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Abstract
Multiparty session types is a type discipline that can ensure the
safety and liveness of distributed peers via the global specifica-
tion of the interaction. To construct a global specification from a
set of distributed uncontrolled behaviours, this paper explores the
problem of fully characterising multiparty session types in terms
of communicating automata. We equip global and local session
types with labelled transition systems (LTSs) that faithfully rep-
resent asynchronous communications through unbounded buffered
channels. Using the equivalence between the two LTSs, we iden-
tify three classes of communicating automata that exactly corre-
spond to the projected local types of three different multiparty ses-
sion type theories. We exhibit decidable algorithms to synthesise a
global type from a collection of communicating automata. The key
property of our findings is the notion of multiparty compatibility
which non-trivially extends the duality condition that was valid for
binary session types.

1. Introduction
Over the last decade, session types [24, 35] have been studied as
data types or functional types for communications and distributed
systems. A session type describes the protocol of a series of data
inputs and outputs with a choice of interactions and recursions. A
recent discovery by [9, 37], which establishes a Curry-Howard iso-
morphism between binary session types and linear logics, confirms
that session types and the notion of duality between type constructs
have canonical meanings. On the practical side, various extensions
of session types have been proposed to improve expressiveness
and gain stronger safety guarantees. Multiparty session type dis-
cipline [4, 25] is one of the major generalisation of binary session
types. It can enforce communication safety and deadlock-freedom
for more than two peers thanks to a choreographic specification
(called global type) of the interaction. Global types are projected
to end-point types (called local types), against which processes can
be statically type-checked and verified to behave correctly.

This paper has two main motivations, one theoretical, one more
practical. First, from a theoretical point of view, the question of
the comparison of multiparty session types with other specification
frameworks has not had a satisfying, i.e. formal, answer yet. In this
paper, we attempt to answer this first question through the sound
and complete characterisation of multiparty session types with re-
spect to communicating automata, also called Communicating Fi-
nite State Machines (CFSMs). CFSMs [8] consist of a finite state
representation of a fixed number of actors who can interact through
unbounded buffered channels. CFSMs have been used as a stan-
dard for the analysis of distributed safety properties and are widely
present in industry tools. They are therefore an excellent target for
a common comparison ground.

The second motivation comes from our practical experiences
that, in many situations, even where we start from the end-point
projections of a choreography or business model description, we
need to reconstruct a global type from distributed (most often lo-
cally updated) specifications. End-points specifications are usually

available, either through inference from the control flow, or through
existing service interfaces, and always in forms akin to individual
communicating finite state machines. Global choreographies how-
ever usually demand some effort to be written, although they should
arguably be present in the design and architecture documents of
any well-planned distributed application project. If one knows the
precise conditions under which a global type can be constructed,
not only the global safety property which multiparty session types
ensure is guaranteed, but also the generated global type or choreog-
raphy business model notation [7] can be used as a refinement and
be integrated within the distributed system development life-cycle
(see § 8 for examples of applications [31, 33]).

Overall, the question we aim to answer in this paper is the
following:

In the world of communicating automata,
what exactly are multiparty session types?

Characterisation of binary session types as communicating au-
tomata The answer to this question in the binary session types
case has been recently discovered by Villard [36]: a two-machine
subclass of CFSMs, where deadlock-freedom and orphan message-
freedom are guaranteed, characterises exactly binary session type
behaviours. This subclass was actually proposed by Gouda, Man-
ning and Yu in 1984 [22] in a pure communicating automata con-
text. Let us explain by example how the two formalisms coincide
together.

Consider a simple business protocol between a Buyer and a
Seller from the Buyer’s viewpoint: Buyer sends the title of a book,
Seller answers with a quote. If Buyer is satisfied by the quote,
then he sends his address and Seller sends back the delivery date;
otherwise it retries the same conversation. This can be described by
the following session type:

µt.! title; ?quote; !{ ok :!address; ?date;end, retry : t } (1.1)

The session type above describes a communication pattern using
several constructs. The operator ! title denotes an output of the title,
whereas ?quote denotes an input of a quote. The output choice
features the two options ok and retry and ; denotes sequencing.
end represents the termination of the session, and µt is recursion.

The simplicity and tractability of binary sessions come from the
notion of duality in interactions [21]. The interaction pattern of the
Seller is fully given as the dual of the type in (1.1) (exchanging
input ! and output ? in the original type). When composing two
parties, we only have to check they have mutually dual types, and
the resulting communication is guaranteed to be deadlock-free.

Essentially the same characterisation is given in communicating
automata. Buyer and Seller’s session types are represented by the
following two machines.
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We can observe the above CFSMs satisfy three conditions. First,
the communications are deterministic: the messages that are part of
the same choice, ok and retry here, should be distinct. Secondly,
they do not have mixed states (each state has either only sending
actions or only receiving actions). Third, the two machines have
compatible traces (i.e. dual): the Seller machine can be defined by
exchanging sending to receiving actions and vice versa. Breaking
one of these conditions allows deadlock situations and breaking
one of the first two conditions makes the compatibility checking
undecidable [22]. Villard’s result [36] states that two-machine,
deterministic, no mixed state, compatible communicating systems
characterise binary session types and Singularity contracts [19].

Extension to the multiparty case This notion of duality is no
longer effective in multiparty communications, where the whole
conversation cannot be reconstructed from only a single behaviour.
To bypass the gap between binary and multiparty, we take the syn-
thesis approach, that is to find conditions that allow a global chore-
ography to be built from the local machine behaviour. Instead of
directly trying to decide whether the communications of a system
will indefinitely satisfies safety (which is undecidable in the gen-
eral case), inferring a global type allows to prove the safety as a
consequence.

Example: Dispatch protocol In Figure 1, we give an example
to illustrate the problem. The Dispatch protocol involves three
machines, a dispatcher D and worker machines A and B. D is in
charge of repeatedly sending tasks (messages m1 and m2) to B and
C in alternation. However, A always waits for the completion of the
task by A (acknowledgement message a1) before sending B its new
task, and same with B (acknowledgement message a2).

The left part of Figure 1 features the three communicating au-
tomata for D, A and B. D’s automaton is the most complex, as it
needs to handle the possible interleavings of A and B’s acknowl-
edgements. The workers’ automata however are straightforward
two-states loops where they respectively receive m1 and send a1,
and receive m2 and send a2.

Multiparty compatibility In this paper, we present a decidable
notion of multiparty compatibility which extends the duality of bi-
nary session types and which can identify whether global choreog-
raphy exists for a given set of communicating automata. The idea
of this condition is to check the duality between each automaton
and the rest, up to the internal communications that the other ma-
chines will independently perform. If this extended duality is valid
for all the machines, then we can guarantee the existence of a global
choreography and exhibit it algorithmically as a global type.

The right of Figure 1 shows a graphical representation (using a
Choreography BPMN 2.0 notation [7]) of the global type for the
Dispatch protocol. It describes concisely the orchestration of the
messages that are exchanged. Its interpretation is the following:
from the initial node (in green), each participant follows the tran-
sitions and the operators: + is choice (not present here) and merge
(when two mutually exclusive flows have the same continuation),
| is fork (two concurrent behaviours follow) and join (two concur-
rent lines synchronise). In particular here, it is explicit that b and
a always alternate, that c and d always alternate and, through the
fork-join combination, a and c alternate.

The collection of automata of Figure 1 can be proven to be mul-
tiparty compatible, and our inference algorithm is able to produce
the global type on the right. The synthesis works, in the general
case, by using Petri net representations of finite state machines, and
relies on the memory-less behaviours of a multiparty compatible
system.

In this paper, to provide a progressive path, and to tackle rele-
vant subclasses, we study three representative classes of multiparty
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Figure 1. Dispatch example: CFSMs and global type

session types from the literature and we give their complete com-
municating automata characterisation and synthesis.

Contributions and Outline

§ 3 We define new labelled transition relations for global and lo-
cal types that represent the usual observable behaviour of typed
processes. We prove that a global type behaves exactly as its
projected local types. We also prove a similar result between
a single local type and its CFSMs interpretation. These corre-
spondences are used for the synthesis algorithms and character-
isations in § 4 and § 5.

§ 4 As a first step, we study the class of sequential CFSMs, where
at any moment only one machine is allowed to send messages.
In this simple class, we can directly identify a sound and com-
plete characterisation of sequential multiparty session types, a
subclass of multiparty session types studied in [5, 13]. The com-
plexity of the synthesis is linear in the size of the CFSMs.

§ 5 Our first result is about the main class of global session types
[4, 25], called classical multiparty session types, where all
choices are sent to and received from the same peer, and where
there is no parallel branches. We identify a sound and complete
condition, multiparty compatibility for this class and give an
algorithm for the synthesis of global types from local types.
The complexity of the compatibility checking and synthesis is
both bounded in polynomial in the size of the CFSMs.

§ 6 We extend our result to generalised multiparty session types,
a recent class of multiparty session types [17] with graph-like
control flow and parallelism. The same multiparty compatibil-
ity as in § 5 can be used without modification, although well-
formedness condition need to be generalised. The synthesis al-
gorithm relies on Petri net intermediate representations [15] and
1-bounded behavioural exploration. Our result is applicable to
generate a core part of Choreography BPMN 2.0 specification
[7] from CFSMs.

§ 7 discusses related work and § 8 concludes with the future work.
Appendix [30] lists the full proofs and omitted definitions.

2. Communicating Finite State Machines
This section gives some preliminary notations of CFSMs (follow-
ing [13]) and the definitions of some CFSMs properties relevant to
the CFSM connection to multiparty session types.

2.1 Basic definitions and properties
ε is the empty word. A is a finite alphabet and A∗ is the set of all
finite words over A. |x| is the length of a word x and x.y or xy the
concatenation of two words x and y. LetP be a set of participants
fixed throughout the paper:P⊆ {Alice,Bob,Carol, . . . ,p,q, . . .}.
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DEFINITION 1 (CFSM). A communicating finite state machine is
a finite transition system given by a 5-tuple M = (Q,C,q0,A,δ )
where (1) Q is a finite set of states; (2) C = {pq ∈P2 | p 6= q} is
a set of channels; (3) q0 ∈ Q is an initial state; (4) A is a finite
alphabet of messages, and (5) δ ⊆ Q× (C×{!,?}×A)×Q is a
finite set of transitions.

In transitions, pq!a denotes the sending action of a from process p
to process q, and pq?a denotes the receiving action of a from p by
q. `,`′, ... range over actions and we define the subject of an action
` as the principal in charge of it: subj(pq!a) = subj(qp?a) = p.

A state q ∈ Q whose outgoing transitions are all labelled with
sending (resp. receiving) actions is called a sending (resp. receiv-
ing) state. A state q ∈ Q which does not have any outgoing tran-
sition is called a final state. If q has both sending and receiving
outgoing transitions, then q is called mixed. A sending (resp. re-
ceiving) state q is said to be alternating if all the outgoing tran-
sitions go to receiving (resp. sending) states. We say q is directed
if it contains only sending (resp. receiving) actions to (resp. from)
the same participant. A path in M is a finite sequence of q0, . . . ,qn
(n≥ 1) such that (qi, `,qi+1)∈ δ (0≤ i≤ n−1), and we write q `−→q′
if (q, `,q′) ∈ δ . M is connected if for every state q 6= q0, there is a
path from q0 to q. Hereafter we assume each CFSM is connected.

A CFSM M = (Q,C,q0,A,δ ) is deterministic if for all states
q ∈ Q and all actions `, (q, `,q′),(q, `,q′′) ∈ δ imply q′ = q′′.1

We now define communicating systems of machines.

DEFINITION 2 (CS). A (communicating) system S is a tuple S =
(Mp)p∈P of CFSMs such that Mp = (Qp,C,q0p,A,δp).

For Mp = (Qp,C,q0p,A,δp), we define a configuration of S =
(Mp)p∈P to be a tuple s = (~q;~w) where ~q = (qp)p∈P with qp ∈ Qp

and where ~w = (wpq)p6=q∈P with wpq ∈A∗. The element~q is called
a control state and q ∈ Qi is the local state of machine Mi.

DEFINITION 3 (reachable state). Let S be a communicating sys-
tem. A configuration s′ = (~q′;~w′) is reachable from another config-
uration s = (~q;~w) by the firing of the transition t, written s−→ s′ or
s t−→s′, if there exists a ∈ A such that either:

1. t = (qp,pq!a,q′p) ∈ δp and (a) q′p′ = qp′ for all p′ 6= p; and (b)
w′pq = wpq.a and w′p′q′ = wp′q′ for all p′q′ 6= pq; or

2. t = (qq,pq?a,q′q) ∈ δq and (a) q′p′ = qp′ for all p′ 6= q; and (b)
wpq = a.w′pq and w′p′q′ = wp′q′ for all p′q′ 6= pq.

The condition (1-b) puts the content a to a channel pq, while (2-b)
gets the content a from a channel pq. The reflexive and transitive
closure of → is →∗. For a transition t = (s, `,s′), we refer to `
by act(t). We write s1

t1 · · · tm−−−−→sm+1 for s1
t1−→s2 · · · tm−→sm+1 and use

the metavariable ϕ to designate sequences of transitions of the
form t1 · · · tm. We extend act to these sequences: act(t1 · · · tn) =
act(t1) · · ·act(tn).

The initial configuration of a system is s0 = (~q0;~ε) with ~q0 =
(q0p)p∈P. A final configuration of the system is s f = (~q;~ε) with
all qp ∈ ~q final. A configuration s is reachable if s0 →∗ s and we
define the reachable set of S as RS(S) = {s | s0 →∗ s}. We define
the traces of a system S to be Tr(S) = {act(ϕ) | ∃s∈ RS(S),s0

ϕ−→s}.

Properties We now define several properties about communicat-
ing systems and their configurations. These properties will be used
in the following sections to characterise the systems that corre-
spond to multiparty session types.

1 “Deterministic” often means the same channel should carry a unique
value, i.e. if (q,c!a,q′) ∈ δ and (q,c!a′,q′′) ∈ δ then a = a′ and q′ = q′′.
Here we follow a different definition [13] in order to represent branching
type constructs.

Let S be a communicating system, t one of its transitions and
s = (~q;~w) one of its configurations. The following definitions of
configuration properties follow [13, Definition 12].
1. s is stable if all its buffers are empty, i.e., ~w =~ε .

2. s is a deadlock configuration if s is not final, and ~w=~ε and each
qp is a receiving state, i.e. all machines are blocked, waiting for
messages.

3. s is an orphan message configuration if all qp ∈~q are final but
~w 6= /0, i.e. there is at least an orphan message in a buffer.

4. s is an unspecified reception configuration if there exists q ∈P
such that qq is a receiving state and (qq,pq?a,q′q) ∈ δ implies
that |wpq|> 0 and wpq 6∈ aA∗, i.e qq is prevented from receiving
any message from buffer pq.
A sequence of transitions (an execution) s1

t1−→s2 · · ·sm
tm−→sm+1

is said to be k-bounded if all channels of all intermediate config-
urations si do not contain more than k messages. We define the k-
reachability set of S to be the largest subset RSk(S) of RS(S) within
which each configuration s can be reached by a k-bounded exe-
cution from s0. Note that a given a communicating system S, for
every integer k, the set RSk(S) is finite and computable. We say that
a trace ϕ is n-bound, written bound(ϕ) = n, if the number of send
actions in ϕ exceeds the number of receive actions by n. We then
define the equivalences:

• S≈ S′ is ∀ϕ, ϕ ∈ Tr(S)⇔ ϕ ∈ Tr(S′)
• S≈n S′ is ∀ϕ, bound(ϕ)≤ n⇒ (ϕ ∈ Tr(S)⇔ ϕ ∈ Tr(S′))

≈ and ≈n will be used to study the characterisation of several
classes of CFSMs that correspond to types.

We now define the notion of stable systems, which always
allow 1-buffer executions, and deterministic systems, where traces
unequivocally describe the behaviour. Determinism is the condition
under which the trace equivalence (presented above) is enough to
fully describe the equivalence in behaviour between systems.

DEFINITION 4 (stability and determinism). 1. A communicating
system S is stable if, for all s ∈ RS(S), there exists an execution
ϕ ′−→ such that s ϕ ′−→s′ and s′ is stable, and there is a 1-bounded
execution s0

ϕ ′′−→s′.
2. A communicating system S is deterministic if, for all s∈ RS(S),

s t1−→ s1 and s t2−→ s2 and act(t1) = act(t2) imply s1 = s2.

Note that the communicating system of Figure 1 is both stable and
deterministic.

The following key properties will be examined throughout the
paper as the properties that multiparty session type can enforce.
They are undecidable in general CFSMs.
DEFINITION 5 (safety and liveness). 1. A communicating sys-

tem S is deadlock-free (resp. orphan message-free, reception
error-free) if s ∈ RS(S), s is not a deadlock (resp. orphan mes-
sage, unspecified reception) configuration.

2. A communicating system S satisfies the liveness property2 if for
all s ∈ RS(S), there exists s−→∗ s′ such that s′ is final.

3. Classical global and local types
This section presents the classical multiparty session types, our
main object of study. For the syntax of types, we follow [4] which
is the most widely used syntax in the MPST literature. We then
introduce two labelled transition systems, one for local types and
one for global types, and we show the equivalence between local
types and communicating automata.

2 The terminology follows [11].
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Syntax A (classical) global type, written G,G′, .., describes the
whole conversation scenario of a multiparty session as a type sig-
nature, and a (classical) local type, written by T,T ′, .., type-abstract
sessions from each end-point’s view. p,q, · · · ∈Pdenote participants
(see § 2 for conventions). The syntax of types is given as:

G ::= p→ p′ : {a j.G j} j∈J | µt.G | t | end

T ::= p?{ai.Ti}i∈I | p!{ai.Ti}i∈I | µt.T | t | end

a j ∈ A corresponds to the usual message label in session type the-
ory. We omit the mention of the carried types from the syntax in this
paper, as we are not directly concerned by typing processes. Type
p→ p′ : {a j.G j} j∈J states that participant p can send a message
with one of the ai labels to participant p′ and that interactions de-
scribed in G j should follow. We require p 6= p′ to prevent self-sent
messages. Recursive type µt.G is for recursive protocols, assum-
ing that type variables (t,t′, . . . ) are guarded in the standard way,
i.e. they only occur under branchings. Type end represents session
termination (often omitted). p ∈ G means that p appears in G.

Concerning local types, the branching type p?{ai.Ti}i∈I speci-
fies the reception of a message from p with a label among the ai.
The selection type p!{ai.Ti}i∈I is its dual. The remaining type con-
structors are the same as global types. When branching is a single-
ton, we write p→ p′ : a.G′ for global, and p?a or p?a for local.

We give below, in section 3.1, a formal interpretation of which
behaviours global and local types represent. Beforehand, we give
the definition of the classical projection algorithm.

Projection The relation between global and local types is for-
malised by projection. Instead of the restricted original projec-
tion [4], we use the extension with the merging operator ./ from
[16, 38]: it allows each branch of the global type to actually con-
tain different interaction patterns.

DEFINITION 6 (projection). The projection of G onto p (written
G�p) is defined as:

p→ p′ : {a j.G j} j∈J � q=


p!{a j.G j � q} j∈J q= p

p?{a j.G j � q} j∈J q= p′

t j∈JG j � q otherwise

(µt.G) � p=

{
µt.G � p t ∈ G
end t 6∈ G

t � p = t end � p = end

The mergeability relation ./ is the smallest congruence relation
over end-point types such that:

∀i ∈ (K∩ J).Ti ./ T ′i ∀i 6= j ∈ (K \ J)∪ (J \K).ai 6= a j

p?{ak.Tk}k∈K ./ p?{a j.T ′j} j∈J

When T1 ./ T2 holds, we define the operation t as a partial com-
mutative operator over two types such that T tT = T for all types
and that:

p?{ak.Tk}k∈K tp?{a j.T ′j} j∈J =

p?{ak.(Tk tT ′k )}k∈K∩J ∪{ak.Tk}k∈K\J ∪{a j.T ′j} j∈J\K

and homomorphic for other types (i.e. C [T1]tC [T2] = C [T1 tT2]
where C is a context for local types).

We say that G is well-formed if G’s projection is defined.

EXAMPLE 1 (Commit). As a simple example (three parties), con-
sider the following global type:
µt.Alice→ Bob :{act.Bob→ Carol : {prep.Alice→ Carol : commit.t },

quit.Bob→ Carol : {save.Alice→ Carol : finish.end}}
Then Carol’s local type is given as:

µt.Bob?{prep.Alice?{commit.t}, save.Alice?{finish.end}}

PROPOSITION 1 (well-formedness). The time complexity of the
projection algorithm is polynomial with respect to the size of G.

3.1 Labelled transitions of classical global and local types
This subsection defines new labelled transition relations (LTS) for
classical global and local types. In the previous literature [4, 25],
the semantics of global and local types is not defined: they are
usually indirectly given by the π-processes they type. Here, we
propose their explicit semantics and show that the LTS of the local
types obtained by projection from a global type is identical to the
LTS of that global type. This result is essential to prove the sound
and complete characterisations of classical global types.

LTS over classical global types The first step for giving a LTS
semantics to global types (and then to local types) is to designate
the observables (`,`′, ...). We choose here to follow the definition
of actions for CFSMs where a label ` denotes the sending or the
reception of a message of label a from p to p′: ` ::= pp′!a | pp′?a

In order to define an LTS for global types, we then need to
represent intermediate states in the execution. For this reason, we
introduce in the grammar of G the construct p  p′ : a j.G j to
represent the fact that the message a j has been sent but not yet
received.

DEFINITION 7 (LTS over classical global types). The relation G `−→
G′ is defined as (subj(`) is defined in § 2.1):

[GR1] p→ p′ : {ai.Gi}i∈I
pp′!a j−−−→ p p′ : a j.G j ( j ∈ I)

[GR2] p p′ : a.G
pp′?a−−−→ G [GR3] G[µt.G/t]

`−→ G′

µt.G `−→ G′

[GR4]
∀ j ∈ I G j

`−→ G′j p,q 6∈ subj(`)

p→ q : {ai.Gi}i∈I
`−→ p→ q : {ai.Gi}i∈I

[GR5] G `−→ G′ q 6∈ subj(`)

p q : a.G `−→ p q : a.G′

[GR1] represents the emission of a message while [GR2] de-
scribes the reception of a message. [GR3] governs recursive types.
[GR4,5] define the asynchronous semantics of global types (which
allows some limited degree of concurrency), where the syntac-
tic order of messages is enforced only for the participants that
are involved. For example, in the case when the participants of
two consecutive communications are disjoint, as in: G1 = A→ B :
a.C→ D : b.end, we can observe the emission (and possibly the re-
ception) of b before the emission (or reception) of a (by [GR4]).

A more interesting example is: G2 = A→ B : a.A→ C : b.end.
We write `1 = AB!a, `2 = AB?a, `3 = AC!b and `4 = AC?b. For
The LTS allows the following three sequences of transitions:

G1
`1−→ A B : a.A→ C : b.end

`2−→ A→ C : b.end
`3−→ A C : b.end

`4−→ end

G1
`1−→ A B : a.A→ C : b.end
`3−→ A B : a.A C : b.end

`2−→ A C : b.end
`4−→ end

G1
`1−→ A B : a.A→ C : b.end
`3−→ A B : a.A C : b.end

`4−→ A B : a.end
`2−→ end

The last sequence is the most interesting: the sender A has to follow
the syntactic order but the receiver C can get the message b before
B receives a. The respect of these constraints is enforced by the
conditions p,q 6∈ subj(`) and q 6∈ subj(`) in rules [GR4,5].

LTS over classical local types We now define the LTS over local
types. This is done in two steps, following the model of CFSMs,
where the semantics is given first for individual automata and
then extended to communicating systems. We use the same labels
(`,`′, ...) as the ones for CFSMs.
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DEFINITION 8 (LTS over classical local types). The relation T `−→
T ′, for the local type of role p, is defined as:

[LR1] q!{ai.Ti}i∈I
pq!ai−−−→ Ti

[LR2] q?{ai.Ti}i∈I −→ q?a j.Tj ( j ∈ I) [LR3] q?a.T
qp?a−−→ T

[LR4] T [µt.T/t] `−→ T ′

µt.T `−→ T ′

The semantics of a local type follows the intuition that every action
of the local type should obey the syntactic order. The only non-
intuitive part are the rules [LR2, LR3] which differentiate the
silent moment when a branch is chosen, from the moment the
message is actually received. The reason for that difference is to
reflect the fact that a branch is chosen at the selection point, and
that the reception only acknowledges that choice.

We now define the LTS for collections of local types.

DEFINITION 9 (LTS over collections of local types). A configura-
tion s = (~T ;~w) of a system of local types {Tp}p∈P is a pair with
~T = (Tp)p∈P and ~w = (wpq)p6=q∈P with wpq ∈ A∗. We then de-
fine the transition system for configurations. For a configuration
sT = (~T ;~w), the visible transitions of sT

`−→ s′T = (~T ′;~w′) are de-
fined as:

1. Tp
pq!a−−→ T ′p and (a) T ′p′ = Tp′ for all p′ 6= p; and (b) w′pq = wpq ·a

and w′p′q′ = wp′q′ for all p′q′ 6= pq; or

2. Tq
pq?a−−−→ T ′q and (a) T ′p′ = Tp′ for all p′ 6= q; and (b) wpq = a ·w′pq

and w′p′q′ = wp′q′ for all p′q′ 6= pq.

while the silent transitions sT −→ s′T = (~T ′;~w′) are of the form:

3 Tq = p?{ai.Ti}i∈I −→ T ′q = p?a j.Tj and (a) T ′p′ = Tp′ for all
p′ 6= q; and (b) wpq = w′pq = w′′pq · a j and w′p′q′ = wp′q′ for all
p′q′ 6= pq.

The semantics of local types is therefore defined over configura-
tions, purposefully following the definition of the semantics of CF-
SMs. wpq represents the FIFO queue at channel pq. The last defi-
nition (3) allows a local type to silently get ready to input a value
from a queue.

Traces We write Tr(G) to denote the set of the visible traces that
can be obtained by reducing G. Similarly for Tr(T ) and Tr(s). We
extend the trace equivalences≈ and≈n in § 2.1 to global types and
configurations of local types.

3.2 Soundness and completeness of operational semantics
This subsection states that the trace of a global type corresponds
exactly to the traces of its projected local types.

First, to represent the intermediate states of global types, we
need to extend projection to be a relation between global types
extended with p p′ : a.G, and configurations of local types.

We define that the projected configuration [[G]] of a global type
G is a configuration {G � p}p∈P, [[G]]{ε}qq′∈P where the content of
the buffers [[G]]{ε}qq′∈P is given by:

[[p p′ : a j.G j]]{wqq′}qq′∈P = [[G j]]{wqq′}qq′∈P[wpp′=wpp′ ·a j ]

[[p→ p′ : a j.G j]]{wqq′}qq′∈P = [[G j]]{wqq′}qq′∈P
[[p→ p′ : {a j.G j} j∈J]]{wqq′}qq′∈P = {wqq′}qq′∈P

[[µt.G]]{wqq′}qq′∈P = {wqq′}qq′∈P
and where the projection algorithm � q is extended by:

p p′ : a.G � q=

{
p?a.G � q q= p′

G j � q otherwise

We now define formally the soundness and completeness of
projection with respect to the LTSs defined above.

THEOREM 2 (soundness and completeness of classical projection).
Let G be a global type with participantsP and let ~T = {G � p}p∈P
be the local types projected from G. Then G≈ (~T ;~ε).

Proof. See Appendix A.1. �

3.3 Translation between local types and CFSMs
Now that we have equipped local types with a transition system,
we can show how to algorithmically go from local types to CFSMs
and back while preserving the trace semantics.

We start by translating local types into CFSMs. We write T ′ ∈ T
if T ′ occurs in T .

DEFINITION 10 (translation from local types to CFSMs). Let T0
be the local type of participant p projected from G. The automaton
corresponding to T0 is A(T0) = (Q,C,q0,A,δ ) where:

• Q = {T ′ | T ′ ∈ T0, T ′ 6= t}.
• C = {pq | p,q ∈ G}; q0 = T0; and A is the set of {a ∈ G}
• δ is defined as:

If T = p′!{a j.Tj} j∈J ∈ T0,

then

{
(T,(pp′!a j),Tj) ∈ δ Tj 6= t

(T,(pp′!a j),µt.T ′) ∈ δ Tj = t, µt.T ′ ∈ T0

If T = p′?{a j.Tj} j∈J ∈ T0,

then

{
(T,(p′p?a j),Tj) ∈ δ Tj 6= t

(T,(p′p?a j),µt.T ′) ∈ δ Tj = t, µt.T ′ ∈ T0

Local types are simple structures and their translation to CFSM
preserves some of them:

PROPOSITION 3 (local types to CFSMs). Assume Tp is a local
type. Then A(Tp) is deterministic, directed and has no mixed states.

We say that a CFSM is basic if it is deterministic, directed and has
no mixed states. Any basic CFSM can be translated into a local
type.

DEFINITION 11 (translation from a basic CFSM to a local type).
Fix Mp = (Q,C,q0,A,δ ) and assume Mq is basic. Then we define
the translation T(Mp) such that T(Mp) = Tε (q0) where: Tq̃(q) is
defined as:

• Tq̃(q) = µti.p
′!{a j.T

◦
q̃·q(q j)} j∈J if (q,pp′!a j,q j) ∈ δ

• Tq̃(q) = µti.p
′?{a j.T

◦
q̃·q(q j)} j∈J if (q,p′p?a j,q j) ∈ δ

• T◦q̃(q) = end if q is final;
• T◦q̃(q) = tk if (q, `,qk) ∈ δ and qk ∈ q̃
• T◦q̃(q) = Tq̃(q) otherwise.

Finally, we replace µt.T by T if t is not in T .

The complexity of these translations are polynomial with respect
to the size of the local type or basic CFSM, respectively. We now
prove that the translations preserve the semantics.

PROPOSITION 4 (translations between CFSMs and local types).
If a CFSM M is basic, then M ≈ T(M). If T is a classical local
type, then T ≈A(T ).

EXAMPLE 2 (Commit). Following up on example 1, Carol’s lo-
cal type and its equivalent CFSM are:

µt.Bob?{prep.Alice?{commit.t},
save.Alice?{finish.end}}

/.-,()*+��������
BC?prep

//

BC?save ��

/.-,()*+AC?commit
ww

/.-,()*+
AC?finish

///.-,()*+
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4. Sequential Multiparty Session Automata
This section examines the soundness and completeness characteri-
sation of the sequential multiparty session automata class, defined
by the projection from sequential global types, and which corre-
sponds to a subset of systems of basic CFSMs. Sequential automata
do not feature any concurrency: at any point of the execution, there
is only one role that can do a send or a receive action. This class has
been used as a specification language for the generation for cryp-
tographic protocols [5] (although it was later extended with con-
currency [32]), as well as modellings radio communications where
transceivers of several machines use the same frequency [13].

DEFINITION 12 (sequential CFSM). A CFSM M =(Q,C,q0,A,δ )
is said to be sequential if it is basic and all its states in Q are alter-
nating or final. A communicating system of CFSMs is sequential
if all the machines are sequential and that all but one of the starting
states are receiving states.

EXAMPLE 3 (sequential system). We give a simple sequential sys-
tem which is extended from the binary example in § 1.

start ///.-,()*+
AB!low

//
AB!high ��

/.-,()*+CA?commit
xx

/.-,()*+
CA?finish

///.-,()*+
start ///.-,()*+

AB?low
//

AB?high ��

/.-,()*+
BC!accept
xx

/.-,()*+
BC!quit

///.-,()*+

start ///.-,()*+
BC?accept

//
BC?quit ��

/.-,()*+CA!commit
xx

/.-,()*+
CA!finish

///.-,()*+
The corresponding global type is:

µt.A→ B{ low.B→ C : accept.C→ A : commit.end
high.B→ C : quit.C→ A : finish.t}

Sequential systems always start with a unique machine able to
output. This condition implies that sequential systems of CFSMs
are always deterministic. The alternation allows to prove that all
accepted traces of sequential systems are 1-bounded.

PROPOSITION 5 (boundedness of sequential systems). Sequential
systems are 1-bounded.

PROPOSITION 6 (safety and liveness in sequential systems). For
sequential systems, the safety and liveness properties of Defini-
tion 5 are decidable.

Proof. By Proposition 5, sequential systems are 1-bounded and
therefore finite. The reachability problem of 1-bounded system is
decidable with a complexity that is polynomial in the number of
states and of transitions [13]. �

EXAMPLE 4 (properties of sequential systems). We show sequen-
tial systems which do not satisfy the safety properties. For example,
if we replace A and C to:

start ///.-,()*+
AB!low

//
AB!high ��

/.-,()*+CA?commit
xx

/.-,()*+
start ///.-,()*+

BC?accept
//

BC?quit ��

/.-,()*+CA!commit
xx

/.-,()*+
Then the system is sequential but does not satisfy the deadlock-
freedom since, if “high” is selected, then C should wait forever.
The corresponding global type is:

µt.A→ B{ low.B→ C : accept.end
high.B→ C : quit.C→ A : finish.t}

which does not satisfy the mergeability condition so that it is not
well-formed. If we replace only A by the above automaton, then
it has an orphan message CA!finish in the queue. In Theorem 9,
we show if the sequential system satisfies deadlock-freedom and
orphan-message freedom, then it coincides with the well-formed
sequential global type defined below.

Now we define sequential global (and local) types, and show the
trace equivalence with sequential communicating systems.

DEFINITION 13 (sequential global type). A well-formed classical
global type G is sequential if for any subterm p1→ p2 : {a j.p3i→
p4i : {bi.Gi}i∈I} j∈J ∈ G′ where G′ is the 1-unfolding of G, then
p2 = p3i for all i ∈ I.

In sequential global types, the receiver of a message is always either
terminating, or the next sender. The definition relies on 1-unfolding
to adapt the definition to recursive types. The following proposition
could be an alternative definition to sequential global types based
on alternating transitions in reductions.

PROPOSITION 7 (sequential global type). Suppose G is sequen-
tial. Then, for any sequence of transitions G ϕ−→G0

`1−→G1
`2−→G2, we

have either:

• `1 = p1p
′
1!a and `2 = p2p

′
2?b with p1 = p2 and p′1 = p′2 and

a = b; or
• `1 = p1p

′
1?a and `2 = p2p

′
2!b with p′1 = p2.

Now that we have identified exactly the sequential systems and
sequential global types, we can turn to showing their equivalence.
We start by the synthesis algorithm.

THEOREM 8 (synthesis of sequential systems [14]). If a system
S = {Mp}p∈P is sequential, then there is an algorithm which suc-
cessfully builds G such that G ≈ S if such G exists, and otherwise
terminates.

Proof. The algorithm starts from the initial states of all ma-
chines (qp1 0, ...,qpn 0): we know that only one of them is a sending
state. We apply the algorithm with the invariant that all buffers are
empty, all machines are in receiving states except one. We define
G(q1, ...,qn), where we note qk to be the sending state (correspond-
ing to machine p), as follows:

• if (q1, ...,qn) has been visited before, the global type is tq1,...,qn ;
• otherwise, in qk, from machine p, we know that all the transi-

tions are sending actions towards p′ (by directedness), i.e. of the
form (qk,pp

′!ai,qi) ∈ δp for i ∈ I.

we check that machine p′ is in a receiving state qm such that
(qm,pp

′?a j,q′j) ∈ δp′ with j ∈ J and I ⊆ J. Otherwise the
algorithm returns false.

we check that each q′i (i∈ I) in machine p′ are sending states
or final. Otherwise the algorithm returns false.

we set µtq1,...,qn .p→ p′ : {ai.G(q1, ...,qk← qi, ...,qm← q′i,
...,qn)}i∈I and continue by recursive calls. If q′i is final, we
set it to end.

• we erase unnecessary µt if t does not appear in G. �

Given a sequential S, the time complexity of the synthesis algorithm
is linear with respect to the size of S.

We prove that the synthesis is correct and preserves the traces.

THEOREM 9 (soundness and completeness in sequential systems).
If S = {Mp}p∈P is sequential, orphan message-free and deadlock-
free, then there exists sequential G such that S≈G. Conversely, if G
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is sequential, there exists a sequential S which satisfies the and live-
ness properties (deadlock-freedom, reception error-freedom and
orphan message-freedom), and S≈ G.

Proof. By Proposition 5, the sequential system S terminates either
with 1 message in one queue or all are empty. Another possibility
is that of deadlock. The first part of the statement is proved by
Theorem 8 noting that if S is deadlock-free and orphan message-
free, the algorithm always returns some sequential G. The second
part is by Theorem 2 and Proposition 4 by setting Mp =A(G � p).
�

5. Classical multiparty session automata
This section studies the synthesis and sound and complete char-
acterisation of the classical multiparty session automata (CMSA),
which are generated from well-formed classical global types. We
first note that basic CFSMs correspond to the natural generalisa-
tion of half-duplex systems [13, § 4.1.1], in which each pair of
machines linked by two channels, one in each direction, commu-
nicates in a half-duplex way. In this class, the safety properties of
Definition 5 are however undecidable [13, Theorem 36]. We there-
fore need to find a stronger (and decidable) property to force basic
CFSMs to behave as if they were the result of a projection from
classical global types.

5.1 Multiparty compatibility
In the two machines case, there exists a sound and complete con-
dition called compatible [22]. Let us define the isomorphism Φ :
(C× {!,?} × Σ)∗ −→ (C× {!,?} × Σ)∗ such that Φ( j?a) = j!a,
Φ( j!a) = j?a, Φ(t1 · · · tn) = Φ(t1) · · ·Φ(tn), and Φ(ε) = ε . Φ ex-
changes a sending action with the corresponding receiving one and
vice versa. The compatibility of two machines can be immediately
defined as Tr(M1) = Φ(Tr(M2)) (i.e. the traces of M1 are exactly
the set of dual traces of M2).

The idea of the extension to the multiparty case comes from the
observation that from the viewpoint of the participant p, the rest of
all the machines {Mq}q∈P\p should behave as if it were one CFSM
which offers compatible traces Φ(Tr(Mp)), up to internal synchro-
nisations (i.e. 1-bounded executions). To formalise this idea, we
define a way to group CFSMs.

DEFINITION 14 (Definition 37, [13]). Let Mi =(Qi,Ci,q0i,Σi,δi).
The associated CFSM of S = (M1, ..,Mn) is M = (Q,C,q0,Σ,δ )
such that: Q = Q1×Q2×·· ·×Qn, q0 = (q01, . . . ,q0n) and δ is the
least relation verifying: ((q1, ...,qi, ...,qn), `,(q1, ...,q′i, ...,qn)) ∈ δ

if (qi, `,q′i) ∈ δi (1≤ i≤ n).

We now define below the compatibility extended to more than
two CFSMs. We say that ϕ is an alternation if ϕ is an alternation
of sending and corresponding receive actions (i.e. the action pq!a
is immediately followed by pq?a).

DEFINITION 15 (multiparty compatible system). A system S =
(M1, ..,Mn) (n ≥ 2) is multiparty compatible if for any sequence
of actions `1 · · ·`k in Mi, there is a sequence of actions ϕ1 ·
t1 · ϕ2 · t2 · ϕ3 · · ·ϕk · tk from a CFSM corresponding to S−i =
(M1, ..,Mi−1,Mi+1, ..,Mn) where ϕ j is empty or alternation, ` j =
Φ(act(t j)) and i 6∈ act(ϕ j) and 1 ≤ j ≤ k (i.e. ϕ j does not contain
actions to or from channel i).

The above definition states that for each Mi, the rest of machines
S−i can produce the compatible (dual) actions by executing alter-
nations in S−i. From Mi, these intermediate alternations can be seen
as non-observable τ-actions. Note that sequential, orphan message-
free and deadlock-free CFSMs in § 4 satisfy multiparty compatibil-
ity.

EXAMPLE 5 (multiparty compatibility). A simple example of ba-
sic automata follows:

A start ///.-,()*+ AB!ok //

AB!next ��

/.-,()*+ BA?quit ///.-,()*+ AC!stop ///.-,()*+
/.-,()*+

BA?retry
///.-,()*+

AC!sig
ggOOOOOOOOO

B start ///.-,()*+ AB?ok //

AB?next ��

/.-,()*+ BA!quit ///.-,()*+
/.-,()*+ BA!retry

ZZ

C start ///.-,()*+
AC?sig

QQ
AC?stop ///.-,()*+

Its corresponding global type is:

µt.A→ B{ ok.B→ A : quit.A→ C : stop.end
next.B→ A : retry.A→ C : signal.t}

The compatibility from the viewpoint of A and B is trivial so
we examine the compatibility from C. To check the compat-
ibility for the action AC?stop, we perform 1-bound execution
such that act(ϕ1) = AB!stop · AB?stop · BA!quit · BA?quit and
act(t1) = AC!stop from A; and to check the compatibility for the
action AC?sig, we perform 1-bound execution such that act(ϕ2) =
AB!next ·AB?next ·BA!retry ·BA?retry and act(t2) = AC!sig from A.

Our first goal is to prove that if Mi and compatible S−i interact
together, they are deadlock-free. The following lemma is useful for
our proofs. We say that a configuration s with t1 and t2 satisfies
the one-step diamond property if, assuming s t1−→s1 and s t2−→s2 with
t1 6= t2, there exists s′ such that s1

t ′1−→s′ and s2
t ′2−→s′ where act(t1) =

act(t ′2) and act(t2) = act(t ′1).

LEMMA 10 (diamond property in basic machines). Suppose S =
(Mp)p∈P and S is basic. Assume s ∈ RS(S) and s t1−→s1 and s t2−→s2.

1. If t1 and t2 are both sending actions such that act(t1) = p1q1!a1
and act(t2) = p2q2!a2, we have either:
(a) p1 = p2 and q1 = q2 and a1 = a2 with s1 = s2;
(b) p1 = p2 and q1 = q2 and a1 6= a2 with s1 6= s2 or s1 = s2;
(c) p1 6= p2 and q1 6= q2 with a1 6= a2, and s with t1 and t2

satisfies the diamond property.
2. If t1 and t2 are both receiving actions such that act(t1) =

p1q1?a1 and act(t2) = p2q2?a2, we have either:
(a) p1 = p2 and q1 = q2 and a1 = a2 with s1 = s2;
(b) p1 6= p2 and q1 6= q2 with s1 6= s2, and s with t1 and t2

satisfies the diamond property.
3. If t1 is a receiving action and t2 is a sending action such that

act(t1) = p1q1?a1 and act(t2) = p2q2!a2, we have p1 6= p2 and
q1 6= q2 with s1 6= s2, and s with t1 and t2 satisfies the diamond
property.

Proof. By a straightforward case analysis. �

With this lemma, we can prove that, in a multiparty compatible
basic system S, there exists a 1-bounded execution between Mi and
S−i, as we can permute ` j (the action by Mi) and ϕ j (the internal
actions by S−i) by the diamond property.

The next proposition states that after some appropriate execu-
tions, any reachable state can be translated into a 1-bounded execu-
tion. See § 2.1(1) for the definition of a stable property. In addition,
they satisfy the three safety properties of Definition 5.
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PROPOSITION 11. Assume S = (Mp)p∈P is basic and multiparty
compatible. Then S is stable, deadlock-free, orphan message-free
and reception error-free.

Proof. See Appendix B.1. We use Lemma 10. �

By Proposition 11, we can deduce liveness:

PROPOSITION 12 (liveness). Suppose S = {Mp}p∈P is basic and
multiparty compatible. If there exists at least one Mq which in-
cludes a final state. Then S satisfies the liveness property.

Finally, we check that multiparty compatibility is decidable.

PROPOSITION 13. If all the CFSMs Mp (p ∈P) are basic, there is
an algorithm to check whether {Mp}p∈P is multiparty compatible.

Proof. The algorithm to check Mp’s compatibility with S−p is
defined using the set RS1(S) of reachable states using 1-bounded
executions. We start from q= q0 and the initial configuration s= s0.

Suppose that, from q, we have the transitions ti = (q,qp!ai,q′i)∈
δp. We then construct RS1(S) (without executing p) until it includes
s′ such that {s′ ti−→ t ′j−→s j} j∈J where act(t ′i ) = qp?ai and I ⊆ J. If there
exists no such s′, it returns false and terminates. The case where,
from q, we have receiving transitions t = (q,qp?ai,q′i) is dual.

If it does not fail, we continue to check from state q′i and
configuration si for each i ∈ I. We repeat this procedure until we
visit all q ∈ Qp. Then repeat for other the other machines p′ such
that p′ ∈P\p. �

5.2 Synthesis of classical multiparty session automata
Below we state the lemma which will be crucial for the proof of the
synthesis and completeness. The lemma comes from the intuition
that the transitions of multiparty compatible systems are always
permutations of one-buffer executions, as it is the case in multiparty
session types.

LEMMA 14 (1-buffer equivalence). Suppose S1 and S2 are two ba-
sic and multiparty compatible communicating systems such that
S1 ≈1 S2, then S1 ≈ S2.

Proof. We prove that ∀n,S1 ≈n S2 =⇒ S1 ≈n+1 S2. Then the
lemma follows. We assume S1 ≈n S2 and then prove by induction
on the length of an execusion ϕ in S1, that it is accepted by S2.
If |ϕ| < n+ 1, then the buffer usage of ϕ for S1 cannot exceed n,
therefore S2 can realise ϕ since S1 ≈n S2. Assume |ϕ|= k+1 and
that the property holds for traces of length k or less. We do a case
analysis on ϕ and use multiparty compatibility to know the exis-
tence of matching receives for unmatched sends. By permutation,
we are able to reduce the size of buffer used in S1 and apply the
induction hypothesis. By using the permutation backwards in S2
we can conclude. See Appendix B.2. �

The main theorems of this section follow. The synthesis algo-
rithm for basic systems is a simple extension of the one for sequen-
tial systems.

THEOREM 15 (synthesis of classical systems). Suppose S is a ba-
sic system. Then there is an algorithm which successfully builds
well-formed G such that S ≈ G if such G exists, and otherwise ter-
minates.

Proof. We assume S = {Mp}p∈P. We extend the algorithm in
Theorem 8. The algorithm starts from the initial states of all ma-
chines (qp1 0, ...,qpn 0).

Then we look at a pair of the initial states which is a sending
state qp0 and a receiving state qq0 from p to q. We note that by
directness, if there are more than two pairs, the participants in two

pairs are disjoint, and by [G4] in Definition 7, the order does not
matter. We apply the algorithm with the invariant that all buffers
are empty and that we repeatedly pick up one pair such that qp
(sending state) and qq (receiving state). We define G(q1, ...,qn)
where (qp,qq ∈ {q1, ...,qn}) as follows:

• if (q1, ...,qn) has already been examined and if all participants
have been involved since then (or the ones that have not are in
their final state), we set G(q1, ...,qn) to be tq1,...,qn . Otherwise,
we select a pair sender/receiver from two participants that have
not been involved (and are not final) and go to the next step;

• otherwise, in qp, from machine p, we know that all the transi-
tions are sending actions towards p′ (by directedness), i.e. of the
form (qp,pq!ai,qi) ∈ δp for i ∈ I.

we check that machine q is in a receiving state qq such that
(qq,pq?a j,q′j) ∈ δp′ with j ∈ J and I ⊆ J. Otherwise the
algorithm returns false.

we set µtq1,...,qn .p → q : {ai.G({q1, ...,qp ← qi, ...,qq ←
q′i, ...,qn})}i∈I and continue by recursive calls.

If all sending states in q1, ...,qn become final, then we set
G(q1, ...,qn) = end.

• we erase unnecessary µt if t does not appear in G and check G
satisfies Definition 6.

Since the algorithm only explores 1-bounded executions, the
reconstructed G satisfies G ≈1 S. By Theorem 2, we know that
G ≈ ({G � p}p∈P;~ε). Hence, by Proposition 4, we have G ≈ S′

where S′ is the communicating system translated from the projected
local types {G � p}p∈P of G. By Lemma 14, we get that S′ ≈ S′ and
therefore that S≈ G. �

Considering that the complexity of the 1-bounded reachability
is polynomial given S, the time complexity of the algorithm and
multiparty compatibility is polynomial-bound with respect to the
size of S.

We can now conclude our characterisation of classical multi-
party session types in terms of basic, multiparty compatible com-
municating systems.

THEOREM 16 (soundness and completeness in CMSA). Suppose
S is basic and multiparty compatible. Then there exists G such that
S ≈ G. Conversely, if G is well-formed, then there exists S which
satisfies the safety properties (deadlock-freedom, reception error-
freedom and orphan message-freedom) and S≈ G.

Proof. The first direction is by Theorem 15 and the second di-
rection is by Theorem 2 and Proposition 4 (the safety properties
are obtained by the fact that the classical global types are a special
case of general global types in [17]). �

6. Generalised Multiparty Session Automata
In this section, we extend the results obtained on classical mul-
tiparty session types to tackle generalised multiparty session
types [17], an extension with new features such as flexible fork,
choice, merge and join operations for precise flow specification. It
strictly subsumes classical MPST.

6.1 Generalised global and local types
In this subsection, we recall definitions from [17].
Generalised global types We first define generalised global
types. The syntax is defined below.

G ::= def G̃ in x Global type
G ::= x = p→ p′ : a ;x′ Messages
| x = x′ | x′′ Fork
| x | x′ = x′′ Join

| x = end End
| x = x′+x′′ Choice
| x+x′ = x′′ Merge

8



G = def x0 = x1 | x2
x1 +x5 = x3

x3 = A→ B : data ;x4
x4 = x5 +x6
x6 = A→ B : eof ;x7
x2 = A→ C : log ;x8

x7 | x8 = x9
x9 = B→ C : save ;x10

x10 = endin x0

Data transfer example

Figure 2. Generalised global type and graph representation

A global type G = def G̃ in x0 describes an interaction between
a fixed number of participants. We explain each of the constructs by
example, in Figure 2, alongside the corresponding graphical repre-
sentation inspired by the BPMN 2.0 business processing language.
This example features three participants, with A sending data to B
while C concurrently records a log entry of the transmission.

The prescribed interaction starts from x0, which we call the
initial state (in green in the graphical representation), and pro-
ceeds according to the transitions specified in G̃ (the diamond or
boxes operators in the picture). The state variables x in G̃ (the
edges in the graph) represent the successive distributed states of
the interaction. Transitions can be message exchanges of the form
x3 = A→ B : data ;x4 where this transition specifies that A can go
from x3 to the continuation x4 by sending message data, while B
goes from x3 to x4 by receiving it. In the graph, message exchanges
are represented by boxes with exactly one incoming and one outgo-
ing edges. x4 = x5 + x6 represents the choice between continuing
with x5 or x6 and x0 = x1 | x2 represents forking the interactions,
allowing the interleaving of actions at x1 and x2. These forking
threads are eventually collected by joining construct of the form
x7 | x8 = x9. Similarly choices (i.e. mutually exclusive paths) are
closed by merging construct x1 +x5 = x3, where they share a con-
tinuation. Forks, choices, joins and merges are represented by dia-
mond ternary operators in the graphical notation. Fork and choice
have one input and two outputs, join and merge have two inputs
and one output. Fork and join use the diamond operator with the |
symbol, while choice and merge use a diamond with the + symbol.
The x10 = end transition is represented by a red circle. Note that
the two representations (syntax and graph) are equivalent.

The motivation behind this choice of syntax is to support gen-
eral control flows, as classical global type syntax tree, even with
added operators fork | and choice + [4, 11, 16, 25], is limited to
series-parallel control flow graphs.

Generalised local types As for global types, a local type T fol-
lows a shape of a state machine-like definition: local types are of
the form def T̃ in x0. The different actions include send (p!a is the
action of sending to p a message a), receive (p?a is the action of re-
ceiving from p a message a), fork, internal choice, external choice,
join, merge, indirection and end. Note that merge is used for both
internal and external choices. Similarly to global types, an obvious
graphical representation exists.

T ::= def T̃ in x local type
T ::= x = p!a.x′ send | x = x′⊕x′′ internal choice
| x = p?a.x′ receive | x = x′ & x′′ external choice
| x = x′ | x′′ fork | x+x′ = x′′ merge
| x | x′ = x′′ join | x = x′ indirection
| x = end end

x=p→p′:a ;x′∈G̃ Xp=X[x] wpp′∈w̃

def G̃ in X̃,w̃
pp′ !a−−−→def G̃ in X̃[Xp←X[x′]],w̃[wpp′←wpp′ ·a]

bGGR1c

x=p→p′:a ;x′∈G̃ Xp′=X[x] wpp′∈w̃ wpp′=a·w′
pp′

def G̃ in X̃,w̃
pp′?a−−−→def G̃ in X̃[Xp′←X[x′]],w̃[wpp′←w′

pp′ ]
bGGR2c

x = p→ p′ : a ;x′ ∈ G̃ Xq = X[x] q 6∈ {p,p′}
def G̃ in X̃[Xq← X[x′]], w̃ `−→ def G̃ in X̃′, w̃′

def G̃ in X̃,w̃
`−→def G̃ in X̃′,w̃′

bGGR3c

Xp=X X≡G̃X′ def G̃ in X̃[Xp←X′],w̃
`−→def G̃ in X̃′,w̃′

def G̃ in X̃,w̃
`−→def G̃ in X̃′,w̃′

bGGR4c

Figure 3. Global LTS

The local types are obtained from the global type by succes-
sive projection to each participant. We define the projection of a
well-formed global type G to the local type of participant p (writ-
ten G � p). The projection is given in Appendix C because it is
straightforward: for example, x = p→ q : a ;x′ is projected to the
output x = p′!a.x′ from p’s viewpoint and an input x = p?a.x′ from
q’s viewpoint; otherwise it creates an indirection link from x to x′.
Choice x = x′+ x′′ is projected to the internal choice x = x′⊕ x′′
if p is the unique participant deciding on which branch to choose;
otherwise the projection gives an external choice x = x′&x′′ ([17]
gives the definition). Forks, joins and merges are kept identical. As
an example, Figure 5 features on the left, in graphical notation, the
result of the projection to A from the global type G of Figure 2. Its
structure is exactly the same as the original global type, except for
the silent transition x9 = x10 which is silent from the point of view
of A and therefore is just elided in the local type.

6.2 Labelled transitions of generalised global and local types
It is possible to define a labelled semantics for global and local
types by considering the type (whether local or global) as a state
machine specification in which each participant (or the participant,
in the case of local type) can evolve, as they would in a CFSMs.
As for CFSMs and classical multiparty session types, we keep the
syntax of labels (`,`′, ...).

We use the following notation to keep track of local states (with
parallelism, each participant can now execute several transitions
concurrently):

X ::= xi | X | X X[ ] ::= | X[ ] | X | X | X[ ]
LTS for global types We first define, for a global type G =

def G̃ in x0, a transition system def G̃ in X̃, w̃ `−→ def G̃ in X̃′, w̃′,
where X̃ and X̃′ represents a vector recording the state of each of
the participants X̃ = {Xp}p∈P and where w̃ represents the content
of the communication buffers {wqq′}qq′∈P. The states for the global
type G = def G̃ in x0 are equipped with an equivalence relation≡G̃,
defined in Appendix C.1, which covers associativity, commutativ-
ity, forks and joins, choices and merges. Initially, X̃0 = {x0}p∈P
and w̃0 = {ε}qq′∈P. The LTS for global types is defined in Figure 3.

The semantics of global types, as given by the rules bGGR1,2c,
follows the intuition of communicating systems: if the global type
allows, a participant at the right state can put a value in a com-
munication buffer and progress to the next state (bGGR1c) or, if a
value can be read, a participant at the right state can consume it
and proceed (bGGR2c). Rule bGGR3c allows participants that are not
concerned by a transition to go there for free. Fork, join, choice and
merge transitions are passed through silently by rule bGGR4c.
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x=p′!a.x′∈T̃ Tp=def T̃ in X[x] wpp′∈w̃

T̃,w̃
pp′ !a−−−→T̃[Tp←def T̃ in X[x′]],w̃[wpp′←wpp′ ·pp′!a]

bGLR1c

x=p′?a.x′∈T̃ Tp′=def T̃ in X[x] wpp′∈w̃ wpp′=pp
′!a·w′

pp′

T̃,w̃
pp′?a−−−→T̃[Tp′←def T̃ in X[x′]],w̃[wpp′←w′

pp′ ]
bGLR2c

Tp=def T̃ in X X≡T̃ X′ T̃ [Tp←def T̃ in X′],w̃
`−→T̃′,w̃′

T̃ ,w̃
`−→T̃ ′,w̃′

bGLR3c

Figure 4. Local LTS

LTS for local types We define in Figure 4 a transition system
T̃, w̃ `−→ T̃′, w̃′, where T̃ represents a set of local types {def T̃ in X̃p}p∈P
and w̃ represents the content of the communication buffers {wqq′}qq′∈P.
Initially, T̃0 sets all the local types to x0 and w̃0 = {ε}qq′∈P. The
principle is strictly identical to the LTS for global types, with,
again, an omitted structural equivalence ≡T̃ between local states.

Equivalence between generalised local and global types Given
the similarity in principle between the global and local LTSs, and
considering that the projection algorithm for generalised global
types is quasi-homomorphic, we can easily get the trace equiva-
lence between the local and global semantics.

THEOREM 17 (soundness and completeness of projection). If~T is
the projection of a global type G to all roles, then G≈ (~T,ε).

6.3 Translations between general local types and CFSMs
Now that we have proved the equivalence from global to local
types, we establish the conversion of local types to and from CF-
SMs.

Translation to CFSMs We first give the already known transla-
tion from local types to CFSMs [17]. The illustration of that trans-
lation on the Data transfer example is given on the top-right corner
of Figure 5.

DEFINITION 16 (translation from local types to MSA [17]). If T=
def T̃ in x0 is the local type of participant p projected from G, then
the corresponding automaton is A(T) = (Q,C,q0,Σ,δ ) where:

• Q is defined as the set of well-formed states X built from the
recursion variables {xi} of T. Q is defined up to the equivalence
relation ≡T̃ mentioned in § 6.2.

• C = {pq | p,q ∈G}
• q0 = x0
• Σ is the set of {a ∈G}
• δ is defined by:

(X[x],(pp′!a),X[x′]) ∈ δ if x = p′!a.x′ ∈ T̃ .
(X[x],(p′p?a),X[x′]) ∈ δ if x = p′?a.x′ ∈ T̃ .

Translations from CFSMs The converse translation is not as ob-
vious as local types feature explicit forks and joins, while CFSMs
only propose choices between interleaved sequences. The transla-
tion from a CFSM to a local type therefore comes in 3 steps.

First, we apply a generic translation from minimised CFSMs to
Petri nets [15, 29]. This translation relies on the polynomial com-
putation of the graph of regions [1], preserves the trace semantics
of the CFSM and, by the minimality of the produced net, makes
the concurrency explicit. Figure 5 illustrates on the Data transfer
example the shape of the Petri net that can be produced by such a
generic translation. Note that the produced Petri net is always safe
and free choice.

General local type for A

/.-,()*+��������
AC!log

//

AB!data
��

/.-,()*+
AB!data

��/.-,()*+
AB!eof

��

AC!log
//AB!data 99 /.-,()*+

AB!eof
��

AB!dataee

/.-,()*+
AC!log

///.-,()*+
CFSM

Inferred labelled Petri net

Figure 5. Data transfer example: local translations

The second step of the conversion is to take the Petri net with
labelled transitions and enrich it with new silent transitions and new
places so that it can be translated into local types. Notably, it should
have only one initial marked place, one final place and all labelled
transitions should have exactly one incoming and one outgoing arc.
Then, we constrain all transitions to be linked with no more than 3
arcs (2 incoming and 1 outgoing for a join transition, or 1 incoming
and 2 outgoing for a fork transition, 1 incoming and 1 outgoing
for all the other transitions). Places should have no more that 2
incoming and 2 outgoing arcs: if there are two incoming (merge),
then the transitions they come from should only have one incoming
arc each; if there are 2 outgoing (choice), then the transitions they
lead to should have only one outgoing arc each.

In the end, the translation to local type is simple, as each place
corresponds to a state variable x, and the different local type transi-
tions can be simply identified. For the lightness of the presentation,
instead of defining formally this last step, we describe the converse
translation. From it, it is possible to infer the local type generation.

DEFINITION 17 (Petri net representation). Given a local type T =
def T̃ in x0, we define the Petri net P(T) by:

• Each state variable x ∈ T̃ is a place in P(T).
• All the places are initially empty, except for one token in x0.
• Transitions in T̃ are translated as follows:

If x = p!a.x′ ∈ T̃ then their is a transition labelled in P(T),
whose unique input arc comes from x and whose unique
output arc goes to x′.
If x = p?a.x′ ∈ T̃ then their is a transition in P(T), whose
unique input arc comes from x and whose unique output arc
goes to x′.
If x1 = x2 | x3 ∈ T̃ then there is a transition in P(T), whose
unique input arc comes from x1 and whose two outputs arcs
go to x2 and x3.
If x1 = x2 + x3 ∈ T̃ (internal or external choice) then there
are two transitions in P(T), that each have an input arc from
x1 and that respectively have an output arc to x2 and x3.
If x1 + x2 = x3 ∈ T̃ then there are two transitions in P(T),
that respectively have an input arc from x1 and x2 and that
both have an output arc to x3.
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If x1 | x2 = x3 ∈ T̃ then there is a transition in P(T), whose
two input arcs respectively come from x1 and x2 and whose
unique output arc goes to x3.

The idea of the translation back from a Petri net to a local type will
then to identify the transitions and place patterns and convert them
into local type transitions.

Note that, in Figure 5, the inferred Petri Net will not give back
the local type on the left: in the general case, going through the
translation from local type to CFSM and then back to local type
will only give an isomorphic local type. The traces are of course
preserved.

6.4 Parallelism and local choice condition
This subsection introduces the conditions that CFSMs should re-
spect in order to correspond to well-formed local types projected
from generalised global types. It extends the conditions that were
sufficient for classical multiparty session types for two reasons.
First, we now have concurrent interactions and the no-mixed choice
condition does not hold anymore. Second, the well-formedness
condition corresponding to projectability in classical multiparty
session types needs to take into account the complex control flows
of generalised multiparty session types.

We start by a commutativity condition for mixed states in CF-
SMs: a state is mixed parallel if any send transition satisfies the
diamond property with any receive transition. Formally:

DEFINITION 18 (mixed parallel). Let M = (Q,C,q0,A,δ ). We
say local state q in M is mixed parallel if for all (q, `1,q′1),(q, `2,q′2)∈
δ such that `1 is a send and `2 is a receive we have (q′1, `2,q′),(q′2, `1,q′)∈
δ for some q′.

Next, we introduce two conditions for the choice that are akin
to the local choice conditions with additional data of [20, Def. 2] or
the “knowledge of choice” conditions of [11].

DEFINITION 19 (local choice condition). 1. The set of receivers
of transitions s1

t1 · · · tm−−−−→sm+1 is defined as Rcv(t1 · · · tm) = {q |
∃i≤ m, ti = (si,pq?a,si+1)}.

2. The set of active senders are defined as ASend(t1 · · · tm) = {p |
∃i≤ m, ti = (si,pq!a,si+1)∧∀k < i. tk 6= (sk,p

′p?b,sk+1)} and
represent the participants who could immediately send from
state s1.

3. Suppose s0
ϕ−→s and ϕ = ϕ0 · t1 · ϕ1 · t2 · ϕ2. We write t1 / t2

(t2 depends on t1) if either (1) Φ(act(t2)) = act(t1) or (2)
subj(t1) = subj(t2) unless t1 and t2 are mixed parallel.

4. We say ϕ = t0 · t1 · t2 · · · tn is the causal chain if s0
ϕ ′−→s′ and

ϕ ⊆ ϕ ′ with, for all 0≤ k ≤ n−1, there exists i such that i > k
and tk / ti.

5. S satisfies the receiver property if, for all s ∈ RS(S) and s t1−→s1
and s t2−→s2 with act(ti) = pqi!ai, there exist s1

ϕ1−→s′1 and s2
ϕ2−→s′2

such that Rcv(ϕ1) = Rcv(ϕ2).
6. S satisfies the unique sender property if s0

ϕ1−→s1
t1−→s′1 and

s0
ϕ2−→s2

t2−→s′2, with act(t1) = p1p?a1 and act(t2) = p2p?a2
with a1 6= a2, ¬t1 / t2 and ¬t2 / t1, then ASend(ϕ ′1 · t1) =
ASend(ϕ ′2 · t2) = {q} where ϕ ′i ⊆ ϕi and ϕ ′i · ti is the maximum
causal chain.

Together with multiparty compatibility, the receiver property en-
sures deadlock-freedom while the unique sender property guaran-
tees orphan message-freedom.

PROPOSITION 18 (stability). Suppose S = {Mp}p∈P and each Mp

is deterministic. If (1) S is multiparty compatible; (2) each mixed
state in S is mixed parallel; and (3) for any local state that can do
two receive transitions, either they commute (satisfy the diamond

property) or the state satisfies the unique sender condition, then
S is stable and satisfies the reception error freedom and orphan
message-freedom properties.

Proof. The proof is similar to Proposition 11, noting that the
unique sender condition guarantees the input availability. See Ap-
pendix C. �

THEOREM 19 (deadlock-freedom). Suppose S = {Mp}p∈P satis-
fies the same conditions as Proposition 18. Assume, in addition,
that S satisfies the receiver condition. Then S is deadlock-free.

Proof. We deduce this theorem from the stability property and the
receiver condition. The proof uses a similar reasoning as Proposi-
tion 11. �

We call the systems that satisfy the conditions of Theorem 19
session-compatible.

By the same algorithm, the multiparty compatibility property is
decidable for systems of deterministic CFSMs. It is however unde-
cidable to check the receiver and unique sender properties in gen-
eral. On the other hand, once multiparty compatibility is assumed,
we can restrict the checks to 1-bounded executions (i.e. we limit
ϕ1, ϕ2, ϕ ′1 and ϕ ′2 to 1-bounded executions and RS1(S) in Defini-
tion 19). Then these properties become decidable. Combining the
synthesis algorithm defined below, we can decide a subset of CF-
SMs which can build a general, well-formed global type.

6.5 Synthesis of general multiparty session automata
Now all the pieces are in place for the main results of this paper.
We are able to identify the class of communicating systems that
correspond to generalised multiparty session types.

The main theorems in this section follow:

THEOREM 20 (synthesis of general systems). Suppose S= {Mp}p∈P
is a session-compatible system. Then there is an algorithm which
builds G such that S≈G.

Proof. The algorithms is the following. We consider S= {Mp}p∈P
as the definition of a transition system. In this transition system, we
only consider the 1-bounded executions. This restriction produces
a finite state LTS, where send transitions are immediately followed
by the unique corresponding receive transition. In each of these
cases, we replace the pair of transitions pp′!a and pp′?a by a unique
transition p→ p′ : a. To obtain the global type G, we then follow
first the standard conversion to Petri nets and the equivalence be-
tween Petri nets and global types (similar to the one between Petri
nets and local types). We conclude the equivalence by a version of
Lemma 14 adapted to session-compatible system. �

Using the synthesis theorem, we are able to provide a full
characterisation of generalised multiparty session types in term of
session-compatible systems.

THEOREM 21 (soundness and completeness in MSA). Suppose S=
{Mp}p∈P is a session compatible system. Then there exits G such
that S ≈ G. Conversely, if G is well-formed as in [17], then there
exits S which satisfies the safety and liveness properties (deadlock-
freedom, reception error-freedom and orphan message-freedom),
and S≈G.

Proof. By Theorem 20 and Theorem 17 with the same reasoning
as in Theorem 16. �

7. Related work
Our previous work [17] introduced the generalised global and local
types and presented a translation from them into CFSMs (Defini-
tion 16). It only analysed the properties of the automata resulting
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from such a translation. The complete characterisation of global
types independently from the projected local types was left open.
This present paper closes this open problem. No synthesis was stud-
ied in [17].

There are a large number of paper that can be found in the lit-
erature about the synthesis of CFSMs. See [28] for a summary of
recent results. The problem of the closed synthesis of CFSMs is
usually defined as the construction from a regular language L of
a machine satisfying certain conditions related to buffer bounded-
ness, deadlock-freedom and words swapping. We can observe that
our synthesis is a special form of these general synthesis problems.
The main distinction is, apart from the formal setting (i.e. types),
about the kind of the target specifications to be generated (global
types and graphs in our case). Not only our synthesis is concerned
about trace properties (languages) like the standard synthesis of
CFSMs, but we also generate concrete syntax or choreography de-
scriptions as types of programs or software. Hence they are directly
applicable and can be straightforwardly integrated into the existing
frameworks that are based on session types.

Within the context of multiparty session types, [27] first studied
the reconstruction of a global type from its projected local types
up to asynchronous subtyping. Recently, [26] proposed a typing
system to synthesise global types from a set of local types. A
significant limitation in [26, 27] is the expressiveness of the global
types they treated. Notably they require concurrent interactions to
concern disjoin sets of participants (for example, see the condition
in [wf-|]-rule in Figure 1 of [26] which ensures the disjointness of
the participants and recursive variables). This class does not cover
the generalised class of global types we treat in § 6, for which a
synthesis method requires the transformation via Petri nets (or at
least a region analysis to infer the parallel branches). These works
also do not study the completeness (i.e. they build a global type
from a set of projected local types (up to subtyping), and do not
investigate necessary and sufficient conditions under which one
can always build a well-formed global type). A difficulty of the
completeness result is that it is generally unknown if the global type
constructed by the synthesis can simulate executions with arbitrary
buffer bounds since the synthesis only directly looks at 1-bounded
executions. In this paper, we proved Lemma 14 and bridged this gap
towards the complete characterisation. In addition, no complexity
result of the algorithms is mentioned in [26, 27].

Recent work by [2, 3, 11] focus on proving the semantic cor-
respondence between global and local descriptions. Global types
in [11] are described by the fork (∧), choice (∨) and repetition
(G)∗ (which represents a finite loop of zero or more interactions of
G), and choreographies in [2, 3] form a finite state machine with
queues. The former investigates the conditions for well-formed
choices and sequencing, and the latter studies the realisability (i.e.
projectability) conditions for global descriptions. Their systems
do not treat the fine-grained causality between sends and receives
modelled by the LTSs in this paper (i.e. the OO-causality or II-
causality at different channels [25], since they either only observe
send or receive actions). It explains why we used different formula-
tions and proof methods that had not been investigated in [2, 3, 11].
No synthesis algorithm is studied in [2, 3, 11]. See [17] for a more
detailed comparison.

There are other type systems which treat multiparty interac-
tions but do not rely on global descriptions. The conversation cal-
culus [10] models the interactions between a client and various ser-
vices, with dynamic joining into conversations, for a possibly un-
known number of processes. More flexible checking is performed
in the framework of contracts [12] which prescribe the abstract in-
teraction behaviours of processes. In contracts, typable processes
themselves may not always satisfy the properties of session types
such as progress: it is proved later by checking whether a whole

contract conforms to a certain form. Our work takes advantages
from both the local approaches in [10, 12] and global approaches
in [25]. None of [10, 12] studies the inference or synthesis of global
descriptions. For further comparisons of session types with other
service-oriented calculi and behavioural typing systems and a wide-
range survey of the related literature, see [18].

8. Conclusion and future work
This paper investigated the sound and complete characterisation
of three representative classes of multiparty session types, called
sequential, classical and generalised global types, into CFSMs and
developed their synthesis algorithms from CFSMs. We summarise
the equivalences in Table 1. All of the three synthesis algorithms
terminate and can always output a global type which enforces
the three safety properties of deadlock-freedom, reception error-
freedom and orphan message-freedom (Definition 5).

Multiparty Session Type Communicating system (CS)
Sequential MPST ≈ Sequential, orphan message-free

and deadlock-free, CS
Classical MPST ≈ Basic, multiparty compatible CS
Generalised MPST ≈ Session-compatible CS

Table 1. Summary of the equivalence results
The main tool we used is a new extension to multiparty interac-

tions of the duality condition for binary session types, called multi-
party compatibility. In each class, the multiparty compatibility con-
dition is decidable and uniformly applied to identify a set of “well-
behaved” CFSMs. In sequential systems, multiparty compatibility
is omnipresent as the execution in the sequential systems is auto-
matically compatible. In classical systems, the multiparty compati-
bility property is a necessary and sufficient condition to obtain safe
global types. In the third class, we require additional conditions
for choice and parallel compositions, which are decidable under 1-
bounded executions. Our completeness results rely on Lemma 14
which implies that building a global type which simulates only the
1-bounded traces is sufficient to also simulate all other traces.

The methods proposed here are palatable to a wide range of ap-
plications based on choreography protocol models including graph-
ical notations such as BPMN 2.0, and more widely, finite state
machines. We are currently working on two applications based
on the theory developed in this paper. The Testable Architecture
(TA) project [33], developed as an open source project by Red Hat
and Cognizant, starts from the description of application scenar-
ios, which are described as BPMN 2.0 choreographies (a super-
set of general global types) of interactions among components. A
usecase written as a choreography is projected into a set of local
models which will then be elaborated with implementation details.
The TA enables the communication structure of the implementation
to be inferred, and to be tested against the choreography. Updating
global scenarios against local models plays an important role in dif-
ferent stages of SLC (software life cycle) in this architecture. An-
other application is the use of multiparty session types for dynamic
monitoring for a large scale cyberinfrastructure over the US and
beyond [31]. We use local CFSMs projected from Scribble proto-
cols [34] (which is a industrial language to describe multiparty ses-
sion types) for network monitoring. A central controller can check
that distributed update paths for monitor specifications (i.e. local
CFSM) which are geographically far apart are safe by synthesis.

Variants of our method would be also usable for distributed dy-
namic software update (e.g. extending [23] to distribution): for ex-
ample, we could examine the actual programs that implement both
versions and construct the combined session type and check that we
can rebuild the global type. Extending our method to global types
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with logical predicates [6], we can specify the desired properties lo-
cally, and then derive the combined global type that satisfies these
properties. From this type, we could modify the attendant programs
to implement the type, therefore aggregating and distributing all
parties logical properties via synthesis.
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A. Appendix: Section 3
Proof of The size of a global type G, denoted by size(G), is
defined as follows:

size(p→ p′ : {k.G j} j∈J) = 1+∑ j∈J(1+ size(G j))
size(µt.G′) = size(G′)+1
size(t) = size(end) = 1

The third line of the projection definition checks that each Ti (i ∈ I)
is mergeable or not with Tj ( j 6= i ∈ I). Since the size of the global
types is the number of the branching of G, to check G � p for each
p is bound in polynomial.

Proposition 3 Obvious by definition.

Proposition 4 By the construction.

A.1 Proofs of Theorem 2

Soundness By induction on G `−→ G′:

GR1 where G = p→ p′ : {ai.Gi}i∈I
pp′!a j−−−→ G′ = p p′ : a j.G j.

The projection of G is [[G]] = sT = {Tq}q∈P,{wqq′}qq′∈P. The
local types are: Tp = G � p = p′!{ai.Gi � p}i∈I and Tp′ = G �
p′ = p?{ai.Gi � p′}i∈I and (for q /∈ {p,p′}) Tq = ti∈IG j � q.

Rule LR1 allows p′!{ai.Gi � p}i∈I
pp′!a j−−−→ G j � p. We there-

fore have sT
pp′!a j−−−→ {T ′q}q∈P,{w′qq′}qq′∈P, with T ′q = Tq if

q 6= p, and T ′p = G j � p, and with w′qq′ = wqq′ if qq′ 6= pp′,
and w′pp′ = wpp′ · a j. By rule LR2, we can have the silent
p?{ai.Gi � p′}i∈I −→ p?a j.(G j � p′), which as a configuration
transition is {T ′q}q∈P,{w′qq′}qq′∈P −→ {T

′′
q }q∈P,{w′qq′}qq′∈P

with T ′′q = T ′q if q 6= p′, and T ′′p′ = p?a j.(G j � p′). This cor-
responds exactly to the projection [[G′]] of G′.

GR2 where G = p p′ : a j.G j
pp′?a j−−−−→ G′ = G j. The projection of

G is [[G]] = sT = {Tq}q∈P,{wqq′}qq′∈P. The local types are:
Tp = G � p= G j � p and Tp′ = G � p′ = p?{a j.G j � p′} and (for
q /∈ {p,p′}) Tq = G j � q. We also know that wpp′ is of the form
w′pp′ ·a j.
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Using LR3, {Tq}q∈P,{wqq′}qq′∈P
pp′?a j−−−−→ {G j � q}q∈P,{w′qq′}qq′∈P

with w′qq′ = wqq′ if qq′ 6= pp′. The result of the transition is the
same as the projection [[G′]] of G′.

GR3 where G = µt.G′. Projection is homomorphic with respect to
recursion. We can use induction and LR4 to conclude.

GR4 where p→ p′ : {ai.Gi}i∈I
`−→ p→ p′ : {ai.G′i}i∈I . This is direct

by inductive hypothesis.

GR5 Direct by inductive hypothesis.

Completeness By induction on
{Tp}p∈P,{wqq′}qq′∈P

`−→ {T ′p}p∈P,{w′qq′}qq′∈P
such that there is a G and {Tp}p∈P,{wqq′}qq′∈P= [[G]]:

LR1 There is Tp = G � p = p′!{ai.Gi � p}i∈I . By definition of pro-
jection, G has p→ q : {ai.Gi}i∈I as subterm, possibly several
times (by mergeability). By definition of projection, we note
that no action in G can involve p before any of the occurrences
of p→ q : {ai.Gi}i∈I . Therefore we can apply as many times as
needed GR4 and GR5, and use GR1 to reduce to p q : a j.G j.
The projection of the resulting global type corresponds to the
result of LR3.

LR2 It can be completed by [LR3].

LR3 There is Tp = G � p = q?a j.Tj. To activate LR3, there should
be a value a j in the buffer wpq. By definition of projection, G
has therefore p q : a j.G j as subterm, possibly several times
(by mergeability). By definition of projection, no action in G
can involve p before any of the occurrences of p q : a j.G j.
We can apply as many times as needed GR4 and GR5 and use
GR2 to reduce to G j. The projection of the resulting global type
corresponds to the result of LR3.

LR4 where T = µt.T ′. Projection is homomorphic with respect to
recursion. Therefore G is of the same form. We can use GR3
and induction to conclude.

B. Appendix for Section 5
B.1 Proofs of Proposition 11
Stable Property We proceed by the induction of the total num-
ber of messages (sending actions) which should be closed by the
corresponding received actions. Once all messages are closed, we
can obtain 1-bound execution.

Suppose s1,s2 are the states such that s0
ϕ1−→s1

t1−→s2
ϕ ′1−→s′ where

ϕ1 is a 1-bounded execution and s1
t1−→s2 is the first transition which

is not followed by the corresponding received action. Since ϕ1
is a 1-bounded execution, there is s3 such that s2

t2−→s3 where t1
and t2 are both sending actions. Then by the definition of the
compatibility, we have

s1
t1−→s2

ϕ2−→ t1−→s′3 (B.1)

where ϕ2 is an alternation execution and t1 = pq?a. Assume ϕ2 is
a minimum execution which leads to t1. We need to show

s1
ϕ2−→ t1−→ t1−→s′3

t2−→s4

Then we can apply the same routine for t2 to close it by the
corresponding receiving action t2. Applying this to the next sending
state one by one, we can reach an 1-bounded execution. Let ϕ2 =
t4 ·ϕ ′2. Then by the definition of multiparty compatibility, act(t4) =
p′q′!c and p′ 6= p and q′ 6= q. Hence by Lemma 10(1), there exists
the execution such that

s1
t4−→ t1−→

ϕ ′2−→ t1−→ s′3
t2−→ s4

Let ϕ ′2 = t4 ·ϕ ′′2 where t1 = p′q′?c. Then this time, by Lemma 10(2),
we have:

s1
t4−→ t4−→ t1−→

ϕ ′′2−→ t1−→ s′3
t2−→ s4

where ϕ1 · t4 · t4 is a 1-bounded execution. Applying this permuta-
tion repeatedly, we have

s1
ϕ3−→ t1−→ t1−→ s′3

t2−→ s4

where ϕ3 is an 1-bounded execution. We apply the same routine for

t2 and conclude s1
ϕ ′−→ s′ for some stable s′. �

Deadlock-freedom Assume that S satisfies the above conditions.
We show by contradiction that no configuration s in RS(S) (RS(S)
is the set of all reachable states of S) is a deadlock. Suppose qr is a
deadlock state in s. Since q is in RS(S), there exists q0, ...,qr such
that q0 is the initial state and qi follows qi−1 in Mp for some p. The
set of states corresponds to the direct path pp which starts from q0
in Mp. Similarly we set p as the direct path q′0 · · ·q′r from the view
of p in S−p (we do not have to consider the alternations ϕi from the
direct path in S−p since it does not affect to the interaction with p
by Lemma 10). Since s is the deadlock state, |pp|= |p|. Then there
are two cases to consider.
Case (a) pp and p are compatible. In this case, if the path pp
is extended into p′p in Mp, then no directed path p′ in S−p. This
contradicts the assumption that S is compatible.
Case (b) pp and p are not compatible. By the assumption, there
exists a path p′ in S−p such that pp and p′ are compatible. Clearly
|pp|= |p|= |p′| and p and p′ are not identical. Let q and q′ the first
different states in p and p′. Then q and q′ are in the same machine
Mq and q and q′ have the same previous sate qh in Mq. Then qh

`−→q
and qh

`′−→q′ in Mq. Since Mq has no mixed states, ` and `′ are both
sending actions or receiving actions which are compatible with the
action in Mp. Since Mq is deterministic, if `= `′, then q = q′ which
contradicts the assumption such that q 6= q′.

Other safety properties are similarly proved. �

B.2 Proof for Lemma 14
Proof. We prove that ∀n,S1 ≈n S2 =⇒ S1 ≈n+1 S2. Then the
lemma follows. We assume S1 ≈n S2 and then prove by induction
on the length of a execution ϕ in S1, that it is accepted by S2. If
|ϕ| < n + 1, then the buffer usage of ϕ for S1 cannot exceed n,
therefore S2 can realise ϕ since S1 ≈n S2.

Assume |ϕ| = k + 1 and that the property hold for traces of
length k or less.

We assume the last k + 1th action is `. We name `0 the last
unmatched send transition pq!a of ϕ that is not `. We can therefore
write ϕ as ϕ0`0ϕ1`. In S1, we have

S1 : s0
ϕ0−→ `0−→ s1

ϕ1−→ `−→ s (B.2)

On the other hand, by the multiparty compatibility,

S1 : s0
ϕ0−→ `0−→ s1

ϕ ′−→ `0−→ s′1 (B.3)

where
ϕ ′−→ is an alternation with p 6∈ subj(act(ϕ ′)) and `0 = pq?a.

Hence ϕ ′ does not gain the buffer size from s1. Let us set ϕ1 =
ϕ ′1 ·ϕ ′′1 and ϕ ′ = ϕ ′1 ·ϕ ′′. Note that pq?a 6∈ act(ϕ1) since `0 is an
unmatched sending. Then we can set ϕ ′′1 ∩ϕ ′′ = ε . Hence we have:

S1 : s0
ϕ0−→ `0−→ s1

ϕ1−→ `−→ ϕ ′′−→ `0−→ s′ (B.4)

By permutation, we have:

S1 : s0
ϕ0−→ `0−→ s1

ϕ1−→ ϕ ′′−→ `0−→ `−→ s′ (B.5)

Note that since `0 is now consumed by `0, the size of the buffer of
this execution is n.

14



By the inductive hypothesis, in S2, we have:

S2 : s′0
ϕ0−→ `0−→ s1

ϕ1−→ ϕ ′′−→ `0−→ `−→ s2 (B.6)

Because ϕ ′′1 ∩ϕ ′′ = ε , we have:

S2 : s′0
ϕ0−→ `0−→ s′1

ϕ1−→ `−→ ϕ ′′−→ `0−→ s′2 (B.7)

Hence S2 can simulate S1’s trace in (B.2) whose buffer-bound is
n+1.

C. Appendix for Section 6
Projection We define the projection from a global type to a local
type where ASend means that a set of active senders, which corre-
sponds to the same definition in CFSMs (see [17]).

def G̃ in x � p = def G̃ �G̃ p in x
x = p→ p′ : a ;x′ �G̃ p = x = p′!a.x′
x = p→ p′ : a ;x′ �G̃ p′ = x = p?a.x′
x = p→ p′ : a ;x′ �G̃ p′′ = x = x′ (p /∈ {p,p′})

x | x′ = x′′ �G̃ p = x | x′ = x′′
x = x′ | x′′ �G̃ p = x = x′ | x′′

x = x′+x′′ �G̃ p = x = x′⊕x′′ (if p= ASend(G̃)(x))
x = x′+x′′ �G̃ p = x = x′ & x′′ (otherwise)
x+x′ = x′′ �G̃ p = x+x′ = x′′

x = end �G̃ p = x = end

C.1 Global type equivalence
Below we define the equivalence relation ≡G̃ used in the LTS of
the global types.

X | X′ ≡G̃ X′ | X X | (X′ | X′′)≡G̃ (X | X′) | X′′

x = x′ ∈ G̃
X[x]≡G̃ X[x′]

x = x′ | x′′ ∈ G̃
X[x]≡G̃ X[x′ | x′′]

x | x′ = x′′ ∈ G̃
X[x | x′]≡G̃ X[x′′]

x = x′+x′′ ∈ G̃
X[x]≡G̃ X[x′]

x = x′+x′′ ∈ G̃
X[x]≡G̃ X[x′′]

x+x′ = x′′ ∈ G̃
X[x]≡G̃ X[x′′]

x+x′ = x′′ ∈ G̃
X[x′]≡G̃ X[x′′]

Below we define the equivalence relation ≡T̃ used in the trans-
lation in Definition 16.

X | X′ ≡T̃ X′ | X X | (X′ | X′′)≡T̃ (X | X′) | X′′

x = x′ ∈ T̃
X[x]≡T̃ X[x′]

x = x′ | x′′ ∈ T̃
X[x]≡T̃ X[x′ | x′′]

x | x′ = x′′ ∈ T̃
X[x | x′]≡T̃ X[x′′]

x = x′ & x′′ ∈ T̃
X[x]≡T̃ X[x′]

x = x′ & x′′ ∈ T̃
X[x]≡T̃ X[x′′]

x = x′⊕x′′ ∈ T̃
X[x]≡T̃ X[x′]

x = x′⊕x′′ ∈ T̃
X[x]≡T̃ X[x′′]

x+x′ = x′′ ∈ T̃
X[x]≡T̃ X[x′′]

x+x′ = x′′ ∈ T̃
X[x′]≡T̃ X[x′′]

C.2 Proof of Proposition 18
Essentially we have the same as the proof of Proposition 11. Only
difference is that we need to use the unique sender condition to en-
sure that the action t1 is possible in (B.1) in the proof of Proposition
11 (note that t1 is always possible in basic CFSMs since they are
directed).

Suppose, in (B.1) in the proof of Proposition 11, the action
t1 is not possible: i.e. s1

t1−→s2
ϕ2−→s′2 but s′2 cannot perform t1−→.

The only possibility is that some Mq contains the receiver state
q such that (q,pq?a,q′),(q,p′q?b,q′′) ∈ δq which does not satisfy
the parallel condition (since if so, s′2 can perform t1−→), and ϕ2 con-
tains the action p′q?b, which implies ϕ2 contains the action p′q!b.
By the unique sender condition, there is the unique q′ such that
s′0

ϕ ·pq!a−−−−→s1 and s′0
ϕ ·pq!a ·ϕ ′ ·p′q!b ·ϕ ′′−−−−−−−−−−−−−→s′2 with ASend(ϕ · pq!a) =

ASend(ϕ ·pq!a ·ϕ ′ ·p′q!b) = {q′}. Since p′q!b cannot be reordered

before pq!a or after ϕ1, to satisfy the unique sender property, ϕ ′

should include pq?a. This contradicts that the assumption that ϕ2
does not include pq?a.

C.3 Proof of Theorem 19
By (reception error freedom) and (orphan message-freedom), to-
gether with (stable-property), we only have to check, there is no
input is waiting with an empty queue forever. Suppose by contra-
diction, there is s ∈ RS(S) such that s = (~q;~ε) and there exists input
state qp ∈~q and no output transition from qk such that k 6= q.

Then by assumption, there is a 1-buffer execution ϕ and since
ϕ is not taken (if so, qp can perform an input), then there is another
execution ϕ ′ such that it leads to state s which is deadlock at qp.

Case (1) Suppose ϕ does not include input actions at q except a, i.e.
a is the first input action at q in ϕ . We let ϕ0 for the prefix before
the actions of qp!a ·qp?a.

By (receiver condition), we know p ∈ Rcv(ϕ ′).
By the determinacy, the corresponding input action has a differ-

ent label from a, i.e. q′p?a′ ∈ ϕ ′. By the diamond property, q′p?a′
and qp?a can be appeared from the same state, i.e. this state is under
the assumption of the parallel condition. Hence by the multiparty
compatibility, the both corresponding outputs q′p!a′ and qp!a can
be always fired if one of them is. This contradicts the assumption
that qp is deadlock with label a.
Case (2) Suppose ϕ includes other input actions at q before qp?a,
i.e. p ∈ Rcv(ϕ0). Let q′p?a′ the action which first occurs in ϕ0. By
p ∈ Rcv(ϕ ′), there exists q′′p?a′′ ∈ ϕ ′. If q′′p?a′′ 6= q′p?a′, by the
same reasoning as (1), the both corresponding outputs are available.
Hence we assume the case q′′p?a′′ = q′p?a′. Let s is the first state
from which a transition in ϕ0 and a transition in ϕ ′ are separated.

Then by assumption, if s
ϕ0·q′p!a′·q′p?a′−−−−−−−−−→ s1 and s

ϕ1·q′p!a′·q′p?a′−−−−−−−−−→ s2,

by assumption a′ 6∈ ϕ0 ∪ ϕ1, hence s
q′p!a′·q′p?a′−−−−−−−→ s′1

ϕ ′0−→ s1 and

s
q′p!a′·q′p?a′−−−−−−−→ s′2

ϕ ′1−→ s2 by the diamond property again. Since s1
can perform an input at q by the assumption (because of qp?a), ϕ ′1
should contain an input at q by the receiver condition. If it contains
the input to q in ϕ ′1, then we repeat Case (2) noting that the length of
ϕ ′1 is shorter than the length of ϕ1 ·q′p!a′ ·q′p?a′; else we use Case
(1) to lead the contradiction; otherwise if it contains the same input
as qp?a, then it contradicts the assumption that qp is deadlock.
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