
Cryptographic Protocol Synthesis and Verification for Multiparty Sessions

Karthikeyan Bhargavan2,1 Ricardo Corin1 Pierre-Malo Deniélou1 Cédric Fournet2,1 James J. Leifer1

1 MSR-INRIA Joint Centre, Orsay, France 2 Microsoft Research, Cambridge, UK

Abstract

We present the design and implementation of a
compiler that, given high-level multiparty session de-
scriptions, generates custom cryptographic protocols.

Our sessions specify pre-arranged patterns of mes-
sage exchanges and data accesses between distributed
participants. They provide each participant with strong
security guarantees for all their messages.

Our compiler generates code for sending and receiv-
ing these messages, with cryptographic operations and
checks, in order to enforce these guarantees against
any adversary that may control both the network and
some session participants.

We verify that the generated code is secure by
relying on a recent type system for cryptography. Most
of the proof is performed by mechanized type checking
and does not rely on the correctness of our compiler.
We obtain the strongest session security guarantees to
date in a model that captures the executable details of
protocol code. We illustrate and evaluate our approach
on a series of protocols inspired by web services.

1. Security by compilation and typing

Taking advantage of modern programming tools,
one can sometimes design, develop, and deploy com-
plex distributed protocols in a matter of hours—
relying for instance on automated proxy generators
to rapidly expose existing applications as networked
services. Achieving application security under realistic
assumptions on the network and remote parties is
more difficult. The problem is that widely-available
protocols for cryptographic communications (say TLS
or IPSEC) operate at a lower level; they provide au-
thenticity and confidentiality guarantees only for mes-
sages exchanged between two URLs or IP addresses,
but leave the interpretation of these messages and
addresses to the application programmer. In particular,
any guarantee that involves more than two parties (say,
clients, gateways, and web servers) must be carefully
established by linking lower-level guarantees on mes-
sages, or by layering ad hoc cryptographic mechanisms

at the application layer, for instance by embedding
signatures in message payloads.

Rather than hand-crafted protocol design, we advo-
cate the use of compilers and automated verification
tools for systematically generating secure, efficient
cryptographic protocols from high-level descriptions.
We outline our approach as regards design, implemen-
tation, and security verification.

Multiparty sessions Multiparty sessions, also called
session types [Gay and Hole, 1999, Hu et al., 2008],
have proved to be an elegant way of specifying struc-
tured communications protocols between distributed
parties. We define a language for specifying multiparty
sessions. This language features a clear notion of con-
trol flow, expressed as asynchronous messages, with a
shared, distributed store that may be updated and read
during communication, as well as dynamic selection of
additional parties to join the protocol. The global store
is subject to fine grained read/write access control and
may be used to selectively share and hide data, and
to commit to values which are initially blinded and
later revealed during protocol execution. Our design
enables simple, abstract reasoning on authentication
and secrecy properties of sessions. As an example,
the correspondence properties traditionally established
for cryptographic protocols can be read off session
specifications.

On the other hand, our sessions do not attempt to
capture the behaviour of the local participants: the
application programmer remains in charge of deciding
which sessions to join (and in particular which prin-
cipals to accept as remote peers), which message to
send (when the session offers a choice), which values
to write, and how to treat the messages it receives.

From sessions to cryptographic protocols Whereas
much work has been done on session types and expres-
sivity, we believe that ours is the first to protect session
execution integrity via the systematic generation of
cryptographic protocols. We implement a compiler
from the session language to custom cryptographic
protocols, coded as ML modules, which can be linked
to application code for each party of the protocol.

These modules can be compiled both with F# [Syme
et al., 2007] using .NET cryptographic libraries, and
with OCaml using OpenSSL libraries. Our compiler
combines a variety of cryptographic techniques and
primitives to produce compact message formats and
fast processing. Hence, we shift most of the complexity
of our implementation to the compiler, which generates
efficient custom protocols with a minimal amount of
dynamic processing. We illustrate and evaluate our
implementation on a series of protocols inspired by
web services.

As an important design goal, we entirely hide cryp-
tographic enforcement from the application program-
mer, who may thus reason about the runtime behaviour
of a session as if every participant followed precisely
its high level specification. In particular, our imple-
mentation preserves the communications structure of
the session, with exactly one low-level cryptographic
message for every message of the session. Similarly,
any low-level message that fails to verify is silently
discarded and does not affect the state of the session.

Security verification Cryptographic communications
are difficult to design and implement correctly; in
particular, we need solid correctness properties for the
cryptographic code generated by our protocol compiler.

Various work addresses this problem. We build on
an approach proposed by Bhargavan et al. [2006] who
aim at verifying executable protocol code, rather than
abstract protocol models, to narrow the gap between
what is verified and what is deployed. Specifically,
we use the extended typechecker of Bengtson et al.
[2008] based on the Z3 SMT solver of de Moura and
Bjørner [2008]. This is a good match for our present
purposes: for each session specification, our compiler
generates detailed type annotations (from a predicate
logic) which are then mechanically checked against
actual executable code. Thus, we overcome a common
limitation of cryptographic verification: typechecking
is modular, so each function can be checked separately
and verification time grows linearly with the number
of functions.

We define compromised principals as those whose
keys are known to the adversary; they include ma-
licious principals as well as principals whose keys
have been inadvertently leaked. We say that all other
principals are compliant. Our goal is to protect com-
pliant principals from an adversary who controls all
compromised principals and the network. To this end,
we verify the generated protocols, showing security
for all runs, even when some of the parties involved
are compromised. Our proof combines invariants estab-
lished through typechecking with a general argument

on the structure of the protocol (but independent of the
code). Thus, we obtain strong security guarantees in a
model that accounts for the actual details of our code,
without the need to trust our protocol compiler.

An alternative approach would be to verify, or even
certify, our session compiler (4 300 LOCs in ML). That
task appears much more complex; it is beyond the ca-
pability of automatic tools at present and would require
long, delicate handwritten proofs. That approach is
also brittle when experimenting with language design
and cryptographic optimization, and would not provide
direct guarantees at the level of the generated code.

We obtain additional functional properties by typing:
any well-typed user code (for ordinary ML typing)
linked to our protocol implementation complies with
the session specification; at any point in the session,
it may send only one of the messages indicated in the
global sessions, and it must provide a message handler
for every message that may be subsequently received.

On the other hand, we do not address many other
properties of interest, such as liveness (any participant
may block our sessions), resistance to traffic analysis
(only our payloads are kept secret), and mitigation of
denial-of-service attacks.

Contributions In summary, our contributions are:
1) A high-level language for specifying multiparty

sessions, with integrity and secrecy support for
a global store, and dynamic principal selection;
this language enables simple, abstract reasoning
on global control and data flows.

2) A family of custom cryptographic protocols that
combine standard cryptographic and networking
primitives to support our security requirements.

3) A prototype compiler that generates ML inter-
faces and implementations for our protocols, as
well as proof annotations.

4) Security theorems stating that, from the view-
point of compliant participants, all sessions al-
ways run according to their global specification,
despite active adversaries in control of both the
network and compromised participants.

5) Experimental results for a series of multiparty
sessions of increasing complexity, showing that
our approach yields efficient distributed code.

6) Novel, mostly-automated security proof tech-
niques: to our knowledge, ours are the first
automated generate-and-verify implementation
for multiparty cryptographic protocols, and the
largest verified protocol implementations to date.

Related work We build upon earlier work [Corin
et al., 2007] which explores the secure cryptographic
implementation of session abstractions for a sim-

2

c w(c,w,q) Request (c,w,q)
c(x) Reply (x)

c

() Fault ()
c w(c,w,q) Request (c,w,q)

c(x) Reply (x)

c
() Fault ()

(q) Extra (q)

c p(c,p,w,q) Request (c,p,w,q) w

() Forward (c,p,w,q)

w

() Audit (c,p,w) c(x) Reply (x)

p(d) Details (d)
() Resume (q)

(o) Retry (o)

Figure 1. Sample sessions: (a) top-left: a single query (Ws); (b) top-right: an iterated query (Wsn);
(c) bottom: a three-party session (Proxy).

pler language; Corin and Deniélou [2007] detail its
first design and implementation. The main differences
are: a much-improved expressiveness (with support
value binding and dynamic selection of principals); a
more sophisticated implementation (with more efficient
cryptographic mechanisms); a simpler and more realis-
tic model for the adversary; and a complete formaliza-
tion of the generated code, with support for automated
proofs (we used manual proofs on a simplified model).

Session types Honda et al. [2008], Bonelli and Com-
pagnoni [2007], Vasconcelos et al. [2006], Dezani-
Ciancaglini et al. [2006, 2005], Gay and Hole [1999],
and Honda et al. [1998] consider types for concurrent
and distributed sessions; however they do not con-
sider implementations or security. More recently, Hu
et al. [2008] integrate session types in Java; McCarthy
and Krishnamurthi [2008] specify abstract security
protocol narrations in a global way, and then shows
functional (but not security) aspects of their projection
to local roles [like in Honda et al., 2008]. Inference of
sessions types from existing Javascript applications is
done in Guha and Krishnamurthi [2008].

Verified cryptographic implementations Further re-
lated work tackles secure implementation problems for
other programming models. For instance: Malkhi et al.
[2004] develop implementations for cryptographically-
secured multiparty computations, based on replicated
blinded computation. Zheng et al. [2003] develop com-
pilers that can automatically split sequential programs
between hosts running at different levels of security,
while maintaining information-flow properties. Four-
net and Rezk [2008] also propose cryptographic type
systems and compilers for distributed information-flow
properties. Those works consider imperative programs,
whereas our sessions enable a more structured, declar-
ative view of interactions between roles, leading to
simpler, more specific security properties.
Contents Section 2 describes and illustrates our de-
sign for multiparty sessions. Section 3 presents our
programming model for using sessions from ML. Sec-
tion 4 states our main theorem. Section 5 describes the

cryptographic implementation. Section 6 outlines the
hybrid security proof. Section 7 reports experimental
results with our prototype. Additional materials, in-
cluding detailed proofs and the code for all examples
and libraries, are available upon request.

2. Multiparty sessions

We introduce sessions informally by illustrating their
graphical representation and describing their features
and design choices. We then give their formal defi-
nition and discuss some sanity and implementability
conditions. Figure 1 represents our three running ex-
amples, loosely inspired by Web Services; they involve
a client, a web service, and a proxy.

Graphs, roles, and labels The first session, named
Ws, is depicted as a directed graph with a distinguished
(circled) initial node. Each node is decorated by a
role; here we have two roles, c for “client” and w
for “web service”. Each edge is identified by a unique
label, in this case Request, Reply, or Fault. (The other
annotations on the edges are explained below.) The
source and target roles of an edge (or label) are the
roles decorating, respectively, the edge’s source and
target nodes. Thus, Reply has source role w and target
role c. Each role represents a participant of the session,
with its own local implementation and application code
for sending and receiving messages, subject to the
rules of session execution, which we explain next. The
precise way in which application code links to the
session infrastructure is described in Section 3.

Session execution Sessions specify patterns of al-
lowed communication between the roles: in Ws, the
client starts a session execution by sending a Request
to the web service, which in turn may send either a
Reply or a Fault back to the client. Each execution of
a session consists of a walk of a single token through
the session graph. At each step, the role decorating
the token’s current node chooses one of the outgoing
edges, and the token advances to the target node of the

3

chosen edge. If the token reaches a node that has no
outgoing edges, session execution terminates.

Loops and branches The session Wsn in Figure 1(b)
extends the graph with a cycle. On receiving a Request
or an Extra, the web service may choose to either
terminate the session or send a message Reply back
to the client; the client and service may then repeat
this Reply-Extra loop any number of times before the
client receives a Fault.

The session Proxy in Figure 1(c) allows multiple
alternate message flows between three parties. It intro-
duces a third role, p for proxy, that intercedes between
the client and the web service. The client starts by
sending a Request to the proxy, which may choose to
transmit either a Forward message to the web service
or an Audit message, indicating that further processing
may be needed before accepting the request. In the
later case, the protocol loops between the web service
and the proxy via Details and Retry until the proxy is
satisfied and sends Resume to the web service, which,
finally, gives a Reply back to the client.

Binding and receiving values Each session has a
finite set of typed mutable variables (though their types
are omitted from graphs for brevity) and imposes an
access control discipline for writing and reading these
variables, via the annotation on each edge in the graph:
the vector just before the label constitutes the written
variables; the vector just after constitutes the read
variables. At the start of session execution, all variables
are uninitialised. At each communication, the source
role assigns values to the edge’s written variables, and
the target role receives values of the read variables.

In Proxy (Figure 1(c)), the client writes an initial
value into variable q, representing some query, as it
sends the Request message since q appears in the
written variables of Request. This variable also appears
in the read variables of Request, so the proxy may in
turn read q and then take a decision whether to carry
on with Forward or Audit. In both cases, the proxy
may not modify q, since q does not appear anywhere
else as a written variable, so the web service eventually
gets the same value of q as the proxy did.

Not all variables are read by all roles. During each
iteration of the Detail-Retry loop, the web service may
modify d as it sends Details, and likewise the proxy
may modify o. Both these variables are hidden from
the client role, since it has no incoming edges where
d or o are read. Intuitively, the graph represents a
global viewpoint, so the variables locally written and
read on an edge need not coincide, and all readers are
guaranteed to get the same values unless the variable
is explicitly rewritten.

Assigning principals to roles Roles themselves are
treated as a special class of variables and are assigned
during session execution to principals, representing
some participant equipped with a network address and
a cryptographic identity.

In Proxy, the principal for the client role initially
assigns principals to all three role variables c, p, and w,
writing these in the Request message. In general, the
first message need not write all the role variables,
thus allowing dynamic choice of subsequent principals
during session execution. However, a role variable
must be instantiated before the role is used as the target
of a message, and role variables may not be rewritten.

Global session graphs (definition) In preparation for
our formal development in Section 4, we define ses-
sions as directed graphs, where nodes are session states
tagged with their role, and edges are labelled with
message descriptors decorated with written and read
variables. We write ṽ to denote sequences (v0 . . . vk).
A session graph

G = (R,V,X ,L,m0 ∈ V, E , R : V → R)

consists of a finite set of roles r, r′, ri ∈ R; a finite set
of nodes m,m′,mi ∈ V; a set of variables X = Xd]R
(the disjoint union of data variables Xd and roles R);
a set of labels f, g, l ∈ L; an initial node m0; a set
of labelled edges (m, x̃, f, ỹ,m′) ∈ E (where E ⊆
V ×X ∗×L×X ∗×V) for which each variable occurs
at most once in the vector x̃ and likewise for ỹ (though
the two vectors may have variables in common); and
a function R from nodes to roles.

Edges are uniquely identified by their labels, as
postulated by well-formedness properties, thus we
may unambiguously conflate them. For an edge
(m, x̃, f, ỹ,m′), we say that write(f) = x̃ and
read(f) = ỹ, the written and read variables of f
(respectively). We use src(f) = R(m) and tgt(f) =
R(m′) for the source and target roles of f .

A path is a sequence of labels f̃ where the target
node of each label is the source node of the next one.
We write f̃f or f̃ g̃ to denote the path f̃ concatenated
with a final f or another path g̃, respectively. The
empty path is written ε. An initial path is a path for
which the source node of the first label is m0, the initial
node of the graph. An extended path is a sequence of
alternating labels (not necessarily adjacent) and lists
of variables, of the form (x̃0)f0 . . . (x̃k)fk. We let f̂
range over extended paths.

Appendix A lists our well-formedness and imple-
mentability properties for session graphs. Some of
these properties are simple sanity checks; for example,
no role may send a message to itself and each edge
must have a distinct label (properties 1 and 2). Other

4

Figure 2. Compiling session programs

properties specify conditions without which the session
cannot be securely implemented (at least not without
extra messages). For example, property 4 excludes
graphs with a branch that would enable a compromised
principal to “fork” a session by sending two messages
in parallel along different paths.

3. Programming with sessions

Figure 2 illustrates our framework for example Ws
of Figure 1(a). The programmer first writes a ses-
sion description (Ws.session). This file is compiled
to generate a library module (Ws protocol.ml) that
implements all cryptographic communications for the
session and provides a simple continuation-based API
for each role. We verify this protocol implementation
by typechecking it against an extended type interface
(Ws protocol.ml7) also generated by the compiler. The
programmer then writes application code for each of
the roles of the session he wishes to run, here code for
the client and for the web service. Compliant principals
run application code that uses the generated protocol
module to run Ws sessions, but may also participate
in other sessions and communications. However, com-
promised principals are free to use their own session
protocol implementation. (The figure depicts the case
where both principals are compliant, but our security
theorems are more general; see Section 4.)

All our implementation code is in ML, and may
be compiled either by the F# compiler using .NET
libraries for networking and cryptography, or by the
OCaml compiler using the OpenSSL library.

In the rest of this section, we describe the structure
of the main elements of our compilation framework.
Syntactic sessions We explain the syntax of sessions
by example. (Appendix B gives the full syntax, with
support for loops and joins). The file Ws.session spec-
ifies the first session graph of Figure 1 as follows:

session Ws =
var q : string
var x : int

role c : unit =
send (Request (c,w,q); recv [Reply (x) | Fault])

role w : string =
recv [Request (c,w,q) → send (Reply (x) + Fault)]

The session Ws has two variables (q, x) and two roles
(c, w). Each variable represents a value communicated
in the session and is given a type. Each role is
given a return type and a role process that describes
the local sequences of alternating send and receive
actions for this role. At every send, the role process
expresses an internal choice (+) of messages that may
be sent, depending on the application. At every recv,
it expresses an external choice (|) of messages that
may be received, depending on the other roles. Here,
c sends Request, writing c, w, and q, then receives
either a Reply (reading x) or a Fault.

Our syntax for sessions is local, with a process for
each role, unlike the global session graphs in Section 2,
but we can convert between the two representations.
For example, each graph depicted in Figure 1 was
automatically generated from a syntactic session dur-
ing its compilation. Our compiler checks that each
session yields a well-formed graph with respect to
the properties in Appendix A; for example, sends and
receives within a role process must alternate, and only
one role may send a message with a particular label.
Generated protocol module: role functions The
generated protocol module provides send and receive
functions for the messages that may be sent or received
in a session. These functions are not used directly by
application code; instead, the protocol interface exports
a function for each protocol role, called a role function,
that implements the corresponding role process by
performing all session-related sends and receives for
a given role.

The first argument of a role function contains in-
formation about the running principal (IP address and
asymmetric keys). Using a continuation-passing style,
the second argument allows the application to bind
variables and choose which message is to be sent at
each state. For example, the role function for w in the
Ws session is declared by:

val w : principal →m0 → result w

where result w is the return type of role w and the
type m0 encodes the role process for w as:

type m0 = {hRequest: (var c ∗ var w ∗ var q →m1)
and m1 = Reply of (var x ∗ result w) | Fault of result w

where the var {c, w, q, x} are the types of the vari-
ables. Hence, m0 defines a single message handler for
the Request message; the handler takes the received
values (c, w, q) as input and computes a response of
type m1 that may either be a Reply or a Fault.

5

In addition to enforcing a role process, role functions
have two features. They log security events before
sending and after receiving each message. We use these
events to formalize our security goals (see section 4).
For example, before sending the Reply message, the
web server must log an event, Send Reply, that states
that it intends to send a reply with some specific value
for x. Second, they are locally sequential; in particular,
they never send messages in both branches of a session.

Typechecking By writing well-typed (for ordinary
ML typing) application code using the protocol mod-
ule, a programmer can guarantee that his code is
locally compliant with the session. However, compro-
mised principals playing remote roles may not comply
with the session and may collude with a network-based
adversary to confuse compliant principals. Hence, the
protocol module uses cryptography to ensure global
session integrity—all compliant principals have con-
sistent states (Section 4).

To verify that the generated cryptographic protocol
code meets this security goal, we typecheck it against
an interface (Ws protocol.ml7) that encodes the ses-
sion graph in terms of logical pre- and post-conditions
on the protocol functions that send and receive session
messages. This interface uses an ML syntax extended
with refinement types that allow the embedding of for-
mulas in a first-order logic; a specialized typechecker
verifies these formulas by calling out to an automated
theorem prover [Bengtson et al., 2008].

4. Session integrity

In this section, we formalize our main security
theorem for protocol implementations generated by our
compiler after they have been verified by typechecking.
The theorem is stated in terms of the events emitted
by the implementation for each message sent and
received during session execution: independent of the
behaviour of compromised principals, the events of the
compliant ones always correspond to a correct trace of
the session. An S̃-system is a program composed of
the ML modules:

Data,Net ,Crypto,Prins, (Si protocol)i=1..k, U

where

• Data , Net , Crypto, and Prins are symbolic im-
plementations of trusted platform libraries; Data
is for bytearrays and strings, Net for networking,
Crypto for cryptography, and Prins maps prin-
cipals to cryptographic keys (see Section 5);

• Si protocol is the verified module generated by
our compiler from the session description Si and

then typechecked against its refined typed inter-
faces and those of the libraries, for i = 1, . . . , k.

• U represents application code, as well as the
adversary. It ranges over arbitrary ML code with
access to all functions in Data , Net , Crypto, and
Si protocol , and access to some keys in Prins (as
detailed below).

The module U has the usual capabilities of a Dolev-
Yao adversary: it controls compromised principals that
may instantiate any of the roles in a session; it may
intercept, modify, and send messages on public chan-
nels, and perform cryptographic computations, but it
cannot break cryptography, guess secrets belonging to
compliant principals, or tamper with communications
on private channels.

A run of an S̃-system consists of the events logged
during execution. For each session, we define three
kinds of events that are observable:

Send f(a, ṽ) Recv f(a, ṽ) Leak(a)

where f ranges over labels in the session. Send f
asserts that, in some run of the session, principal a
instantiating the source role of f commits to sending
a message labelled f with values ṽ for its written
variables. Recv f asserts that principal a instantiating
the target role of f after examining the over-the-wire
cryptographic evidence, accepts a message labelled f
with values ṽ for its read variables.

The event Leak(a) states that the principal a is
compromised; this event is generated whenever the
adversary U demands a key from the Prins module; in
a run where a principal’s keys are never accessed by U ,
this event does not occur, and the principal is treated as
compliant. (This functionality of Prins formally models
selective key compromise; it is of course disabled in
our concrete implementation.) For a given run of an
S̃-system, we say that a compliant event of the run is
a Send or a Recv event present in the run whose first
argument is a principal a for which there is no Leak(a)
event anywhere in the run.

We now relate events and session graphs: a ses-
sion trace of a session is a sequence of Send and
Recv events obtained by (globally) instantiating all the
bound variables of an initial path of the session.

Definition 1 (Session traces): The traces of S are as
follows:

1) let f1 . . . fk be an initial path of S;
2) let x̃i = write(fi) and ỹi = read(fi) be the

written and read variables of fi for i = 1..k;
3) let (αi)i=1..k be a sequence of maps from vari-

ables X to values for which αi and αi+1 may
differ only on x̃i, for i = 1..k − 1;

6

4) replace each fi from the path with two events
Send fi(αi(src(fi)), αix̃i)
Recv fi(αi(tgt(fi)), αiỹi)

5) optionally discard the final Recv fk event.

For a given run of an S̃-system, a compliant trace
of a session S ∈ S̃ is a projection of a trace of
S where non-compliant events are discarded. Session
traces capture all sequences of events for a partial run
of an S-system. Moreover, the values of the variables
recorded in the events are related to one another
other exactly in accordance with the variable (re)writes
allowed by the graph (possibly shadowing each other).

We are now ready to state our main security result:

Theorem 1 (Session Integrity): For any run of an S̃-
system, there is a partition of the compliant events
coinciding with compliant traces of sessions from S̃.

The theorem states that the compliant events of any
run are interleavings of the compliant events that may
be seen along execution of initial paths of the sessions.
It means that the views of the session state at all com-
pliant principals must be consistent. Hence, all princi-
pals who use protocol implementations (Si protocol)
generated by our compiler and verified by typecheck-
ing are protected against adversaries U .

For example, in a run of the Proxy session, suppose
that the client principal playing the role c and the proxy
playing p are compliant, but the web service playing
w may be compromised. Then, the theorem guarantees
that whenever the client receives a Reply message from
the web service, it must be that the proxy previously
sent the web service a Forward or Resume message;
the web service cannot reply to the client before or
during its negotiation with the proxy and convince him
to accept the message. Moreover, the values of session
variables, such as q, d, o, and x, must be consistent at
all compliant principals.

5. Protocol design and cryptography

For each session, our compiler generates a custom
cryptographic protocol by first extracting the control
flow graph for each role, and then selecting crypto-
graphic protection for each message according to this
control flow.

Internal control flow states In the session graphs
of Section 2, each path represents a different session
execution, with potentially different subsets of active
roles and assigned variables. Thus, for a given node,
the messages that the role may send or receive and
their cryptographic protections may depend on the path
followed so far. For example, in the Proxy session

of Figure 1(c), the middle node for role w represents
two different runtime states for w: one when an Audit
message is received for the first time; another for
subsequent Retry messages.

To precisely capture the runtime states for each role,
we rely on the fact that the content of a given message
to be sent is determined by the position of each of the
roles in the session graph and their current knowledge
of the variables’ contents. Each of these states can thus
be indexed by a role name (the sender) and an extended
path containing the last label sent by each of the roles
and the last occurrence of each written variable. We
call internal control flow states these paths, indexed
by ρ, and give a formal definition below.

The states ρ form a refined graph of the original
session graph. The refinement roughly duplicates every
node within a loop to distinguish the case when the
loop is entered for the first time from subsequent
iterations. Hence, the refined graph can contain more
nodes and edges than the session graph, but it remains
finite. The states ρ can thus serve as indices for
the various receiving and sending functions in the
generated protocol module (e.g. Section 3).

Definition 2: An internal control flow state, denoted ρ,
is an extended path that is in the image of the state
function st (defined below) applied to some initial path.
Let st(f̃) = f̃ \ (ε, ε) where the filter function \ is
defined as

ε \ (z̃, r̃) = ε

(f̃f) \ (z̃, r̃) =

{
(f̃ \ (x̃′z̃, rr̃)) (x̃′)f if r /∈ r̃
(f̃ \ (x̃′z̃, r̃)) (x̃′) elsif r ∈ r̃

where r = src(f) and x̃′ = write(f) \ z̃.

Intuitively, f̃ \ (z̃, r̃) sweeps through f̃ , right to left,
filtering out any labels sent by roles encountered to
the right (accumulated in r̃) and any written variables
(accumulated in z̃).

The refined graph can be projected to give the
execution states of a given role (in the same way that
roles processes are projection of the global session
graph). For example, Figure 3 outlines the refined
graph of the Proxy session projected for role w. We
obtain the projection by keeping the nodes in which
role w is receiving or sending a message, and by
replacing the subgraphs that involve communications
between the other roles with “dotted” nodes (whose
annotations are explained below).

Role w has two initial internal control flow states,
depending on whether it receives an Audit or a
Forward message. Both states have the common prefix
(c,p,w,q)Request, meaning that the initial role c must
have sent a Request message writing variables c,p,w,q.

7

w: {c,p,w,q}Request{d}Details{}Resume

w: {c,p,w,q}Request{d}Resume{x}Reply

(x)Reply(x)

w: {c,p,w,q}Request{d}Details{o}Retry

w: {c,p,w,q}Request{o}Retry{d}Details

(d)Details(d) (o)Retry(o)

w: {c,p,w,q}Request{o,d}Details{}Resume

()Resume(q)

w: {c,p,w,q}Request{o,d}Resume{x}Reply

(x)Reply(x)

w: {c,p,w,q}Request{}Forward

w: {c,p,w,q}Request{}Forward{x}Reply

(x)Reply(x)

w: ε

()Forward(c,p,w,q)

w: {c,p,w,q}Request{}Audit

()Audit(c,p,w)

w: {c,p,w,q}Request{}Audit{d}Details

(d)Details(d)

()Resume(q) (o)Retry(o)

Figure 3. Projected refined graph for role w in
Example 1(c)

In the case w sends a Details message writing vari-
able d, it may next jump to one of two different states,
depending on whether a Resume message arrives or
a Retry message arrives. In the latter state, w needs
to send another Details message re-writing d, which
may result in either another Retry or a final Resume
message, to which w answers finally with a Reply
message writing variable x.

The “dotted” nodes represent states of the protocol
implementation of a role where this role is inactive
(e.g. waiting for a message). Each of these nodes can
be uniquely designated by the internal control flow
state of the initial node of the abstracted subgraph.

We use the notation ρ / ρ′ between internal control
flow states to express the existence of an edge in a
projected refined graph between a “dotted” node ρ and
a regular node ρ′ (see section 6 and appendix D).

Cryptographic protection We now turn our atten-
tion to the (cryptographic) protection of messages
exchanged by roles. An edge (x̃)f(ỹ) with target
role w maps to a single low-level network message
embedding values for ỹ, plus the tag f (as well as
additional auxiliary information, detailed below). We
protect the confidentiality of ỹ, provide access of ỹ
to w, and provide integrity that gives evidence to w
that the message comes from the source role of f.
This protection uses session keys which are initially
established between roles via a key-establishment pro-
tocol relying on public-key cryptography. We provide
integrity by applying a message authentication code
(MAC) to each sent label, including the store variables
and their values (they are hashed together and, for
the variables that should be kept secret from the

destination role, salted with an extra confounder; the
hash is also communicated outside the MAC to provide
variable commitment for the target role, and hence the
confounder is needed to prevent dictionary attacks).
For confidentiality, variable values are (symmetrically)
encrypted.

As opposed to a standard wire protection where one
uses e.g. encrypt-then-MAC, here we use MACs only
for the hashed variables, and encrypt separately; this
design allows to selectively encrypt only the needed
variables, and allowing the sending in the clear of other
public ones. The integrity of the received variables
(encrypted or not) are checked by reconstructing the
hashes and then checking the MAC.

Low-level messages include also auxiliary data,
since in order to ensure path integrity, our protocol
forwards evidence down the flow. For example, in the
Proxy example, when w receives an Audit message, it
requires not only evidence about ()Audit(c,p,w) from p,
but also evidence that c sent (c,p,w,q)Request(c,p,w,q).

In general, each message consists of (1) a series
of MACs from the sender and earlier participants,
intended to provide integrity of the session path; (2) a
series of (cryptographically hashed) variables needed
by the receivers to recompute and verify the MACs;
(3) a series of (possibly encrypted) variables with
their current values, for the readable variables of the
receiver; and (4) a set of encrypted session keys, for the
initial contact between the sender and receiver. As an
example, we detail the structure for the initial message
of the Proxy session.
Example message: Proxy Request Consider the first
receipt of a Request message by p from c in a run of
the Proxy example. The internal control flow state for p
is (c,p,w,q)Request, denoting that variables c,p,w,q are
written by c in the initial Request. Let s be the session
identifier, c, p, w be the principals instantiating roles
c,p,w; and let q be the value for q. Moreover, for each
variable, let vc be a fresh confounder for the session
run s. The format of the message sent by c to p is as
follows:

s ‖ 0 ‖ `0 (1)
‖ macc,p(s ‖ 0 ‖ `0 ‖ h[c] ‖ h[p] ‖ h[w] ‖ h[q]) (2)
‖ c ‖ cc ‖ p ‖ pc ‖ w ‖ wc ‖ encc,p(q ‖ qc) (3)
‖ asignc(aencp(‘c’ ‖ ka(c, p) ‖ ke(c, p))) (4)
‖ macc,w(s ‖ 0 ‖ `0 ‖ h[c] ‖ h[p] ‖ h[w] ‖ h[q]) (5)
‖ asignc(aencw(‘c’ ‖ ka(c, w) ‖ ke(c, w))) (6)

where ‖ denotes concatenation, macx,y(m) denotes the
message authentication code of m under the shared
key between x and y; h(m) denotes the hash of
message m; to ease notation, we write h[v] = h(s ‖

8

sr ‖ ‘v’ ‖ v ‖ vc) to denote the hash of the (fresh)
session identifier s, concatenated with the source role
principal sr, concatenated with the variable tag ‘v’,
its current value v and (when needed, see above)
confounder vc; 0 is the initial timestamp; `0 is the tag
‘(c,p,w,q) Request’; encx,y(m) denotes the symmetric
encryption of m under shared key between x and y;
aencx(m) denotes the asymmetric encryption of m
under public key x; asignx(m) denotes the digital
signature of m under private key x.

This message has two parts. Components (1)-(4)
constitute information computed by c intended for p,
while components (5)-(6) are for w, and will be
forwarded by p to w in subsequent messages. In (4),
component asignc(aencp(‘c’, ka(c, p) ‖ ke(c, p))) is
added for key establishment, necessary the first time c
communicates with p (this step is done only once). It
contains two fresh session keys ka(c, p) and ke(c, p)
asymmetrically encrypted for the recipient w and dig-
itally signed by the source role p; ka(c, p) is intended
for MACing between c and p, and ke(c, p) is intended
for (symmetric) encryption (so above when we write
macc,p(. . .) we mean macka(c,p)(. . .), and similarly
for encryption). (As explained below, we assume a
public key infrastructure in place). Once session keys
are exchanged, (3) includes variables and their val-
ues being readable by p. Variables c, p, and w are
principal variables and hence are unprotected and sent
in the clear. On the other hand, variable q is a data
variable and so we must protect it so that it remains
confidential; it is encrypted using the shared symmetric
key ke(cp).

Integrity is achieved by the MAC in (2), where
all the variable hashes are concatenated, preppended
with a session identifier s = h(Σ, r) where r is a
fresh nonce chosen by the session initiator and Σ is
the session definition. The message contains also the
label `0 in the clear and the current timestamp (0 in
this case). Finally, (5) contains a similar MAC from c
but intended for w, and session keys between c and w
are included in (6). A hash of q has to be included in
the Audit message from p to w so that w can check (1)
the forwarded MAC from c and (2) the commitment
to q when w eventually learns its value in Resume.

Upon receiving the Request message, the principal
running as p processes (4) to obtain the session keys.
These keys are used to process the variables in (3);
once all variables are processed, p recomputes the
hashes and checks the MAC of (2). The principal
variables are checked to see if the principal is indeed
assigned to its, and that the s is not a replay. If the
checks succeed, role p updates the session store and
invokes the user code handler.

Generated protocol module Our compiler generates
a protocol module with functions that send and receive
messages like the one above. The detailed structure of
the generated code is shown in Appendix C.

For each role, the generated send and receive func-
tions operate on a data store (of type store) that
contains all the session parameters, such as the session
identifier, the current timestamp, and the values of all
the variables known to the role. In addition, the store
contains the hashes of all the variables bound in the
session so far, including the ones whose values are not
known locally. Finally, the store contains cryptographic
materials for the session, such as established session
keys, received MACs, and confounders for hashes,
as described later in this section. During any run of
the session, the current internal control flow state in
combination with the value of the current data store
describes the full state of each role in the session.

Our code relies on a set of trusted libraries for data
manipulation, cryptography, networking, and manag-
ing principals. These libraries (and their refined types)
are essential parts of our security model.

Trusted libraries A first module, Data , provides data
types bytes (for raw bytes arrays) and str (for strings)
used for networking and cryptography; its interface
provides e.g. base64: bytes → str for encoding string
payloads, and concat: bytes → bytes → bytes for as-
sembling messages.

The Crypto library provides functions for encryp-
tion (RSA and AES), MACing (HMACSHA1), hash-
ing (SHA1), and generating fresh nonces and keys.

The Prins library maintains a database of principals.
The database records, for every other principal, the
principal name, its public-key certificate, its network
address, and any session keys shared with it. We
assume an existing public key infrastructure (PKI)
in which each principal has a public/private keypair
and knows the other principals’ public keys. Prins
also maintains locally an anti-replay cache for each
principal, containing session identifiers and roles for all
sessions it has joined, to ensure that it never joins the
same session twice in the same role. During a session,
whenever a principal contacts another principal for the
first time, it generates fresh session keys and registers
them in the database.

Relying on the networking library, Net , Prins also
provides functions for sending and receiving messages
between principals; Net is never accessed directly by
our generated code, but may be accessed by application
code for non-session communications.

9

6. Sessions as path predicates

We prove our main theoretical result, Theorem 1,
which states the integrity of session executions as
observed by compliant principals despite the presence
of arbitrary coalitions of compromised ones.

In this section we proceed as follows: we first enrich
send and receive events with additional parameters
and lift the definition of session traces accordingly;
for each session, we define families of predicates that
capture invariants that must be maintained by a session
implementation (Figure 5 in Appendix D); we define
typed interfaces for our generated code, and show
that if the code meets these types, then it maintains
these invariants (Lemma 1); we prove, by hand, that
the implementation of each role is locally sequential
(Lemma 2); using the invariants and local sequentiality,
we establish (via Lemma 3) the integrity theorem
for all code that is generated by our compiler and
typechecked (Theorem 1).
Stores, timestamps, and enriched events For sim-
plicity, we decouple the notion of a “store” s (Sec-
tion 3) from its fields consisting of a session identifier,
herein written s, and a variable store, written σ. We
treat σ as a triple of partial maps σv, σh, σc, where
σv maps variables to (their known) values, σh maps
variables to hashes, σc maps variables to confounders.
The store σ is consistent for variables z̃ with session
identifier s, written Hez(σ, s), if the hash map applied
to a variable in z̃ yields an identical hash to the one
computed from the value and confounder components
(see Figure 5 in Appendix D).

Enriched events are obtained from those of Section 4
by adding timestamps and stores (following the imple-
mentation in Section 5):

Send f(a, s, ts, ṽ, σ) Recv f(a, s, ts ′, ts, ṽ, σ)
Timestamps, ranged over by ts , are natural numbers.
The timestamp ts in Send and Recv events records
the time at which the event is issued and we refer
to it as the upper timestamp of the event; in Recv
events, ts ′ also records the time at which the role
tgt(f) previously sent a message, or 0 if no previous
message was sent; σ is the local store of a when the
Send and Recv event is issued.

We can lift Definition 1 accordingly to specify the
traces of enriched events, as shown in Appendix D.
Invariant path predicates Figure 5 in Appendix D
defines a pair of families of predicates, Q and Q′, that
serves as the invariant at each send and receive event
emitted by the generated implementation code for ses-
sions. The invariant reflects the full complexity of our
optimized protocol and is established by typechecking.

Consider any internal control flow state ρ = f̂ (x̃)f ;
then:
• Q ρ(s, ts, σ) asserts that the principal playing role

src(f) in a session instance with identifier s is
satisfied that its global execution has followed an
initial path whose image under st is ρ, with the
final step of the execution being the send of f at
timestamp ts; moreover, the current values for all
the variables written along ρ (i.e. the state after
the send) are in the store σ.

• Q′ ρ(s, ts ′, ts, σ) asserts that the principal play-
ing role tgt(f) in a session instance with identifier
s is satisfied that its global execution has followed
an initial path whose image under st is ρ, with the
final step of the execution being the receive of f at
timestamp ts; the last time the role sent a message
was at timestamp ts ′ (or 0 if this is the first time
the role enters the session); moreover, the current
values for all the variables written along ρ (i.e.
the state after the receive) are in the store σ.

The definition of Q′ in Figure 5 in Appendix D
relies on a formula abbreviation bCca that stands for
the disjunction C ∨Leak(a), that is, either C holds or
the principal a is compromised. The definition of Q
relies on the notion of an internal control flow state
ρ preceding an internal control flow state ρ′, written
ρ / ρ′, which informally means that an initial path
leading to ρ may be extended by a suffix to ρ′. More
generally, we can extend this binary notion to vectors
of internal control flow states (used in Q′), writing
(ρ0, ρ1, . . . , ρk)/. We present these defintions formally
in Appendix D.

Expanding the Q and Q′ predicates at a particular
internal control flow state yields a tree of disjunctions
and conjunctions of assertions that when combined,
characterizes the valid traces of send and receive events
at the compliant principals in a trace of the session
(Definition 3).

For example, in the Ws session introduced in Fig-
ure 1(a), after a Request is received, the internal control
flow state at role w is (cwq)Request, and the predicate
Q′ (cwq)Request(s, 0, 1, σ′) implies the assertions:

Recv Request(σ′v(w), s, 0, 1, σ′v(c,w, q), σ′),
Hc,w,q(σ′, s), and
either Leak(σ′v(c))
or Send Request(σ′v(c), s, 1, σ′v(c,w, q), σ′′).

That is, the receive event must have been logged,
the hashes and value of variables in the store must
be consistent, and either both c and w agree on the
message (Request) and variable assignments (c, w, q)
so far, or c has been compromised.

After sending the subsequent Reply message, the in-

10

ternal control flow state at w is (cwq)Request(x)Reply,
and the predicate Q (cwq)Request(x)Reply(s, 2, σ) implies:

Send Reply(σv(w), s, 2, σv(x), σ),
Hc,w,q,x(σ, s),
Q′ (cwq)Request(s, 0, 1, σ′), and
∆x(σ′h, σh).

That is, the send event must have been logged, the
current store σ must be consistent, and the receive
predicate Q′ (cwq)Request(s, 0, 1, σ′) must have previ-
ously held at w with some store σ′, where the hashes
in σ′ and σ only differ for x (because it is the only
variable written in this step).
Proofs by typing Our compiler generates an ex-
tended type interface that uses path predicates as
pre- and post-conditions for the session messaging
functions. For example, for the Ws session, the gen-
erated protocol module contains a role function w
that calls the messaging functions recv w Request and
send w Reply. The extended type interface for these
functions is of the form:

val recv w Request: (s:store){Q ε(s.sid,0,0,s)} →
(s’:store){Q′ (cwq)Request(s’.sid,1,s’)}

val send w Reply: (x:int) →
(s:store){Q′ (cwq)Request(s.sid,1,s)} →
(s’:store){Q (cwq)Request(x)Reply(s’.sid,2,s’)}

The curly braces after (s:store) enclose a logical
formula that must hold about the store s. In general,
formulas that appear in the type of function arguments
represent pre-conditions; formulas in the their result
type represent post-conditions. The pre-condition on
recv w Request says that, initially, the store s must
be empty; its post-condition is the Q′ predicate on w’s
store at the internal control flow state (cwq)Request.
The pre-condition on send w Reply is the same as
the post-condition of recv w Request; hence, a Reply
may be sent only after a Request is received; its post-
condition is the Q predicate on w’s store at the internal
control flow state (cwq)Request(x).

Typechecking a program against an extended inter-
face guarantees that in every execution of the system
with an active adversary, whenever a function is called,
its precondition holds. Hence, by typechecking we
establish that the path predicates are maintained as an
invariant by the generated protocol module.

Lemma 1: For any run of an S̃-system, for any ses-
sion S ∈ S̃, for any session identifier s running S, for
any compliant principal a,
• the event Send f(a, s, ts, ṽ, σ) in the run implies

that there exists an internal control flow state ρ
of S ending in the sent label f , such that a =
σv(src(f)), ṽ = σvx̃, and Q ρ(s, ts, σ) where x̃
are the written variables of f ;

• the event Recv f(a, s, ts ′, ts, ṽ, σ) in the run im-
plies that there exists an internal control flow state
ρ of S ending in the received label f , such that
a = σv(tgt(f)), ṽ = σvỹ, and Q′ ρ(s, ts ′, ts, σ)
where ỹ are the read variables of f ;

During the design of our compiler, we found several
bugs (violations of Lemma 1) by typechecking. More
often, we found that our type annotations were not
strong enough to establish our results, or that our
typechecker required predicates to be structured in a
specific way. Discovering sufficiently strong annota-
tions for keys, libraries, and auxiliary functions, and
designing a compiler that automatically generates them
requires some effort, but is rewarded with an automated
verification method. We have used this method to
typecheck several examples; their verification time and
other statistics are listed in Section 7.
Proof of integrity We now complete by hand (as our
typechecker does not keep track of linearity) a lemma
establishing that the implementation of each role in a
session must be locally sequential:

Lemma 2: In any run of an S̃-system, if the principal
a is compliant, then for any role r and session iden-
tifier s for S, the series of events emitted by a with
s in role r forms an alternation of sends and receive
events such that for any adjacent pair of such events

Send f(a, s, ts0, ṽ, σ0),Recv g(a, s, ts1, ts2, w̃, σ2) or
Recv g(a, s, ts1, ts2, w̃, σ2), Send f(a, s, ts3, ṽ

′, σ3)
we have ts0 = ts1, ts1 < ts2, and ts2 + 1 = ts3.

The proof is by inspection of the code structure of
the generated role functions in the protocol module.

We then show from Lemma 2 that the predicates Q
and Q′ imply that the events constitute session traces
from which Theorem 1 follows.

Lemma 3: For every run, if Q ρ(s, ts, σ) or
Q′ ρ(s, ts ′, ts, σ) holds, then there is a session trace
of an initial path ending in state ρ that matches a
subsequence of the compliants events.

Secrecy This paper focuses on integrity rather than
secrecy, whose formulation is more technical (as it
involves the behaviour of user code, not just protocol
code). We only outline our secrecy results.

By typechecking, we obtain secrecy for values as-
signed to session variables, under the assumption that
the application code run by compliant principals is
trusted to provide secret values for these variables
and not leak them to the adversary. (Bengtson et al.
[2008] also provide a discussion of secrecy by typing.)
The value assigned to a variable in a session run may
be obtained by the adversary only if a compromised

11

Session Roles S.session Application Graph Refined Graph S protocol.ml S protocol.ml7 Verification
S (lines) code (lines) (.dot lines) (.dot lines) (lines) (lines) (seconds)
Ws (Figure 1a) 2 8 33 14 24 592 414 8.8
Rpc 2 15 24 11 18 472 315 6.1
Commit 2 16 29 14 24 603 399 10.3
Wsn (Figure 1b) 2 10 44 17 48 1143 813 23.6
Fwd 3 15 38 11 19 581 357 8.6
Proxy (Figure 1c) 3 28 65 26 80 2181 1939 154.1
Login 4 28 54 29 74 2053 1542 103.4

Figure 4. File sizes and verification times for example sessions

principal plays a role in the session that can read
the variable. To verify this property, we annotate the
encryption and decryption keys in the protocol module
with refined types, and check that these types are met
by all encryption and decryption operations.

7. Performance evaluation

We finally present compilation and verification re-
sults for a series of examples. In addition to the
sessions of Figure 1, it includes a simple remote call
(Rpc); a session with early commitment to values; a
session with message forwarding (Fwd); and a 4-ary
session between a client, a gateway, a database, and a
late-bound web server (Login). For each session, we
experimentally confirmed that the generated protocol
is functional, using simple testing.

Our compiler is written in around 4300 lines of ML.
The trusted libraries for networking, cryptographic
primitives, and principals shared by all session im-
plementations have 780 lines of code (although their
concrete implementation mostly relies on much-larger
system libraries).

For each session example (S), Figure 4 first gives the
numbers of roles; the size of the input file (S.session);
the size of the handwritten application code we used
for testing the session; the size of the session graph
generated by our compiler, both before and after
refining the graph to separate different internal con-
trol flow states; the size of the output files, both
for the ML implementation (S protocol.ml) and for
its refinement-typed interface (S protocol.ml7); and
finally the time spent typechecking our generated
implementation against refinement-typed interfaces at
the end of the compilation process. (The rest of the
compilation is relatively fast.)

Even when programming complex multi-party ses-
sions with many roles and messages, the application
programmer only needs to write less than one hundred
lines of code. The generated modules are larger and
more complicated—in fact the auxiliary formulas that
annotate their function declaration are as large as
their actual code. However, the programmer can ignore

their details and rely instead on the typechecker. The
verification time is roughly linear in the size of the
generated code. (Pragmatically, the programmer may
gain additional confidence in the verification process
by reviewing just the location and content of the
security events in generated code, which involve only
a small part of that code.)

We also measured the overhead of cryptographic
protection for three simple sessions. The table below
gives the total runtimes (in seconds) for completing
5000 instances for each of the sessions Wsn, Ws,
and Proxy of Example 1. We used a Pentium 3GHz
with 1G RAM, running Windows XP with .NET
cryptography, and only local communications. The first
line is for variants of the generated protocols that
do not perform any cryptographic operations (with no
protection). The second line is for the same variants,
plus transmitting all messages on TLS connections
(with transport protection). The third line is for the
unmodified protocol (with session integrity).

Cryptography Wsn Ws Proxy
none 1.81 2.37 9.43
TLS 2.58 (+29%) 3.01 (+21%) n/a
our protocol 3.48 (+47%) 3.94 (+39%) 15.48 (+39%)

The cryptographic overhead is thus around 40%; how-
ever, the benchmarks are done for a single machine; for
real distributed settings, we expect this overhead to be
often negligible in the face of networking overheads.
When compared with running sessions over .NET’s
SSL layer (second row), our protocol is about 18%
slower, but it offers stronger cryptographic protection.
(We did not measure SSL for multi-party sessions since
SSL only protects two-party communications).

Acknowledgments This work benefited from com-
ments from Jérémy Planul and Nobuko Yoshida.

References

J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gor-
don, and S. Maffeis. Refinement types for secure
implementations. In 21st IEEE Computer Security
Foundations Symposium (CSF’08), 2008.

12

K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse.
Verified interoperable implementations of security
protocols. In IEEE Computer Security Foundations
Workshop (CSFW’06), pages 139–152, 2006.

E. Bonelli and A. B. Compagnoni. Multipoint session
types for a distributed calculus. In TGC, volume
4912 of LNCS. Springer, 2007.

R. Corin and P.-M. Deniélou. A protocol compiler
for secure sessions in ml. In Trustworthy Global
Computing, Third Symposium (TGC’07), 2007.

R. Corin, P.-M. Deniélou, C. Fournet, K. Bhargavan,
and J. Leifer. Secure implementations for typed ses-
sion abstractions. In 20th IEEE Computer Security
Foundations Symposium (CSF’07), pages 170–186,
July 2007.

L. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAC’08), volume 4963
of LNCS, pages 337–340. Springer, 2008.

M. Dezani-Ciancaglini, N. Yoshida, A. Ahern, and
S. Drossopoulou. A Distributed Object-Oriented lan-
guage with Session types. In International Sympo-
sium of Trustworthy Golbal Computing, Apr. 2005.

M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and
S. Drossopoulou. Session types for object-oriented
languages. In 20th European Conference for Object-
Oriented Languages, July 2006.

C. Fournet and T. Rezk. Cryptographically sound im-
plementations for typed information-flow security.
In 35th Symposium on Principles of Programming
Languages (POPL’08), pages 323–335. ACM Press,
Jan. 2008.

S. J. Gay and M. Hole. Types and subtypes for client-
server interactions. In Programming Languages and
Systems, 8th European Symposium on Programming
(ESOP), pages 74–90, 1999.

A. Guha and S. Krishnamurthi. Fingerprinting the
innocent: Using static analysis for ajax intrusion
detection. 2008. Draft.

K. Honda, V. T. Vasconcelos, and M. Kubo. Lan-
guage primitives and type disciplines for structured
communication-based programming. In Program-
ming Languages and Systems, 7th European Sympo-
sium on Programming (ESOP), volume 1381, pages
22–138. Springer, 1998.

K. Honda, N. Yoshida, and M. Carbone. Multiparty
asynchronous session types. In G. C. Necula and
P. Wadler, editors, Proceedings of the 35th ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2008, pages 273–284.
ACM, 2008.

R. Hu, N. Yoshida, and K. Honda. Session-based
distributed programming in java. In To appear at

ECOOP08, 2008.
D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay

- secure two-party computation system. In USENIX
Security Symposium, 2004.

J. McCarthy and S. Krishnamurthi. Cryptographic
protocol explication and end-point projection. In
European Symposium on Research in Computer Se-
curity (ESORICS), 2008.

D. Syme, A. Granicz, and A. Cisternino. Expert F#.
Apress, 2007.

V. T. Vasconcelos, S. Gay, and A. Ravara. Typecheck-
ing a multithreaded functional language with session
types. Theoretical Computer Science, 368(1–2):64–
87, 2006.

L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic.
Using replication and partitioning to build secure
distributed systems. In IEEE Symposium on Security
and Privacy (S&P), pages 236–250, 2003.

Appendix A.
Well-formed conditions for global sessions

We list all the well-formedness properties that we require
of session graphs. These properties are implementability
conditions motivated by our compiler and verification; they
ensure that we do not need to send extra messages to protect
the security of the session. They use some additional notation
and terminology.

1) Edges have distinct source and target roles: if
(m, ex, f, ey,m′) ∈ E , then R(m) 6= R(m′).

2) Edges have distinct labels: if (m1,fx1, f, ey1,m′1) ∈ E
and (m2,fx2, f, ey2,m′2) ∈ E , then m1 = m2, m′1 =
m′2, fx1 = fx2, and ey1 = ey2.

3) Every node is reachable: if m ∈ V then either m =
m0, the initial node, or there exists an initial path eff
such that tgtnode(f) = m.

4) For any initial paths ef ef1 and ef ef2 ending with distinct
roles r1 and r2, respectively, there exists a role r active
on either ef1 or ef2 such that r1 = r or r2 = r.

5) On any initial path, every role variable is written at
most once.

6) For any initial path eff ending in role r, we have r ∈
knows(r, eff).

7) For any initial path ef ending in role r, and any role
r′ active on ef , we have r′ ∈ knows(r, ef).

8) For any initial path ef ending in role r for the first time
(i.e. r not active on ef), every role r′ active on ef is
such that r ∈ knows(r′, ef).

9) For any initial path eff , if x is read on f and f has
source role r then x ∈ knows(r, eff).

10) For any initial path eff ending in role r, if x is read
on f and x ∈ knows(r, ef) then x is written on f .

Appendix B.
Session syntax

We declare sessions using a process-like syntax for each
role. This is a local representation, unlike the global session

13

graphs in Section 2, but we can convert between the two
representations. Other works Honda et al. [2008] explore
conditions under which such interconversions are possible.
Since this is not the main focus of our work, we do not detail
them, except to note that all the global session graphs in
this paper were automatically generated from local syntactic
descriptions.

τ ::= int | string Payload types
p ::= Role processes

send ({+fi(exi); pi}i<k) send
recv [{|fi(exi)→ pi}i<k] receive
χ : p named subprocess
χ continue with χ
0 end

Σ ::= Sessions
(var xj : τj)j<m (role ri:τi = pi)i<n

Appendix C.
Code generation

Generating the cryptographic protocol implementation re-
quires preparatory computations on the refined graph pre-
sented in Section 5. First, internal control flow states along
with the refined graph are used to compute a visibility
relation, which details for every receiving state a list of
MACs to be checked in incoming messages, along with
the expected contents; (potentially MACs are expected in
a state, from each of the roles involved since its own last
involvement). Each MAC is expected to contain a hash of
the variables that have been bound or rebound so far in the
path.

From the visibility relation, a future relation is derived to
associate each message sent in the refined graph with a list
of the roles that may expect a MAC of that message, and
which variables that role is expecting. Relation future yields
the fwd macs relation associating messages with MACs to
be transmitted along the way.

We also compute a learnt relation specifying hashes (com-
ing from commitments or supporting hashes) does this role
learn in a given message. From this relation, commitment
checks are inferred. It is also used (with future) to derive
the fwd hashes relation associating messages with hashes
to forward. Finally, future is used to derive a fwd keys
relation which associates roles with (encrypted, session-
establishment) keys that need to be forwarded. As shown
in the code below, fwd keys is used to lookup (if it already
exists) or generate a new shared key, using function gen keys.

Store Updated throughout the execution, the store contains
the values of the variable received, some hashes of variables,
some MACs, a logical clock, and the session id. We use the
notation ← to designate a store with an updated field.

type store = {
vars : { for each (x : t) ∈ X ,

ˆ
x: t

˜
} ;

hashes : { for each x ∈ X ,
ˆ

hx : hashstore
˜
} ;

(∗ hashstore has hashes and confounders ∗)
macs : { for all l with ex visible

received by r,
ˆ
rlex : bytes

˜
} ;

keys : { for each pair r,r’ of roles,
ˆ

key r r′:
bytes

˜
} ;

header = { ts : int ; sid : bytes }}

Auxiliary functions The following content functions build
the MACs used in the protocol (as described in Section 5).

For all state ρ in a visible sequence with ezˆ
let content ρ ez = fun ts store →
fold over z ∈ ezˆ
let hashes = concat store.hashes.hz.hash hashes in

˜
let state = utf8 (cS "ρ") in
let payload = concat state hashes in
let header = concat store.header.sid

(utf8 (cS (string of int ts))) in
concat header payload

˜
Sending functions For each message (i.e. edge) in the
refined graph, the compiler generates a sendWired function
that builds and sends a message (as detailed in Section 5).

For all ρ
(ex) f (ey)−−−−−→ ρ′ of the refined graph, sending role r

r′ is the receiving role.ˆ
let sendWired f ρ (s:store) = fun ex s →
fold over x ∈ ex ˆ s.vars.x ←x ; s.hashes.hx ←

sha1 x ;
˜

s.header.ts ← s.header.ts + 1;
fold over r, r′ ∈ fwd key(ρ)ˆ

let keyrr′ = gen keys s.vars.r s.vars.r′ in
let keys = concat keyrr′ keys in

˜
for all (r′′, ρ′′, ez) ∈ future(ρ, l)

(header is built as in content)ˆ
let content = content ρ′′ ez s.header.ts s in
let mackeyrr′′ = get mackey s.vars.r s.vars.r′′ in
let macmsg = mac mackeyrr′′ (pickle content) in
let r′fex = concat header macmsg in

˜
. . . Marshalling sent MACs (fwd macs) . . .
. . . Marshalling hashes (fwd hashes) . . .
fold over y ∈ eyˆ
let keyrr′ = get symkey s.vars.r s.vars.r′ in
let encr y = sym encrypt keyrr′ (pickle mar y) in
let variables = concat encr y variables in

˜
. . . marshalling of confounders for variables ey . . .
. . . Building header and message . . .
let () = psend s.vars.r′ msg in
s
˜

Receiving functions For each receiving state sequence, the
compiler generates a sum type with a constructor for each
possible return values of the receiveWired functions.

For all receiving state ρ,ˆ
type wired ρ =

for each f that can be received in state ρˆ
| Wired f ρ of

ˆ
types of Read(f)

˜
∗ store

˜ ˜
The receiveWired function checks whether the received

message is initial or not: in the former case, the cache needs
to be checked for guarding against replay attacks; in the
latter, only session id verification and time-stamp progress
are necessary.

Once the header of an incoming message is checked,
the receiving code verifies the included visible sequence
is acceptable. Then, the protocol unmarshalls and decrypts
variables and keys (read and fwd keys), checks commitments
(that is, adequacy between an already known hash (i.e. not
learnt) of a value that has now become readable), unmar-
shalls hashes (fwd hashes), unmarshalls MACs (fwd macs),

14

Meta predicates: Consistency of stored hashes Hez(σ, s) 4= Vx∈ez σhx = h(s ‖ ‘x’ ‖ σvx ‖ σcx)
Store updates ∆ez(σ, σ′) 4= Vx∈X\ez σ(x) = σ′(x)

Up to compromise bCca
4
= C ∨ Leak(a)

Base cases for Q and Q′: ∀s. Q ε(s, 0, ∅) and ∀s. Q′ ε(s, 0, 0, ∅).

Inductive case for Q: For every internal control flow state ρ = f̂ (ex)f we let:
∀s, ts, σ. Q ρ(s, ts + 1, σ) ⇔ Send f(σv(src(f)), s, ts + 1, σvex, σ) ∧Hex(σ, s) ∧_

ρ′/ρ

„
∃σ′, ts ′. Q′ ρ′(s, ts ′, ts, σ′) ∧ ts ′ < ts ∧∆ex(σ′h, σh)

«
Inductive case for Q′: For every non-empty internal control flow state ρk = f̂ (ex1)f1 . . . (exk)fk for which tgt(fk) is not
active on f1 . . . fk and either f̂ is empty or the source role of the last edge in f̂ is tgt(fk), with ey = read(fk), ex′i = write(fi)
for i = 1..k, and ez = write(ρk) \ (ex1 . . . exk ∪ {src(f1), . . . src(fk)}), we let:

∀s, ts0, tsk, σ. Q
′ ρk(s, ts0, tsk, σ) ⇔ Recv fk(σv(tgt(fk)), s, ts0, tsk, σvey, σ) ∧Hey(σ, s) ∧

_
(ρ0,ρ1,...,ρk)/

0BBBB@
∃σ0, . . . , σk, ts1, . . . , tsk−1.^
i=0..k−1

“
tsi < tsi+1 ∧∆ezex′i+1

(σhi, σhi+1)
”
∧∆ez(σhk, σh) ∧^

i=1..k

“
bQ ρi(s, tsi, σi)cσv(src(fi))

”
∧Q ρ0(s, ts0, σ0)

1CCCCA
Figure 5. Definition of predicate families Q and Q′

checks MACs (visib), and finally returns the corresponding
Wired data type.

Appendix D.
Definitions used in Section 6

Helper functions We introduce a series of definitions and
helper functions, then enrich the contents of events. The
function write collects the variables written on an extended
path (Section 2):

write((ex0)f0 . . . (exk)fk) = {ex0, . . . , exk}
Given a role r and an initial path ef , the function knows(r, ef)
collects the variables in scope for role r after ef :
knows(r, ε) = ∅; knows(r, eff) = (knows(r, ef) \ ex) ∪ {ez}
where ex are the written variable of f ; and ez are either the
written variables of f if r = src(f), the read variables of
f if r = tgt(f), or ∅ otherwise. For instance, for Exam-
ple 1(a) we have knows(c,Request Reply) = {c, w, q, x}
and knows(c,Request Fault) = {c, w, q}.

Definition 3 (Session traces with enriched events): The
traces of S are as follows:

1) let f1 . . . fk be an initial path of S;
2) let exi = write(fi) and eyi = read(fi) be the written

and read variables of fi for i = 1..k;
3) let s be a value and (σi)i=1..k, (σ

′
i)i=1..k two se-

quences of stores such that
• Hknows(src(fi),f1...fi)(σi, s) for i = 1..k;
• Hknows(tgt(fi),f1...fi)(σ

′
i, s) for i = 1..k;

• each hash map may differ from the previous
only on variables that have just been written:
∆exi+1(σhi, σhi+1) for i = 1..k−1 (see Figure 5
in Appendix D for the definition of ∆);

• the send and receive hash maps are equal: σhi =
σ′hi for i = 1..k.

4) let (ts ′i)i=1..k and (tsi)i=1..k be timestamps such that
ts1 ≤ · · · ≤ tsk and ts ′i ≤ tsi for i = 1..k;

5) replace each fi in the path with two events
Send fi(σvi(src(fi)), s, tsi, σviexi, σi),
Recv fi(σ

′
vi(tgt(fi)), s, ts

′
i, tsi, σ

′
vieyi, σ′i)

6) optionally discard the final Recv fk event.

Relations on internal control flow states Formally, ρ / ρ′

if there exists an initial path eff such that ρ = st(ef) and
ρ′ = st(eff). In this way we induce an edge relation / on
internal control flow states that refines the underlying edge
relation E on nodes, since a single node may correspond to
several possible internal control flow states depending on the
history of the session execution up to that node.

We generalize this binary notion to vectors of internal
control flow states (used in Q′), writing (ρ0, ρ1, . . . , ρk)/
iff there exists an initial path ef0

ef1f1 . . . efkfk such that the
active roles of ef i are included in the active roles of fi, . . . ,
fk for i = 1..k; ρi = st(ef0

ef1f1 . . . ef ifi) for i = 1..k;
ρ0 = st(ef0). In this definition, f1, . . . , fk are the last edges
from the k rightmost active roles in ρ: this is true because
each step from fi+1 to fi skips over the edges ef i+1 all of
whose active roles are already used in fi . . . fk. Therefore,
each ρi is the internal control flow state for the last message
send performed by role src(fi), for i = 1..k.
Predicates

These appear in Figure 5.

15

	Security by compilation and typing
	Multiparty sessions
	Programming with sessions
	Session integrity
	Protocol design and cryptography
	Sessions as path predicates
	Performance evaluation
	Appendix A: Well-formed conditions for global sessions
	Appendix B: Session syntax
	Appendix C: Code generation
	Appendix D: Definitions used in Section 6

