
Normative KGP Agents

Fariba Sadri1, Kostas Stathis2, Francesca Toni1

1Dept. of Computing, Imperial College London. {fs,ft}@doc.ic.ac.uk
2School of Informatics, City University London. kostas@soi.city.ac.uk

Abstract

We extend the logical model of agency known as the KGP model,
to support agents with normative concepts, based on the roles an agent
plays and the obligations and prohibitions that result from playing these
roles. The proposed framework illustrates how the resulting normative
concepts, including the roles, can evolve dynamically during the lifetime of
the agent. Furthermore, we illustrate how these concepts can be combined
with the existing capabilities of KGP agents in order to plan for their goals,
react to changes in the environment, and interact with other agents. Our
approach gives an executable specification of normative concepts that can
be used directly for prototyping applications.

Keywords: Computational Logic, Normative Agents, Abduction, Priorities,
Planning, Roles, Obligations, Prohibitions.

1 Introduction

The development of complex applications based on autonomous agents often
need to find methods of organising the functionality of a composite system by
distributing responsibilities to the parts, in such a way that interactions of the
whole are coordinated in a decentralised and coherent manner. Whether we
deal with autonomous robots that plan, software agents that manage networks,
a traffic or a file-sharing system, or any other similar application, it is becoming
increasingly recognised that the resolution of the underlying problems lies with
developing frameworks that are based on the notion of social agency [14].

The basic idea behind the notion of social agency is to use abstractions from
such diverse fields as sociology, computing science, organisational theory, and
law in order to specify [16] and then implement complex organisations of agents
referred to as artificial societies [28]. Such an implementation seeks to apply
social agents in practical applications where the formation of open societies [4]
are envisaged to be regulated by norms. The notion of a norm is important here
in that member agents of a society [34] must have the capability to reason with
norms and they must be capable of communicating norms to other member
agents. The problem then reduces to resolving the issue of how to develop

1

normative autonomous agents [12] for supporting practical applications based
on artificial societies.

To develop normative agents programmers often rush into implementing the
rules governing an artificial society without properly understanding the sub-
tleties that underlie their specification. Motivated by this observation a number
of researchers, e.g. see [10, 17, 9], are seeking to understand the modalities re-
quired to specify the norms of an artificial society as a separate issue from their
implementation. Deontic concepts such as obligation, prohibition, permission,
rights, power, and entitlement, are currently being scrutinised and analysed in
detailed formal frameworks that have been produced as a result. Much of the
work in this effort, however, can only be used as a guide to implementations, as
it abstracts away from the computational characterisation of the resulting spec-
ifications and, more importantly, from the way these normative concepts are to
be used during the operation of the agent in an artificial social environment.

Motivated by this last observation, this work seeks to complement the spec-
ification effort previously described by presenting a framework that illustrates
how normative concepts, such as obligations and prohibitions, can be used by
an agent while it reasons, reacts, plans, and communicates in the context of an
artificial society. The framework builds upon an existing framework called the
KGP (Knowledge, Goals, Plan) model of agency [19] which we have successfully
implemented in the prototype agent platform PROSOCS [33]. The main aim of
this paper is to show how to extend the KGP model with normative concepts,
thus providing a framework where we can develop agents that can reason about
norms that are expected to govern their own behaviour while pursuing their
own personal goals.

The resulting model makes a number of contributions. It allows the agents
to become aware of the obligations and prohibitions related to their activities
and environment. It allows the programmer to specify different types of agent
behaviour by defining a theory of priorities and preferences whereby agents de-
cide which of their goals (personal or norm-driven) to commit to. In this way the
programmer can design a variety of agent types, for example, socially respon-
sible, socially irresponsible, selfish, opportunistic, and so on. The behaviour of
the agent can be designed to change dynamically depending, for example, on
the environment the agent is situated in, on communicative acts received from
other agents, and the history of its own and other agents’ activities. The ap-
proach also allows the integration of the normative concepts and reasoning with
the rest of the agent’s activities. A distinguishing feature of our approach, that
can be considered as a major advantage, is that the normative rules of the kind
proposed here can be looked at in many different ways: they are executable
specifications, they are directly implementable and, within the declarative and
operational model of the KGP agents, they can force agents to exhibit the ex-
pected behaviour, conformant with their specification.

The paper is structured as follows. In section 2 we motivate the contribution
of the paper by a series of informal examples. We then provide, in section 3, the
required background summarising the main features of KGP agents, including
the two extensions of computational logic it is based on. Then, in section 4, we

2

describe in detail how to extend the current model so that we can accommo-
date normative concepts such as roles, obligations, and prohibitions. Then, in
section 5 we revisit one of the examples of section 2 and illustrate how the new
model deals with it. In section 6 we show how the new model can be used to
design a variety of agent types with different social behaviours. In the final two
sections we discuss the related work and conclude.

2 Some motivating examples

To ground the discussion in the paper we outline here three scenaria that ab-
stract away from practical applications in that only human agents are involved.
The scenaria still illustrate, however, the kind of interactions that may arise
in practical applications amongst an agent’s different types of goals and plans,
including personal and norm-driven ones, and the impact of the agent’s prefer-
ences and behaviour characteristics.

Example 1 Consider an agent John who wishes to upgrade his computer and
to this end plans to buy a new PC at the cost of £500. Suppose also that in
the meantime John parks his car illegally and is sanctioned with a fine of £150.

In our framework the goal of upgrading the computer and the plan of pur-
chasing a new PC are part of the personal goals and plan of John, while paying
the fine for illegally parking a car is part of his social (norm-driven) goals and
plans. John becomes aware of the fine by receiving a message or other form of
input from the environment.

Now suppose that John has only £600 available. Under the circumstances it
cannot fulfill both his personal and his social plans. He needs to make a choice
between them. If he is socially responsible he abandons the purchase of a new
PC and pays the fine instead. In this case John might be able to find another
way of fulfilling his goal of upgrading the computer, for example by purchasing
a new hard disk at a lower cost. If he is socially irresponsible he ignores the fine
and buys a new PC.

Example 2 Suppose our agent John has two personal goals, one of building
an extension to his house, and another of improving his garden. To fulfill the
second goal he decides to plant a large tree which he intends to bring home
in his car. He then notices that the car has broken down and, in reaction, he
decides to rent a van instead. Suppose also that John is aware of the social
norms stating that:

• anyone who intends to build an extension to his house should first inform
the local authority, and

• no one should obstruct his neighbour’s view.

Reflecting on these norms John becomes aware that he should inform the local
authority about his intention to build an extension. He also realises that if he

3

were to plant the large tree he would be in violation of the second social norm.
John could proceed in a number of different ways depending on his priorities by
deciding to:

1. Fulfill all his social obligations, thus informing the local authority about
his proposed extension, and deciding not to plant the large tree and con-
sequently deciding not to rent a van.

2. Ignore all his social obligations, thus not informing the local authority
about the extension, and also renting the van and ultimately planting the
tree.

3. Tread a middle ground, fulfilling the first social obligation, namely the in-
forming of the local authority, which is not too detrimental to his personal
goals, and ignoring the second one, namely not blocking the neighbour’s
view, which would prevent his personal plan.

Example 3 Consider example 2 slightly modified as follows. John wishes to
build an extension to his house and the normative rule related to this activity is
not that he should inform the local authority but that he should seek approval
from it. If John is a responsible agent he will make “seeking the approval from
the local authority” a social (norm-driven) goal for himself in addition to his
(personal) goal of building an extension. He can then proceed to plan for all
his goals in a similar way. For example, to fulfill the goal of seeking approval
from the local authority for his extension he may plan to write a specification
for the building work, get it signed by an authorised architect and then submit
it to the local authority. To fulfill his goal of building the extension he may plan
to get a bank loan, choose a builder and so on, and wherever necessary he will
impose temporal constraints on the actions across all his plans.

3 Background

3.1 Extensions of logic programming for the KGP model

3.1.1 Abductive Logic Programming with constraints

An abductive logic program is a tuple 〈P,A, I〉 where:

• P is a normal logic program, namely a set of rules of the form H ←
L1∧ . . .∧Ln, with H atom, L1, . . . , Ln literals, and n ≥ 0. Literals can be
positive, namely atoms, negative, namely of the form not B, where B is
an atom, or constraint atoms over some given structure < equipped with
a notion of constraint satisfaction |=< (as in constraint logic programming
[15]). All variables in rules are implicitly universally quantified from the
outside.

• A is a set of abducible predicates in the language of P , but not in <. Atoms
whose predicate is abducible are referred to as abducible atoms or simply
as abducibles.

4

• I is a set of integrity constraints, that is, a set of sentences in the language
of P . All the integrity constraints in the KGP model have the implicative
form L1∧ . . .∧Ln ⇒ A1∧ . . .∧Am (n ≥ 0,m > 0) where Li are literals (as
in the case of rules) 1, and Aj are atoms as in the case of rules, but also
possibly including the special atom false. All variables in an integrity
constraint are implicitly universally quantified from the outside, except
for variables occurring only in the head A1∧ . . .∧Am, which are implicitly
existentially quantified with scope the head itself.

Given an abductive logic program 〈P,A, I〉 and a formula (query) Q, which is an
(implicitly existentially quantified) conjunction of literals in the language of the
abductive logic program, the purpose of abduction is to find a (possibly minimal)
set of (ground) abducible atoms Γ which, together with P , “entails” (an appro-
priate ground instantiation of) Q, with respect to some notion of “entailment”
|=LP that the language of P is equipped with, and such that the extension of P
“satisfies” I (see [20] for possible notions of integrity constraint “satisfaction”).
Here, the notion of “entailment” is a combined semantics |=LP (<), as presented
in [15], also taking into account satisfaction of the constraint atoms occurring
in the abductive logic program.

Formally, given a query Q, a set ∆ of (possibly non-ground) abducible atoms,
and a set C of (possibly non-ground) constraints, the pair (∆, C) is an abductive
answer for Q, with respect to an abductive logic program 〈P,A, I〉, iff for all
groundings σ for the variables in Q,∆, C such that σ |=< C, it holds that

(i) P ∪∆σ |=LP (<) Qσ, and

(ii) P ∪∆σ |=LP (<) I.

Here, ∆σ plays the role of Γ in the earlier informal description. Note that, if
the query is simply true, the abducibles in ∆, along with the constraints in C,
guarantee the overall consistency with respect to the integrity constraints given
in I.

Such notion can be extended to take into account an initial set of (possibly
non-ground) abducible atoms ∆0 and an initial set of (possibly non-ground)
constraint atoms C0. In this extension, an abductive answer for Q, with respect
to 〈P,A, I〉, and ∆0, C0 is a pair (∆, C) such that

(i) ∆ ∩∆0 = {}

(ii) C ∩ C0 = {}, and

(iii) (∆ ∪ ∆0, C ∪ C0) is an abductive answer for Q with respect to 〈P,A, I〉
(in the earlier sense).

1If n = 0, then L1, . . . , Ln represents the special atom true.

5

3.1.2 Logic Programming with Priorities

For the purposes of this paper, a logic program with priorities, referred to as T ,
consists of four parts:

(i) a low-level part P , consisting of a logic program; each rule in P is assigned
a name, which is a term; e.g., one such rule could be

n(X) : p(X)← q(X, Y), r(Y)

with name n(X);

(ii) a high-level part H, specifying conditional, dynamic priorities amongst
rules in P ; e.g., one such priority could be

h(X) : m(X) � n(X)← c(X)

to be read: if (some instance of) the condition c(X) holds, then (the
corresponding instance of) the rule named by m(X) should be given higher
priority than (the corresponding instance of) the rule named by n(X). The
rule itself is named h(X);

(iii) an auxiliary part A, defining predicates occurring in the conditions of rules
in P,H and not in the conclusions of any rule in P ;

(iv) a notion of incompatibility which, for our purposes, can be assumed to be
given as a set of rules defining the predicate incompatible, e.g.

incompatible(p(X), p′(X))

to be read: any instance of the literal p(X) is incompatible with the cor-
responding instance of the literal p′(X). We assume that incompatibility
is symmetric, and refer to the set of all incompatibility rules as I.

Any concrete LPP framework is equipped with a notion of entailment, that
we denote by |=pr, defined differently by different approaches to LPP, wrt some
given underlying logic programming semantics |=LP . Intuitively, T |=prα iff α is
the conclusion (wrt |=LP) of a sub-theory of P∪A which is “preferred” wrt H∪A
in T over any other sub-theory of P ∪A that derives a conclusion incompatible
with α (wrt I). For example, in [29, 23, 21], |=pr is defined via argumentation.
The framework of LPP can be usefully extended with constraints in the same
way that CLP extends logic programming: all logic programs with priorities
in this paper are assumed to be written in such an extension. We will assume
that T |=prX iff X is the set of all preferred conclusions from T (in the earlier
sense).

Note that our approach does not depend crucially on the use of the frame-
work of LPP: other frameworks for the declarative specification of preference
policies, e.g. Default Logic with Priorities [7], could be used instead.

3.2 KGP model overview

We summarise the KGP model of agency [19, 6] by focusing on the components
relevant to this paper. We refer the reader to [19, 6] for any additional details.

6

KGP relies upon an internal (or mental) state and a set of reasoning capa-
bilities, supporting planning, temporal reasoning, identification of preconditions
of actions, reactivity, goal decision and a sensing capability. Based on the above
capabilities, the state is operated on by a set of transitions, defining how the
state of the agent changes. Transitions also require, apart from the capabilities,
a set of selection functions, to provide appropriate inputs to them. A cycle
theory then decides which transitions should be applied when, using the output
of the selection functions in order to take this decision.

Internal state. This is a tuple 〈KB, Goals, P lan, TCs〉, where:

• KB describes what the agent knows of itself and the environment and
consists of several modules supporting the different reasoning capabilities,
including

– KBplan, for Planning,

– KBpre, for the Identification of Preconditions of actions,

– KBreact, for Reactivity,

– KBTR, for Temporal Reasoning,

– KBGD, for Goal Decision,

– KB0, for holding the (dynamic) knowledge of the agent about the ex-
ternal world in which it is situated (including past communications),
and perceived through its sensing capability. KB0 is contained in all
other modules of KB.

Syntactically, KBplan, KBTR and KBreact are abductive logic pro-
grams (see [6]), KBGD is a logic program with priorities (see [6]),
and KBpre is a logic program. KB0 contains assertions recording the
actions which have been executed (by the agent or by others) and
their time of execution as well as the properties (i.e. fluents and
their negation) which have been observed, possibly concerning other
agents, and the time of the observation. For example, KB0 of some
agent a may contain assertions executed(park(W129FGC, t), 5), namely
a has parked a car with number plate W129FGC at time t = 5,
observed(b, issue fine(W129FGC, 10), 12), namely a has observed at
time 12 that agent b has issued a fine to car with number plate W129FGC
at time 10, observed(¬parked(W129FGC, t′), 7) , namely a has observed
that car with number plate W129FGC is not parked where it should at
time t′ = 7.

• Goals is a set of properties that the agent wants to achieve, each one
equipped with a time variable. Goals may also be equipped with temporal
constraints (given in the TCs component of the state) binding the time
variable and constraining when the goals are expected to hold. Goals may
be mental or sensing. Both can be observed to hold (or not to hold) via

7

the Sensing capability, updating KB0. In addition, mental goals can be
brought about actively by the agent by its Planning capability and its
actions.

Syntactically, properties are timed fluent literals l[t], where l refers
to a (positive or negative) property that the agent wants to hold
and t is the time of the goal, namely a variable, implicitly existen-
tially quantified within the overall state of the agent. An example is
has driving licence(ag1, t1), indicating that agent ag1 wants to have a
driving license at time t1.

• Plan is a set of actions scheduled in order to satisfy goals. Each is
equipped with a time variable possibly bound by temporal constraints
(given in TCs), similarly to Goals, but constraining when the action
should be executed. Actions are partially ordered, via their temporal
constraints. Actions may be physical, communicative, or sensing.

Syntactically, actions are timed action literals a[t], where a refers to the
operator of the action, and t is the execution time of the action, namely a
variable, implicitly existentially quantified within the overall state of the
agent. An example is pay fine(ag1, t2), indicating that agent ag1 wants
to perform an act of paying a fine at time t2.

• TCs is a set of constraint atoms (referred to as temporal constraints) in
some given underlying constraint language. We assume that the constraint
predicates include <,≤, >,≤,=, 6=. These constraints specify when goals
are to hold and when actions are to be executed, and they are extended
and instantiated as the agent operates. For example, TCs may contain
10 < t1 < 20, t2 < t1.

Within a state, goals in Goals and actions in Plan are organised within two tree
structures, with roots ⊥nr and ⊥r, by associating with each goal and action its
parent, which is either a goal or one of the two roots. Actions have no children.
Actions and goals are referred to as reactive if they belong to the tree with root
⊥r, and non-reactive, if they belong to the tree with root ⊥nr. The children
of the roots are referred to as top-level goals or actions. Top-level goals are
generated by calls to the Goal Decision (with root ⊥nr) or Reactivity (with
root ⊥r) capabilities. Children of goals are introduced by calls to the Planning
capability.

In this paper, we will refer to non-reactive goals and actions as personal, to
distinguish them from social goals and actions that will be introduced to fulfill
social norms. We will also adopt an alternative (and equivalent) representation
of the state of agents, emphasising the different types of goals and actions, via
a tuple 〈KB, GPp, GPr, TCs〉 where GPp is the set of all personal goals and
actions and GPr is the set of all reactive goals and actions in the earlier state
representation. Goals and actions can be distinguished as they are built from
ontologically distinguished sets of fluent and action literals.

8

Reasoning capabilities. These include:

• Goal Decision, which decides new (possibly temporally constrained) top-
level goals in GPp, adapting its own preferences on the basis of changes in
the environment, as recorded in KB0.

• Reactivity, which reacts to perceived changes in the environment, by iden-
tifying new (possibly temporally constrained) top-level goals and/or ac-
tions in GPr on the basis of the contents of GPp and KB0. Typically,
these goals and actions are generated to repair a plan in GPp in the light
of changes in the environment or to respond to communications from other
agents.

• Planning, which generates partial plans for sets of goals. It provides (tem-
porally constrained) sub-goals and actions designed for achieving the input
goals.

• Identification of Preconditions, which identifies the preconditions for ac-
tion execution.

• Temporal Reasoning, represented by |=TR, which reasons about the evolv-
ing environment, and makes predictions about properties (fluents) holding
in the environment, based on the partial information the agent acquires
within KB0.

Sensing capability. This links the agent to its environment, by allowing to
observe that properties hold or do not hold, and that other agents have executed
actions. It also allows agents to receive communication from other agents.

Transitions. The state of an agent evolves by applying transition rules, which
employ capabilities. The transitions include:

• Passive Observation Introduction (POI) changes KB0 by introducing un-
solicited information coming from the environment or communications
received from other agents. It calls the Sensing capability.

• Plan Introduction (PI) changes part of the GPp, GPr and TCs of a state,
according to the output of the Planning capability.

• Goal Introduction (GI) changes the GPp and TCs of a state by replac-
ing GPp with goals that the Goal Decision capability decides to be most
preferred, and by adding any corresponding temporal constraints to TCs.

• Reactivity (RE) changes the GPr and TCs of a state by replacing GPr

with the goals and actions returned by the Reactivity capability, and by
adding any corresponding temporal constraints to TCs.

9

• State Revision (SR) revises GPp and GPr e.g. by dropping goals that have
already been achieved, actions that have already been executed, and goals
and actions that have run out of time. It calls the Temporal Reasoning
capability and also checks satisfaction of the temporal constraints.

• Action Execution (AE) is responsible for executing all types of actions,
thus changing the KB0 part of KB by recording that actions have been
executed. It calls the Sensing capability for the execution of sensing ac-
tions.

Transitions T are represented as

(T)
S

S′
τ

where S is the agent state prior to the transition, τ is the time of application
of the transition, and S′ is the state resulting from applying the transition. We
give here the formal definition of SR as it will be used and extended later in the
paper:

(SR)
〈KB, GPp, GPr, TCs〉
〈KB, GP ′

p, GP ′
r, TCs〉

τ

where GP ′
p ∪ GP ′

r is the biggest subset of GPp ∪ GPr consisting of all items
(goals or actions) X = 〈x[t], Y 〉 such that:

(i) Y ∈ GP ′
p ∪GP ′

r ∪ {⊥nr,⊥r}, and

(ii) there exists a total valuation σ such that σ |=< TCs′ ∧ t > τ , and

(iii) if x[t] is an action literal then it is not the case that executed(x[t], τ ′) ∈
KB0, and

(iv) if x[t] is a fluent literal then there is no total valuation σ such that σ |=
TCs ∧ t ≤ τ and KB |=TR x[t]σ, and

(v) for every sibling Z = 〈x′[t′], Y 〉 of X in GPp ∪ GPr, either Z is a sibling
of X in GP ′

p ∪GP ′
r or, if x′ is a fluent, there is a total evaluation σ such

that σ |= TCs ∧ t′ ≤ τ and KB |=TR x′[t′]σ, and, if x′ is an action,
executed(x′[t′], τ ′) ∈ KB0.

Condition (ii) removes timed-out goals and actions, and (iv) removes goals that
are already achieved, (iii) removes actions that have already been executed,
(v) removes goals and actions whose siblings are already timed out (and thus
deleted, by condition (ii)), and (i) removes actions and goals with ancestors
which are got rid off (recursively).

10

Cycle. The behaviour of an agent is given by the application of transitions in
sequences, repeatedly changing the state of the agent. These sequences are not
determined by fixed cycles of behaviour, as in conventional agent architectures,
but rather by reasoning with cycle theories (see [18]). These are logic programs
with priorities defining preference policies over the order of application of tran-
sitions, which may depend on the environment and the internal state of the
agent. Examples of cycle theories, giving a normal behavioural profile as well
as other profiles, can be found in [32].

The Event Calculus. KBplan, KBreact, KBTR and KBpre are all specified
within the framework of the event calculus (EC) for reasoning about actions,
events and changes [22]. Moreover, KBGD makes use of an EC theory for its
auxiliary part. Finally, EC theories will also be used to define the new features
of N-KGP agents. Here, we give a high-level description of the EC, see [22] for
any further details and [6] for the specific form of EC we are adopting.

In a nutshell, the EC allows to write meta-logic programs which ”talk” about
object-level concepts of fluents, events (that we interpret as action operations),
and time points. The main meta-predicates of the formalism are: holds at(F, T)
(a fluent F holds at a time T), holds at(¬F, T) (the negation ¬F of a fluent F
holds at a time T), clipped(T1, F, T2) (a fluent F is clipped - from holding to not
holding - between times T1 and T2), declipped(T1, F, T2) (a fluent F is declipped
- from not holding to holding - between times T1 and T2), initially(F) (a fluent
F holds from the initial time, say time 0), initially(¬F) (the negation ¬F of a
fluent F holds from the initial time, say time 0), happens(O, T) (an operation
O happens at a time T), initiates(O, T, F) (a fluent F starts to hold after an
operation O at time T) and terminates(O, T, F) (a fluent F ceases to hold after
an operation O at time T). Roughly speaking, the last two predicates represent
the cause-effects links between operations and fluents in the modelled world. We
also use a meta-predicate precondition(O,L) (the fluent or negation of fluent L
is one of the preconditions for the executability of the operation O). Finally, we
use meta-predicates assume happens(O, T) and assume holds(L, T) in order
to model planning and reactivity. Intuitively, an action can be planned for, via
abduction of an assume happens atom (similarly for fluents).

The EC includes axioms to model persistence of fluents and their negation
from the time they are initiated and terminated by events, respectively, from
the initial time (if they hold initially) and from the time they are observed (as
recorded in KB0), unless their value is clipped by other events or observations.
Events can be actions planned for or already executed.

The representation of fluent literals and action literals in the state of KGP
agents is in the following correspondence with EC literals: l[t] corresponds to
assume holds(l, t) and a[t] corresponds to assume happens(a, t).

11

4 N-KGP: the Normative KGP Model

4.1 Motivation

The normative KGP agent model (N-KGP agent model) is to extend the KGP
model to allow the integration of agents in societies. To this end we require
agents first to become aware (possibly partially) of the norms of the society,
then to decide which of these norms are relevant to their particular role in the
society and other current personal and environmental circumstances. Equipped
with this awareness they then have to weigh up their own personal goals against
the obligations and prohibitions that the society imposes on them via the norms,
and make choices according to their preferences.

We would like to model different types of agents, for example responsible
ones who may give higher priority to what the society expects of them compared
with their own personal goals, completely irresponsible ones who would always
disregard the society expectations, and selfish ones who may respect the society’s
expectations and commit to fulfilling their social obligations so long as these do
not hinder them in perusing their own personal goals.

We extend and adapt the KGP model by incorporating into it a new knowl-
edge base to cater for social norms, new capabilities and transitions to allow
agents to make choices based on their preferences and give guidelines for defin-
ing appropriate cycle theories for normative agents.

These modifications to the KGP model allow agents

• to make choices about their personal goals, for example on the basis of
their own profiles and notions of urgency and priority and environmental
factors,

• to be reactive and adaptive to changes in their environment,

• to be able to analyse the norms of their societies to determine how they
apply to them individually based on their roles, environment and history,

• to set themselves goals and constraints on the basis of the norms,

• to maintain a clear representation of their different types of goals and
actions, personal, reactive, social,

• to weigh up their own personal goals and plans against their social goals
and plans and make choices amongst them,

• to integrate their normative reasoning with the rest of their functionali-
ties such as planning for their goals, adapting to their environment and
interacting with other agents.

In the remainder of this section we give details of the normative KGP model.

12

4.2 Normative Concepts in KGP

Our approach in adopting normative concepts (and reasoning) in the KGP
model is motivated by the need for artificial societies of agents that require
an organisation and division of tasks. In this context, we interpret responsi-
bility for tasks of an agent in terms of the roles an agent has been assigned to
play in a social environment. Roles are associated with obligations and prohi-
bitions, used to define what is expected of the agent that plays a role. Rather
than developing or deploying any fully-fledged normative theory, our intention
is to concentrate on a simple theory but explore in detail its interaction with
the existing operations of KGP agents and the provable conformance of (certain
types of) agents to this theory.

Roles are assigned to agents, possibly with associated temporal constraints,
by authorised agents. Agents are equipped with knowledge of their roles and of
information gained through observations in the environment. Agents also have
self-knowledge of their own goals and plans. On the basis of all this information,
agents become aware of their obligations and prohibitions.

4.2.1 Actions and Fluents

In general obligations and prohibitions will be on performing actions or bringing
about fluents. Within obligations and prohibitions we will represent actions as
terms of the form

act(Act,Actor, Parameters).

Act names the action, Actor is the agent to carry out the act, and Parameters
is the set of attributes that further specify the action. For instance, the term:

act(pay fine, ag1,
′′ W129FGC ′′, 60)

represents the action of agent ag1 having to pay a fine of 60 pounds for a car
with registration number W129FGC.

We shall represent fluents within obligations and prohibitions as terms of
the form:

fluent(Fluent, Actor, Parameters).

Fluent is the name of the fluent, Actor is the agent to bring about Fluent, and,
as before, Parameters represents the rest of the attributes describing the Fluent.
For instance, the term:

fluent(has driving licence, ag1,
′′ ST340578KS′′)

represents the fluent that agent ag1 has a driving license with number
ST340578KS.

13

4.2.2 Roles

In our model the agents’ responsibility for tasks and assignment of obligations
and prohibitions is determined by the roles the agents play in their social en-
vironment. Therefore, we incorporate within the KGP model roles assigned to
agents, by using an EC-based representation. We use the fluent:

role(Agent,Role)

to state when a specific Role is assigned to a specific Agent. role/2 fluents
are initiated and terminated by means of event calculus initiates/3 and
terminates/3 predicates. For instance, the addition of the following domain-
specific rule for initiates/3:

initiates(assign(Y,X, t w(W,F, T), T ′, role(X, t w(W,F, T)))

allows us to conclude that after the occurrence of an action of the form

assign(ag1, ag2, t w(chelsea, 9, 17))

ag2 plays the role of traffic warden (t w) in chelsea between times 9 and 17.
Depending on the ontology of an application, we can qualify the assignment of
roles, e.g. by means of a rule such as:

initiates(assign(Y,X, t w(W,F, T), T ′, role(X, t w(W,F, T))←
authorised(act(assign(Y, X, t w(W,F, T), Y), T ′)

which relies upon a notion of “authorisation”. We will not address this notion
further in this paper.

Note that roles of agents might change as time progresses and will be initiated
or terminated as a result of events happening in the social environment in which
an agent is situated.

4.2.3 Obligations

We represent obligations as atoms of the form:

obliged(act(Act,Actor, Parameters), T)
obliged(fluent(Fluent, Actor, Parameters), T)

We read atoms of the first kind as follows: there is an obligation on the agent Ac-
tor to bring about the action specified by Act (with the appropriate Parameters)
at a time T. This time may be required to satisfy some temporal constraints
specified in TCs. We read atoms of the second kind as follows: there is an
obligation on the agent Actor to bring about the fluent Fluent to hold at a time
T (which may also need to satisfy some temporal constraints).

For example, an agent a may be obliged to pay a fine, as follows:

14

obliged(act(pay fine, a,W129FGC), t)

where t < 20 might belong to TCs.

4.2.4 Prohibitions

Prohibitions can be specified in a similar way to obligations. We use atoms of
the form:

prohibited(act(Act,Actor, Parameters), T, TC)
prohibited(fluent(Fluent, Actor, Parameters), T, TC)

to indicate that Actor is prohibited from performing Act (with the appropriate
Parameters) at all times T within the time constraints specified in TC, and
Actor is prohibited from bringing about Fluent (with the appropriate Param-
eters) to hold at all times T within time constraints TC, respectively.

For example, an agent a may be prohibited to park in the city centre between
10 and 18, as follows:

prohibited(act(park, a, city centre), T, 10 < T < 17)

In the remainder of the paper, for simplicity, we will drop the Parameters
argument from obliged and prohibited atoms.

4.3 State of N-KGP Agents

The state of N-KGP agents at any given time is represented as a tuple of the
form: 〈KB, GPp, GPr, GPO, GPA, TCs〉, where

• KB consists of all the knowledge bases of KGP agents, namely KBplan,
KBreact, KBpre, KBGD, KBTR and KB0, together with

– KBsoc, to cater for the normative reasoning which determines the
social goals and actions of the agent,

– KBrev, to cater for the overall state revision reasoning, resolving
conflicts amongst goals and actions of different types, belonging to
different parts of the state.

From now on, we will refer to KBGD as KBPGD, as it allows to reason
about personal goals and actions.

• GPp and GPr are as before, for the KGP agent model

• GPO has a the same tree structure as GPp and GPr, but with a root ⊥O.
As in the KGP model, the nodes in GPO may be goals or actions. GPO
contains the social obligations of the agent and any plans (actions and
sub-goals) the agent may have generated for fulfilling them.

15

• GPA is a set of assertions, specifying the actions and fluents to be avoided,
and when they should be avoided. Syntactically, these are of the form
avoid(x[all], TC), where x[all] is a universally quantified timed fluent lit-
eral or timed action literal, with the time all constrained by TC. Logically,
these assertions can be seen as representing integrity constraints in abduc-
tive logic programming, of the form x[T]∧TC ′ ⇒ false (with T implicitly
universally quantified over the integrity constraint), where TC ′ is obtained
from TC by replacing all occurrences of all by T . In effect GPA contains
(a representation of) the social prohibitions of the agent. The constant all
is used in order to represent universally quantified variables in abductive
answers (with respect to KBsoc, see below in section 4.3.1).

• TCs is as before, for the KGP model.

Below we give details of KBsoc and KBrev.

4.3.1 KBsoc

KBsoc is an abductive logic program (see section 3.1.1) representing social
norms.

The logic program in KBsoc is the one in KBplan, possibly extended with
some auxiliary definitions.

The integrity constraints in KBsoc are those in KBplan plus instances of the
integrity constraints of the general forms:

holds at(role(Actor,Role), T) ∧ Conditions(Actor, T)
⇒ obliged(act(Act,Actor), T ′) ∧ TC

holds at(role(Actor,Role), T) ∧ Conditions(Actor, T)
⇒ obliged(fluent(Fluent, Actor), T ′) ∧ TC

holds at(role(Actor,Role), T) ∧ Conditions(Actor, T)
⇒ prohibited(act(Act,Actor), all, TC)

holds at(role(Actor,Role), T) ∧ Conditions(Actor, T)
⇒ prohibited(fluent(Fluent, Actor), all, TC)

Here, Conditions may be any conjunction of literals in the language of KBplan.
The first two rules above can be read as follows: if an Actor is playing a Role
at time T and the Conditions hold in the knowledge base of the Actor at T ,
the Actor must fulfill the obligation of making the Act happen at T ′ or bring
about the property specified by Fluent (with the appropriate Parameters) at T ′,
respectively, with T ′ satisfying the temporal constraints TC. The last two rules
are read as follows: if an Actor is playing a Role at time T and the Conditions
hold in the knowledge base of the Actor at T , the Actor is prohibited from

16

performing the Act or bringing about the property specified by Fluent (with the
appropriate Parameters) at all times satisfying the temporal constraints TC.

Furthermore, the set of integrity constraints in KBsoc include:

prohibited(fluent(Fluent, Actor), all, TC) ∧
obliged(fluent(Fluent, Actor), T) ∧ TC[all/T]
⇒ false

prohibited(act(Act,Actor), all, TC) ∧
obliged(act(Act,Actor), T) ∧ TC[all/T]
⇒ false

where TC[all/T] stands for TC where all occurrences of all are replaced by
T2. These constraints guarantee that the set of obligations and prohibitions
generated by the |=sGD capability is “consistent”. It basically guarantees that
the underlying theory of normative reasoning is coherent.

Atoms of the form obliged(X, T) and prohibited(X, all, TC) are the only
abducibles in KBsoc.

Note that in defining prohibitions we have somewhat extended the syntax of
abductive logic programming by using the constant all to represent universally
quantified variables in the head of integrity constraints defining prohibitions.

Concrete examples of integrity constraints in KBsoc are:

holds at(role(X, t w(W,F, T), T ′) ∧
observed(parked(C,W), T ′) ∧
F < T ′ < T

⇒ obliged(act(issue fine(C), X), T ′ + 1)

holds at(working day, T) ∧
holds at(role(X, driver(C)), T) ∧
holds at(in(W, city centre), T)
⇒ prohibited(act(park(C,W), X), all, 10 < all < 17)

The parameter Actor inside the functors act, fluent and role allow the agent to
reason about other agents’ obligations and prohibitions. This information can
then, in turn, be exploited in the agent’s own plans and activities. The syntax
of act, fluent and role can be made even richer to represent, for example, an
obligation or commitment of one agent towards another to perform an action
or to establish a fluent. Further considerations on these issues, however, are
outside the scope of this paper. Therefore, henceforth, for ease of reading, we

17

assume that the parameter Actor is always instantiated to the name of the agent
itself and thus drop it from inside the functors act, fluent and role.

4.3.2 KBrev

KBrev is a logic program with priorities (as defined in section 3.1.2) repre-
senting the agent’s preference policy towards revising incompatible personal,
reactive, and social goals and actions. Here we give some examples of the con-
tents of KBrev, and in particular definitions of the preference ordering � in the
high-level part and of the incompatible predicate. KBrev will also contain an
appropriate auxiliary part including the logic program in KBplan.

A1 � A2← A1 ∈ GPO ∧A2 ∈ GPp

This rule, which for example could be in the KBsoc of a responsible agent, says
that any social action (in the tree GPO) has higher priority than any personal
action (in the tree GPp).

avoid(A[all], TC) � A[T] ← TC[all/T]

This rule, which again could be in the KBsoc of a responsible agent, says that
any action has lower priority than the record that it is to be avoided (as prohib-
ited). Note that avoid is used to represent within the state of an N-KGP agent
actions and goals that are prohibited, as we will see later on in sections 4.4.1
and 4.5.1.

incompatible(A1[T1], A2[T2]) ← funds(A1,M1) ∧ funds(A2,M2) ∧
holds at(balance(M), T) ∧ earlier(T1, T2, T3) ∧
T < T3 ∧M1 + M2 > M

This rule states that two actions A1 and A2 at respective times T1 and T2 are
incompatible if they, respectively, need funds to the value of M1 and M2 and
before the earlier action the agent does not have enough funds to cover them.

incompatible(A1[T], A2[T])← not concurrently executable(A1, A2)

This rule states that two actions A1 and A2 are incompatible if they are to be
executed at the same time and that is not possible.

incompatible(p[T], not p[T])

This states that a goal and its negation are incompatible.

18

incompatible(A[T], avoid(A[all], TC)) ← TC[all/T]

This states that the record that an action A is to be avoided is incompatible
with A.

incompatible(A[T], avoid(F [all], TC)) ← initiates(A, T, F) ∧ T ≤ T ′ ∧
TC[all/T ′] ∧ not clipped(T, F, T ′)

This states that an action A and the prohibition of a fluent F are incompatible
if the action establishes the fluent at the time it is prohibited.

4.4 New Capabilities of N-KGP agents

In addition to the reasoning capabilities and the sensing capability of the original
KGP agents, N-KGP agents have the following reasoning capabilities:

• Social Decision of Goal/Action/Avoid assertions (|=sGD)

• State Revision (|=rev)

4.4.1 |=sGD capability

Informally this capability takes as input the current state of the agent and re-
turns as output all the social obligations and prohibitions (with their associated
temporal constraints) that are applicable to the current state of the agent. The
capability computes this output by performing abductive reasoning to analyse
the normative rules in the KBsoc of the agent in the context of the agent’s state.

Formally: given a state 〈KB, GPp, GPr, GPO, GPA, TCs〉 and a time instant
τ , 〈KB, GPp, GPr, GPO, GPA, TCs〉 |=sGD GP,As, C iff

• (∆, C) is an abductive answer for true wrt KBsoc∪{time now(τ)} ∪GP0

and ({}, C0) where

– GP0 =
⋃
〈a[t′], 〉∈GPp∪GPr

{assume happens(a, t′)}∪⋃
〈l′[t′], 〉∈GPp∪GPr

{assume holds(l′, t′)}
– C0 = TCs ∧ Σ

• GP = {x[t] | obliged(act(x), t) ∈ ∆ or obliged(fluent(x), t) ∈ ∆}

• As = {avoid(x[all], Y) | prohibited(act(x), all, Y) ∈ ∆ or
prohibited(fluent(x), all, Y) ∈ ∆}

Given a state 〈KB, GPp, GPr, GPO, GPA, TCs〉 and a time instant τ ,
〈KB, GPp, GPr, GPO, GPA, TCs〉 |=sGD ⊥ iff there exists no abductive answer
for true wrt KBsoc∪{time now(τ)} ∪GP0 and ({}, C0) as defined earlier.

Note that the predicate time now belongs to the language of KBplan and
thus KBsoc, and it can occur in the Conditions of normative rules.

19

4.4.2 |=rev capability

This is the capability that weighs up the different types (personal, reactive,
social) of the agent’s goals and actions, and determines, according to the current
state of the agent and the dynamic preferences of the agent as specified in its
KBrev, which actions and goals the agent will commit to.

Formally: given a state 〈KB, GPp, GPr, GPO, GPA, TCs〉 and a time instant
τ , 〈KB, GPp, GPr, GPO, GPA, TCs〉 |=rev GP,As iff

• KBrev∪{time now(τ)} |=pr X

• GP = X \ {avoid(x[T], Y)|avoid(x[T], Y) ∈ X}

• As = {avoid(x[T], Y)|avoid(x[T], Y) ∈ X}

Intuitively, X consists of the set of all preferred goals and actions in GPp, GPr,
GPO in the given state, as well as goals and actions to be avoided, from GPA
in the given state.

4.5 New Transitions of N-KGP agents

N-KGP agents are equipped with all transitions of KGP-agents, but have a
revised form of State Revision, that we refer to as SR+, and an additional
transition sGI, for the introduction of social goals, actions, and actions and
goals to be avoided. These are detailed below.

4.5.1 The sGI transition

Informally this transition updates the agent’s state by updating the part (GPO,
GPA) related the agent’s social goals and actions. It obtains the required infor-
mation about how the state is to be updated from the |=sGD capability.

Formally:

(sGI)
〈KB, GPp, GPr, GPO, GPA, TCs〉
〈KB, GPp, GPr, GP ′

O, GP ′
A, TCs′〉

τ

where 〈KB, GPp, GPr, GPO, GPA, TCs〉 |=sGD GP,As, C and

• GP ′
O = {〈x[t],⊥O〉|x[t] ∈ GP},

• GP ′
A = As,

• TCs′ = TCs ∪ C,

or 〈KB, GPp, GPr, GPO, GPA, TCs〉 |=sGD ⊥ and

• GP ′
O = GPO,

• GP ′
A = GPA,

• TCs′ = TCs.

20

Note that, for ease of presentation, in the case in which the underlying |=sGD

capability is successful, we are assuming that the transition completely rewrites
GPO and GPA in the original state. This is obviously wasteful as, in case
some goals and actions (to be aimed for or avoided) remain the same, any prior
planning effort for them is lost.

4.5.2 The SR+ transition

Informally this transition revises the agent’s state by revising all types (personal,
reactive, social) of the agent’s goals and actions and the record of what the
agent should socially avoid. It ensures that the resulting state does not contain
incompatible goals and or actions. It also ensures that the state does not contain
unnecessary or unachievable goals, or unnecessary or unexecutable actions. In
effect it revises the agent’s commitments by deleting from the state:

• all goals and actions that have low priority for the agent according to its
preferences, and

• all goals and actions that are timed out, and

• all goals and actions that are no longer necessary, because they have been
achieved or executed respectively, or they are children or siblings of goals
or actions that have low priority or are no longer necessary or are timed
out.

Formally:

(SR+)
〈KB, GPp, GPr, GPO, GPA, TCs〉
〈KB, GP ′

p, GP ′
r, GP ′

O, GP ′
A, TCs〉

τ

where 〈KB, GPp, GPr, GPO, GPA, TCs〉|=revGP,As, and

• GP ′
A = GPA ∩ As

• GP ′
p ∪GP ′

r ∪GP ′
O is the biggest subset of GPp ∪GPr ∪GPO consisting of

all items (goals or actions) X = 〈x[t], Y 〉 such that:

(i) Y ∈ GP ′
p ∪GP ′

r ∪ GP ′
O ∪ {⊥nr,⊥r,⊥O}, and

(ii)-(v) as for SR in the KGP model (see section 3.2)

(vi) X ∈ GP .

4.6 Normal Cycle Theory of N-KGP agents

The normal cycle theory of N-KGP agents needs to guarantee that certain high-
level constraints are satisfied, and in particular that

• the transition AE is executed only after SR+ has been executed

• the transition PI is executed only after SR+ has been executed

21

• GI (introducing personal goals), RE (introducing reactive goals and ac-
tions) and sGI (introducing social goals and actions as well as goals and
actions to be avoided) are executed in sequence, in this order, with no PI
or AE interrupting the sequence.

These constraints on the order of transitions to be executed by N-KGP agents
can be achieved by extending the normal cycle theory for ordinary KGP agents
given in [32]. They ensure that:

• the agent does not spend time unnecessarily planning for low priority goals
and executing low priority actions,

• when it generates its social goals and actions, the agent takes into account
an up-to-date view of its personal and reactive goals and actions.

5 An Example

In this section we illustrate the use of the proposed formalisation of normative
concepts for example 1 discussed in section 2. To formulate this example we
assume that the cycle theory of agent John first selects the GI transition, gen-
erating the goal upgraded computer(t), with t possibly constrained. This goal
is planned for by calling the PI transition and using appropriate definitions for
the EC initiates and terminates meta-predicates in KBplan, e.g.

initiates(buy(PC), T, upgraded computer)←
holds at(pc(PC), T)

initiates(buy(HD), T, upgraded computer)←
holds at(hard drive(PC), T) ∧ holds at(have(PC), T) ∧
holds at(compatible(HD, PC), T) ∧
holds at(pc(PC), T) ∧ holds at(hard drive(HD), T)

and assume pc is known to be a PC. Assume PI introduces in the state
a plan buy(pc) for the initial goal. Then, GPp would consist of {G =
〈upgraded computer(t),⊥nr〉, 〈buy(pc), G〉}.

Suppose the cycle theory next selects the POI transition, adding to KB0

observed(issued fine(′′W129FGC ′′,£150), 11)

and then sGI. Assume that KBsoc contains the following rule:

holds at(role(owner(C)), T) ∧
observed(issued fine(C,A), T)
⇒ obliged(act(pay fine,A), T ′) ∧ T ′ = T + 5

22

Then, sGI will introduce a social action into GPO, which will become
{〈pay fine(£150, t′),⊥O〉}.

If KBrev contains the rules given in section 4.3.2, and assuming that John
only has £600 and that the pc costs £500, there is a conflict between personal
and social goals, and, assuming John is responsible (as in section 4.3.2), the
SR+ transition would eliminate the plan for the original personal goal G from
GPp.

Then, PI could generate the alternative plan to buy a new hard disk.

6 N-KGP Agent Varieties

The KGP model allowed us to design heterogeneous agents with different profiles
of behaviour and which could behave differently under different circumstances.
This was enabled in the KGP model by the use of cycle theories [18, 32] that
allowed the designer to specify dynamic preferences amongst the transitions. For
example, punctual agents can be specified, preferring to execute actions whose
times were running out in preference to their other activities. Also, focussed
agents can be specified, preferring to focus on achieving one goal at a time thus
maximising their chances of achieving at least some of their goals when it was
not possible for them to achieve all of them.

The N-KGP model inherits this design advantage and broadens its scope
by allowing us, in addition, to specify a variety of agents who differ in their
social behaviours. Many different varieties can be captured by formalising ap-
propriate rules in the KBrev of agents. These rules can be designed so that the
behaviour of the agent changes as the agent evolves and progressively perceives
its environment and the other agents.

Let us call a Socially Responsible agent one which commits to fulfilling all
its social obligations while avoiding its prohibitions (provided the two are con-
sistent). For such an agent its KBrev will contain the rules:

X1 � X2← X1 ∈ GPO ∧X2 ∈ GPp

X1 � X2← X1 ∈ GPO ∧X2 ∈ GPr

avoid(X[all], TC) � X[T]← TC[all/T]

Let us call a Selfish agent one that respects its social obligations and prohibitions
only when they do not interfere with its own personal and reactive goals and
actions. Such an agent will have in its KBrev the rules:

X1 � X2← X1 ∈ GPp ∧X2 ∈ GPO

X1 � X2← X1 ∈ GPr ∧X2 ∈ GPO

X[T] � avoid(X[all], TC)← TC[all/T]

A completely Socially Irresponsible agent, namely one which completely dis-
regards any social obligations and prohibitions, is very easy to capture. This

23

can be done, for example, by giving the agent an empty knowledge base for its
KBsoc module of KB.

The rules in KBrev can be enriched by additional conditions. For example,
following [25, 27, 26, 24], we can attach a utility value to each action of the
agent and the relation � can take such utility values into account. Also, again
following the approach of [25, 27, 26, 24], it is straightforward to associate with
each obligation a reward for fulfilling it and with each prohibition a sanction for
breaking it and use these in the definition of �.

7 Related Work

Computational logic approaches to specify the rules of the interaction amongst
social agents is an active subject of research. The existing society model [2]
of PROSOCS, for example, is concerned with the specification of public pro-
tocols for communicating agents. That model provides a general language for
specifying agent-protocols using the notion of expectations as well as a tool that
supports verification of compliance for these protocols. Our work presented here
seeks to complement this by allowing agents to become aware of the society’s
norms and analyse and reason with them according to their own individual cir-
cumstances, as normally happens in human societies and would be useful to
incorporate in artificial societies.

Kakas et. al [1] also describe a modification of the KGP model that allows
preference policies in some of the knowledge components of the agent. They
concentrate primarily on the planning component and a new component, not
unlike reactivity in the KGP model, which they call the negotiation component.
This latter component caters for negotiation in a 2-agent setting. They propose
logic programming with priorities [30] for the preference reasoning, but do not
give much detail on, for example, how this is used to choose amongst multiple
plans. We share with them the aim of incorporating preference policies in various
components of the agent model, however one of our primary aims in our work
is to extend the KGP model to integrate social norms and normative reasoning
within the agent model.

The work described in [5] is also based on computational logic and consists
of a theoretical framework for providing executable specifications of particular
kinds of multi-agent systems, called open computational societies. Three key
components are introduced: a social state, social roles, and social constraints.
The specification of these concepts is based on and motivated by the study of
legal and social systems, and a representation of deontic concepts in a version
of the event calculus is presented.

Our framework differs from that of [5] in that we focus on how to reason
about social constraints and roles within a single agent using an abductive in-
terpretation of the event calculus. In other words, we do not take an abstract
“bird’s eye view” of the interaction between agents but a concrete “agent’s
view”, trying to interpret social constraints from the standpoint of a single
agent (using the agent architecture resulting from the KGP model) and further

24

showing how such constraints can be used during agent deliberation. The ad-
vantage of using KGP is that we inherit all the existing reasoning tools and
proof procedures supported by the model.

The IMPACT system [3] incorporates obligations and other deontic notions
such as permission and prohibition. In common with us they use abductive
logic programs as the representation language. But IMPACT incorporates a
more extensive theory of deontic concepts, as well as rules for allowing the
utilisation of legacy systems. The KGP model, and its extension described
here, have different aims compared to IMPACT. We aim at building agents
that can plan partially, interleave planning, acting and observations, weigh up
their social goals against the personal ones, and use flexible cycle theories that
can be designed to provide specific profiles.

Our work shares some of the objectives of Lopez et al (see for instance
[24, 26, 25, 27]). Part of their work, like ours concerns the modelling of how
agents weigh up their social obligations and personal goals to decide their social
behaviour. They base their work on the SMART agent model of [13] and specify
the extensions, including norms and normative multi-agent systems using the
specification language Z.

They introduce a broad range of concepts, such as motivation, punishment,
reward, and give brief Z specifications. Like us they use a form of preferences
on goals which they call importance values, which are associations of numerical
values to goals on the basis of the agent’s motivation. They aim at modelling
agents which evaluate the positive and negative effects of norms on the achieve-
ment of their private goals in order to decide whether or not to join a society
and whether or not to adopt the norms of the society after joining.

Our work is less broad in scope than theirs but we go deeper in the specifica-
tion of norms and their integration with the capabilities of the KGP agents. Our
agents reason with abductive logic programs and the event calculus to decide
their roles in society and accordingly their obligations and prohibitions. They
then make decisions about whether or not to adopt these amongst their goals in
a system that fully integrates norm adoption with planning, temporal reasoning,
reactivity and adaptation to the environment sensed through observations and
agent-to-agent interaction.

The BOID architecture presented in [8] extends the well known BDI model
[31] with obligations, thus giving rise to four main components in representing
an agent: beliefs, obligations, intentions and desires. The idea of BOID is to
find ways of resolving amongst these components. In order to do so they define
agent types including some well known types in agent theories such as realistic,
selfish, social and simple minded agents. The agent types differ in that they give
different priorities to the rules for each of the four components. For instance,
the simple minded agent gives higher priority to intentions, compared to desires
and obligations, whereas a social agent gives higher priority to obligations than
desires. They use priorities with propositional logic formulae to specify the four
components and the agent types.

What we have in common with BOID is that we want to extend our model
with the addition of obligations. The existing KGP model already resolves some

25

of the conflicts that they address. For example, if there is a conflict between
a belief and a prior intention, which means that an intended action can no
longer be executed due to the changes in the environment, the KGP agent will
notice this and will give higher priority to the belief than the prior intention,
allowing the agent in effect to retract the intended action and, time permitting,
to replan for its goals. The KGP model also includes a notion of priority used in
the goal decision capability and the cycle theory that controls the behaviour of
the agent. The N-KGP model extends the notion of priorities by incorporating
them amongst different types of goals and actions.

One of the aims of the KGP model and the extension discussed in this pa-
per, and one of the differences with the work of [8], is to allow the interleaving
of reasoning about obligations, planning to achieve them and other goals and
recording and utilising observations. This makes our work closer to the more
recent work on BOID, see for instance [11], by providing an executable specifi-
cation of the obligations in an abductive logic programming setting.

8 Concluding Remarks

We have shown how to extend the logical model of agency, known as the KGP
model, to support agents with normative concepts. By using obligations and
prohibitions as an example, the proposed framework has shown how to specify
an agent that can reason using normative concepts and combine them with its
own personal goals in order to plan, adapt to its environment and decide which
actions to perform next.

Unlike approaches that are based on a monolithic tool for checking social
interactions, one advantage of our work is that obligations and prohibitions can
be represented and utilised within individual social agents, thus making the
extended model suitable for building multi-agent systems applications whose
organisation is based on artificial and open societies of agents.

This work opens up many promising areas of future work. These include
incorporation of other norm-related concepts, such as permissions, rewards and
sanctions, and generally richer normative theories, and implementation of the
extended model in the PROSOCS platform to experiment with concrete appli-
cations.

Acknowledgments

We are grateful to the anonymous referees, as well as to all participants of
NorMAS 2005, for useful comments on an earlier version of this paper.

References

[1] N. Demetriou A.C. Kakas, P. Torroni. Agent planning, negotiation and
control of operation. In European Conference on Artificial Intelligence

26

(ECAI04), 2004.

[2] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola
Mello, and Paolo Torroni. Compliance verification of agent interaction:
a logic-based tool. In Robert Trappl, editor, Proceedings of the 17th Eu-
ropean Meeting on Cybernetics and Systems Research, Vol. II, Symposium
“From Agent Theory to Agent Implementation” (AT2AI-4), pages 570–575,
Vienna, Austria, April 13-16 2004. Austrian Society for Cybernetic Studies.

[3] K. A. Arisha, F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and
S. Kraus. IMPACT: a Platform for Collaborating Agents. IEEE Intel-
ligent Systems, 14(2):64–72, March/April 1999.

[4] A. Artikis and J. Pitt. A formal model of open agent societies. In J. Müller,
E. Andre, S. Sen, and C. Frasson, editors, Proceedings of Conference on
Autonomous Agents (AA), pages 192–193. ACM Press, 2001.

[5] A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computa-
tional societies. In C. Castelfranchi and L. Johnson, editors, Proceedings of
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 1053–1062. ACM Press, 2002.

[6] A. Bracciali, N. Demetriou, U. Endriss, A. Kakas, W. Lu, P. Mancar-
ella, F. Sadri, K. Stathis, G. Terreni, and F. Toni. The KGP Model for
Global Computing: Computational Model and Prototype implementation.
In Global Computing, LNCS. Springer-Verlag, 2005.

[7] G. Brewka. Reasoning with priorities in default logic. In Proceedings of
AAAI-94, pp. 940-945, 1994.

[8] J. Broersen, M. Dastani, J. Hulstijn, Z. Huang, and L. van der Torre. The
BOID architecture: conflicts between beliefs, obligations, intentions and de-
sires. In Jörg P. Müller, Elisabeth Andre, Sandip Sen, and Claude Frasson,
editors, Proceedings of the Fifth International Conference on Autonomous
Agents, pages 9–16, Montreal, Canada, 2001. ACM Press.

[9] C. Carabelea, O. Boissier, and C. Castelfranchi. Using social power to
enable agents to reason about being part of a group. In Pre-proceedings of
ESAW’04, Toulouse, October 2004.

[10] C. Castelfranchi, F. Dignum, C. M. Jonker, and J. Treur. Deliberative
normative agents: Principles and architecture. In Agent Theories, Archi-
tectures, and Languages, pages 364–378, 1999.

[11] M. Dastani and L. van der Torre. Programming boid agents: a deliberation
language for conflicts between mental attitudes and plans. In Proceedings
of the Third International Joint Conference on Autonomous Agents and
Multi Agent Systems (AAMAS’04), 2004.

27

[12] F. Dignum. Autonomous agents with norms. Artificial Intelligence and
Law, 7(1):69–79, 1999.

[13] M. d’Inverno and M. Luck. Understanding agent systems. Springer-Verlag,
2nd edition, 2003.

[14] Michael N. Huhns and Munindar P. Singh, editors. Readings in Agents.
Morgan Kaufmann, San Francisco, CA, USA, 1998.

[15] J. Jaffar and M.J. Maher. Constraint logic programming: a survey. Journal
of Logic Programming, 19-20:503–582, 1994.

[16] A.J.I. Jones and M.J. Sergot. On the characterisation of law and com-
puter systems: the normative systems perspective, 1993. Deontic Logic in
Computer Science: Normative System Specification. John Wiley and Sons,
Chicester (1993) 275–307.

[17] A.J.I. Jones and M.J. Sergot. A formal characterisation of institutionalised
power. Journal of the IGPL, 4(3):429–445, June 1996.

[18] A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. Declarative
agent control. In Leite J. and Torroni P., editors, Proceedings CLIMA’04,
5th International Workshop on Computational Logic in Multi-Agent Sys-
tems, Lisbon, Portugal, Sep. 2004.

[19] A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model
of agency. In European Conference on Artificial Intelligence (ECAI04),
pages 33–39, 2004.

[20] A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic
programming. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, edi-
tors, Handbook of Logic in Artificial Intelligence and Logic Programming,
volume 5, pages 235–324. Oxford University Press, 1998.

[21] A. C. Kakas and P. Moraitis. Argumentation based decision making for
autonomous agents. In J. S. Rosenschein, T. Sandholm, M. Wooldridge,
and M. Yokoo, editors, AAMAS 2003, pages 883–890, Melbourne, Victoria,
July 14–18 2003. ACM.

[22] R. A. Kowalski and M. Sergot. A logic-based calculus of events. New
Generation Computing, 4(1):67–95, 1986.

[23] R.A. Kowalski and F. Toni. Abstract argumentation. Artificial Intelligence
and Law Journal, Special Issue on Logical Models of Argumentation, 4:275–
296, 1996.

[24] F. Lopez y Lopez and M. Luck. Towards a model of the dynamics of
normative multi-agent systems. In International workshop on Regulated
agent based social systems: theories and applications (RASTA ’02), pages
175–193, 2002.

28

[25] F. Lopez y Lopez and M. Luck. A model of normative multi-agent systems
and dynamic relationships. In M. Paolucci G. Lindemann, D. Moldt, editor,
Regulated agent-based social systems, Lecture notes in AI, 2934, pages 259–
280. Springer, 2004.

[26] F. Lopez y Lopez, M. Luck, and M. d’Inverno. Constraining autonomy
through norms. In Proceedings of the 1st Conference on Autonomous Agents
and Multiagent Systems (AAMAS’01), pages 674–681, 2002.

[27] F. Lopez y Lopez, M. Luck, and M d’Inverno. Normative agent reasoning
in dynamic societies. In Proceedings of the 3rd Conference on Autonomous
Agents and Multiagent Systems (AAMAS’04), pages 259–280, New York,
2004.

[28] Julian A. Padget, editor. Collaboration between human and Artificial So-
cieties: Coordination and Agent-based Distributed Computing. Springer,
LNAI 1624, 2001.

[29] H. Prakken and G. Sartor. A system for defeasible argumentation, with
defeasible priorities. In Proc. International Conference on Formal and Ap-
plied Practical Reasoning, volume 1085 of LNAI, pages 510–524. Springer
Verlag, 1996.

[30] Henry Prakken and Giovanni Sartor. Argument-based extended logic pro-
gramming with defeasible priorities. Journal of Applied Non-Classical Log-
ics, 7(1), 1997.

[31] A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In
Proceedings of the First Intl. Conference on Multiagent Systems, San Fran-
cisco, 1995.

[32] F. Sadri and F. Toni. Profiles of behaviour for logic-based agents. In
Proceedings of CLIMA VI, 2005.

[33] K. Stathis, A. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Bracciali.
PROSOCS: a platform for programming software agents in computational
logic. In J. Müller and P. Petta, editors, Proceedings of the Fourth Interna-
tional Symposium “From Agent Theory to Agent Implementation”, Vienna,
Austria, April 13-16 2004.

[34] F. Toni and K. Stathis. Access-as-you-need: a computational logic frame-
work for flexible resource access in artificial societies. In Proceedings of
the Third International Workshop on Engineering Societies in the Agents
World (ESAW’02), Lecture Notes in Artificial Intelligence. Springer-Verlag,
2002.

29

