
Dynamic Multirole Session Types

Pierre-Malo Deniélou Nobuko Yoshida
Imperial College London

Abstract
Multiparty session types enforce structured safe communications
between several participants, as long as their number is fixed when
the session starts. In order to handle common distributed interaction
patterns such as peer-to-peer protocols or cloud algorithms, we pro-
pose a new role-based multiparty session type theory where roles
are defined as classes of local behaviours that an arbitrary number
of participants can dynamically join and leave. We offer program-
mers a polling operation that gives access to the current set of a
role’s participants in order to fork processes. Our type system with
universal types for polling can handle this dynamism and retain
type safety. A multiparty locking mechanism is introduced to pro-
vide communication safety, but also to ensure a stronger progress
property for joining participants that has never been guaranteed in
previous systems. Finally, we present some implementation mech-
anisms used in our prototype extension of ML.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.2 [Semantics of Pro-
gramming Languages]: Process models

General Terms Theory, Types, Design

Keywords communications, roles, multiparty, session types, mo-
bile processes, dynamic protocols, join-leave, peer-to-peer, auction.

1. Introduction
As a type foundation for structured distributed, communication-
centred programming, session types [18, 31] have been studied
over the last decade for a wide range of process calculi and pro-
gramming languages. The original binary theory has been gener-
alised to multiparty session types [19] in order to guarantee stronger
conformance to stipulated session structures between cooperating
multiple end-point participants. Since the first work [19] was pro-
posed, the multiparty session type theory has been developed in
process calculi [4, 10, 14, 22], and used in several different con-
texts such as distributed object communication optimisations [29],
security [5, 9], design by contract [6], parallel and web service pro-
gramming [25, 35, 36] and medical guidelines [23], some of which
initiated industrial collaborations (see § 6 and 7). While many inter-
action patterns can be captured in the existing multiparty sessions
framework, there are significant limitations for describing and val-
idating loosely-coupled, ungoverned, dynamic protocols, since the
number of participants is required to be fixed both when the session
is designed and when the session execution starts. This makes it un-
able to express interaction patterns frequently found in messaging
oriented middleware and service-oriented computing.
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The central underpinning of multiparty session types is that crit-
ical properties, such as communication safety (essentially a corre-
spondence between send and receive) and deadlock-freedom, are
guaranteed by the combination of two means: first, a static type-
checking methodology based on the existence of a global type (a
description of a multiparty protocol from a global viewpoint) and of
its end-point projections — the global type is projected to end-point
types against which processes can be efficiently type-checked; sec-
ond, a synchronisation mechanism which ensures that all the well-
behaved (i.e. well-typed) participants are actually present when the
session starts. This paper introduces a new role-based multiparty
type system and synchronisation mechanism that, together, can
specify, verify and govern dynamically evolving protocols.

In the rest of this section, we illustrate our motivation, ap-
proach and solutions through protocols of increasing complexity:
(1) Map/Reduce (introduction of the notion of roles and universal
quantification); (2) P2P chat (projection challenges) and (3) Auc-
tion (branching and communication safety).

(1) Map/Reduce We imagine a server that wants a task to be
computed on a cluster made of three cluster clients: the server sends
them jobs and they give back their answers. We give a picture il-
lustrating this communication pattern and the corresponding global
multiparty session type written in the original theory [19].

client1 Reduce
))RRRR

server //
Map 55llll

))RRRR client2 // server

client3

55llll BC
_ _ _ _oo

@A
_ _ _

Gorg =µx.(server→client1〈Map〉;
server→client2〈Map〉;
server→client3〈Map〉;
client1→server〈Reduce〉;
client2→server〈Reduce〉;
client3→server〈Reduce〉);x

This session starts with the server sending asynchronously the
messages Map to participants client1, client2 and client3. Each of
them answers back with a message Reduce.1 Recursion µx denotes
an unbounded number of repeated interactions.

The problem here is that such a session cannot start without
one of the clients and, once running, is not able to handle a fourth
client joining or one of the current clients leaving. In the original
multiparty sessions, any of these scenarios requires ending the
session, writing an appropriate global type for the new situation,
and starting a fresh session again.

This paper proposes a theory of dynamic multirole session
types that can describe global interactions between roles, which
are classes of participants that share a common behaviour (e.g. the
clients in the above example). Dynamism is disciplined by a simple
universally quantified type that allows to spawn further interactions
by polling the set of participants currently playing a given role.

In the above session, we notice that the three clients have the
exact same behaviour (receiving a Map message and sending a
Reduce message). We call this behaviour the client role and now
expect a varying number of participants to inhabit it. On the other
hand, the server role is as usual instantiated by exactly one partici-
pant and the session does not start without its presence. The follow-

1 Since the previous multiparty session types [4, 19] do not support explicit
parallelism, we rely on asynchrony to express the desired behaviour.



ing picture illustrates this dynamic protocol. Its global type features
the new universal type.

client
Reduce

&&NNNNN

server //

Map 88ppppp

&&NNNNN
...

// server

client

88ppppp BC
_ _ _oo

@A
_ _ _

G =µx.∀x : client.{server→x〈Map〉;
x→server〈Reduce〉};x

The repeated interaction in the glo-
bal type G involves a Map mes-
sage to be sent by the server to ev-
ery participants x of the client role;
the server then expects a message
Reduce in answer.

At the type level, such an operation is specified using a universal
quantification:

∀x : r.G′ polls the current participants p1, ...,pn of role r
and, in parallel processes, binds x to each in the subsequent
interaction, as in G′{p1/x} | ... | G′{pn/x}

In our example, G′ = server→x〈Map〉;x→server〈Reduce〉 is exe-
cuted in parallel for each client x. Then, the recursion variable x
points the interaction back to its beginning.
Local types Since the implementation, written here in a variant
of the π-calculus, is distributed, the typing system first projects the
global type to each end-point (local) type. For each role, the projec-
tion algorithm computes a local type that describes the behaviour of
any participant that wants to play it. The local types for this session
are the following:

Tclient =µx.?〈server,Map〉; !〈server,Reduce〉;x
Tserver =µx.∀x : client.{!〈x,Map〉; ?〈x,Reduce〉};x

First, the client behaviour Tclient is straightforward as it is only
involved in two messages at each iteration with the server. The local
type of the client expresses that it expects a message Map from the
server (?〈server,Map〉) and that it sends a message Reduce as an
answer (!〈server,Reduce〉). The server role is involved in all the
messages of this session. We note the presence of the quantification
over all x playing the client role.
Processes We write some process examples that would be well
typed against the local types. The session identifier s denotes an
active session:
Pclient(z)=a[z : client](s).µX .s?〈server,Map〉;s!〈server,Reduce〉;X
Pserver(z)=a[z : client](s).µX .s∀(x : client).{s!〈x,Map〉;s?〈x,Reduce〉};X

A session starts through the join operation (a[z : client](s)) which
gets the session name s of a running session advertised on a. A
participant z playing the client with Pclient(z) is simply exchang-
ing messages Map and Reduce with the server through sending
(s! ) and receiving (s?) operations. The server needs to fork sub-
processes for its interactions with each client. To this effect, the
polling operation s∀(x : client).{s!〈x,Map〉;s?〈x,Reduce〉} creates
as many processes s!〈x,Map〉;s?〈x,Reduce〉 as there are partici-
pants x playing the client role. Note that late joining client partici-
pants are incorporated in the session at each iteration: the repetition
of the polling operation s∀(x : client) is able to ensure a safe inter-
action between all parties.

(2) Peer-to-peer chat In this session, there is only one role, the
client, whose behaviour is to always broadcast its messages to all
the other clients. We give the global type and a representation of
the interaction when four clients are present.

G =µx.(∀x : client.∀y : client\ x.{x→yMsg〈string〉});x

client //

%%JJJJJJJJ
Msg
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client
Msg

oo
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client //

99tttttttt

OO

client
Msgoo

eeJJJJJJJJMsg

OO This type features a double quantification
which specifies that each pair of clients x,y
will interact in the form of a unique Msg.
The explicit exclusion of x from the list of
clients y prevents self-sent messages.

This second example shows the projection difficulties that arise
from quantification.
Local types To illustrate the projection of nested quantifiers, we
first rely on our intuition: each client should send a message Msg

to every other client and, concurrently, should expect a message
Msg from each of them.

Tclient(z)=µx.(∀y : client\ z.{!〈y,Msg〈string〉〉} |
∀x : client\ z.{?〈x,Msg〈string〉〉});x

Let us examine how the projection algorithm gives this local type.
Suppose we project for a generic client z. The first quantifier ∀x :
client of the global type necessarily involves z, meaning that among
these parallel processes there is exactly one where x is z. In the
other parallel processes, although x is not z, z can still be involved.
The projection of the second nested quantifier ∀y : client \ x works
in the same way. This is why the first parallel part is ∀y : client \
z.{!〈y:client,Msg〈string〉〉}, which explicitly excludes the possible
!〈z,Msg〈string〉〉.2
Process Once the local types are known, the client processes have
a similar structure, including the explicit polling operator, written
s∀(y : client\ z).

Pclient(z)=a[z : client](s).µX .(s∀(y : client\ z).{s!〈y,Msg〈m〉〉} |
s∀(x : client\ z).{s?〈x,Msg(w)〉});X

(3) Auction We now illustrate the expressiveness of our universal
types when combined with instantiation of participant identities
and branching session. In this session, we have three roles: the
multiple buyers (here participants alice, alex, alan) and sellers
(here bob, ben) which all connect to a single broker. This broker
will then form matching pairs (x,y) of buyers and sellers who will
then continue their interaction Price-Order separately.

alice
Notify //___

Stop

��99999999999999 bob
Price // alice Order // bob

broker

Match〈bob〉
Quit〈ben〉

88qqqqq

88qqqqqqqqq
//Quit〈bob〉 //____

Match〈ben〉

&&MMMMMMMMM

Quit〈bob〉
Quit〈ben〉 &&MMMMMMMMM alex

Notify %%K
K

K
K

Stop
99ssssssss

alan
Stop

//

Stop

BB��������������
ben

Price // alex Order // ben

G = ∀x :buyer.∀y : seller.
broker→x{Match〈y〉.x→y〈Notify〉.y→x〈Price〉.x→y〈Order〉,

Quit〈y〉. x→y 〈Stop〉}; end

The quantifications ∀x : buyer.∀y : seller specify that every possible
association between buyers and sellers is considered by the broker
when he makes his choices. For each pair (x,y) of buyer and seller,
the broker selects to send to x either a message Match〈y〉 if he
has found y to be a match for x, or a message Quit〈y〉 otherwise.
If the message Match was sent, x notifies y and the interaction
Price-Order proceeds. In the other branch, x needs to warn y by
the message Stop that the broker chose the second branch.

For this example, we just write a process for a buyer:
Pbuyer(z)=a[z :buyer](s).s∀(y : seller).{

s?〈broker,{Match〈y〉.s!〈y,Notify〉.s?〈y,Price〉.s!〈y,Order〉,
Quit〈y〉.s!〈y,Stop〉}〉};quit〈s〉

From the above process, we can see the importance of the com-
munication of the participant identity y with the messages Match
and Quit. The adjunction of y to the messages is necessary for x
to know to which y to send the Notify message. Note that the y in
Match〈y〉 is not a regular payload as all the sellers y are already
known by x: at reception, x matches his known y against the one
coming along Match or Quit.

This example presents a non-recursive session where all partici-
pants leave the session (through the expression quit〈s〉) at the end
of their interaction. Since late joiners always start at the beginning
of the session, they cannot safely interact with the participants that
have already proceeded. To guarantee progress, we require that late

2 If we want our global type to include those self-sent message, it can be
done explicitly by writing a global type: µx.(∀x : client.(x→xMsg〈string〉 |
∀y : client.x→yMsg〈string〉);x.



joiners wait for the current participants to end before joining them-
selves and beginning their actions. To provide consistent synchro-
nisation, we introduce a multiparty locking mechanism to protect
the global session executions.

Main contributions

(§ 2) A new role-based multiparty session type framework where
participants can play several roles in a session. Its semantics
allows participants to dynamically join and leave a running
session, and create new parallel sessions.

(§ 3, § 4) Introduction of a universal type for polling participants,
along with explicit parallel compositions, and a type system
that provides subject reduction (Theorem 4.2) and type safety
(Corollary 4.3: no type error for values and labels). The end-
point projection and the well-formedness conditions of global
types deal with the subtle interplay between universal quanti-
fiers, parallel compositions, branching and instantiations of par-
ticipant identities.

(§ 5) A semantics and type system with a simple locking mecha-
nism by which communication safety (Theorem 5.4: every re-
ceiver has a corresponding sender with the right type), progress
(Theorem 5.6: processes in a single multiparty session always
progress) and join progress (Theorem 5.8: late joiners can al-
ways join to an existing session and progress) are established.

(§ 5.5) Practical implementation techniques used in our prototype
extension of ML.

The proofs, detailed definitions, additional examples and the proto-
type implementation are available from [3].

2. Multirole session calculus
We describe here an extension of the multiparty session calculus
presented in [4]. Our new system handles roles and allows pro-
grams to participate in protocols that include multiple parallel in-
teractions and dynamic role instantiation.

u ::= x | a | b | ... Shared channel
p ::= p :r | x :r Participant with role
~p ::= p ::~p | x ::~p | ε Participant list
c ::= s[p] | y Session channel
e ::= v | x | e∧ e | ... Expression
v ::= a | s[p :r] | true | ... Values
P ::= Processes
| u〈G〉 Session initialisation
| u[p](y).P | quit〈c〉 Join, Quit
| c!〈p, l〈~p〉〈e〉〉 Send
| c?〈p,{li〈~pi〉(xi).Pi}i∈I〉 Receive
| c∀(x :r \~p).{P} Poll
| P | P | P;P Parallel, Sequential
| if e then P else P Conditional
| µX .P | X Recursion, Variable
| 0 | (ν a :G)P Null, Restriction
| (ν s)P | s :h Session restriction, Buffer
| a〈s〉[R] Registry

R ::= r1 :P1, ...,rn :Pn Role set
h ::= ε | h · (p0 :r0,p1 :r1, l〈~p〉〈v〉) Buffer

Figure 1. Multirole session calculus

Syntax We give in Figure 1 the syntax of the processes of our
session variant of the π-calculus.

A session is always initialised by a process of the form u〈G〉
where G is a global type (formally defined in § 3). Session initiali-
sation attributes a particular global interaction pattern G to a shared
channel u. Once the session has been initialised on channel u, par-
ticipants can join with u[p](y).P where p designates a participant
identity p or x associated with a particular role name r. Joining
binds the variable y with the session channel that this particular
participant can use when he plays the role r. Leaving the session is
done by quit〈c〉, where c is the session channel corresponding to
the participant and role.

The asynchronous emission c!〈p, l〈~p〉〈e〉〉 allows to send to p
a value e labelled by a constant l and participant names ~p. The
reception c?〈p,{li〈~pi〉(xi).Pi}i∈I〉 expects from p a message with a
label among the {li}i∈I with participants ~pi. The message payload
is then received in variable xi, which binds in Pi. Messages are
always labelled. The list of participants ~pi enriches the label li in
order for the receiver to be able to disambiguate messages that have
the same sender and label, but different continuations.

The polling operation c∀(x :r \~p).{P} is the main way to inter-
act with the participants that instantiate a given role: P is replicated
for each participant x playing role r, with the exception of the par-
ticipants mentioned in ~p.

Parallel and sequential composition are standard, as are the
conditional and recursion. The creation of a shared rendez-vous
name is done by (ν a :G)P. This fresh name can then be used as a
reference for future instances of a session specified by G.

Once a session is running, our semantics uses some artifacts
that are not directly accessible to the programmer. First, session
instances are represented by session restriction (ν s)P. Second, the
message buffer s : h stores the messages in transit for the session
s. Last, the session registry a〈s〉[R] records the current association
between participants and roles in the running session s.

For simplicity, we write c?〈p, l〈~p〉(xi)〉.P if there is a unique
branch. Similarly, we omit the empty list of participant (〈ε〉) and
unit payloads (e.g. c!〈p, l〉). We also do not write 0, and roles r
(e.g. in x :r) if they are clear from the context.

We use syntactic sugar for the special roles that cannot be
multiply instantiated. Polling is done implicitly for these roles.
Their participants’ names (p or x) do not have to be explicitly
mentioned: the mention of the role r is sufficient and unambiguous.
In the Map/Reduce example from § 1, server is such a role.

We call a process which does not contain free variables and
runtime syntax initial.

Semantics Figure 2 lists the reduction rules. The b INITc rule pro-
ceeds to a session initialisation by reducing a〈G〉. It creates a fresh
session channel s and two processes. First, the session registry
a〈s〉[R] is an entity that centralises the association between partic-
ipants and roles in the particular instance s of a session. Initially,
R does not record any participant for any of the roles of G. The
second process is the session’s message buffer s : ε , which is also
initially empty.

The rule bJOINc governs the registration of a participant to a
running session. The participant asks with a[p : r](y).P to join
the session advertised on channel a and specifies his identity p
and which role r he wants to play. This information is added to
the session registry a〈s〉[R · r : P ] {p}] and the session channel
s[p:r] is communicated. The rule bQUITcmanages the departure of a
participant from a session: quit〈s[p :r]〉 forces the deletion of p : r
from the registry.

The rule bSENDc describes asynchronous sending, which ap-
pends its labelled message to the buffer s : h. In rule bRECVc, the
reception takes from the session buffer the first message (p′ :r′, p :
r, lk〈~pk〉〈v〉) that has a proper address, label and participant list
and selects the matching continuation Pk. The rule bPOLLc details
the reduction of the polling process s[p : r′]∀(x : r \~p).{P}. The set



a〈G〉 −→ (ν s)(a〈s〉[R] | s :ε) (∀ri∈G,R(ri) = ∅) b INITc

a[p :r](y).P | a〈s〉[R · r :P] −→ P{s[p :r]/y} | a〈s〉[R · r :P]{p}] bJOINc

quit〈s[p :r]〉 | a〈s〉[R · r :P] −→ a〈s〉[R · r :P\p] bQUITc

s[p :r]!〈p′ :r′, l〈~p〉〈v〉〉 | a〈s〉[R] | s :h −→ a〈s〉[R] | s :h · (p :r, p′ :r′, l〈~p〉〈v〉) (p∈R(r)∧p′∈R(r′)) bSENDc

s[p :r]?〈p′ :r′,{li〈~pi〉(xi).Pi}i∈I〉 | a〈s〉[R] | s :(p′ :r′, p :r, lk〈~pk〉〈v〉) ·h −→ Pk{v/xk} | a〈s〉[R] | s :h (p∈R(r)∧ k∈ I) bRECVc

s[p :r′]∀(x :r \~p).{P} | a〈s〉[R] −→ P{p1/x} | ... | P{pk/x} | a〈s〉[R] (R(r)\~p = {p1, ..,pk}∧p∈R(r′)) bPOLLc

if true then P else Q−→ P b IFTc if false then P else Q−→ Q b IFFc

P | Q−→ P′ | Q′ =⇒ E [P] | Q−→ E [P′] | Q′ bPARc P−→ P′ =⇒ E [P]−→ E [P′] bCTXTc P≡P′ −→ Q′≡Q =⇒ P−→ Q bCONGc

E ::= [ ] | E | P | E ;P | (ν a)E | (ν s)E | s[p :r]!〈p′ :r′, l〈~p〉〈E 〉〉 | if E then P else P | E ∧ e | v∧E | . . .

Figure 2. Reduction rules for the multirole session calculus

of participants {p1, ...,pk} that play role r (once the ones in~p are
removed) is received from the session registry and the process P
is forked accordingly, with x appropriately substituted. In bPARc,
bound names in E and free names in Q are disjoint.

The reduction is defined modulo the standard structural equiv-
alence ≡. We just mention here the session garbage collection
rule (ν a : G,s)(a〈s〉[R] | s : ε)≡ 0 (when ∀ri ∈G,R(ri) = ∅) and
the permutation rule s : (q, p, l〈~p1〉〈v〉) · (q′, p′, l′〈~p2〉〈v′〉) · h≡ s :
(q′, p′, l′〈~p2〉〈v′〉) · (q, p, l〈~p1〉〈v〉) · h which allows to put forward
in the session buffers the messages that have different senders, re-
cipients, labels or participants lists. Others are standard.

Reduction example We take the process Pclient(z) from the peer-
to-peer chat mentioned in the introduction (§ 1(2)). Figure 3 gives
reduction steps of a situation where we have two client processes
Pclient(p1) and Pclient(p2) that want to interact on session chan-
nel a. We call Q(z) the process µX .(s[z]∀(y : client \ z).{s[z]!〈y,
Msg〈m〉〉} | s[z]∀(x : client\ z).{s[z]?〈x,Msg(w)〉});X and abbrevi-
ate the registry a〈s〉[client :{p1,p2}] by R.

(ν a)(a〈G〉 | P(p1) | P(p2))
b INITc → (ν a)((ν s)(a〈s〉[client :∅] | s :ε) | P(p1) | P(p2)))
bJOINc → (ν a,s)(a〈s〉[client :{p1}] | s :ε | Q(p1) | P(p2))
bJOINc → (ν a,s)(a〈s〉[client :{p1,p2}] | s :ε | Q(p1) | Q(p2))
bPOLLc → (ν a,s)(R | s :ε | Q(p2) | (s[p1]!〈p2,Msg〈m〉〉 |

s[p1]∀(x : client\p1).{s[p1]?〈x,Msg(w)〉});Q(p1))
bSENDc → (ν a,s)(R | s :(p1,p2,Msg〈m〉) | Q(p2) |

(s[p1]∀(x : client\p1).{s[p1]?〈x,Msg(w)〉});Q(p1))
bPOLLc → (ν a,s)(R | s :(p1,p2,Msg〈m〉)) | Q(p2) |

s[p1]?〈p2,Msg(w)〉;Q(p1))
bPOLLc → (ν a,s)(R | s :(p1,p2,Msg〈m〉) | s[p1]?〈p2,Msg(w)〉;Q(p1) |

(s[p2]!〈p1,Msg〈m〉〉 |
s[p2]∀(x : client\p2).{s[p2]?〈x,Msg(w)〉});Q(p2))

bSENDc → (ν a,s)(R | s :(p1,p2,Msg〈m〉) · (p2,p1,Msg〈m〉) |
s[p1]?〈p2,Msg(w)〉;Q(p1) |

s[p2]∀(x : client\p2).{s[p2]?〈x,Msg(w)〉};Q(p2))
bPOLLc → (ν a,s)(R | s :(p1,p2,Msg〈m〉) · (p2,p1,Msg〈m〉) |

s[p1]?〈p2,Msg(w)〉;Q(p1) | s[p2]?〈p1,Msg(w)〉;Q(p2))
bRECVc → (ν a,s)(R | s :(p2,p1,Msg〈m〉) |

s[p1]?〈p2,Msg(w)〉;Q(p1) | Q(p2))
bRECVc → (ν a,s)(R | s :ε | Q(p1) | Q(p2))

Figure 3. Reduction for the peer-to-peer chat example

3. Multirole session types
In this section, we present the multirole session types which specify
the communication patterns that are to be enforced. We start with
the definition of global and local types and follow with projection
and well-formedness properties.

G ::= Global types
| p→p′{li〈~pi〉〈Ui〉.Gi}i∈I Labelled messages
| ∀x :r \~p.G Universal quantification
| G | G′ | G;G′ Parallel, Sequential
| µx.G | x Recursion, variable
| ε | end Inaction, End

T ::= Local types
| !〈p,{li〈~pi〉〈Ui〉.Ti}i∈I〉 Selection
| ?〈p,{li〈~pi〉〈Ui〉.Ti}i∈I〉 Branching
| ∀x :r \~p.T Universal quantification
| T | T ′ | T ;T ′ Parallel, Sequential
| µx.G | x | ε | end Recursion, inaction, end

U ::= S | T Message types
S ::= 〈G〉 | bool | unit | ... Sorts

Figure 4. Global and local types

3.1 Global and local types
Global types G describe role-based global scenarios between multi-
ple participants as a type signature. When a participant agrees with
a global type G, his behaviour is defined by a local protocol (called
local type Ti) that is generated by the projection of G to the role he
wants to play. If each of the local programs P1, ...,Pn can be type-
checked against the corresponding projected local types T1, ..,Tn,
then they are automatically guaranteed to interact properly, follow-
ing the intended scenario. The grammar of global types (G,G′, ...)
and local types (T,T ′, ...) is given in figure 4. There are four key
extensions from the standard multiparty session types [4]: (1) asso-
ciation of each participant to a role; (2) universal quantifiers to bind
participants identities; (3) parallel compositions for local types; and
(4) labels that can be extended by lists of participants.

In the global types (G,G′, ...), a global interaction can be a
labelled message exchange (p→p′{li〈~pi〉〈Ui〉.Gi}i∈I), where p and
p′ denote the sending and receiving participants with roles (recall
that p denotes either p :r or x :r), ~pi is a list of participants, Ui is the
payload type of the message and Gi the interaction that follows the
choice of label li (I is a finite set of integers). Value types S include
shared channel types 〈G〉 or base types (bool,unit , ...). Message
types U are either value types S or local types T (which correspond
to the behaviour of one of the session participants) for delegation.

Parallel composition is written as G | G′, and G;G′ denotes se-
quential composition. µx.G is a recursive type where type variable
x is guarded in the standard way (they only appear under some pre-
fix). Inaction ε marks the absence of communication, while end
denotes the end of the session for all roles. The universal quantifi-
cation is written ∀x : r \~p.G where the participants of role r bind



free occurrences x in G. It corresponds to the operational seman-
tics of s[p : r′]∀(x : r \~p).{P} (see § 2), i.e. a parallel composition
G{p1/x} | ... | G{pk/x} for some list of participants {p1, ...,pk}
playing the role r (which is decided at runtime), from which the list
of participants ~p has been excluded.

In local types T , selection expresses the transmission to p of a
label li taken from a set {li}i∈I with a list of participants ~pi and a
message type Ui, followed by Ti. Branching is its dual counterpart.
The other local types are similar to their global versions.

We consider global and local types modulo the following equal-
ities. For local types, we define: (T | ε) = (ε | T ) = (ε;T ) = T ,
(T | end) = (end | T ) = T , (T | T ′); end = (T ; end | T ′; end) and
!〈p,{li〈~pi〉〈Ui〉.Ti}i∈I〉; end = !〈p,{li〈~pi〉〈Ui〉.Ti; end}i∈I〉. Similar
equalities are applied to global types. We also use similar abbrevia-
tions for global and local types as the ones for processes (mentioned
in § 2). In particular, we write p→ql〈~p′〉〈U〉;G or !〈p, l〈~q〉〈U〉〉;T
for a single branching, and p→q〈l〉 if the list of participant is empty
and the payload type is unit. end is also often eluded.

EXAMPLE 3.1 (Global types). To give some additional clarity to
the semantics of global session types, we give here several varia-
tions on an additional example. We imagine a chat protocol (similar
in spirit to the peer-to-peer chat session) where the clients must in-
teract through a single server. We have thus two roles: the unique
server and the multiple clients. Each client’s behaviour is to send a
message to the server who will then broadcast it to all the others.
In the following picture, we only represent the Msg that one client
sends to the server and that is followed by the server broadcasting
its content (in message Spread) to all the other clients.
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The global type for this session relies on the sequentiality that
links each Msg to its following Spread. We write it as:
G1 = µx.∀x:client.{x→server〈Msg〉.∀y:client\x.{server→y〈Spread〉}};x

It starts with a quantification over all clients x. Upon recep-
tion by the server of a message from x, the global type spec-
ifies that Spread should be sent to all the other clients: ∀y :
client\ x.server→y〈Spread〉.

An alternate chat server could be one where the server collects
all incoming messages and then sends a digest to all clients. In that
case, the global type would be written:
G2 = µx.∀x : client.{x→server〈Msg〉};∀y : client.{server→y〈Spread〉};x

The central synchronisation between the two quantified types is
important in our model. The semantics is radically different if this
synchronisation is removed.

G3 = µx.∀x : client.{x→server〈Msg〉; server→x〈Spread〉};x

The global type G3 means that, independently for each client, the
server first collects a message Msg and then immediately sends
back to this same client a message Spread.

3.2 Projection from multirole global types to local types
We now define the projection operation, which, for any participant
z playing a role r in a session G, computes the local type it has to
conform to. We say an end-point projection of G onto z : r, written
G ↑ z:r, is the local type that the participant z should respect to play
the role r in session G.

As mentioned in § 1, the main difficulty lies in the projection
of the quantifiers. Let us first consider informally the global type
∀x : r.G. This global type has the same semantics as G{p1/x} |
... | G{pk/x} for some p1, ...,pk playing the role r. If we write the
projection of ∀x : r.G for a participant pi playing role r (written as

∀x :r.G ↑ pi :r), we can single out the instance corresponding to pi:
(G{p1/x} ↑ pi :r) | ... | (G{pk/x} ↑ pi :r) =

(G{pi/x} ↑ pi :r) | ∀x :r \pi.(G ↑ pi :r)
Based on this intuition behind the projection of quantifiers, we give
the projection definition in figure 5. Projection is role-based, i.e. for
each role r of a session G, a local type T = G ↑ p is computed with
p = z :r. The case p = p :r is defined by replacing z by p.

p→p′{li〈~pi〉〈Ui〉 :Gi}i∈I ↑ p=!〈p′,{li〈~pi〉〈Ui〉.Gi ↑ p}i∈I〉
p′→p{li〈~pi〉〈Ui〉 :Gi}i∈I ↑ p=?〈p′,{li〈~pi〉〈Ui〉.Gi ↑ p}i∈I〉
p→p{li〈~pi〉〈Ui〉 :Gi}i∈I ↑ p=!〈p,{li〈~pi〉〈Ui〉.?〈p, li〈~pi〉〈Ui〉.Gi ↑ p〉}i∈I〉

p′→p′′{li〈~pi〉〈Ui〉.Gi}i∈I ↑ p=
⊔

i∈I{Gi ↑ p}
(∀x :r \~p.G) ↑ z :r=G{z/x} ↑ z :r | ∀x :r \ z ::~p.(G ↑ z :r) (z 6∈~p)

(∀x :r \~p.G) ↑ p=∀x :r \~p.(G ↑ p) (otherwise)
(G | G) ↑ p = (G ↑ p | G ↑ p) (G;G) ↑ p = (G ↑ p;G ↑ p)

µx.G ↑ p = µx.(G ↑ p) x ↑ p = x ε ↑ p = ε end ↑ p = end

Figure 5. Projection

The projection of communication leads to a case analysis: if the
participant projected to (i.e. p) is the sender, then the projection
is a selection sent to p′; if p is the receiver then the projection is
an input from p′; if participant p is both sender and receiver then
the projection is an output followed by an input; otherwise, the
communication is not observed locally and is skipped. The operator
t then merges the different remote branches (this operation was
introduced in [35, § 4]). Roughly speaking, it makes sure that
the locally observable behaviours are either independent of the
remotely chosen branch or can be properly identified through their
labels. It is defined by T tT = T and the following equality:

?〈p,{li〈~pi〉〈Ui〉.Ti}i∈I〉t ?〈p,{l j〈~p j
′〉〈U ′j〉.T ′j} j∈J〉

= ?〈p,{lk〈~pk〉〈Uk〉.Tk}k∈I\J ∪{lk〈~pk
′〉〈U ′k〉.Tk}k∈J\I

∪{lk〈~pk〉〈Uk〉.Tk tT ′k}k∈I∩J〉 when ∀k∈ I∩ J, ~pk = ~pk
′ ∧Uk = U ′k

Note that the merging operation may not return a result if the
session uses labels ambiguously. An example can be found in § 3.3.

Finally, the most critical rules define the projection of a quanti-
fied global type (∀x : r \~p.G) ↑ p. The first rule applies only when
the quantification acts on the same role r as the projection, and
when p is not in the exclusion list ~p. In that case, as explained
above, the local type is the parallel composition of G where x : r
is substituted by p, projected for p, and a quantification exclud-
ing p. The second rule sees the projection acting homomorphically
through the quantification on a different role, or if p is in ~p. Other
rules are homomorphic as well. We say that G is projectable if G
can be projected (i.e. projection gives a result) for each of its roles.

EXAMPLE 3.2 (Projection). (1) Peer-to-peer chat example. We
give an example of projection for the peer-to-peer chat session from
§ 1, which features nested quantifiers. The local type T (z :client) is
calculated in the following way (p is z : client):

(µx.(∀x : client.∀y : client\ x.x→yMsg〈string〉);x) ↑ z : client
= µx.((∀x : client.∀y : client\ x.x→yMsg〈string〉) ↑ z : client);x
= µx.((∀y : client\ z.z→yMsg〈string〉) ↑ z : client |

∀x : client\ z.(∀y : client\ x.x→yMsg〈string〉) ↑ z : client);x
= µx.(∀y : client\ z.(z→yMsg〈string〉) ↑ z : client |

∀x : client\ z.((x→zMsg〈string〉) ↑ z : client |
∀y : client\ z.(x→yMsg〈string〉) ↑ z : client));x

= µx.(∀y : client\ z.!〈y,Msg〈string〉〉 |
∀x : client\ z.(?〈x,Msg〈string〉〉 | ∀y : client\ z.ε));x

≡ µx.(∀y : client\ z.!〈y,Msg〈string〉〉 | ∀x : client\ z.?〈x,Msg〈string〉〉);x
(2) Chat-server from example 3.1. We give the projections for
each of the three global types. The projection of G1 for the server
and client roles gives:

T1(z : server) =µx.(∀x : client.{?〈x : client,Msg〉;
∀y : client\ x.!〈y : client,Spread〉});x

T1(z : client) =µx.(!〈server,Msg〉 | ∀x : client\ z.{?〈server,Spread〉});x



Note that the sequentiality between Msg and Spread is rightly
present in the server’s local type. The projection of G2 results in:

T2(z : server) = µx. ∀x : client.{?〈x : client,Msg〉};
∀y : client.{!〈y : client,Spread〉};x

T2(z : client)= µx.(!〈server,Msg〉 | ∀x : client\ z.{?〈server,Spread〉});x
We note that the server’s local type represents a behaviour which
first collects all incoming messages and then sends a digest to all
clients. On the other hand, the client behaviour is the same as in
session G1. The projection of G3 is given as:

T3(z : server)=µx.∀x : client.{?〈x : client,Msg〉; !〈y : client,Spread〉};x
T3(z : client)=µx.!〈server,Msg〉; ?〈server,Spread〉;x

In the above types, for each client, the server first collects a message
Msg and then immediately sends back a message Spread to this
client.

3.3 Well-formedness
For type-checking to work, global types need to follow a set of rules
that will ensure a reliable and unambiguous session behaviour.

Syntax correctness We apply kinding rules [3] to construct syn-
tactically correct types. A first point that is verified is that every par-
ticipant variable x is bound by a quantifier and that it is consistently
used with the same role. Then, we check that recursion variables
do not appear under quantification or explicit parallel composition.
Formally, if a global type is of the form ∀x : r \~p.G or G | G′,
then G and G′ are required not to contain any free recursion vari-
ables. This condition prevents any race condition between different
iterations of the same loop. We give a few examples of correct and
incorrect global session types.
× G1 = µx.(server→client〈Msg〉;x | server→broker〈Notify〉;x)√

G2 = µx.(server→client〈Msg〉 | server→broker〈Notify〉);x√
G3 = µx.server→client〈Msg〉;x | µy.server→broker〈Notify〉;y

Other checks include the verification that the position of end is
indeed correct. For example, (G; end);(G′; end) is not well-formed.

Projectability As seen in § 3.2, projection does not always re-
turn a local type, due to the verification made when branches are
merged. The merging operation verifies that each branch is prop-
erly labelled and that no local process can be confused about which
branch to follow. We thus require that any global session type G
should be projectable.
× G4 = broker→buyer{Notify.buyer→seller〈Msg〉; seller→buyer〈Pay〉,

Quit.buyer→seller〈Msg〉}√
G5 = broker→buyer{Notify.buyer→seller〈Price〉; seller→buyer〈Pay〉,

Quit.buyer→seller〈Stop〉}

The seller in G4 cannot distinguish the two Msg sent by the buyer.
In G5, the seller knows which branch has been taken by the broker
since the upper one is labelled by Price and the lower one by Stop.

Linearity The concept of linearity is introduced in [19] but, in
our case, we use a relaxed version to allow flexible parallel compo-
sitions (explicit or through quantification) and branching. It makes
sure that messages are always labelled in a way that prevents com-
munication mix-ups.

To verify the linearity of a global type G, we first need to
transform the quantifiers into explicit parallel compositions. To
this effect, we associate to each role r of G a (big enough) list
of participant names p0,p1, .... Then, we compute for each role r
the local type Tr = G ↑ p0 : r and homomorphically replace every
subterm of Tr of the form3 ∀x :r\~p.T0 by T0{pi/x} | T0{p j/x} with
pi,p j the first two participant names for role r that do not appear in
~p. This transformation is called dequantification.

3 We leave the implicit quantifiers of the singly instantiated roles untouched.

DEFINITION 3.3 (Linearity). We say that a well-labelled global
type G is linear if, for all roles r of G, the dequantification
T ′r of Tr = G ↑ p0 : r satisfies: If ?〈p,{li〈~pi〉〈Ui〉.Ti}i∈I〉 and
?〈p,{l′j〈~p j

′〉〈U ′j〉.T ′j} j∈J〉 are both subterms of T ′r , then, ∀i, j∈I×J,
li = l′j⇒ ({li}i∈I = {l′j} j∈J ∧Ui = U ′j ∧ (~pi = ~p j

′⇒ Ti = T ′j )).

This definition checks that if two receptions exist in the local type
of a role r, then either they share no label (and thus cannot be con-
fused), or they share exactly the same set of message labels, with
identical payload types, in which case they should only differ by
the distinguishing lists of participants: these lists allow to reliably
target different continuation types even when concurrent threads
expect messages with the same labels.
× G6 = ∀x :buyer.∀y : seller.{broker→x〈Msg〉.x→y〈Notify〉}√

G7 = ∀x :buyer.∀y : seller.{broker→x〈Msg〈y〉〉.x→y〈Notify〉}

The dequantification of G6 ↑ p0 : seller is (buyers are p0,p1, sellers
are q0,q1):

?〈broker,〈Msg〉.!〈q0,〈Notify〉〉〉 | ?〈broker,〈Msg〉.!〈q1,〈Notify〉〉〉

These two concurrent threads have identical guards but different
continuations. The dequantification of G7 ↑ p0 : seller is:

?〈broker,〈Msg〈q0〉〉.!〈q0,〈Notify〉〉〉
| ?〈broker,〈Msg〈q1〉〉.!〈q1,〈Notify〉〉〉

In that case, the participant identity 〈y〉 is added to the label Msg
and is able to disambiguate the concurrent receptions.

Well-formedness We now give the formal version of the well-
formedness condition. Note that it is decidable.

DEFINITION 3.4 (Well-formed global types). We say that a global
type G is well-formed if the following conditions hold:

1. (Syntactically correct) G is syntactically correct [3].
2. (Projectability) G ↑ z :r is defined for each role r of G.
3. (Linearity) G is linear (Definition 3.3).

EXAMPLE 3.5 (Well-formedness). We test the well-formedness of
the auction example from § 1 (the numbers below correspond to the
well-formedness conditions). Recall the global type G:

G = ∀x :buyer.∀y : seller.broker→x{
Match〈y〉.x→y〈Notify〉.y→x〈Price〉.x→y〈Order〉,
Quit〈y〉. x→y 〈Stop〉}; end

The syntax correctness (1) is checked easily: there is no recursion,
participant variables are bound and used for a unique role, and
end is well-positioned. G is projectable (2) since the two branches
(Match, Quit) do not forget to use different labels (Notify, Stop)
to propagate to the seller y the choice that the broker makes. Con-
cerning linearity (3), the potential problem is in the first message:
when a buyer x receives a message Match or Quit from the broker,
x should know which parallel instance it concerns among the ones
the quantification ∀y : seller creates. We only give below the verifi-
cation details for the buyer. With buyers p0,p1 and sellers q0,q1,
the result of the dequantification of G ↑ p0 :buyer is:

?〈broker,{Match〈q0〉.!〈q0,〈Notify〉.?〈q0,〈Price〉.!〈q0,〈Order〉〉〉〉,
Quit〈q0〉.!〈q0,〈Stop〉〉}〉

| ?〈broker,{Match〈q1〉.!〈q1,〈Notify〉.?〈q1,〈Price〉.!〈q1,〈Order〉〉〉〉,
Quit〈q1〉.!〈q1,〈Stop〉〉}〉

For G ↑ q0 : seller, the dequantification result gives:
?〈p0,{Notify.!〈p0,〈Price〉.?〈p0,〈Order〉〉〉,Stop}〉
| ?〈p1,{Notify.!〈p1,〈Price〉.?〈p1,〈Order〉〉〉,Stop}〉

We check linearity by looking at the different occurrences of the
same label (for example Match in G ↑ p0 : buyer) being received
from the same participant (e.g. broker): we verify that the lists
of participant identities are different whenever the continuations
are different. Linearity is thus only achieved here thanks to the
communication of the disambiguating y in messages Match and
Quit, as it can be seen in the buyer’s case. The seller’s and broker’s
(here omitted) linearity verifications are trivial.



4. Multirole session typing system
This section introduces the typing system and proves subject reduc-
tion (Theorem 4.2) and type safety (Corollary 4.3). There are three
main differences with previous session systems. First, a participant
x can appear free in environments, types and processes, and is nec-
essarily bound by universal quantifiers. Second, previous systems
did not allow any parallel composition of types which use com-
mon channels. Since the projection of a universal quantified type
generates parallel compositions, we relax this restriction. Thanks
to the well-formedness of the global types (Definition 3.4), the typ-
ing system for initial processes is kept simple. Third, our runtime
typing system needs to track parallel behaviours by forks and joins.

4.1 Typing systems
Environments We start with the grammar of environments.

Γ ::= ∅ | Γ,u :S | Γ,y :r | Γ,X :∆ ∆ ::= ∅ | ∆,c :T

Γ is the standard environment which associates variables to sort
types or roles, shared names to global types, and process variables
to session types. ∆ is the session environment which associates
channels to session types. We write Γ,u : S only if u 6∈ dom(Γ).
Similarly for other variables. We define the sequential ; and parallel
◦ compositions for types as follows:

∆]∆′ = ∆\dom(∆′)∪∆′\dom(∆)
∪{c : ∆(c)]∆′(c) | c ∈ dom(∆)∩dom(∆′)}

where ] ∈ {◦, ;} and ∆(c)]∆′(c) is syntactically well-formed.

Typing systems for initial processes We detail the typing sys-
tem for expressions and processes in figure 6. The judgement for
expression typing is given as Γ ` e : S. The judgement for process
typing is given as Γ ` P . ∆ which can be read as: “under the envi-
ronment Γ, process P has session type ∆”.

Rules [BOOL,OR,ID] are standard. Γ ` Env means that Γ is well-
formed, and Γ ` S . Type means S is well-formed under Γ. Since a
participant variable with role can appear both in types and environ-
ments, we need to use kinding techniques to make sure that types
with free variables do not appear before the variables’ declarations
and ensure well-formedness (see Definition 3.4). Rules [RL,RLV]
are introduction rules for participants associated with roles.

Rule [INIT] types the initialisation of a session with global type
G. The judgement Γ ` ∆ : end means that ∆ only contains end
or ε [18, 19]. The rule ensures the initialisation is not bound by
the prefix. Rule [JOIN] types a joining process that follows the
projection to p. A leaving process is typed if the remaining session
type is completed (i.e. end).

Rule [SEL] is for the selection of label li, participants ~pi and
payload e. We first infer the destination p from Γ. If e is an atomic
type (e.g. bool) or a shared channel type, then it is typed as in stan-
dard selection rules [4, 19] for the expression by recording partic-
ipants ~pi in the resulting type. This way, we can preserve the de-
pendency between the participants during polling and session com-
munications. Rule [SELS] is a session delegation rule [4, 19]. Rule
[BRA] is the dual of the selection rules. Note that the participants
p and ~pi in c?〈p,{li〈~pi〉(yi).Pi}i∈I〉 are free so that they are bound
by the polling and dynamically instantiated by reductions. Rules
[PAR,SEQ] assume ∆◦∆′ and ∆;∆′ are defined. Rule [POLLING] is the
introduction rule for the universal quantification. It only concerns
a single session (otherwise other sessions are copied after forking).
The other rules are standard [4, 19].

Since checking well-formedness is decidable, following the
standard method [19, § 4], we have:

PROPOSITION 4.1. Assuming the bound names and variables in P
are annotated (i.e. processes whose bound variables are annotated
by types), type-checking of Γ ` P . ∅ terminates.

Typing runtime processes While the session typing systems for
initial processes are simple, typing runtime (which keeps tracking
intermediate invariants to prove the theorems) is not trivial due
to parallel processes and participant instantiations generated by
polling. We first extend the syntax of types T to include message
selection type !〈p : r, l〈~p〉〈U〉〉, which is an intermediate type for
labelled values stored in the message buffer.

To type runtime processes, we need to extend judgements to
Γ`Σ P . ∆, which means that P contains the message buffers whose
session names are in Σ. We only show the most interesting typing
rule for the register:

Γ ` a :〈G〉 {ri}i∈I = dom(R) G ↑ xi :ri = Ti

Γ `∅ a〈s〉[R] . {s[p ji :ri] :Ti{p ji/xi}}i ∈ I,p ji6∈ R(ri)
[ RGST]

Γ `Σi Pi .∆i (i = 1,2)
[GPAR]

Γ `Σ1]Σ2 P1 | P2 .∆1 ∗∆2

[RGST] assigns to the registry a type which holds a set of projected
local types for all roles with participants which are not recorded in
R. Session typing s[ri :p ji]:Ti{p ji/xi} is erased once it interacts with
the initialisation process a[p ji :ri](y).P (see rule bJOINc in figure 2),
and the resulting P{s[p ji :ri]/y} holds s[ri :p ji] :Ti{p ji/xi} (see the
proof of Subject reduction theorem in [3]).

When two runtime processes are put in parallel (rule [GPAR])
a queue associated to the same session does not appear twice
(Σ1∩Σ2 = /0). For composing the two session environments, either
(1) we sequence a message type T and a local type T ′ for the same
session channel as s[p : r] : T ;T ′ or (2) we check whether s[p : r] : T
and s[p : r] : T ′ can be parallel composed as s[p : r] : (T | T ′) by
checking the linearity condition for T | T ′ following Definition 3.3;
and otherwise (3) undefined. Then we define ∆ ∗∆′ replacing ] by
∗ in the definition of ∆]∆′.

4.2 Subject reduction
As session participants join, interact and leave, runtime session
types need to follow. This dynamism is formalised by a type re-
duction relation⇒ on session environments as follows.

1. {s[q :r′] : !〈p :r,{li〈~pi〉〈Ui〉.Ti}i∈I〉} ⇒ {s[q :r′] : !〈p :r, lk〈~pi〉〈Uk〉.Tk〉}
2. s[p :r] : !〈q :r′, lk〈~pk〉〈Uk〉〉,s[q :r′] : ?〈p :r,{li〈~pk〉〈Ui〉.Ti}i∈I〉
⇒ s[p :r] :ε,s[q :r′] :Tk if k∈ I

3. s[p :r] : !〈p :r, lk〈~pk〉〈Uk〉〉; ?〈p :r,{li〈~pi〉〈Ui〉.Ti}i∈I〉 ⇒ s[p :r] :Tk if k∈ I
4. s[p :r] :∀x :ri \~p.T ⇒ s[p :r] :(T{p1/x} | .. | T{pk/x}) with pi 6∈~p
5. s[p:r]:E [T ]∪∆⇒ s[p:r]:E [T ′]∪∆′ if s[p:r]:T ∪∆⇒ s[p:r]:T ′∪∆′

6. ∆∪∆′′⇒ ∆′ ∪∆′′ if ∆⇒ ∆′

In the above type reduction rules, message selection types are
considered modulo the type equivalence relation ≡ and E is a type
evaluation context (i.e. E ::= [ ] | E | T | T | E | E ;T ).

Rule (1) corresponds to the choice of label li. Rule (2) corre-
sponds to the exchange of a labelled value from participant p : r to
participant q :r′. Rule (3) is about self-sending and receiving. Rule
(4) governs universal quantifiers and forks types with respect to the
participants which are not in the exclusion list ~p. Rules (5,6) are
congruent rules.

Hereafter we assume all processes are derived from the initial
processes (§ 2) (i.e. subterms of those who are reduced from ini-
tials). Using the above definitions,

THEOREM 4.2 (Subject reduction). Suppose Γ`Σ P . ∆ and P−→∗
P′. Then, Γ `Σ P′ . ∆′ for some ∆′ such that ∆⇒∗ ∆′.

We say P has a type error if expressions in P contain either a type
error for a value or constant in the standard sense (e.g. if 3 then
P else Q) or a label error (e.g. the sender sends a value with
label l0 while the receiver does not expect label l0). From the



Γ ` Env

Γ ` true , false :bool
[BOOL]

Γ ` ei :bool (i = 1,2)
Γ ` e1∨ e2 :bool

[OR]
Γ ` Env

Γ ` p :r
[RL]

Γ ` Env y :r∈Γ

Γ ` y :r
[RLV]

Γ ` S . Type u :S∈Γ

Γ ` u :S
[ID]

Γ,a :〈G〉 ` P . ∆

Γ ` (νa :G)P . ∆
[NEW]

Γ ` a :〈G〉 Γ ` ∆ :End

Γ ` a〈G〉 . ∆
[INIT]

Γ ` u :〈G〉 Γ ` P . ∆,y :G ↑ p
Γ ` u[p](y).P . ∆

[JOIN]
Γ ` P . ∆,c : end

Γ ` quit〈c〉;P . ∆,c : end
[LEAVE]

Γ ` p Γ ` ~p j Γ ` e :S j Γ ` P . ∆,c :Tj j∈ I
Γ ` c!〈p, l j〈~p j〉〈e〉〉;P . ∆,c : !〈p,{li〈~p j〉〈Si〉.Ti}i∈I〉

[SEL]
Γ ` p Γ ` ~p j Γ ` P . ∆,c :Tj j∈ I

Γ ` c!〈p, l j〈~p j〉〈c′〉〉;P . ∆,c : !〈p,{li〈~p j〉〈T 〉.Ti}i∈I〉,c′ :T
[SELS]

Γ ` p ∀i∈ I Γ ` ~pi Γ,yi :Si ` Pi . ∆,c :Ti (Ui = Si)
or Γ ` Pi . ∆,c :Ti,yi :T ′i (Ui = T ′i )

Γ ` c?〈p,{li〈~pi〉(yi).Pi}i∈I〉 . ∆,c?〈p,{li〈~pi〉〈Ui〉.Ti}i∈I〉
[BRA]

Γ,x :r ` P . c :T Γ ` ~p
Γ ` c∀(x :r \~p).{P} . c :∀x :r \~p.T

[POLLING]
Γ ` ∆ :End

Γ ` 0 . ∆
[NIL]

Γ ` e :bool Γ ` Pi . ∆ (i = 1,2)
Γ ` if e then P1 else P2 . ∆

[IF]
Γ ` P . ∆ Γ ` Q . ∆′

Γ ` P | Q . ∆◦∆′
[PAR]

Γ ` P . ∆ Γ ` Q . ∆′

Γ ` P;Q . ∆;∆′
[SEQ]

Γ,X :∆ ` P . ∆

Γ ` µX .P . ∆
[REC]

Γ,X :∆ ` Env

Γ,X :∆ ` X . ∆
[RVAR]

Figure 6. Multirole session typing for initial processes

subject reduction theorem and the well-formedness of global types
(Definition 3.4), we can prove:

COROLLARY 4.3 (Type safety). Suppose Γ ` P . ∆. For any P′
such that P−→∗ P′, P′ has no type error.

5. Communication safety and progress
This section discusses the difficulties that a distributed session se-
mantics creates when participants can dynamically join, leave and
poll. We illustrate two limitations of the semantics and typing sys-
tem presented so far and propose a solution based on multiparty
locking that allows more flexibility for leaving a session and guar-
antees communication safety. We give two progress properties, one
of which goes beyond existing achievements.

5.1 Limitations
Leaving a session While our operational semantics (bQUITc in
figure 2) allows a participant to leave a session at any time, the
typing rule ([LEAVE] in figure 6) only allows a participant to leave
when its local type is end.

Recall the peer-to-peer chat example from § 1 (2), G is of the
form µx.G0;x; end with G0 = ∀x : client.∀y : client \ x.{x→yMsg
〈string〉}. The recursive type prevents any participant from ever
leaving since a process will never reach type end. We however
remark that a client can play just one interaction round (i.e. G0) and
leave safely before another session iteration occurs. If the starting
and ending points of global types are known, some participants are
able to leave a session safely while others stay.

Communication safety and progress In traditional multiparty
sessions, the subject reduction theorem immediately brings com-
munication safety and progress (in a single session) [19]. The rea-
son is that standard multiparty session initiation ensures that all par-
ties are eventually present (it waits for the expected fixed number of
participants to join), while the typing system guarantees the safety
of the communications when they start. This does not hold in our
system due to the interplay between joining, leaving and polling.

We illustrate this point with the peer-to-peer chat example from
§ 1. In that global type, every client is broadcasting Msg to all the
others. Recall the client process Pclient(z) from § 1.

a[z : client](s).µX .(s∀(y : client\ z).{s!〈y,Msg〈m〉〉}
| s∀(x : client\ z).{s?〈x,Msg(w)〉});X

At each iteration, every client does exactly two polling operations.
Now suppose that a client does the first polling operation (to send
Msg) before another client joins. It means that this new client will

not receive the message it expects. More generally, the polls that
correspond to the emissions need to always give the exact same
result as the reception polls. This suggests that some mechanism to
synchronise distributed polling processes is required to guarantee
consistent polling results.

5.2 Multiparty locking for polling synchronisation
This subsection shows that a simple locking policy that can be au-
tomatically computed from the global type is able to ensure a safe
synchronisation to allow flexible session departure and consistent
polling results. The key point is to temporarily block late partici-
pants from joining in the middle of a session execution in order to
prevent any interference with polling. This is simply done by auto-
matically surrounding global types by locks: lock{G} means that
the interactions specified by G are protected from late joiners and is
called a locked global type. This condition is easily implementable
using a standard two phase commitment protocol which minimises
the necessary synchronisation between processes (figure 7) and is
easily implementable in ML (§ 5.5).

The peer-to-peer chat example from § 1 is now defined by
µx.lock{∀x : client.∀y : client.x→yMsg〈string〉};x. This type al-
lows participants to join at each recursive iteration, preventing in-
terferences while the exchange of Msg is under way.

Syntax We first extend the syntax of processes (figure 1) as:

P ::= ... | c lock | c unlock | a◦[R,Λ] | a•[R,Λ]
Λ ::= ∅ | Λ∪{p :r}

The process syntax is extended to locking and unlocking opera-
tions. The registry has two new states: a◦[R,Λ] represents a registry
that is in the process of being locked (so far by participants Λ),
while a•[R,Λ] represents a registry that is locked (and where par-
ticipants Λ are still involved).

Semantics The operational semantics with multiparty locking is
given in figure 7. It defines the relations between the three states of
the registry and is based on a standard two phase locking protocol
commonly found in distributed applications.

The first phase is the registration state: if the registry is of the
form a〈s〉[R], participants can join and leave the session through
bJOINc and bQUITc. The only other reduction rule that can be applied
is bLOCKc, which puts the registry in its second state, the locking
state a◦[R, ` :Λ]. Then, the session can only wait for all the current
participants in R to activate their locks by the rules bUP, TOPc. A
new process can asynchronously join by bJOIN2c, and a current
process can finally decide to leave bQUIT2c from the active session.
The difference between bUPc and bTOPc lies in the side condition:



a〈G〉 −→ (ν s)(a〈s〉[R] | s :ε) (∀ri∈G,R(ri) = ∅) b INITc

a[p :r](y).P | a〈s〉[R · r :P] −→ P{s[p :r]/y} | a〈s〉[R · r :P]{p}] bJOINc

a[p :r](y).P | a◦〈s〉[R · r :P,Λ] −→ P{s[p :r]/y} | a◦〈s〉[R · r :P]{p},Λ] (p :r 6∈Λ) bJOIN2c

quit〈s[p :r]〉 | a〈s〉[R · r :P] −→ a〈s〉[R · r :P\{p}] bQUITc

quit〈s[p :r]〉 | a◦〈s〉[R · r :P,Λ] −→ a◦〈s〉[R · r :P\{p},Λ] (p :r 6∈Λ) bQUIT2c

s[p :r]lock | a〈s〉[R] −→ a◦〈s〉[R,{p :r}] bLOCKc

s[p :r]lock | a◦〈s〉[R,Λ] −→
{

a◦〈s〉[R,Λ]{p :r}]
a•〈s〉[R,Λ]{p :r}]

(R 6≈ Λ]{p :r})
(R≈ Λ]{p :r})

bUPc
bTOPc

s[p :r]unlock | a•〈s〉[R,Λ]{p :r}] −→
{

a•〈s〉[R,Λ]
a〈s〉[R]

(Λ 6= ∅)
(Λ = ∅)

bDOWNc
bUNLOCKc

s[p :r]!〈p′ :r′, l〈~p〉〈v〉〉 | a•〈s〉[R,Λ] | s :h −→ a•〈s〉[R,Λ] | s :h · (p :r, p′ :r′, l〈~p〉〈v〉) (p∈R(r)∧p′∈R(r′)) bSENDc

s[p :r]?〈p′ :r′,{li〈~pi〉(xi).Pi}i∈I〉 | a•〈s〉[R] | s :(p′ :r′, p :r, lk〈~pk〉〈v〉) ·h −→ Pk{v/xk} | a•〈s〉[R] | s :h (p∈R(r)∧ k∈ I) bRECVc

s[p :r]∀(x :r \~p).{P} | a•〈s〉[R · r :P,Λ] −→ P{p1/x} | .. | P{pk/x} | a•〈s〉[R · r :P,Λ] (R(r)\~p = {p1, ..,pk}∧p∈R(r′)) bPOLLc

Other rules are from 2.

Figure 7. Operational semantics with multiparty lock

R ≈ Λ holds when ∀p : r.(Λ = Λ′ ]{p : r} ⇔ R = R′ · r : P]{p}).
Consequently, bTOPc is only triggered when the set Λ contains the
exact same combinations of participants and role as the set R,
meaning that all participants have activated their locks.

The application of rule bTOPc marks the beginning of the inter-
action state, with a registry of the form a•〈s〉[R, ` : Λ]. Only in this
state can the rules b SEND, RECV, POLLc be safely applied. The reg-
istry goes back to its registration state by the application of rule
bUNLOCKc which can occur only when everyone besides one partic-
ipant has activated the unlock operation by rule bDOWNc.

Types and typing The syntax of global and local types are ex-
tended from figure 4 as follows:

G ::= ... | lock{G} T ::= ... | lock | unlock

We say that a global type G is terminable if there exists at least
one finite path (whose leaf is ε) up to the unfolding of G. A
terminable type can be easily defined by a kinding system: ε is
terminable; p→p′{li〈~pi〉〈Ui〉.Gi}i∈I is terminable if for some k∈ I,
Gk is terminable; and others are defined homomorphically (see
[3]). For example, µx.p→p′{l1〈U1〉.ε, l2〈U2〉.x} is terminable, but
µx.p→p′{l1〈U1〉.x, l2〈U2〉.x} is not. We define the condition for
global types and environments.

DEFINITION 5.1 (Well-locked and persistently well-locked). We
say that a global type G is well-locked if G is closed (i.e. no
free participant and recursive type variables) and of the form
lock{G0}; end, and G0 does not include any lock. We say that
a closed global type G is persistently well-locked if G is of the form
µx.lock{G0};x; end, with lock{G0}; end well-locked and G0 is
terminable. We call Γ well-locked if for all Γ(u) = 〈G〉, G is ei-
ther well-locked or persistently well-locked. We call Γ persistently
well-locked if for all Γ(u) = 〈G〉, G is persistently well-locked.

Type lock{G0} means that a single multiparty session is locked.
Type µx.lock{G0};x states a multiparty session is persistently (re-
peatedly) locked. The persistent lock ensures if a new participant p
wants to join, it can join at the beginning of the interaction G0, and
if one wishes to quit, it can quit at the end of the session. Con-
sequently, it requires the global type to be of the form µx.G0;x
with a well-locked G0 that does not contain any infinite loop which
would prevent from reaching a new iteration (unlock). The persis-
tent condition is needed for the final strong join progress discussed
later.

Local types lock and unlock come from the projection:

lock{G} ↑ z :r = lock;(G ↑ z :r);unlock

This way, correct locks are automatically inserted at the right points
of the local types. Typing lock and unlock is straightforward.

Γ ` Env

Γ ` c lock . c :lock
Γ ` Env

Γ ` c unlock . c :unlock

We add the following rule which types quit〈c〉 as some projection
of session 〈G〉 in the environment.

Γ ` P . ∆,c : end Γ ` u :〈G〉
Γ ` quit〈c〉;P . ∆,c :G ↑ p

The above rule is useful when G is persistently well-locked. Sup-
pose G = µx.lock;G0;x; end. By the above rule, we can type
lock;Q;unlock;quit〈c〉 if Q has type G0 ↑ p since G ↑ p≈G0 ↑
p;G ↑ p where T ≈ T ′ means T is isomorphic to T ′; once session is
unlocked, one can leave the active session at c instead of repeating
the same session G ↑ p.

As a simple example, recall the peer-to-peer chat server from
§ 1. The following client leaves a session after one interaction,
which is typable under G = µx.lock{G0};x; end with G0 = ∀x :
client.∀y : client\ x.{x→yMsg〈string〉}.

Pclient(p)=a[p : client](s).(s∀(y : client\ z).{s!〈y,Msg〈m〉〉} |
s∀(x : client\ z).{s?〈x,Msg(w)〉});quit〈s〉

5.3 Communication safety and progress
We first state communication safety. It states that, in a session
execution, no receiver waits for a message that will never come;
and that there is no messages sent but never received.

DEFINITION 5.2 (Communication-safety). We say P is communi-
cation safe if:

• P≡E [Q] with Q = s[p :r]?〈p′ :r′,{li〈~pi〉(x).Pi}i∈I〉 implies that
there exists E [Q] −→∗ E ′[Q | s : (p′ : r′, p : r, lk〈~pk〉〈v〉) · h] with
k∈ I; and

• P≡ E [Q] with Q = s : (p′ : r′, p : r, lk〈~pk〉〈v〉) · h implies that
there exists E [Q] −→∗ E ′[Q | s[p : r]?〈p′ : r′,{li〈~pi〉(x).Pi}i∈I〉]
with k∈ I.

The first statement means that branching processes can always find
out a correct element in the message buffer; and the second one
is its dual. Note that combining with Type safety, the receiver will
input a value v of the expected type.



DEFINITION 5.3 (Single-session join). We write Γ `? P�∆ if P is
typable and with a type derivation where the session typing in the
premise and the conclusion of each prefix rule is restricted to be
at most a singleton (more precisely, ∆ = ∅ in [JOIN,LEAVE,SEL,BAR]
and ∆ contains at most one element in ∆;∆′ in [SEQ], ∆ ◦ ∆′ in
[PAR,SEQ], ∆ in [IF,NEW,REC,RVAR] in figure 6, deleting [SELS]). We
say Q = a[p](y).Q′ is a single-session join if a :〈G〉`? Q.∅ and Q′
does not contain shared name restriction and any join process.

Γ `? P�∆ ensures that P contains (several) join processes each of
which holds a single session, while single-session join a[p](y).Q′
has only one active point a, and once the session initiated at a, Q′
can only perform session communication at that initiated session.
We prove the communication safety in a single multiparty session.

THEOREM 5.4 (Communication safety). Suppose a : 〈G〉 `? P.∅
and P is initial. Assume a : 〈G〉 is well-locked4. and P does not
contain any shared name restriction. For any P′ such that P−→∗ P′,
P′ is communication safe.

The proof starts by a definition of coherent environments (a certain
kind of duality relation over multiple participants [4, § 3]). Then,
we prove a stronger subject reduction theorem that shows the re-
duction of well-locked processes preserves the coherency of the
resulting environment. We note that session fidelity [19, Corollary
5.6] comes also as a corollary.

Now we prove the progress property in a single multiparty
session as in [19, Theorem 5.12], i.e. if a program P starts from
one session, the reductions at session channels do not get stuck.

DEFINITION 5.5 (Progress property). We say Γ ` P . ∅ can prog-
ress, or satisfies the progress property, if, whenever P−→∗ P′, then
either P′ ≡ 0, P′ −→ R or for some single-session join a : 〈G〉 ` Q
with a :〈G〉∈Γ such that P′ | Q−→ R and R can progress.

The above definition means that a process satisfies the progress
property if it can never reach a deadlock state, i.e., if it never
reduces to a process which contains active sessions (this amounts
to containing waiting process at some session channel) and which
is irreducible in any inactive context with single-session join Q
running in parallel.

THEOREM 5.6 (Progress). Suppose Γ `? P . ∅ and P is initial.
Assume Γ is well-locked and P does not contain any shared name
restriction. Then P can progress.

5.4 Join progress
The above standard progress property is not strong enough, since
all late joiners cannot participate to existing sessions. This subsec-
tion states a new progress property, not found in the literature.

Recall the (1) map-reduce example from § 1, and change the
position of the recursion in the global type to:

G0 = ∀x : client.server→x〈Map〉; µx.x→server〈Reduce〉;x

From G0, we have the following well-typed processes:
P0(s,z : client) = s?〈server,Map〉; µX .s!〈server,Reduce〉;X
P0(s,z : server) = s∀(x : client).{s!〈x,Map〉; µX .s?〈x,Reduce〉;X}

While the interaction between them is communication safe, the
problem is that a late client will never be listened to by the existing
server because the server’s polling operation is not repeated to
include him. In other words, the late client cannot join an existing,
already running session. Persistent locking ensures this situation
does not happen.

4 The property can be generalised to Γ from {a : 〈G〉} if we compose a
parallel composition of single-session processes to E[Q] in Definition 5.2
as Definition 5.5. A similar generalisation is possible for Definition 5.7.

Below we write P
s[p : r]−−−→Q if P −→ Q and P −→ Q is derived

using bQUITc, bQUIT2c, bSENDc, bRECVc or bPOLLc at s[p : r] with
bPAR,CTX,CONGc, i.e. P interacts with a queue or registry through
s[p :r].

DEFINITION 5.7 (Join progress property). We say that a : 〈G〉 `
P . ∅ satisfies the join progress property if:
• P can progress; and
• if P −→∗ (ν s)(P′ | a〈s〉[R]) then, for any single-session join

a : 〈G〉 ` a[p : r](y).Q . ∅ with p : r fresh, and for any R such
that P′ | a〈s〉[R] | a[p :r](y).Q−→∗ a•〈s〉[R′] | R = Q′,

if s[p :r]∈R, then there exists Q′ −→∗ s[p : r]−−−→R′; and
(ν s)Q′ satisfies the join progress property.

The above definition says that a fresh joiner (a[p : r](y).Q) can al-
ways join the existing (unlocked) session s in P′. In addition, it can
always progress at the created session channel s by interacting with
P′. More intuitively, once some participants under any role start a
session, the late joiner can still join that session and interact with
earlier joiners, progressing further. Note that we can consider any
single-session join a[p : r](y).Q to make a process progress, which
contrasts with the definition of the progress property (Definition
5.5) where P is only composed of single-session joining processes.

THEOREM 5.8 (Join progress). Suppose a : 〈G〉 `? P . ∅ and P
is initial. Assume a : 〈G〉 is persistently well-locked and P does
not contain any shared name restriction. Then P satisfies the join
progress property.

We have for our examples:

PROPOSITION 5.9 (Properties of the examples). Assume that each
global type G in the protocols (1–3) of § 1 is replaced by lock{G}.
Then all examples are type/communication safe and can always
progress. Moreover if each global type in the protocols (1,2) of § 1
inside the recursive type, i.e. µx.G;x is replaced by µx.lock{G};x,
then they additionally satisfy the join progress property.

5.5 Implementation
Prototype implementation The multirole calculus has been im-
plemented as an extension of ML. Following the technique used
in [5, 13], the global types that the programmer writes are com-
piled into an end-point function for each role. This choice allows to
replace the implementation of the typing system by an automated
generation of well-typed processes that can be used, through an
API, by the programmer. The session semantics is thus entirely
generated and implemented by communication libraries.
A distributed implementation The main issue for our compiler
is to distribute as much as possible the centralised aspects of the
semantics of figures 2 and 7. First concerned, the message buffers
are completely distributed and implemented on the sender side: a
thread is spawned to asynchronously make sure that the message
gets across the TCP channel. Second, the registries can be par-
tially distributed with one registry per role that deals with the corre-
sponding joining, leaving and polling activities. These distributed
registries however need to stay in contact to synchronise the global
locking events (rules b LOCK, TOP, UNLOCKc). Registries are attributed
to participants by age: the first joiner for a role plays the registry as
well, until he quits, in which case the registry is transmitted to the
second older.
Extension Singly instantiated roles, like the server or broker from
examples in § 1, are modelled through an inefficient implicit quan-
tification. Our implementation gives a special status to these roles.
We use the fact that they play their own registry. As a consequence,



no separate polling is necessary to send them messages and the ex-
tra messages required by the quantification can be avoided.
Efficiency To gain performances, we propose an implementation
with optimised messaging and improved asynchrony.

First, since the slowest operation is communication, our imple-
mentation tries to minimise the number of messages that are ex-
changed. The main illustration is that if two messages are specified
to be sent in a row between the same participants, they are automat-
ically concatenated.

A more radical change is to do the polling only once for every
participant, at the beginning of each locked part of the session
execution. The advantages are to limit the number of sent messages
and to remove in effect the global synchronisation point of rule
bUNLOCKc. As soon as all polling operations are done, the distributed
session execution can safely proceed until the list of participants of
the next iteration is synchronised (rule bTOPc).

6. Related work
The first motivation for the present work is a strong need to extend
session type theory with dynamic reconfiguration of multiparty
sessions and role-based abstraction to support a wider range of
communication protocols found in practice.

The inspiration for multiparty session types comes from the
design of high-level global protocol signatures for Web Services
Choreography Description Language [1]. In CDL, types of partic-
ipants (participantType) are declared as instances of types of roles
(roleType) which represent collections of interaction behaviours.
Later, some of the members of the W3C CDL working group have
started developing a language called Scribble [17, 28] based on the
theory of multiparty session types [4, 19]. Scribble is currently be-
ing experimented with for several different application domains in
distributed systems [2, 24, 27] including business and financial pro-
tocols [32]. Our auction example in § 1(3) was extracted from the
Scribble specification document.

The need for roles in session programming is also substanti-
ated by our experiences in implementing web service usecases [1]
and parallel algorithms for high-performance clusters [25] using
Session Java (SJ) [20, 21]. In this work, we first describe com-
munications between processes in a global topology (e.g. a multi-
dimensional mesh or a ring) in the form of parameterised multi-
party session types [35]. The compatibility between [35] and our
present work is yet to be investigated as complex topologies with
dynamic features need sophisticated distributed synchronisation al-
gorithms (see also § 7).

The second motivation for the present work is the incorpora-
tion of dynamic features most suited to and compatible with exist-
ing multiparty session types [4–6, 9, 14, 19, 22, 23, 29, 35, 36].
The Conversation Calculus [8, 33] models distributed behaviours
among “places” using new primitives such as conversation contexts
(i.e. shared interaction points) and up (↑) communication (simi-
lar to [7, 12]). A conversation models the interactions between a
client and various services, with dynamic joining into a conver-
sation, for a possibly unknown number of processes. While both
their work and ours aim to support dynamic natures for sessions,
the two join mechanisms are quite different. Their join is encoded
by base primitives for late joining into a point of conversation,
which more closely resembles the late asynchronous session ini-
tiation in [20, 35]. On the other hand, our join mechanism is role-
based, and articulated at the level of global types, by declaring a
single type construct which binds participants to a role. In contrast
to [8], the process which controls joining might be a sender or lis-
tener, depending on the result of the projection (i.e. the position of
polling). This flexibility enables direct modelling and clear articula-
tion (i.e. without encoding) of different patterns of dynamic parallel

protocols including symmetric peer-to-peer chats (§ 1 and Exam-
ples 3.1 and 3.2) by types. In [8], they proposed a sophisticated typ-
ing system that builds a well-founded order on events (similar to the
line of [34]), to guarantee progress for processes under the assump-
tion that all communications are matched with sufficient joiners.
They do not, however, explore type inference for progress (decid-
ability of a generation of well-formed ordering) [33]. Our progress
can be, on the other hand, guaranteed by well-formedness of global
types, with an automatic insertion of locks (which means a typing
system with progress is decidable with Proposition 4.1). This leads
to a simple but practical prototype implementation as discussed in
§ 5.5. A strong joining property has not been studied in [8].

Contracts [11] record abstract interaction behaviours of pro-
cesses, and typable processes themselves may not always satisfy
the properties of session types such as progress: it is proved later
by checking whether a whole contract conforms to a certain form.
Proving properties with contracts requires an exploration of all pos-
sible interleaved or non-deterministic paths of a protocol, see [35,
§ 5].

The first suggestion to use roles to model dynamic conversations
in the context of session types was made in [16]. This idea is
further developed in a master’s thesis [26] which formalises a Java-
like core calculus for role-based session interactions. A session
structure is described as a collection of binary session types for
broadcast channels (used to send messages to role participants).
New participants can only join a conversation before it starts. Type
structures for global protocols and their induced properties (in
particular progress) are not studied in [26].

For further comparisons of session types with other service-
oriented calculi and behaviour typing systems, see [15] for a wide
ranging survey of the related literature.

7. Conclusion and future work
This work introduced a multirole session type discipline for validat-
ing dynamic behaviours among an unspecified number of partici-
pants, answering a well-known open problem of multiparty session
types [4, 6, 9, 14, 19, 22, 29, 35]. Dynamism is formalised through a
powerful universal type construct which can represent many collec-
tive communications protocols, ranging over parallel computations,
P2P networking, chat protocols and e-commerce auctions. Despite
the greater expressiveness, projection and type checking are decid-
able. Global types offer a practical guideline for a correct multi-
party synchronisation mechanism, by which the theorems (proper-
ties) are articulated as: (1) ∀x.G (subject reduction and type safety
with dynamic join and leave semantics), (2) well-locked lock{G}
(communication safety and progress); and (3) persistently well-
locked µx.lock{G};x (join progress). Our prototype implemen-
tation demonstrates the direct applicability of the present theory.

To realise the full potential of the multirole session type theory,
several challenges need to be addressed. First, the theory can be
integrated with the multiparty session exceptions developed in [10]
in order to handle system failure and fault-tolerance in a larger
class of distributed protocols, preserving type safety. It is especially
useful to directly express more complex and dynamic topologies, in
combination with the parameterised type theory from [35].

One extension that comes immediately to mind is the addition
of an explicit existential ∃x : r.G. It however raises many semantic
issues. Consider G′ = ∀x : client.{∃y : server.x→y〈Msg〉}. In that
example, every client contacts a server (the intuition is that each x
chooses his y). The question is: how can we ensure by local typ-
ing that servers will be listening to the right number of requests?
The difficulty is that a server y can be potentially chosen by ev-
ery client x or by none, and that this choice is distributed (and thus
very hard to locally type check). Consequently, the global existen-
tial quantification rather abstracts complex distributed election al-



gorithms. A different solution is an extension to subtyping between
roles r1 <: r2 by which we can represent a protocol with member-
ships, e.g. a client sends a message to a subset of subscribers.

Second, type-based approaches for correct locking has been
widely studied, including [30] in a framework of linear program
analysis and types. Our aim in § 5.2 is to propose a simple way
to realise synchronisation, articulated by global types, suggesting
another use of global descriptions for different purposes. One such
instance is studied in [14], where multiparty session types lead to
an efficient buffer analysis, along with automatically guaranteed
communication and buffer safety. A benefit of using global types
(i.e. a choreography framework [1]) is that the analysis can be done
solely based on global types, without directly analysing (possibly
distributed) end-point types or processes since we can assume all
processes agree with that global specification. An integration with
global and local locking [30] is, however, an interesting future topic
from the viewpoint of local refinements [22].

Third, we are currently collaborating with several industry part-
ners working on open standardisations for financial protocols [32]
and messaging middleware [2], governance architectures [27] and
cyberinfrastructures [24] to attest the practical use and expressive-
ness of the session framework, for which an integration with mul-
tiparty logic [6] and security [5, 9] for monitoring, is our next task.
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