figure 2) are
strong normalising and confluent on well-formed kindings. More precisely, if Γ ` G I
κ, then there exists a unique term G′ = whnf(G) such that G −→∗ G′ 6−→.

Proof. By strong normalisation of System T [20]. For the confluence, we first note that
the reduction relation on global types defined in Figure 2 and on expressions with the
first-order operators in the types is deterministic, i.e. if G −→ Gi by rules in Figure 2,
then G1 = G2. Hence it is locally confluent, i.e. if G −→ Gi (i = 1, 2) then Gi −→∗
G′. Then we achieve the result by Newman’s Lemma. The second clause is a direct
consequence from the fact that −→ coincides with the head reduction. ut

Proving the termination of type equality checking requires a detailed analysis since
the premises of the mathematical induction rules compare the two types whose syntactic
sizes are larger than those of their conclusions The size of the judgements are defined
in Figure 18, using the following functions from [1, § 2.4.3], taking rule bWFRECFc in
Figure 15 into account.

1. |G| is the size of the structure of G where we associate ω2-valued weight to each
judgement to represent a possible reduction to a weak head normal form.

2. ||G|| is the size of the structure of G where unfolding of recursors with finite index
sets is considered, taking bWFRECFc in Figure 15 into account.

3. µ(G) denotes an upper bound on the length of any −→ reduction sequence (see
Figure 2) starting from G and its subterms.

4. µ?(G) denotes an upper bound on the length of any −→ reduction sequence (see
Figure 2) starting from G and its subterms. It unfolds recursors with finite index
sets.

The definition of the size of judgement w(Γ ` G1 ≡wf G2) follows [1, § 2.4.3]. We use
µ?(G) and ||G|| because of bWFRECFc in Figure 15. Note that |G| corresponds to µ(G),
while ||G|| corresponds to µ?(G). In µ?(G), we incorporate the number of reductions
of unfolded recursors. Because the reduction of expressions strongly normalises, we
choose the size of e to be 1 and the length of reductions of (closed) e is assumed to be
0.

The termination of type equality checking then is proved by the following main
lemma.

Lemma 4.4 (Size of equality judgements) The weight of any premise of a rule is al-
ways less than the weight of the conclusion.
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Judgements w(·) w(Γ ` G1 ≡ G2) = w(Γ ` G1 ≡wf G2) + 1

w(Γ ` G1 ≡wf G2) = ω · (µ?(G1) + µ?(G2)) + ||G1||+ ||G2||+ 1

Types | · |

Value |nat| = 1, |〈G〉| = |G|+ 1

Global |p→ p′ : 〈U〉.G| = 2 + |U |+ |G|
|p→ p′ : {lk : Gk}k∈K | = 2 +Σk∈K(1 + |Gk|)
|µx.G| = |G|+ 2, |x| = |n| = |end| = 1

|G i| = |G|+ 2 (fv(i) = ∅) |G i| = ||G||+ 2 (fv(i) 6= ∅)
|R G λi :I.λx.G′| = 4 + ||G||+ ||G′||

Local |!〈p, U〉;T | = 3 + |U |+ |T |, |?〈p, U〉;T | = 3 + |U |+ |T |
| ⊕ 〈p, {lk : Tk}k∈K〉| = |&〈p, {lk : Tk}k∈K〉| = 2 +Σk∈K(1 + |Tk|)
|µx.T | = |T |+ 2, |x| = |n| = |end| = 1

|T i| = |T |+ 2 (fv(i) = ∅) |T i| = ||T ||+ 2 (fv(i) 6= ∅)
|R T λi :I.λx.T ′| = 4 + ||T ||+ ||T ′||

Principals |Πi :I.Up| = 2 + |Up|
Processes |∅| = 0, |∆, c :T | = |∆|+ |T |+ 1, |Πi :I.τ | = 2 + |τ |
Types || · ||

Global ||R G λi :I.λx.G′|| = Σn∈I |R G λi :I.λx.G′n| (I finite)

Local ||R T λi :I.λx.T ′|| = Σn∈I |R G λi :I.λx.G′n| (I finite)

Others are ||G|| = |G|.

Types µ(·)

Global µ(G i) = µ?(G) (fv(i) 6= ∅), µ(R G λi :I.λx.G′) = µ?(G) + µ?(G′)

Local µ(T i) = µ?(T ) (fv(i) 6= ∅), µ(R T λi :I.λx.T ′) = µ?(T ) + µ?(T ′)

Types µ?(·)

Global µ?(R G λi :I.λx.G′) = Σn∈Iµ(R G λi :I.λx.G′n)

Local µ?(R T λi :I.λx.T ′) = Σn∈Iµ(R T λi :I.λx.T ′n)

Others are µ?(G) = µ(G) and homomorphic.

Fig. 18. Size of types and judgements and the upper bound of reductions with unfolding
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Proof. Our proof is by induction on the length of reduction sequences and the size of
terms.
Case bWFBASEc. The case whnf(G1) = G1 and whnf(G2) = G2 are obvious by defi-
nition. Hence we assume whnf(G1) 6= G1. Thus there exists at least one step reduction
such that G1 −→ G′1. Note that for any G, we have ||G|| < ω. Hence we have

w(Γ ` whnf(G1) ≡wf whnf(G2))
= ω · µ?(whnf(G1)) + ||whnf(G1)||+ ω · µ?(whnf(G2)) + ||whnf(G2)||+ 1
< ω · µ?(G1) + ||G1||+ ω · µ?(G2) + ||G2||+ 2
= w(Γ ` G1 ≡ G2)

Case bWFIOc. Similar with bWFBRAc below.
Case bWFBRAc.

Σk∈Kw(Γ ` G1k ≡ G2k)
= Σk∈K(w(Γ ` G1k ≡wf G2k) + 1)
= Σk∈K(ω · (µ?(G1k) + µ?(G2k)) + ||G1k||+ ||G2k||+ 2)
= Σk∈K(ω · (µ(G1k) + µ(G2k)) + |G1k|+ |G2k|+ 2)
< Σk∈K(ω · (µ(G1k) + µ(G2k)) + |G1k|+ |G2k|+ 2) + 4
= w(Γ ` p→ q : {lk : G1k}k∈K ≡wf p→ q : {lk : G2k}k∈K)

We note that G1k and G2k cannot be recursors since Γ ` Gik I Type by the kinding
rule, hence µ(Gik) = µ?(Gik) and |Gik| = ||Gik|| in the above third equation.
Case bWFPRECc. Similar with bWFBRAc above.
Cases bWFRVARc,bWFENDc. By definition.
Case bWFRECc. The case I is infinite.

w(Γ ` G1 ≡ G2) + w(Γ, i :I ` G′1 ≡ G′2)
= ω · (µ?(G1) + µ?(G2)) + ||G1||+ ||G2||+ 2 + ω · (µ?(G′1) + µ?(G′2)) + ||G′1||+ ||G′2||+ 2
< ω · (µ?(G1) + µ?(G2)) + ||G1||+ ||G2||+ 4 + ω · (µ?(G′1) + µ?(G′2)) + ||G′1||+ ||G′2||+ 4
= w(Γ ` R G1 λi :I.λx.G

′
1 ≡wf R G2 λi :I.λx.G

′
2)

The case I is finite.

w(Γ ` G1 ≡ G2) + w(Γ, i :I ` G′1 ≡ G′2)
= ω · (µ?(G1) + µ?(G2)) + ||G1||+ ||G2||+ 2 + ω · (µ?(G′1) + µ?(G′2)) + ||G′1||+ ||G′2||+ 2
< Σn∈I(ω · (m1n + µ?(G′′1n) +m2n + µ?(G′′2n)))

+Σn∈I(ω · (µ?(G1) + µ?(G2)) + ||G1||+ ||G2||+ 4 + 2)
+Σn∈I(ω · (µ?(G′1) + µ?(G′2)) + ||G′1||+ ||G′2||+ 4 + 2)

= w(Γ ` R G1 λi :I.λx.G
′
1 ≡wf R G2 λi :I.λx.G

′
2)

where we assumemin is the length of the reduction sequence from RGi λi :I.λx.G′i n
(in Figure 2), and R Gi λi :I.λx.G′i n −→∗ G′′in 6−→ for all n ∈ I .
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Case bWFRECFc. Assume I = [0, . . . ,m].

w(Γ ` G1 ≡ G2) +Σ1≤n≤mw(Γ ` R G1 λi :I.λx.G′1n ≡ R G2 λi :I.λx.G′2n)
= ω · µ?(G1) + ||G1||+ ω · µ?(G2) + ||G2||+ 2

+Σ1≤n≤m(w(Γ ` R G1 λi :I.λx.G′1n ≡wf R G2 λi :I.λx.G′2n) + 1)
= ω · ((m11 − 1) + µ?(G′′11) + (m21 − 1) + µ?(G′′21))) + ||G1||+ ||G2||+ 2

+Σ1≤n≤m(ω · (m1n + µ?(G′′1n) +m2n + µ?(G′′2n)))
+Σ1≤n≤m(ω · (µ?(G1) + µ?(G2)) + ||G1||+ ||G2||+ 4 + 2)
+Σ1≤n≤m(ω · (µ?(G′1) + µ?(G′2)) + ||G′1||+ ||G′2||+ 4 + 2)

< Σn∈I(ω · (m1n + µ?(G′′1n) +m2n + µ?(G′′2n)))
+Σn∈I(ω · (µ?(G1) + µ?(G2)) + ||G1||+ ||G2||+ 4 + 2)
+Σn∈I(ω · (µ?(G′1) + µ?(G′2)) + ||G′1||+ ||G′2||+ 4 + 2)

= w(Γ ` R G1 λi :I.λx.G′1 ≡wf R G2 λi :I.λx.G′2)

where we assume min is the length of the reduction sequence from RGi λi :I.λx.G′i n
(in Figure 2), and R Gi λi :I.λx.G′i n −→∗ G′′in 6−→ for all n ∈ I .
Case bWFAPPc First, since bWFAPPc has a lower priority than bWFBASEc, Giii 6−→.
Hence µ?(Giii) = µ?(Gi). We also note that:

1. If Gi is not recursor, then ||Gi|| = |Gi|; and
2. If Gi is a recursor, then ii contains free variables (since bWFAPPc has a lower pri-

ority than bWFBASEc, if ii is closed, it reduces to m for some m), hence ||Gi ii|| =
||Gi||+ 2.

There is no case such that Gi is a recursor and ii is some natural number n since, if so,
we can apply bWFBASEc. Thus, by (1,2), ||Gi ii|| = ||Gi||+ 2. Hence we have:

w(Γ ` G1 ≡wf G2)
= ω · (µ?(G1) + µ?(G2)) + ||G1||+ ||G2||+ 1
< ω · (µ?(G1) + µ?(G2)) + ||G1||+ ||G2||+ 4 + 1
= w(Γ ` G1i1 ≡wf G2i2)

as required. ut

Proposition 4.5 (Termination for type equality checking) Assuming that proving
the predicates Γ |= P appearing in type equality derivations is decidable, then type-
equality checking of Γ ` G ≡ G′ terminates. Similarly for other types.

Proof. By Lemma 4.4 and termination of kinding and well-formed environment check-
ing. ut

We first formally define annotated processes which are processes with explicit type
annotations for bound names and variables (see § 2.3).

P ::= ū[p0, .., pn](y :T ).P | u[p](y :T ).P | c?(p, x :T );P | (νa :〈G〉)P
| µX :τ.P |R P λi :I.λX.Q | Xτ

Theorem 4.6 (Termination of type checking) Assuming that proving the predicates
Γ |= P appearing in kinding, equality, projection and typing derivations is decidable,
then type-checking of annotated process P , i.e. Γ ` P B ∅ terminates.
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Proof. First, it is straightforward to show that kinding checking, well-formed environ-
ment checking and projection are decidable as long as deciding the predicates Γ |= P
appearing in the rules is possible.

Secondly, we note that by the standard argument from indexed dependent types [1,
40], for the dependent λ-applications ([TAPP] in Figure 17), we do not require equality
of terms (i.e. we only need the equality of the indices by the semantic consequence
judgements).

Thirdly, by the result from [19, Corollary 2, page 217], the type isomorphic check-
ing τ ≈ τ ′ terminates so that the type isomorphic checking in [TVAR] in Figure 17
(between τ in the environment and τ ′ of Xτ ′

) always terminates.
Forth, it is known that type checking for annotated terms with session types termi-

nates with subtyping [19, § 5.2] and multiparty session types [23].
Hence the rest of the proof consists in eliminating the type equality rule [TEQ]

in order to make the rules syntax-directed. We include the type equality check into
[TINIT,TREQ,TACC] (between the global type and its projected session type), the input
rules [TIN,TRECEP] (between the session type and the type annotating x), [TREC] (be-
tween the session type and the type annotating X), and [TREC] (between the session
type and the type annotating X in Γ ). We show the three syntax-directed rules. The
first rule is the initialisation.

Γ ` u : 〈G〉 Γ ` P B∆, y : T Γ ` G � p0 ≡ T
Γ ` pi B nat Γ |= pid(G) = {p0..pn}

[TINIT]
Γ ` ū[p0, .., pn](y).P B∆

Then it is straightforward to check Γ ` u : 〈G〉 terminates. Checking Γ ` P B∆, y : T
also terminates by inductive hypothesis. Checking Γ ` G � p0 ≡ T terminates since
the projection terminates and checking α ≡ β (for any type α and β) terminates by
Lemma 4.4. Checking Γ ` pi B nat terminates since the kinding checking terminates.
Finally checking Γ |= pid(G) = {p0..pn} terminates by assumption.

The second rule is the session input.

Γ ` P B∆, c : T, y : T ′ Γ ` T0 ≡ T ′
[TRECEP]

Γ ` c?(p, y :T0);P B∆, c :?〈p, T ′〉;T
Then checking Γ ` P B ∆, c : T, y : T ′ terminates by inductive hypothesis and
checking Γ ` T0 ≡ T ′ terminates by Lemma 4.4.

The third and forth rules are recursions.
Γ,X : τ ` P B τ ′ Γ ` τ ≡ τ ′

[TREC]
Γ ` µX :τ .P B τ ′

Γ,X : τ ` Env Γ ` τ ≈ τ ′ Γ ` τ ′ ≡ τ0
[TVAR]

Γ,X : τ ` Xτ ′
B τ0

In [TREC], we assume P 6= X (such a term is meaningless). Then [TREC] terminates
by inductive hypothesis and Lemma 4.4, while [TVAR] terminates by termination of
isomorphic checking (as said above) and Lemma 4.4.

Other rules are similar, hence we conclude the proof. ut
To ensure the termination of Γ |= P, possible solutions include the restriction of pred-
icates to linear equalities over natural numbers without multiplication (or to other de-
cidable arithmetic subsets) or the restriction of indices to finite domains, cf. [40].
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4.3 Type soundness and progress

The following lemma states that mergeability is sound with respect to the branching
subtyping≤. By this, we can safely replace the third clause tk∈KGk � q of the branch-
ing case from the projection definition by u{T | ∀k ∈ K.T ≤ (Gk � q)}. This allows
us to prove subject reduction by including subsumption as done in [23].

Lemma 4.7 (Soundness of mergeability) Suppose G1 � p ./ G2 � p and Γ ` Gi.
Then there exists G such that G � p = u{T | T ≤ Gi � p (i = 1, 2)} where u denotes
the maximum element with respect to ≤.

Proof. The only interesting case is when G1 � p and G2 � p take a form of the branch-
ing type. Suppose G1 = p′ → p : {li : G′i}i∈I and G2 = p′ → p : {lj : G′′j}j∈J with
G1 � p ./ G2 � p. Let G′i � p = Ti and G′′j � p = T ′j . Then by the definition of ./
in § 3.1, we have G1 � p = &〈p′, {li : Ti}i∈I〉 and G2 � p = &〈p′, {lj : T ′j}j∈J〉
with ∀i ∈ (I ∩ J).Ti ./ T ′j ∀i ∈ (I \ J) ∪ (J \ I).li 6= lj . By the assumption and in-
ductive hypothesis on Ti ./ T ′j , we can set

T = &〈p′, {lk : T ′′k }k∈K〉

such that K = I ∪ J ; and (1) if k ∈ I ∩ J , then T ′′k = Tk u T ′k; (2) if k ∈ I, k 6∈ J ,
then T ′′k = Tk; and (3) if k ∈ J, k 6∈ I , then T ′′k = T ′k. Set G0k � p = T ′′k . Then we can
obtain

G = p′ → p : {kk : G0k}k∈K

which satisfies G � p = u{T | T ≤ Gi � p (i = 1, 2)}, as desired. ut

As session environments record channel states, they evolve when communications pro-
ceed. This can be formalised by introducing a notion of session environments reduction.
These rules are formalised below modulo ≡.

– {s[p̂] :!〈q̂, U〉;T, s[q̂] :?〈p̂, U〉;T ′} ⇒ {s[p̂] : T, s[q̂] : T ′}
– {s[p̂] :!〈p̂, U〉; ?〈p̂, U〉;T ′} ⇒ {s[p̂] : T ′}
– {s[p̂] : ⊕〈q̂, {lk : Tk}k∈K〉} ⇒ {s[p̂] : ⊕〈q̂, lj〉;Tj}
– {s[p̂] : ⊕〈q̂, lj〉;T, s[q̂] : &〈p, {lk : Tk}k∈K〉} ⇒ {s[p̂] : T, s[q̂] : Tj}
– ∆ ∪∆′′ ⇒ ∆′ ∪∆′′ if ∆ ⇒ ∆′.

The first rule corresponds to the reception of a value or channel by the participant q̂; the
second rule formalises the reception of a value or channel sent by itself p̂; the third rule
treats the case of the choice of label lj while the forth rule propagate these choices to
the receiver (participant q̂).

For the subject reduction theorem, we need to define the coherence of the session
environment ∆, which means that each end-point type is dual with other end-point
types.

Definition 4.1. A session environment∆ is coherent for the session s (notation co(∆, s))
if s[p] : T ∈ ∆ and T � q 6= end imply s[q] : T ′ ∈ ∆ and T � q ./ T ′ � p. A session
environment ∆ is coherent if it is coherent for all sessions which occur in it.
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The definitions for T � q and ./ are defined in Appendix B. Intuitively, T � q is
a projection of T onto q which is similarly defined as G � q; and T � q ./ T ′ � p
means actions in T onto q and actions in T ′ onto p are dual (i.e. input matches output,
and branching matches with selections, and vice verse). Note that two projections of a
same global type are always dual: let G a global type and p, q ∈ G with p 6= q. Then
(G � p) � q ./ (G � q) � p, i.e. session environments corresponding to global type are
always coherent.

Using the above notion we can state type preservation under reductions as follows:

Theorem 4.8 (Subject Congruence and Reduction)

1. If Γ `Σ P . ∆ and P ≡ P ′, then Γ `Σ P ′ . ∆.
2. If Γ `Σ P .τ and P −→∗ P ′ with τ coherent, then Γ `Σ P ′ . τ ′ for some τ ′ such

that τ ⇒∗ τ ′ with τ ′ coherent.

Proof. We only list the crucial cases of the proof of subject reduction: the recursor
(where mathematical induction is required), the initialisation, the input and the output.
The proof of subject congruence is essentially as the same as that in [3, 23]. Our proof
works by induction on the length of the derivation P −→∗ P ′. The base case is trivial.
We then proceed by a case analysis on the reduction P −→ P ′. We omit the hat from
principal values and Σ for readability.
Case [ZeroR]. Trivial.
Case [SuccR]. Suppose Γ ` R P λi.λX.Q n + 1 . τ and R P λi.λX.Q n + 1 −→
P{n/i}{R P λi.λX.Q n/X}. Then there exists τ ′ such that

Γ, i : I−, X : τ{i/j} ` QB τ ′{i+ 1/j} (10)
Γ ` P . τ ′{0/i} (11)

Γ ` Πj :I.τ I Πj :I.κ (12)

with τ ≡ (Πi : I.τ ′)n + 1 ≡ τ ′{n + 1/i} and Γ |=n + 1 : I . By Substitution Lemma
(Lemma 4.2 (1)), noting Γ |=n : I−, we have: Γ,X : τ{i/j}{n/i} ` Q{n/i}B τ ′{i+
1/j}{n/i}, which means that

Γ,X : τ{n/j} ` Q{n/i}B τ ′{n + 1/j} (13)

Then there are two cases.
Base Case n = 0: By applying Substitution Lemma (Lemma 4.2 (2)) to (13) with (11),
we have Γ ` Q{1/i}{P/X}B τ ′{1/j}.
Inductive Case n ≥ 1: By the inductive hypothesis on n, we assume: Γ ` RP λi.λX.Q n.
τ ′{n/j}. Then by applying Substitution Lemma (Lemma 4.2) to (13) with this hypoth-
esis, we obtain Γ ` Q{n/i}{R P λi.λX.Q n/X}B τ ′{n + 1/j}.

Case [Init].

ā[p0, .., pn](y).P −→ (νs)(P{s[p0]/y} | s : ε | ā[p1] : s | ... | ā[pn] : s)
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We assume that Γ `∅ ā[p0, .., pn](y).P . ∆. Inversion of [TINIT] and [TSUB] gives that
∆′ ≤ ∆ and:

∀i 6= 0, Γ ` pi B nat (14)

Γ ` a : 〈G〉 (15)

Γ |= pid(G) = {p0..pn} (16)

Γ ` P B∆′, y : G � p0 (17)

From (17) and Lemma 4.2 (4), Γ ` P{s[p0]/y} . ∆, s[p0] : G � p0 (18)

From Lemma 4.1 (3a) and bQINITc, Γ `s s : ε . ∅ (19)

From (14), (15), (16) and [TREQ], ∀i 6= 0, Γ ` ā[pi] : sB s[pi] : G � pi (20)

Then [TPAR] on (18), (19) and (20) gives:

Γ ` P{s[p0]/y} | ā[p1] : s | ... | ā[pn] : sB∆′, s[p0] : G � p0, ..., s[pn] : G � pn

From bGINITc and bGPARc, we have:

Γ `s P{s[p0]/y} | ā[p1] : s | ... | ā[pn] : s | s : εB∆′, s[p0] : G � p0, ..., s[pn] : G � pn

From Lemma 4.7 we know that co((s[p0] : G � p0, ..., s[pn] : G � pn), s). We can then
use bGSRESc to get:

Γ `∅ (νs)(P{s[p0]/y} | ā[p1] : s | ... | ā[pn] : s | s : ε)B∆′

We conclude from [TSUB].
Case [Join].

ā[p] : s | a[p](y).P −→ P{s[p]/y}

We assume that Γ ` ā[p] : s | a[p](y).P B ∆. Inversion of [TPAR] and [TSUB] gives
that ∆ = ∆′, s[p] : T and :

Γ ` ā[p] : sB s[p] : G � p (21)
T ≥ G � p (22)
Γ ` u[p](y).P B∆′ (23)

By inversion of [TACC] from (23) Γ ` P B∆′, y : G � p (24)
From (24) and Lemma 4.2 (4), Γ ` P{s[p]/y} . ∆′, s[p] : G � p (25)

We conclude by [TSUB] from (25) and (22).

Case [Send].
s[q]!〈p, v〉;P | s : h −→ P | s : h · (q, p, v)

By inductive hypothesis, Γ `Σ s[q]!〈p, e〉;P | s : h . ∆ with Σ = {s} and

Γ ` s[q]!〈p, v〉;P . ∆1 (26)
Γ `{s} s : h . ∆2 (27)
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where ∆ = ∆2 ∗∆1. From (26), we have

∆1 = ∆′1, s[q] : !〈p, S〉;T
Γ ` v : S (28)

Γ ` P . ∆′1, s[q] : T. (29)

Using bQSENDc on (27) and (28) we derive

Γ `{s} s : h · (q, p, v) . ∆2; {s[q] : !〈p, S〉}. (30)

Using bGINITc on (29) we derive

Γ `∅ P . ∆′1, s[q] : T (31)

and then using bGPARc on (31) and (30), we conclude

Γ `{s} P | s : h · (p, q, v) . (∆2; {s[q] : !〈p, S〉}) ∗ (∆′1, s[q] : T ).

Note that (∆2; {s[q] : !〈p, S〉}) ∗ (∆′1, s[q] : T )=∆2 ∗ (∆′1, s[q] : !〈p, S〉;T ).

Case [Recv].

s[p]?(q, x);P | s : (q, {p}, v) · h −→ P{v/x} | s : h

By inductive hypothesis, Γ `Σ s[p]?(q, x);P | s : (q, {p}, v) · h . ∆. Then we have
Σ = {s} and

Γ ` s[p]?(q, x);P . ∆1 (32)
Γ `{s} s : (q, p, v) · h . ∆2 (33)

where ∆ = ∆2 ∗∆1. From (32) we have

∆1 = ∆′1, s[p] :?〈q, S〉;T
Γ, x : S ` P . ∆′1, s[p] : T (34)

From (33) we have

∆2 = {s[q] : !〈p, S′〉} ∗∆′2
Γ `{s} s : h . ∆′2 (35)

Γ ` v : S′. (36)

The coherence of ∆ implies S = S′. From (34) and (36), together with Substitution
lemma, we obtain Γ ` P{v/x} . ∆′1, s[p] : T , which implies by rule bGINITc

Γ `∅ P{v/x} . ∆′1, s[p] : T. (37)

Using rule bGPARc on (37) and (35) we conclude

Γ `{s} P{v/x} | s : h . ∆′2 ∗ (∆′1, s[p] : T ).

Note that ({s[q] : !〈p, S〉} ∗∆′2) ∗ (∆′1, s[p] :?〈q, S〉;T ) ⇒ ∆′2 ∗ (∆′1, s[p] : T ). ut
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Note that communication safety [23, Theorem 5.5] and session fidelity [23, Corollary
5.6] are corollaries of the above theorem.

A notable fact is, in the presence of the asynchronous initiation primitive, we can
still obtain progress in a single multiparty session as in [23, Theorem 5.12], i.e. if a
program P starts from one session, the reductions at session channels do not get a
stuck. Formally

1. We say P is simple if P is typable and derived by Γ `? P B∆ where the session
typing in the premise and the conclusion of each prefix rule is restricted to at most
a singleton. More concretely, (1) we eliminate ∆ from [TINIT], [TACC], [TOUT], [TIN],
[TSEL] and [TBRA], (2) we delete [TDELEG] and [TRECEP], (3) we restrict τ and ∆ in
[TPREC], [TEQ], [TAPP], [TREC] and [TVAR] contain at most only one session typing, and
(4) we set ∆ = ∅ and ∆′ contains at most only one session typing; or vice-versa in
[TPAR].

2. We say P is well-linked when for each P −→∗ Q, whenever Q has an active prefix
whose subject is a (free or bound) shared channels, then it is always reducible. This
condition eliminates the element which can hinder progress is when interactions at
shared channels cannot proceed. See [23, § 5] more detailed definitions.

The proof of the following theorem is essentially identical with [23, Theorem 5.12].

Theorem 4.9 (Progress) If P is well-linked and without any element from the runtime
syntax and Γ `? P B ∅. Then for all P −→∗ Q, either Q ≡ 0 or Q −→ R for some R.

5 Typing examples

In this section, we give examples of typing derivations for the protocols mentioned in
§ 1 and § 2.1.

5.1 Repetition example - § 1 (1)

This example illustrates the repetition of a message pattern. The global type for this
protocol is G(n) = foreach(i < n){Alice → Bob : 〈nat〉.Bob → Carol : 〈nat〉}.
Following the projection from Figure 10, Alice’s end-point projection of G(n) has the
following form:

G(n)�Alice = R end
λi.λx.if Alice=Alice=Bob then (. . .)
else if Alice=Alice then (!〈Bob, nat〉; if Alice=Bob=Carol then . . .)
else if Alice = Bob then . . .
else . . . n

For readability, we omit from our examples the impossible cases created by the
projection algorithm. The number of cases can be automatically trimmed to only keep
the ones whose resolutions depend on free variables.

In this case, the projection yields the following local type:

G(n) � Alice = R end λi.λx.!〈Bob, nat〉; x n
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Before typing, we first define some abbreviations:

Alice(n) = ā[Alice, Bob, Carol](y).(R 0 λi.λX.y!〈Bob, e[i]〉;X n)
∆(n) = {y : (G(n) � Alice)}

Γ = n :nat, a :〈G(n)〉

Our goal is to prove the typing judgement

Γ ` Alice(n)B ∅

We start from the leafs.

Γ, i : I−, X : ∆(i) ` Env
[TVAR]

Γ, i : I−, X : ∆(i) ` X B y : ∆(i)
[TOUT]

Γ, i : I−, X : ∆(i) ` y!〈Bob, e[i]〉;X B y :!〈Bob,nat〉;∆(i)
[TEQ]

Γ, i : I−, X : ∆(i) ` y!〈Bob, e[i]〉;X B∆(i+ 1)

The application of the [TEQ] rule is justified by the fact that the types ∆(i+ 1) and y :
!〈Bob,nat〉; (R end λj.λx.!〈Bob,nat〉; x i) are equivalent: they have the same weak-
head normal form (we use the rule bWFBASEc).

Since we have the trivial Γ ` 0B∆(0), we can apply the rules [TAPP] and [TPREC].

Γ, i : I−, X : ∆(i) ` y!〈Bob, e[i]〉;X B∆(i+ 1)
Γ ` 0B∆(0) Γ, i :I ` ∆(i) I κ

[TPREC]
Γ ` (R 0 λi.λX.y!〈Bob, e[i]〉;X)BΠi :I.∆(i)

[TAPP]
Γ ` (R 0 λi.λX.y!〈Bob, e[i]〉;X n)B∆(n)

We conclude with [TINIT].

Γ ` a : 〈G(n)〉 Γ ` (R 0 λi.λX.y!〈Bob, e[i]〉;X n)B∆(n)
[TINIT]

Γ ` Alice(n)B ∅

Bob(n) and Carol(n) can be similarly typed.

5.2 Sequence example - § 1 (2)

The sequence example consists of n participants organised in the following way (when
n ≥ 2): the starter W[n] sends the first message, the final worker W[0] receives the final
message and the middle workers first receive a message and then send another to the
next worker. We write below the result of the projection for a participant W[p] (left) and
the end-point type that naturally types the processes (right):

R end λi.λx.
if p = W[i+ 1] then !〈W[i], nat〉; x
else if p = W[i] then ?〈W[i+ 1], nat〉; x
else x
n

if p = W[n] then !〈W[n− 1], nat〉; else
if p = W[0] then ?〈W[1], nat〉;else
if p = W[i] then ?〈W[i+ 1], nat〉;!〈W[i− 1], nat〉;
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This example illustrates the main challenge faced by the type checking algorithm. In
order to type this example, we need to prove the equivalence of these two types. For
any concrete instantiation of p and n, the standard weak head normal form equivalence
rule bWFBASEc is sufficient. Proving the equivalence for all p and n requires either (a)
to bound the domain I in which they live, and check all instantiations within this finite
domain using rule bWFRECFc; or (b) to prove the equivalence through the meta-logic
rule bWFRECEXTc. In case (a), type checking terminates, while case (b) allows to prove
stronger properties about a protocol’s implementation.

5.3 Ring - Figure 3(a)

The typing of the ring pattern is similar to the one of the sequence. The projection of
this global session type for W[p] gives the following local type:

R (W[n]→ W[0] : 〈nat〉.end) � W[p]
λi.λx.if p = W[n− i− 1] then !〈W[n− i], nat〉; x

elseif p = W[n− i] then ?〈W[n− i− 1], nat〉; x
elseif x n

On the other hand, user processes can be easily type-checked with an end-point type
of the following form:

if p = W[0] then !〈W[1], nat〉; ?〈W[n], nat〉;
elseif p = W[n] then ?〈W[n− 1], nat〉; !〈W[0], nat〉;
elseif 1 ≤ i+ 1 ≤ n− 1 and p = W[i+ 1]

then ?〈W[i], nat〉;!〈W[i+ 2], nat〉;

Proving the equivalence between these types is similar as the one the sequence: we
rely on rules bWFBASEc and bWFRECFc when the domain of n is bounded, or on the
meta-logic rule bWFRECEXTc.

5.4 Mesh pattern - Figure 3(b)

The mesh example describes nine different participants behaviours (when n,m ≥ 2).
The participants in the first and last rows and columns, except the corners which have
two neighbours, have three neighbours. The other participants have four neighbours.
The specifications of the mesh are defined by the communication behaviour of each
participant and by the links the participants have with their neighbours. The term below
is the result of the projection of the global type for participant p
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R (R end � p λk.λz.if p = W[0][k + 1] then !〈W[0][k], nat〉; z
elseif p = W[0][k] then ?〈W[0][k + 1], nat〉; z
else z )m

λi.λx.
(R (if p = W[i+ 1][0] then !〈W[i][0], nat〉; x

elseif p = W[i][0] then ?〈W[i+ 1][0], nat〉; x
else x )

λj.λy.
if p = W[i+ 1][j + 1] then !〈W[i][j + 1], nat〉;

if p = W[i+ 1][j + 1] then !〈W[i+ 1][j], nat〉; y
elseif p = W[i+ 1][j] then ?〈W[i+ 1][j + 1], nat〉; y
else y

elseif p = W[i][j + 1] then ?〈W[i+ 1][j + 1], nat〉; y
if p = W[i+ 1][j + 1] then !〈W[i+ 1][j], nat〉; y
elseif p = W[i+ 1][j] then ?〈W[i+ 1][j + 1], nat〉; y
else y

elseif p = W[i+ 1][j + 1] then !〈W[i+ 1][j], nat〉; y
elseif p = W[i+ 1][j] then ?〈W[i+ 1][j + 1], nat〉; y
else y

m)
n

From Figure 3(b), the user would design the end-point type as follows:

if p = W[n][m] then !〈W[n− 1][m], nat〉; !〈W[n][m− 1], nat〉;
elseif p = W[n][0] then ?〈W[n][1], nat〉; !〈W[n− 1][0], nat〉;
elseif p = W[0][m] then ?〈W[1][m], nat〉; !〈W[0][m− 1], nat〉;
elseif p = W[0][0] then ?〈W[1][0], nat〉; ?〈W[0][1], nat〉;
elseif 1 ≤ k + 1 ≤ m− 1 and p = W[n][k + 1]

then ?〈W[n][k + 2], nat〉; !〈W[n− 1][k + 1], nat〉; !〈W[n][k], nat〉;
elseif 1 ≤ k + 1 ≤ m− 1 and p = W[0][k + 1]

then ?〈W[1][k + 1], nat〉; ?〈W[0][k + 2], nat〉; !〈W[0][k], nat〉;
elseif 1 ≤ i+ 1 ≤ n− 1 and p = W[i+ 1][m]

then ?〈W[i+ 2][m], nat〉; !〈W[i][m], nat〉; !〈W[i+ 1][m− 1], nat〉;
elseif 1 ≤ i+ 1 ≤ n− 1 and p = W[i+ 1][0]

then ?〈W[i+ 2][0], nat〉; ?〈W[i+ 1][1], nat〉; !〈W[i][0], nat〉;
elseif 1 ≤ i+ 1 ≤ n− 1 and 1 ≤ j + 1 ≤ m− 1 and p = W[i+ 1][j + 1]

then ?〈W[i+ 2][j + 1], nat〉; ?〈W[i+ 1][j + 2], nat〉; !〈W[i][j + 1], nat〉; !〈W[i+ 1][j], nat〉;

Each case denotes a different local behaviour in the mesh pattern. We present the
following meta-logic proof of the typing equivalence through bWFRECEXTc in the two
cases of the top-left corner and bottom row, in order to demonstrate how our system
types the mesh session. The other cases are left to the reader.

Let T [p][n][m] designate the first original type and T ′[p][n][m] the second type. To
prove the type equivalence, we want to check that for all n,m ≥ 2 and p, we have:

(
Q
n.

Q
m.T [p][n][m])nm −→∗ Tn,m 6−→ iff (

Q
n.

Q
m.T ′[p][n][m])nm −→∗ Tn,m 6−→.

For p = W[n][m], which implements the top-left corner, the generator type reduces
several steps and gives the end-point type !〈W[n − 1][m],nat〉; !〈W[n][m − 1],nat〉; 0,
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which is the same to the one returned in one step by the case analysis of the type built
by the programmer. For p = W[0][k + 1], we analyse the case where 1 ≤ k + 1 ≤
m − 1. The generator type returns the end-point type ?〈W[1][k + 2],nat〉; ?〈W[0][k +
2],nat〉; !〈W[0][k],nat〉;.One can observe that the end-point type returned for p = W[0][k+
1] in the type of the programmer is the same as the one returned by the generator. Sim-
ilarly for all the other cases.

By [TOUT, TIN], we have:

a : 〈G〉 ` y!〈W[n− 1][m], f(n− 1,m)〉; y!〈W[n][m− 1], f(n,m− 1)〉; 0B∆, y : G � ptop-left

a : 〈G〉 ` y?(W[1][k + 1], z1); y?(W[0][k + 2], z2); y!〈W[0][k], f(0, k)〉; 0B∆′, y : G � pbottom

where G � p is obtained from the type above.

5.5 FFT example - Figure 8

We prove type-safety and deadlock-freedom for the FFT processes. Let Pfft be the
following process:

Πn.(νa)(R ā[p0..p2n−1](y).P (2n − 1, p0, xp0 , y, rp0)

λi.λY.(ā[pi+1](y).P (i+ 1, pi+1, xpi+1 , y, rpi+1) | Y ) 2n − 1)

As we reasoned above, each P (n, p, xp, y, rp) is straightforwardly typable by an end-
point type which can be proven to be equivalent with the one projected from the global
type G from Figure 8(c). Automatically checking the equivalence for all n is not easy
though: we need to rely on the finite domain restriction using bWFRECFc or to rely on a
meta-logic proof through bWFRECEXTc. The following theorem says once Pfft is applied
to a natural number m, its evaluation always terminates with the answer at rp.

Theorem 5.1 (Type safety and deadlock-freedom of FFT) For all m, ∅ ` Pfft mB∅;
and if Pfft m −→∗ Q, then Q −→∗ (r0!〈0, X0〉 | . . . | r2m−1!〈0, X2m−1〉) where the
rp!〈0, Xp〉 are the actions sending the final values Xp on external channels rp.

Proof. For the proof, we first show Pfft m is typable by a single, multiparty dependent
session (except the answering channel at rp). Then the result is immediate as a corollary
of progress (Theorem 4.9).

To prove that the processes are typable against the given global type, we start from
the end-point projection.

We assume index n to be a parameter as in Figure 8. The main loop is an iteration
over the n steps of the algorithm. Forgetting for now the content of the main loop, the
generic projection for machine p has the following skeleton:
Πn.(R (R end λl.λx.(. . .) n)
λk.λu.

if p = k then !〈k, U〉; ?〈k, U〉; u else u)
2n

A simple induction gives us through bWFRECEXTc the equivalent type:
Πn.!〈p, U〉; ?〈p, U〉; (R end λl.λx.(. . .) n) 2n

We now consider the inner loops. The generic projection gives:
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. . .
(R x λi.λy.

(R y λj.λz.

if p = i ∗ 2n−l + 2n−l−1 + j = i ∗ 2n−l + j then . . .

else if p = i ∗ 2n−l + 2n−l−1 + j then !〈i ∗ 2n−l + j, U〉; . . .
else if p = i ∗ 2n−l + j then ?〈i ∗ 2n−l + 2n−l−1 + j, U〉; . . .
else if . . . then . . . else . . .

) 2n−l−1

) 2l

. . .

An induction over p and some simple arithmetic over binary numbers gives us through
bWFRECEXTc the only two branches that can be taken:
. . .
if bitn−l(p) = 0

then ?〈p + 2n−l−1, U〉; !〈p + 2n−l−1, U〉; !〈p, U〉; ?〈p, U〉; x
else !〈p− 2n−l−1, U〉; ?〈p− 2n−l−1, U〉; !〈p, U〉; ?〈p, U〉; x
. . .

The first branch corresponds to the upper part of the butterfly while the second one
corresponds to the lower part. For programming reasons (as seen in the processes, the
natural implementation include sending a first initialisation message with the xk value),
we want to shift the self-receive ?〈p, U〉; from the initialisation to the beginning of the
loop iteration at the price of adding the last self-receive to the end: ?〈p, U〉; end. The
resulting equivalent type up to ≡ is:

Πn.!〈p, U〉;
(R ?〈p, U〉; end λl.λx.
if bitn−l(p) = 0

then ?〈p, U〉; ?〈p + 2n−l−1, U〉; !〈p + 2n−l−1, U〉; !〈p, U〉; x
else ?〈p, U〉; !〈p− 2n−l−1, U〉; ?〈p− 2n−l−1, U〉; !〈p, U〉; x) n

From this end-point type, it is straightforward to type and implement the processes
defined in Figure 8(d) in § 2.6. Hence we conclude the proof. ut

5.6 Web Service

This section demonstrates the expressiveness of our type theory. We program and type a
real-world Web service usecase: Quote Request (C-U-002) is the most complex scenario
described in [36], the public document authored by the W3C Choreography Description
Language Working Group [39].

Quote Request usecase The usecase is described below (as published in [36]). A buyer
interacts with multiple suppliers who in turn interact with multiple manufacturers in
order to obtain quotes for some goods or services. The steps of the interaction are:

1. A buyer requests a quote from a set of suppliers. All suppliers receive the request
for quote and send requests for a bill of material items to their respective manufac-
turers.
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Supp[0] oo //
hh

((QQQQQQ
Manu[0] ≡ Manu[0][0]

Buyer oo //
ww

77nnnnnn

ff

&&NNNNNNN Supp[1] gg

''OOOOOOO
Manu[1] ≡ Manu[0][1]

Manu[2][1]

Supp[2] oo //
ww

77ooooooo
Manu[2] ≡ Manu[1][2]

Manu[2][2]
: :

Fig. 19. The Quote Request usecase (C-U-002) [36]

2. The suppliers interact with their manufacturers to build their quotes for the buyer.
The eventual quote is sent back to the buyer.

3. EITHER

(a) The buyer agrees with one or more of the quotes and places the order or orders.
OR

(b) The buyer responds to one or more of the quotes by modifying and sending
them back to the relevant suppliers.

4. EITHER

(a) The suppliers respond to a modified quote by agreeing to it and sending a
confirmation message back to the buyer. OR

(b) The supplier responds by modifying the quote and sending it back to the buyer
and the buyer goes back to STEP 3. OR

(c) The supplier responds to the buyer rejecting the modified quote. OR
(d) The quotes from the manufacturers need to be renegotiated by the supplier. Go

to STEP 2.

The usecase, depicted in figure 19, may seem simple, but it contains many challenges.
The Requirements in Section 3.1.2.2 of [36] include: [R1] the ability to repeat the same
set of interactions between different parties using a single definition and to compose
them; [R2] the number of participants may be bounded at design time or at runtime;
and [R3] the ability to reference a global description from within a global description
to support recursive behaviour as denoted in STEP 4(b, d). The following works through
a parameterised global type specification that satisfies these requirements.

Modular programming using global types We develop the specification of the use-
case program modularly, starting from smaller global types. Here, Buyer stands for
the buyer, Supp[i] for a supplier, and Manu[j] for a manufacturer. Then we alias man-
ufacturers by Manu[i][j] to identify that Manu[j] is connected to Supp[i] (so a single
Manu[j] can have multiple aliases Manu[i′][j], see figure 19). Then, using the idioms
presented in § 1, STEP 1 is defined as:

G1 = foreach(iI){Buyer→ Supp[i] : 〈Quote〉.end}
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For STEP 2, we compose a nested loop and the subsequent action within the main loop
(Ji gives all Manu[j] connected to Supp[i]):

G2 = foreach(i : I){G2[i], Supp[i]→ Buyer : 〈Quote〉.end}
G2[i] = foreach(j : Ji){ Supp[i]→ Manu[i][j] : 〈Item〉.

Manu[i][j]→ Supp[i] : 〈Quote〉.end}

G2[i] represents the second loop between the i-th supplier and its manufacturers. Re-
garding STEP 3, the specification involves buyer preference for certain suppliers. Since
this can be encoded using dependent types (like the encoding of if), we omit this part
and assume the preference is given by the (reverse) ordering of I in order to focus on
the description of the interaction structure.

G3 = R t λi.λy.Buyer→ Supp[i] : {
ok : end
modify : Buyer→ Supp[i] : 〈Quote〉

Supp[i]→ Buyer : { ok : end
retryStep3 : y
reject : end}} i

In the innermost branch, ok, retryStep3 and reject correspond to STEP 4(a), (b) and
(c) respectively. Type variable t is for (d). We can now compose all these subprotocols
together. Taking G23 = µt.G2, G3 and assuming I = [0..i], the full global type is

λi.λJ̃.G1, G23

where we have i suppliers, and J̃ gives the Ji (continuous) index sets of the Manu[j]s
connected with each Supp[i].

End-point types We show the end-point type for suppliers, who engage in the most
complex interaction structures among the participants. The projections corresponding
to G1 and G2 are straightforward:

G1 � Supp[n] =?〈Buyer,Quote〉
G2 � Supp[n] = foreach(j : Ji){!〈Manu[n][j], Item〉;

?〈Manu[n][j],Quote〉}; !〈Buyer,Quote〉

For G3 � Supp[n], we use the branching injection and mergeability theory developed
in § 3.1. After the relevant application of bTEQc, we can obtain the following projection:

&〈Buyer, { ok : end
modify : ?〈Buyer,Quote〉;⊕〈Buyer, {

ok : end
retryStep3 : T
reject : end}〉}〉

where T is a type for the invocation from Buyer:

if n ≤ i then &〈Buyer, {closed : end, retryStep3 : t}〉
elseif i = n then t
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To tell the other suppliers whether the loop is being reiterated or if it is finished, we can
simply insert the following closing notification foreach(jI \ i){Buyer→ Supp[j] :
{close :}} before each end, and a similar retry notification (with label retryStep3)
before t. Finally, each end-point type is formed by the following composition:

G1 � Supp[n], µt.G2 � Supp[n], G3 � Supp[n])

Following this specification, the projections can be implemented in various end-point
languages (such as CDL or BPEL).

6 Conclusion and related work

This paper studies a parameterised multiparty session type theory which combines three
well-known theories: indexed dependent types [40], dependent types with recursors [31]
and multiparty session types [3, 23]. The resulting typing system is decidable (under an
appropriate assumption about the arithmetics of indices). It offers great expressive pow-
ers to describe complex communication topologies and guarantees safety properties of
processes running under such topologies. We have explored the impact of parameterised
type structures for communications through implementations of the above web service
usecases and of several parallel algorithms in Java with session types [24, 25], including
the Jacobi method (with sequence and mesh topologies) and the FFT [26, 32, 34]. We
observe (1) a clear coordination of the communication behaviour of each party with the
construction of the whole multiparty protocol, thus reducing programming errors and
ensuring deadlock-freedom; and (2) a performance benefit against the original binary
session version, reducing the overhead of multiple binary session establishments (see
also [18, 26, 32]). Full implementation and integration of our theory into [4, 24, 25] is
on-going work.

6.1 Related Work

We focus on the works on dependent types and other typed process calculi which are
related to multiparty session types; for further comparisons of session types with other
service-oriented calculi and behaviour typing systems, see [17] for a wide ranging sur-
vey of the related literature.

Dependent types The first use of primitive recursive functionals for dependent types
is in Nelson’s T π [31] for the λ-calculus, which is a finite representation of T ∞ by Tait
and Martin Löf [28, 38]. T π can type functions previously untypable in ML, and the fi-
nite representability of dependent types makes it possible to have a type-reconstruction
algorithm. We also use the ideas from the DML’s dependent typing system in [1, 40]
where type dependency is only allowed for index sorts, so that type-checking can be
reduced to a constraint-solving problem over indices. Our design choice to combine
both systems gives (1) the simplest formulation of sequences of global and end-point
types and processes described by the primitive recursor; (2) a precise specification for
parameters appearing in the participants based on index sorts; and (3) a clear integra-
tion with the full session types and general recursion, whilst ensuring decidability of
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type-checking (if the constraint-solving problem is decidable). From the basis of these
works, our type equivalence does not have to rely on behavioural equivalence between
processes, but only on the strongly normalising types represented by recursors.

Dependent types have been also studied in the context of process calculi, where the
dependency centres on locations (e.g. [21]), and channels (e.g. [41]) for mobile agents
or higher-order processes. An effect-based session typing system for corresponding as-
sertions to specify fine-grained communication specifications is studied in [7] where
effects can appear both in types and processes. None of these works investigate families
of global specifications using dependent types. Our main typing rules require a careful
treatment for type soundness not found in the previous works, due to the simultane-
ous instantiation of terms and indices by the recursor, with reasoning by mathematical
induction (note that type soundness was left open in [31]).

Types and contracts for multiparty interactions The first papers on multiparty ses-
sion types were [6] and [23]. The former uses a distributed calculus where each channel
connects a master end-point to one or more slave endpoints; instead of global types,
they use only local types. Since the first work [23] was proposed, this theory has been
used in the different contexts such as distributed protocol implementation and opti-
misation [37], security [4, 9], design by contract [5], parallel algorithms [32, 42], web
services [42], multicore programming [43], an advanced progress guarantee [3], mes-
saging optimisation [30], structured exceptions [10], buffer and channel size analysis
for multiparty interactions [15], and medical guidelines [33], some of which initiated
industrial collaborations, cf. [22]. Our typing system can be smoothly integrated with
other works as no changes to the runtime typing components have been made and the
expressiveness has been greatly improved.

The work [11] presented an executable global processes for Web interactions based
on the binary session types. Our work provides flexible, programmable global descrip-
tions as types, offering a progress for parameterised multiparty session, which is not
ensured in [11].

Recent formalisms for typing multiparty interactions include [8, 13]. These works
treat different aspects of dynamic session structures. Contracts [13] can type more pro-
cesses than session types, thanks to the flexibility of process syntax for describing pro-
tocols. However, typable processes themselves in [13] may not always satisfy the prop-
erties of session types such as progress: it is proved later by checking whether the type
meets a certain form. Hence proving progress with contracts effectively requires an ex-
ploration of all possible paths (interleaving, choices) of a protocol. The most complex
example of [13, § 3] (a group key agreement protocol from [2]), which is typed as π-
processes with delegations, can be specified and articulated by a single parameterised
global session type as:

Πn :I.(foreach(i < n){W[n− i]→ W[n− i+ 1] : 〈nat〉};
foreach(i < n){W[n− i]→ W[n+ 1] : 〈nat〉.W[n+ 1]→ W[n− i] : 〈nat〉})

Once the end-point process conforms to this specification, we can automatically guar-
antee communication safety and progress.

Conversation Calculus [8] supports the dynamic joining and leaving of participants.
We also introduced a dynamic role-based multiparty session type discipline [16] where
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an arbitrary number of participants can participate to a running session via a universal
polling operator. Though the formalism in § 2.4 can operationally capture such dynamic
features, the aim of the present work is not the type-abstraction of dynamic interaction
patterns. Our purpose is to capture, in a single type description, a family of protocols
over arbitrary number of participants, to be instantiated at runtime. The parameterisa-
tion gives freedom not possible with previous session types: once typed, a parametric
process is ensured that its arbitrary well-typed instantiations, in terms of both topologies
and process behaviours, satisfy the safety and progress properties of typed processes.
Parameterisation, composition and repetition are common idioms in parallel algorithms
and choreographic/conversational interactions, all of which are uniformly treatable in
our dependent type theory. Here types offer a rigorous structuring principle which can
economically abstract rich interaction structures, including parameterised ones.
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A Kinding and typing rules

In this Appendix section, we give the definitions of kinding rules and typing rules that
were omitted in the main sections.

A.1 Kinding and subtyping

Figure 20 defines the kinding rules for local types. Figure 21 presents the subtyping
rules which are used for typing runtime processes. The rules for the type isomorphism
can be given by replacing ≤ by ≈.

B Typing system for runtime processes

This appendix defines a typing system for runtime processes (which contain queues).
Most of the definitions are from [3].

Message T ::= !〈p̂, U〉 message send
| ⊕〈p̂, l〉 message selection
| T; T′ message sequence

Generalised T ::= T session
| T message
| T;T continuation

Message types are the types for queues: they represent the messages contained in the
queues. The message send type !〈p̂, U〉 expresses the communication to p̂ of a value or
of a channel of type U . The message selection type ⊕〈p̂, l〉 represents the communica-
tion to participant p̂ of the label l and T; T′ represents sequencing of message types (we
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Γ ` pB nat Γ ` T I Type Γ ` U I Type or Type
[KLOUT]

Γ `!〈p, U〉;T I Type

Γ ` pB nat Γ ` T I Type Γ ` U I Type or Type
[KLIN]

Γ `?〈p, U〉;T I Type

Γ ` T I Πi :I.κ Γ |= i : I
[KLAPP]

Γ ` T i I κ{i/i}

Γ ` pB nat ∀k ∈ K,Γ ` Tk I Type
[KLSEL]

Γ ` ⊕〈p, {lk : Tk}k∈K〉 I Type

Γ ` pB nat ∀k ∈ K,Γ ` Tk I Type
[KLBRA]

Γ ` &〈p, {lk : Tk}k∈K〉 I Type

Γ ` T I κ{0/j} Γ, i : I− ` T ′ I κ{i+ 1/j}
[KLRCR]

Γ ` R T λi :I−.λx.T ′ I Πj :I.κ

Γ ` κ
[KVAR]

Γ ` x I κ

Γ ` T I Type
[KLREC]

Γ ` µx.T I Type

Γ ` Env
[KLEND]

Γ ` end I Type

Fig. 20. Kinding rules for local types

Γ ` T ≤ T ′
bTSUBOUTc

Γ `!〈p, U〉;T ≤!〈p, U〉;T ′
Γ ` T ≤ T ′

bTSUBINc
Γ `?〈p, U〉;T ≤?〈p, U〉;T ′

∀k ∈ K ⊆ J, Γ ` Tk ≤ T ′k
bTSSEL≤c

Γ ` ⊕〈p, {lk : Tk}k∈K〉 ≤ ⊕〈p, {lj : T ′j}j∈J〉

∀k ∈ J ⊆ K, Γ ` Tk ≤ T ′k
bTBRA≤c

Γ ` &〈p, {lk : Tk}k∈K〉 ≤ &〈p, {lj : T ′j}j∈J〉

Γ ` T1 ≤ T2 Γ, i : I ` T ′1 ≤ T ′2
bTSUBPRECc

Γ ` R T1 λi :I.λx.T
′
1 ≤ R T2 λi :I.λx.T

′
2

Γ ` T{µx.T/x} ≤ T ′
bTLSUBRECc

Γ ` µx.T ≤ T ′
Γ ` T ′ ≤ T{µx.T/x}

bTRSUBRECc
Γ ` T ′ ≤ µx.T

Γ ` T ≤ T ′ Γ |= i : I = i
′ : I
bTSUBPROJc

Γ ` T i ≤ T ′ i′

Γ ` Env
bTSUBENDc

Γ ` end ≤ end

Γ ` Env
bTSUBRVARc

Γ ` x ≤ x

Fig. 21. Subtyping
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assume associativity for ;). For example ⊕〈1,ok〉 is the message type for the message
(2, 1,ok). A generalised type is either a session type, or a message type, or a mes-
sage type followed by a session type. Type T;T represents the continuation of the type
T associated to a queue with the type T associated to a pure process. An example of
generalised type is ⊕〈1,ok〉; !〈3, string〉; ?〈3,date〉; end.

In order to take into account the structural congruence between queues (see Fig-
ure 7) we consider message types modulo the equivalence relation ≈ induced by the
rules shown as follows (with \ ∈ {!,⊕} and Z ∈ {U, l}):

\〈p̂, Z〉; \′〈q̂, Z〉; T ≈ \′〈q̂, Z〉; \〈p̂, Z〉; T if p̂ 6= q̂

The equivalence relation on message types extends to generalised types by:

T ≈ T′ implies T; T ≈ T′; T

We say that two session environments ∆ and ∆′ are equivalent (notation ∆ ≈ ∆′)
if c : T ∈ ∆ and T 6= end imply c : T′ ∈ ∆′ with T ≈ T′ and vice versa. This
equivalence relation is used in rule bEQUIVc (see Figure 22).

Γ ` P . ∆
bGINITc

Γ `∅ P . ∆

Γ `Σ P . ∆ ∆ ≈ ∆′
bEQUIVc

Γ `Σ P . ∆′

Γ `Σ P . ∆ ∆ ≤ ∆′
bSUBSc

Γ `Σ P . ∆′

Γ `Σ P . ∆ Γ `Σ′ Q . ∆′ Σ ∩Σ′ = ∅
bGPARc

Γ `Σ∪Σ′ P | Q . ∆ ∗∆′
Γ `Σ P . ∆ co(∆, s)

bGSRESc
Γ `Σ\s (νs)P . ∆ \ s

Fig. 22. Run-time process typing

Γ ` Env
bQINITc

Γ `{s} s : ε . ∅

Γ `{s} s : h . ∆ Γ ` v : S
bQSENDc

Γ `{s} s : h · (q̂, p̂, v) . ∆; {s[q̂] : !〈p̂, S〉}

Γ `{s} s : h . ∆
bQDELEGc

Γ `{s} s : h · (q̂, p̂, s′[p̂′]) . ∆, s′[p̂′] : T ′; {s[q̂] : !〈p̂, T ′〉}

Γ `{s} s : h . ∆ j ∈ K
bQSELc

Γ `{s} s : h · (q̂, p̂, lj) . ∆; {s[q̂] : ⊕〈p̂, {lk : Tk}k∈K〉}

Fig. 23. Queue typing
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We start by defining the typing rules for single queues, in which the turnstile ` is
decorated with {s} (where s is the session name of the current queue) and the ses-
sion environments are mappings from channels to message types. The empty queue has
empty session environment. Each message adds an output type to the current type of
the channel which has the role of the message sender. Figure 23 lists the typing rules
for queues, where ; is defined by:

∆; {s[q̂] : T} =

{
∆′, s[q̂] : T′; T if ∆ = ∆′, s[q̂] : T′,
∆, s[q̂] : T otherwise.

For example we can derive `{s} s : (3, 1,ok) . {s[1] : ⊕〈1,ok〉}.
In order to type pure processes in parallel with queues, we need to use generalised

types in session environments and further typing rules. Figure 22 lists the typing rules
for processes containing queues. The judgement Γ `Σ P . ∆ means that P contains
the queues whose session names are in Σ. Rule bGINITc promotes the typing of a pure
process to the typing of an arbitrary process, since a pure process does not contain
queues. When two arbitrary processes are put in parallel (rule bGPARc) we need to
require that each session name is associated to at most one queue (condition Σ ∩Σ′ =
∅). In composing the two session environments we want to put in sequence a message
type and a session type for the same channel with role. For this reason we define the
composition ∗ between generalised types as:

T ∗ T′ =

T; T′ if T is a message type,
T′; T if T′ is a message type,
⊥ otherwise

where ⊥ represents failure of typing.
We extend ∗ to session environments as expected:

∆ ∗∆′ = ∆\dom(∆′) ∪∆′\dom(∆) ∪ {c : T ∗ T′ | c : T ∈ ∆ & c : T′ ∈ ∆′}.

Note that ∗ is commutative, i.e., ∆ ∗∆′ = ∆′ ∗∆. Also if we can derive message types
only for channels with roles, we consider the channel variables in the definition of ∗ for
session environments since we want to get for example {y : end} ∗ {y : end} = ⊥
(message types do not contains end).

In rule bGSREScwe require the coherence of the session environment∆with respect
to the session name s to be restricted (notation co(∆, s)). This coherence is defined
in Definition 4.1 using the notions of projection of generalised types and of duality,
introduced respectively in Definitions B.1 and B.2.

Definition B.1. The projection of the generalised local type T onto q, denoted by T � q,
is defined by:

( !〈p̂, U〉; T′) � q =

{
!U ; T′ � q if q = p̂,

T′ � q otherwise.

(⊕〈p̂, l〉; T′) � q =

{
⊕l; T′ � q if q = p̂,

T′ � q otherwise.
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(?〈p, U〉;T ) � q =

{
?U ;T � q if q = p,

T � q otherwise.

(⊕〈p, {li : Ti}i∈I〉) � q =

{
⊕{li : Ti � q}i∈I if q = p,

ti∈ITi � q otherwise.

(&〈p, {lk : Tk}k∈K〉) � q =

{
&{li : Ti � q}i∈I if q = p,

ti∈ITi � q otherwise.

(µx.T ) � q = µx.(T � q) x � q = x end � q = end

where ti∈ITi � q is defined as ti∈ITi in Definition 3.1 replacing by:

&〈{lk : Tk}i∈I〉 t&〈{lj : T ′j}j∈J〉 =
&〈{lk : Tk t T ′k}k∈K∩J ∪ {lk : Tk}k∈K\J ∪ {lj : T ′j}j∈J\K〉

Definition B.2. The duality relation between projections of generalised types is the
minimal symmetric relation which satisfies:

end ./ end x ./ x T ./ T ′ =⇒ µx.T ./ µx.T ′

T ./ T =⇒ !U ; T ./ ?U ;T
∀i ∈ I Ti ./ T ′i =⇒ ⊕{li : Ti}i∈I ./ &{li : T ′i}i∈I
∃i ∈ I l = li & T ./ Ti =⇒ ⊕l; T ./ &{li : Ti}i∈I
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