
REVIEWS

Recent genomic technologies have resulted in increasingly
more detailed descriptions of signalling mechanisms,
which have generated reconstructions of ever-larger
signalling networks. Such reconstructions will enable a
systemic understanding of signalling network func-
tion, which is crucial for studying diseases as diverse as
asthma and cancer1. Although an increasing number of
databases provide invaluable information for biological
research2, the characterization of properties that arise
from whole-cell function requires integrated, mathe-
matical descriptions of the relationships between dif-
ferent cellular components3,4. A NETWORK RECONSTRUCTION

includes a chemically accurate representation of all of
the biochemical events that are occurring within a
defined signalling network, and incorporates the inter-
connectivity and functional relationships that are
inferred from experimental data. Network reconstruc-
tions provide the framework for the application of
mathematical methods that can quantitatively describe
the properties of signalling networks.

Cellular signalling networks operate over several
ORDERS OF MAGNITUDE in spatio-temporal scales. The differ-
ences in scale are readily evident in three popular exam-
ples of AUTOCRINE, PARACRINE and ENDOCRINE signalling
events. In the first example, HELPER T CELLS secrete inter-
leukin-2, which, in turn, binds to receptors on the plasma
membrane of these secreting cells to stimulate cell prolif-
eration. In the second example, helper T cells in a lymph
node secrete interleukin-2, which binds to receptors on

the surface of neighbouring B cells and induces cell 
differentiation. Third, differentiated B cells secrete anti-
bodies, which bind to the antigens on the surface of
specific bacteria throughout the body; this eventually
results in PHAGOCYTOSIS of the antibody-bound bacteria.

These three examples involve both extracellular and
intracellular signalling mechanisms. The endpoints of
signalling events include quick responses (<10–1 sec-
onds), such as protein modifications and changes in Ca2+

concentrations, as well as slow responses (from minutes
to hours), such as transcriptional regulation, cell migra-
tion, cell-cycle control, cell proliferation and apoptosis.

A systematic approach to the reconstruction and
mathematical analysis of large-scale signalling networks
requires the integration of several events that happen at
diverse spatio-temporal scales4–6. The large number of
components, the degree of interconnectivity, the differ-
ences in spatio-temporal scales, and the complex control
of signalling networks are becoming evident in the inte-
grated genomic and proteomic analyses that are emerg-
ing7.Whole-network analyses are necessary to elucidate
the global properties amidst the complexity of signalling
systems. In this review, estimates of orders of magnitude
in human cellular signalling networks are discussed and
then issues that are associated with the reconstruction
of such networks are presented. A brief survey of exist-
ing and developing structural and dynamic analyses of
signalling networks is also included. Examples are pro-
vided from immune-response cells and their associated
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NETWORK RECONSTRUCTION 

The process of integrating
different data sources to create a
representation of the chemical
events that underlie a
biochemical reaction network.

ORDER OF MAGNITUDE 

A simple, quantitative estimate
of a parameter.

AUTOCRINE 

Describing, or relating to, a cell
that produces the ligands by
which it is activated.

PARACRINE 

Describing, or relating to, a
regulatory cell that secretes an
agonist into intercellular spaces
from which it diffuses to a target
cell other than the one that
produces it.

ENDOCRINE 

Describing, or relating to, a
gland or group of cells that
makes hormones and secretes
them into the blood, lymph or
intercellular fluid.

HELPER T CELL 

A T cell that functions as an
inducer of the effector cells for
humoral and cell-mediated
immunity. These cells recognize
and bind to antigen.

PHAGOCYTOSIS 

An actin-dependent process by
which cells engulf external
particulate material by extension
and fusion of pseudopods.
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of magnitude of key parameters and variables. First,
estimates of the number of components in the human
cellular signalling network are discussed (BOX 1).
Second, orders of magnitude for the interactions of
these components are discussed in the context of the
degree of combinatorial control that these interactions
afford. Third, extracellular interactions between net-
works are presented in the context of a cell that emits
and receives a signal.

Intracellular components. The human genome contains
~25,000 genes11. A human being develops from a single
cell into 1014 cells that are comprised of more than 200
different cell types12,13 (TABLE 1). This developmental
process and the subsequent homeostatic mechanisms of
the organism require precise orchestration of cellular
functions, which is achieved through signalling and
other networks. The human cellular signalling network
includes genes for 1,543 signalling receptors14, 518 pro-
tein kinases15 and ~150 protein phosphatases16–18. The
activity of these components of the human signalling
network can result in the activation (or inhibition) of
transcription factors (of which there are estimated to be
more than 1,850 in the human genome19), which then
direct cellular regulatory processes.

A primary mechanism to control the number of
intracellular components occurs at the level of post-
transcriptional mRNA processing20.At present, estimates
indicate that 40–60% of the genes in the human genome
are subject to alternative-splicing events21,22. With esti-
mates of an average of 8 exons per gene (although at the

signalling reactions, where available.Although this review
focuses on cellular signalling networks that affect tran-
scriptional regulation, many other processes — including
mechanotransduction, cytoskeletal organization,
organelle assembly, vesicular trafficking, and metabolism
— are also tightly coupled with cellular signalling net-
works, and their relationship to each other is an active
area of research8. In particular, mathematical formulation
of the coupling between mechanical processes and
biochemistry poses significant challenges9,10.

The complexity that is apparent from the examples
outlined below argues for a conceptual departure from
causal, small-scale descriptions to systemic reconstruc-
tions of signalling networks that can directly integrate
with metabolic and regulatory network reconstructions.
The reconstructed networks can then be modelled in
varying degrees of detail to understand their complexity
and make quantitative predictions. Although mathe-
matical formulation of these networks is important, by
no means can it be argued that a systemic network can
be reduced to a set of differential equations. The argu-
ment is presented that the level of detail of a cellular
signalling network can range from inclusion of every
single moiety that is involved to coarse-grained descrip-
tions of key processes, and that the biological context
and expected quantitative outcome dictate the type of
mathematical formulation of the biochemical network.

Taking stock of components and interactions
A methodical, quantitative analysis of any complex
system should be preceded by a survey of the orders

Box 1 | Orders of magnitude — signalling networks

Simple calculations based on orders of magnitude can provide insights into biochemical systems and answer fundamental
questions. For example: how many ligand molecules might a typical cell be exposed to at a given instant in time? What is the
maximum number of receptors in a cell membrane? And how many transcription factors are needed to control 25,000 genes?
Regarding the second question, three assumptions are made for estimates of the maximum number of signalling receptors
on the surface of a typical mammalian cell. First, a maximum of 25% of the cell surface area comprises receptor proteins.
Second, the average cell radius is 10 µm. This radius corresponds to a cell surface area of ~1,200 µm2 (surface area = 4πr2) 
if the cell is spherical. Given the first assumption, 300 µm2 of cell surface area can comprise receptor proteins. Third, the
average receptor protein has a radius of 5 nm (REF. 106). This radius corresponds to a circle with an area of 75 nm2 for a single
receptor protein. (The figure shows acetylcholine receptors on the axon terminal surface of a neuron.) With these three
assumptions, we can make an estimate of the maximum number of receptor proteins on a given cell (see equation 1).

This value seems a reasonable absolute maximum for the total
number of receptor proteins considering published 
in vivo data. For example, 104–105 receptor proteins of one type
have been observed for some cell types37. This estimated
maximum of 4 x 106 receptor proteins implies that there could
be a maximum of 40 different receptor types of 105 receptor
proteins each. Certainly, these maximum constraints might be
adjusted for a given cell that has a greater surface area, smaller-
or larger-sized receptor proteins, or a greater percentage of its
plasma membrane devoted to receptor protein. In addition, the
plasma membrane might consist of channels, pores and other
functional proteins. The figure is provided courtesy of
J. Heuser,Washington University School of Medicine, and is
reproduced with permission from REF. 130 © (1979) The
Rockefeller University Press.

300 µm2

= 4 × 106 maximum number of receptors (1)
75 nm2
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on average, at least 2.5 modifications per protein (see
the Human Proteomics Initiative in the online links
box, and REF. 25). This is likely to be a significant under-
estimate considering the difficulty in comprehensively
identifying PTMs, especially when proteins are present
at low levels. Proteins are also subject to proteolytic
events that further regulate their activity. For example,
as a result of splicing and cleavage events, many growth
factor receptors can exist in soluble or membrane-
bound forms, each of which might have a distinct
function in cellular signalling26. The PTMs might not
function independently of each other. However, three
independent PTMs would correspond to eight distinct
states of a given protein (each of the 3 PTMs could be
present or absent, so 23 = 8), and each state could have
different binding and activating properties. Assuming
that there are 3 PTMs per protein product of each mRNA
transcript, and consequently 8 distinct protein states, it
can be estimated that there would be 30,864, 10,360 and
3,000 distinct receptor, kinase and phosphatase states,
respectively, each with potentially different properties
in the network.

These numbers constitute nearly a 20-fold increase in
the number of protein states over the respective number
of genes, which approximates the estimated 10–100-fold
increase in the number of components of the human
proteome over the human genome27. There is also
increasing evidence that the modification of proteins is
an important mechanism for controlling the function of
the cellular signalling network. For example, histone H3
(referred to as H3), which regulates gene expression by
organizing chromatin structure, can be differentially
methylated, phosphorylated and acetylated by various
signalling proteins28. The methylated and acetylated
forms of H3 show distinct properties that affect gene
expression. Extensive and varied modifications of his-
tone proteins might be a general method of regulating
gene expression29.

upper extreme, the gene that encodes titin (TTID) might
have up to 234 exons14), there are potentially a large
number of splice variants for each gene. There is evi-
dence that cellular signalling networks use alternative
splicing to control the number and types of network
component. For example, there are several splice variants
of the gene that encodes the β isoform of inhibitor of
nuclear factor (NF)-κB (IκBβ), which is a protein that
inhibits the activity of the NF-κB transcription factor 
by preventing its translocation from the cytoplasm to
the nucleus. The IκBβ1 and IκBβ2 proteins, which arise
from differential splicing of the IκBβ gene (which is 
also known as NFKBIB), have different proteolytic-
degradation properties and this confers differential
control on the signalling network23. There are also at
least 10 alternatively spliced exons in the gene that
encodes CD44, the hyaluronan receptor, which is crucial
for the immune response. CD44 is a cell-surface glyco-
protein that is expressed in lymphocytes and other cell
types. Splicing of alternative exons of CD44 has the
potential to generate 1,024 isoforms (210), of which ~30
have already been identified20. Initial estimates indicate
that genes corresponding to proteins with signalling func-
tions comprise more than 75% of all alternatively spliced
genes24. This remarkable bias in alternative-splicing events
implies that cells use this mechanism extensively to
achieve the extraordinary specificity that is required in
signalling systems. Assuming an average of 2.5 splice
variants per gene across the entire genome (although this
is probably a conservative estimate19), it is estimated that
there are mRNA transcripts for 3,858, 1,295 and 375 
distinct receptors, kinases and phosphatases, respectively,
in the human cellular signalling network.

The next level of combinatorics in the number of sig-
nalling network components involves post-translational
modifications (PTMs) — for example, phosphoryla-
tion, acetylation, methylation, and so on. At present,
databases that catalogue PTMs indicate that there are,

Table 1 | The scope of the human cellular signalling network

Network component Number References

Cells 1014 12

Cell types 200 13

Genes 25,000 14,19

Percentage of genes with splice variants 40–60 21

Average number of exons per alternatively spliced gene 8 14

Maximum number of exons per alternatively spliced gene (taken from TTID that encodes titin) 234 14

Average number of splice variants per gene across the genome 2.5 19

Percentage of alternatively spliced genes with signalling function 75 24

Average number of post-translational modifications per protein
(current estimates) 2.5 (see below*)

Genes for transcription factors 1,850 19

Genes for protein kinases 518 15

Genes for protein phosphatases 150 16–18

Genes for receptors 1,543 14

Genes for GPCRs (for endogenous ligands) 367 33

*See the Human Proteomics Initiative in the online links box.
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unbound ligand) of 15 receptor proteins corresponds to
215 = 32,678 different bound-ligand states; in general,
x objects each with y different states can generate yx

unique combinations.) Although several receptors
might trigger the same intracellular signalling responses,
these ‘back-of-the-envelope’ calculations emphasize that
a small number of intracellular signalling proteins and
receptor proteins operating in a combinatorial manner
can allow for a large diversity of function in signalling
networks. This is a concept for which experimental 
evidence is surfacing.

Indeed, mathematical studies of metabolic networks
have indicated that the number of functional states in a
biochemical network grows much faster than the num-
ber of components. For example, in metabolic net-
works, the addition of a single reaction to a network
could increase the number of functional pathways by
several-fold34. This property is also likely to be found in
signalling networks, particularly in consideration of
the number of PTMs and splice variants, and the
degree of interconnectivity of signalling network com-
ponents. It is apparent that signalling networks will
similarly require mathematical analyses to describe
their network properties34,35.

Signal reception. The maximum number of receptor
proteins per typical somatic cell is estimated to be a few
million (BOX 1). As the calculation of this maximum
number depends on the percentage of plasma mem-
brane proteins that is represented by other functional
proteins (for example, channels and pumps) as well as
the size of the receptor protein, variations in these prop-
erties could reduce or augment this maximum number
of receptor proteins. Furthermore, the cell might regulate
its size and the proportion of plasma membrane that
consists of receptor proteins to increase or decrease the
number of available receptor proteins. However, this
maximum value is reasonable considering that some
cells are estimated to contain 104–105 of each type of
receptor36,37 and that A431 cells, which have a 10–30-fold
greater density of epidermal growth factor (EGF) recep-
tors than other cell types, contain up to ~2 x 106 EGF
receptors38,39. With 4 x 106 receptor proteins per cell, for
example (BOX 1), there could be 40 receptor types with 105

of each type of receptor protein. A recent survey indi-
cated that there are more than 30 different receptor
types1 present in the human MAST CELL. A cell of twice 
the radius (for example, a MEGAKARYOCYTE40, which can
have a radius of ~20 µm), which is subject to the other
assumptions listed above, would have an estimated
maximum of 2 x 107 receptor proteins per cell (BOX 1).
In addition to receptors on their surfaces, cells also have
large pools of internal, membrane-enclosed endosomal
vesicles that can cycle to and from the plasma membrane
and supply receptor proteins to the plasma membrane,
either constitutively or inducibly41. Endosomal receptor
proteins can also signal42, and this would further increase
the effective number of receptor proteins.

The number of receptors of any one type on a cell can
vary greatly. For example, in the 70Z/3 murine pre-B-
lymphocyte cell line, there are as few as ~100 high-affinity

Alternative splicing and PTMs can therefore generate
many more components of signalling networks than is
indicated by the number of annotated genes on the
human genome (TABLE 1). Tissue-specific gene expres-
sion and alternative splicing limit the number of differ-
ent protein states that are potentially present in a single
cell type, so the scope of this combinatorial control is
speculative. However, there is emerging evidence that
the many possible combinations of cellular components
contribute to the specificity of responses of cellular 
signalling networks to various stimuli.

Links and connectivity. In addition to the increasing
number of signalling network components that arises
from alternative splicing and PTM, the interactions
between the network components allow for an even
greater degree of combinatorial control. A simple hypo-
thetical example shows how the interactions between
even small numbers of elements give rise to a broad
spectrum of distinct functional states. The homo- and
heterodimerization of only 224 proteins would provide
sufficient specificity (for example, as activating protein
complexes) to control the expression of all 25,000 of the
genes in the human genome (in general, ‘x’ proteins can
form [x + (x–1) + (x–2) + … +1] different homo- and
heterodimers). If a given regulatory protein was associ-
ated with several genes, then the number of required
homo- and heterodimers for such specificity would be
even less than 224. There is emerging experimental
evidence that the combinatorics of interactions
among cellular signalling network components is
indeed a primary mechanism for generating larger
(and more specialized) signalling networks. A recent
study showed that the interactions between proteins
in yeast could be rearranged by the synthesis of
chimeric protein constructs of components of the
mitogen-activated protein kinase (MAPK) pathways
so as to redirect the cellular responses between mat-
ing and high-osmolarity signalling stimuli30. Initial
estimates of the number of interactions in the yeast
proteome indicated that there are an average of five
interacting partners per protein31. The role of combi-
natorics of protein complexes in cellular signalling
networks has been discussed in a recent review32.

Furthermore, a relatively small number of receptors
can allow for the discrimination of a large number of
environmental stimuli. A recent study analysed the
repertoire of G-PROTEIN-COUPLED RECEPTORS (GPCRs) in 
the human genome and identified 367 GPCRs for
endogenous ligands33. The expression profiles of 100
GPCRs in the mouse genome in 26 different tissues also
indicated that most of the receptors were expressed in
various tissues, but that each tissue had a unique profile
of expressed receptors. Although there are families of
receptors within which members bind to the same 
ligand (for example, GPCRs for adrenaline), assuming
that a mere 1% of the estimated 1,543 receptors in the
human genome14 (15 receptor proteins) can be inde-
pendently expressed in any given cell type, then the cell
could potentially respond to 32,768 different ligand
combinations. (2 independent states (bound or

G-PROTEIN-COUPLED

RECEPTOR 

(GPCR). A seven-helix
membrane-spanning cell-surface
receptor that signals through
heterotrimeric GTP-binding 
and -hydrolysing G proteins to
stimulate or inhibit the activity
of a downstream enzyme.

MAST CELL 

A type of leukocyte with large
secretory granules that contain
histamine and various protein
mediators.

MEGAKARYOCYTES 

Bone-marrow precursor cells
that give rise to blood platelets.
During differentiation,
megakaryocytes become
polyploid by endoreplication.
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possible network function. The next step involves net-
work reconstruction in a biochemically and genetically
consistent fashion within a framework that is amenable
to mathematical analysis.

Reconstructing a signalling network
The most laborious step in the reconstruction of a cellu-
lar signalling network involves the delineation of all of
the known individual biochemical processes that com-
prise the network. Once the proteins that are expressed
in a given cell type are identified, there are two main
considerations for the network reconstruction process:
first, the scope of the reconstruction, or the number of
reactions and components to include; and second, the
level of detail that is accounted for in the underlying
biochemical processes. Ultimately, there will be
genome-scale networks, which include information on
the biochemical reactions that comprise them — as
there are now for metabolism48.

Scope of reconstructed signalling networks. Signalling
network reconstruction can be approached in three 
different ways (see BOX 2, panel a). The first approach
consists of reconstructions of highly connected ‘NODES’
in networks. Such reconstructions involve comprehen-
sively listing the compounds and reactions that are
associated with a given protein, ion or metabolite. The
second approach to network reconstruction involves
forming linear ‘pathways’ that connect signalling inputs
to signalling outputs. For example, such a pathway might
be the delineation of all of the steps from the binding of
a growth factor to its receptor through to the subsequent
activation of a transcription factor that induces the
expression of target genes. The reconstruction and
analysis of the well-studied, pheromone-activated
MAPK pathway in yeast has shown the utility of such
an approach49,50; for example, the mechanism by which
the MAPK Fus3 is dephosphorylated and localized at
particular steps in the SIGNALLING PATHWAY has been
hypothesized49. The third approach consists of identi-
fying SIGNALLING ‘MODULES’. Such modules historically
consist of groups of compounds and proteins that func-
tion together under certain conditions on the basis of
phenomenological reasoning — for example, the Jun
N-terminal kinase (JNK), p38 and extracellular signal-
regulated kinase (ERK)/MAPK modules. These mod-
ules have led to detailed kinetic analyses that traced
the concentrations of various effector proteins and
helped to understand processes such as feedback
mechanisms. For example, the EGF-receptor system
has been extensively analysed, and the effects of recep-
tor internalization and autocrine signalling loops have
been described in detail51.

Significant interest in modular descriptions of
signalling networks has developed recently52–54. There
are three characteristics that can be considered for
such modular descriptions. First, modular networks
can be described with precisely defined inputs and
outputs55. Second, the relative timescales within a
modular network should be comparable56. Without
comparable timescales, one network function could

and ~900 low-affinity interleukin-1 receptors per cell43.
Assuming that there are ~30,000 distinct receptor-
protein types (from estimates of the number of receptor
genes, splice variants, and PTMs as described above),
the maximum of 4 x 106 receptor proteins per cell corres-
ponds to ~130 receptors of each receptor type (4 x 106

receptors divided by 3 x 104 receptor types), the same
order of magnitude that is seen for the smallest
observed number of receptors as shown by the number
of interleukin-1 receptors described above. As some
splice variants of receptor proteins and their corre-
sponding PTMs will not affect ligand specificity, the
maximum of 4 x 106 receptor proteins per cell could
effectively correspond to 2,600 receptors per receptor
type (4 x 106 receptors divided by 1,543 genes for
receptor proteins).

So, cells can express a few receptor types (~10–40)
in high numbers (~105 per cell), or many receptor
types (~ 2,000–30,000) in small numbers (~102 per
cell) on their surface. The former might be more com-
mon in highly differentiated and specialized cells,
whereas the latter might be more typical of stem cells
or undifferentiated cells.

Signal transmission. Constraints on the transmission
of a signal from one cell to another are two-fold. First,
the flux is constrained by the maximum
production/secretion rate of a signalling protein.
Immunoglobin genes have strong promoters, and
transcription and translation rates that correspond to
the production of 2,000–8,000 antibody molecules
(each with a molecular mass of ~150,000) per effector
B cell, per second have been measured44,45. This rate
corresponds to the secretion of 1 picogram of protein
per cell per hour, which is the maximum mass of a sig-
nalling molecule that can be secreted by the cell per
hour (this maximum rate is estimated by multiplying
the number of antibody molecules, the molecular
weight, the inverse of Avogadro’s constant, and a time-
scaling factor). Second, owing to diffusion limitations
that are imparted by the extracellular environment,
there are also spatial constraints on the propagation of
a signal. Effective paracrine signalling distances have
been estimated to be within the range of 25 cell diame-
ters, with time constants of 10–30 minutes for smaller
proteins such as soluble cyto/chemokines46. Although
lipid modifications or binding of the protein to the
EXTRACELLULAR MATRIX might significantly limit the num-
ber of cell diameters that a protein can travel, the exis-
tence of cytonemes (long cellular processes or filopodia
that can extend for several cell diameters) might even
allow this limit to be exceeded47.

The brief considerations outlined above help
define the orders of magnitude of the content and
connectivity of signalling networks. As kinetic values
become available the dynamic properties of signalling
networks can also begin to be estimated — for exam-
ple, network reaction flux rates. An appreciation of
the orders of magnitude in signalling networks is the
first step in analysing their properties because it allows
for reasonable assumptions regarding limitations on

EXTRACELLULAR MATRIX 

(ECM). The complex, multi-
molecular material that
surrounds cells. The ECM
comprises a scaffold on which
tissues are organized, it provides
cellular microenvironments and
it regulates various cellular
functions.

SIGNALLING NODE 

A highly connected compound
in an intracellular signalling
network.

SIGNALLING PATHWAY 

A linear set of reactions that
connects an input to an output
in an intracellular signalling
network.

SIGNALLING MODULE 

An intuitive grouping of
reactions from an intracellular
signalling network that have a
related function.
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ERK kinase (MEK) kinase), MEK and MAPK). These
considerations compel seeking a definition of mod-
ules from a mathematical, network-based perspective
rather than subjective reasoning.

With increasing genomic and proteomic efforts, the
scope of the reconstructed networks can be extended
from these piecemeal reconstructions of nodes, modules
and pathways to include a more comprehensive account
of the signalling processes that occur in an entire cellular
system. Recent studies have illustrated that actual prop-
erties of cellular signalling networks emerge from the
interconnectivity of the entire system. For example, a

be sufficiently separated in time from another func-
tion such that there is effectively no interaction
between the two. Third, the components of the mod-
ular network should be spatially colocalized56. Once
these three criteria have been met, the CONTEXTUAL

SPECIFICITY of the network can be maintained.
However, even with such precise definitions, modular
descriptions of signalling networks require intuitive,
subjective, human-based decisions (for example,
whether or not to include a scaffold protein or the
activating receptor tyrosine kinase in the description
of the module that comprises MEKK (MAPK and

CONTEXTUAL SPECIFICITY 

This takes into account the
context in which a given
signalling network property 
is observed — for example,
splice variants of a particular
protein might only exist in a
cell when it is in a particular
differentiated state.

Box 2 | Reconstructing a signalling network

Network reconstruction involves the integration of several
sources of data to describe the biochemical transformations
that occur in a given network. Contextual specificity is a
crucial consideration in answering five questions for
signalling network reconstruction:

• What proteins and other network components participate?

• What are the ligand–receptor interactions?

• What are the receptor–intracellular-component
interactions?

• What are the intracellular-component–intracellular-
component interactions?

• What are the intracellular-component–DNA interactions?

Genome annotation, biochemical experimentation, cell-
physiology characterizations, expression arrays, and other
such data sources each provide different types of datum that
answer these questions and contribute to the reconstruction
of a given cellular signalling network.

Scope 
Owing to a lack of comprehensive data regarding the
interactions in a network, most signalling network
reconstructions focus on particular nodes, modules or
pathways in a given network (see figure, panel a). These
reconstructions usually consist of a list of associations
between network components. Network ‘nodes’describe the
many interactions that a given compound (for example, Ca2+)
participates in. Network ‘modules’consist of a group of related
reactions that often incorporate feedback mechanisms.
Network ‘pathways’connect a signalling input to a signalling
output. Each of these types of reconstruction has distinct
advantages for analytical purposes. However, some properties
emerge from the interconnectivity of the nodes, modules and
pathways with other network components.

Resolution 
Reactions amongst components in signalling networks are
chemical transformations. There are three levels of resolution
in reconstructions (see figure, panel b).A connectivity
reconstruction lists the associations between network
components (for example, nuclear factor (NF)-κB is
functionally connected to IκB kinase (IKK) through the inhibitor of NF-κB (IκB)).A more detailed causal reconstruction describes cause-and-effect
relationships and is often analysed with differential equations (for example, IKK interacts with the IκB–NF-κB complex such that NF-κB is activated).As
signalling reactions are chemical transformations, they can also be represented by a more mechanistic description — for example, a stoichiometric matrix.
This representation accounts for all chemical events that occur in a given network. For example, one IKK complex binds to and phosphorylates one
IκB–NF-κB complex with two ATP molecules, which leads to the degradation of IκB and the nuclear localization of NF-κB (R

1
–R

4
). This relationship 

can be written out as a series of stoichiometric equations and its accompanying matrix, as indicated in panel c of the figure. pp, phosphate groups.
Part a is reproduced from REF. 81 © (2003) Elsevier.

Signalling inputs

Signalling outputs

Signalling reactions

Stoichiometric matrix

a Nodes

b Connectivity reconstruction

c Stoichiometric reconstruction

Causal reconstruction

Modules Pathways

IKK IKKNF-κB

NF-κB NF-κB

IκB IκB

R1: IKK + IκB–NF-κB + 2 ATP → IKK–IκB–NK-κB–ATP
R2: IKK–IκB–NK-κB–ATP → IKK + IκBpp–NF-κB + 2 ADP
R3: IκBpp–NF-κB → IκBpp (degraded) + NF-κB (cytoplasm)
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between components in a signalling network — for
example, one IKK molecule binds to and phosphorylates
one IκB–NF-κB complex with two ATP molecules,
which leads to the degradation of IκB and the nuclear
localization of NF-κB (BOX 2). This level of detail requires
an account of all components of the network (such as
ATP) and contextual specificity (for example, NF-κB in
the cytoplasm is distinct from NF-κB in the nucleus)
that are necessary to drive a signal from stimulus to
response. Much effort is needed to provide the data
that are necessary for stoichiometric reconstructions of
signalling networks. Stoichiometric models of metabolic
networks are well developed and have been found to be
quite informative61,62.

Data collection for the network reconstruction process.
Experimental techniques are continually being devel-
oped to identify the components and decipher the inter-
actions in cellular signalling networks (FIG. 1).At the most
crude level, the interactions between signalling networks
(such as endocrine and paracrine signalling mecha-
nisms) are readily deciphered through spatio-temporal
measurements of the concentrations of extracellular
molecules and the subsequent phenotypic changes that
they induce. However, the connection between many
extracellular signalling events and intracellular responses
has remained a black box. High-throughput genome
sequencing has provided the extensive ‘parts list’ of these
intracellular signalling networks. The control of the
expression of these parts can be deciphered, to an
extent, by genome-wide location analysis — a recently
developed technique that uses chromatin immunopre-
cipitation (ChIP)-chip assays to identify the binding
sites of transcription factors throughout the genome63

(see REF. 64 for a recent ChIP-chip analysis). However,
work to characterize the mechanisms that connect
extracellular signal inputs to the control of transcription
factors was, until recently, restricted to painstaking
experimental efforts with biochemical, genetic and
pharmacological-intervention techniques.

High-throughput techniques to elucidate the mech-
anisms that connect an extracellular signalling stimulus
to the control of transcription factors are still in their
infancy (see REFS 65,66 for descriptions of various tech-
nologies that are important for reconstructing these
intracellular signalling networks). Despite their short-
comings, such technologies are leading to the character-
ization of intracellular signalling mechanisms on a large
scale. These developing technologies can be grouped
into two categories: first, biochemical techniques and
expression systems for characterizing protein–protein
interactions; and second, assays for piecing together
functional properties.

Perhaps the most widely used technique for 
deciphering protein–protein interactions involves
YEAST TWO-HYBRID ASSAYS. However, so far there is only a
small degree of congruence between different data
sets that are generated using this approach67. In addi-
tion, yeast two-hybrid experiments lack contextual
specificity — false-positive results occur partly because
spatially or temporally segregated proteins that would

recent model of β-adrenergic signalling in the rat 
ventricular myocyte accounted for several signalling
interactions, and integrated the signalling network with
excitation–contraction coupling that is fundamental to
myocyte function57. This larger network model predicted
that changes in myocyte contractility could primarily be
accounted for by the activity of L-TYPE Ca2+ CHANNELS and
the phosphorylation of phospholamban — an example
of a systems property that arises from the analysis of an
integrated (and not piecemeal) network.

Importantly, signalling networks do not function in
isolation from metabolic and regulatory processes. For
example, recent experimental work has partly eluci-
dated the signalling reactions that connect an isotype of
protein kinase C (PKCθ) to the activation of NF-κB58.
PKC is also intimately connected with lipid metabolism,
as diacylglycerol (DAG) is one requirement for its acti-
vation. Indeed, lipids are frequent, fundamental compo-
nents of signalling networks. Furthermore, ATP and
GTP (which are principal cofactors in cellular signalling
reactions) are primary products of metabolic networks.
Transcriptional responses to stimuli can also lead to the
synthesis of proteins that inhibit or activate correspond-
ing signalling reactions. Indeed genes (or rather the 
corresponding sections of DNA) could be considered as
components in a signalling network. The association of
a transcription factor with the corresponding regulatory
region of a gene might then be considered as another
reaction in the network. Because signalling, metabolism
and regulation are so tightly coupled with each other,
the divisions between them are arbitrary. There is there-
fore a need to consider integrative approaches that can
account for several ‘types’ of component and interac-
tion. Recent work has involved the integration of a
model of cardiac mitochondrial energy metabolism
with what is known about Ca2+ dynamics59, which is a
step towards this goal of integrating cellular signalling,
metabolic and regulatory reconstructions.

Level of detail in a reconstruction. A concurrent consid-
eration in the reconstruction of a signalling network is
the desired level of detail, which is a primary function of
the amount of data that are available. A reconstruction 
of associations involves a description of simple connectiv-
ity (for example, NF-κB is functionally connected to IκB
kinase (IKK)) or a more involved set of relationships that
shows more intermediates between a signalling input
and a signalling output (for example, NF-κB is function-
ally connected to IKK through IκB; see BOX 2 and REF. 60).
Network-connectivity reconstructions that consist of
associations between components are amenable to sev-
eral types of structural analysis (as discussed below). The
next level of detail in a reconstruction enables the cre-
ation of cause-and-effect relationships (for example, IKK
interacts with the IκB–NF-κB complex such that NF-κB
is activated; see REF. 36 for an example of a causal recon-
struction). Kinetic relationships build on these causal
relationships, assigning scaling factors and time constants
between different properties of interest. Stoichiometric
reconstructions are based on chemically accurate repre-
sentations of the biochemical transformations that occur

L-TYPE Ca2+ CHANNELS 

A form of voltage-operated Ca2+

channel in cardiac muscle that
has a high electrical threshold.

YEAST TWO-HYBRID ASSAY 

A technique that is used to test
whether two proteins physically
interact with each other. One
protein is fused to the GAL4
activation domain and the other
to the GAL4 DNA-binding
domain, and both fusion proteins
are introduced into yeast. The
expression of a GAL4-regulated
reporter gene indicates that the
two proteins physically interact.
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has been used to refine models of galactose use in
yeast74. Second, knockdown strategies (RNA interfer-
ence (RNAi)) were recently used to elucidate components
of the Hedgehog signalling pathway in Drosophila
melanogaster75, and the interactions between de-ubiqui-
tylating enzymes and the IKK complex that is involved
in NF-κB signalling76. Such knockdown strategies will
certainly develop into a powerful tool for deciphering
larger cellular signalling networks on a genome-wide
scale77,78. Third, protein arrays are being developed to
generate high-throughput data on the activity of pro-
teins79. Fourth, fluorescence imaging technologies are
generating data regarding protein localization and the
dynamics of signalling processes80,81. For example, trans-
formation of Schizosaccharomyces pombe cells with a
fusion genomic library that contained fragments of the
S. pombe genome fused to the gene that encodes GREEN

FLUORESCENT PROTEIN (GFP) enabled the evaluation and
localization of proteins to 11 distinct cellular compart-
ments82. Recently, imaging technology also facilitated a
global analysis of protein localization in S. cerevisiae and
discriminated between 22 different cellular locales. It
was used to assign a cellular compartment location for
70% of proteins for which the location was not previ-
ously known83. Furthermore, fluorescence resonance
energy transfer (FRET) is a technique that can be used to
decipher specific signalling mechanisms because it can
indicate molecular proximity. For example, FRET has
been used to study signalling events at the membrane,

not interact in vivo are ‘thrown together’ in this assay. A
modified yeast two-hybrid approach that is known as the
‘split-ubiquitin membrane yeast two-hybrid system’
identifies interactions between membrane-bound pro-
teins — such interactions cannot be studied with earlier
yeast two-hybrid systems68. The son-of-sevenless (SOS; a
GUANINE NUCLEOTIDE-EXCHANGE FACTOR for RAS) recruitment
system (SRS) involves the interaction of proteins that are
fused to SOS with membrane-bound or transmem-
brane69 proteins that activate RAS. Interacting pro-
teins induce cell growth. It has also been possible to
characterize multiprotein complexes in Saccharomyces
cerevisiae using mass-spectrometry approaches70,71.
Additional biochemical techniques for investigating
intracellular signalling networks are also being devel-
oped. These include isotope-coded affinity tags (ICATS),
stable isotope labelling by amino acids in cell culture
(SILAC), Src-homology-2 (SH2) PROFILING, and target-
assisted iterative screening (TAIS; see REF. 72 for a recent
review). Although these approaches are only begin-
ning to be systematically applied on a large scale, the
initial results are promising73.

Recent advances in experimental techniques for
investigating functional relationships in signalling net-
works show a strong potential for future analyses. Four
approaches are highlighted here. First, perturbation
analysis monitors genome-wide changes in expression
(which are representative of transcriptional control)
after disrupting specific components of a network — it

GUANINE NUCLEOTIDE-

EXCHANGE FACTOR 

(GEF). A protein that facilitates
the exchange of GDP (guanine
diphosphate) for GTP (guanine
triphosphate) in the nucleotide-
binding pocket of a GTP-
binding protein.

ICAT 

(isotope coded affinity tag).
ICAT probes have different
masses, but are chemically
identical. They incorporate a
reactive cysteine, a biotin
moiety, and eight deuteriums
in place of eight hydrogens,
and they are used 
to specifically label, by mass-
difference, identical proteins 
in two separate samples 
for the identification and
semiquantitative comparison
of abundance.

SILAC 

(stable isotope labelling by
amino acids in culture). An
experimental technique used to
study hormone-activated
protein complexes.

SH2 PROFILING 

A technique based on the Far-
Western assay that is used to
identify SH2-binding domains
in protein extracts.

TAIS 

(target-assisted iterative
screening). A method for
screening protein products of a
cDNA library that bind to a
target protein.

RNAi

(RNA interference). A form of
post-transcriptional gene
silencing in which expression or
transfection of dsRNA induces
degradation — by nucleases —
of the homologous endogenous
transcripts. This mimics the
effect of the reduction, or loss,
of gene activity.

GREEN FLUORESCENT PROTEIN 

(GFP). An autofluorescent
protein that was originally
identified in the jellyfish
Aequorea victoria.

FRET

(fluorescence resonance energy
transfer ). The non-radiative
transfer of energy from a donor
fluorophore to an acceptor
fluorophore that is typically 
<80 Å away. FRET will only
occur between fluorophores in
which the emission spectrum of
the donor has a significant
overlap with the excitation of
the acceptor.

Figure 1 | Integrative and iterative process of cellular signalling network reconstruction. The existing biological knowledge
for a given system is composed of several types of datum. Each datum type provides unique information that can be incorporated
into a chemically accurate reconstruction (for example, a stoichiometric matrix). The first type of datum includes the identification of
components and endpoints of a network (for example, genome sequencing or genome-wide location analysis). The second type of
datum characterizes the interactions between network components (for example, yeast two-hybrid and immunoprecipitation data
identify protein–protein interactions and protein complexes). The third datum type describes the network behaviour of the integrated
components (for example, perturbation analysis and cDNA arrays delineate how entire networks function under various conditions).
Each of these results provides unique types of datum that can be used to generate a cellular network reconstruction (for example,
genome sequencing enables the annotation of the genes that are present in a given organism). With a network reconstruction,
dynamic and structural analysis techniques can be used to describe emergent properties of the network, and generate new
hypotheses. These characterizations then expand and revise the foundation of biological knowledge for the given system. This
process can be iterated to offer increasingly more accurate descriptions of a given biochemical network.
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computed data can be compared with the existing litera-
ture to revise and expand existing data and reconstruc-
tions for the given biological system. Some mathematical
methods that are being developed for the analyses of
biochemical networks will now be discussed.

Mathematical analysis of network properties
Large-scale signalling networks are complex. Their
complexity necessitates the use of methods from sys-
tems sciences, which are quite mathematical. Structural
and dynamic analyses — that is, mathematical analyses
that measure the time-invariant/topological and the
time-variant properties of a network, respectively —
can provide different results that can be integrated to
characterize the properties of reconstructed signalling
networks.

Structural network analysis. Large-scale networks can
undergo structural analysis in their entirety, as this does
not require an extensive knowledge of the parameters
that have been determined from detailed experimenta-
tion. Structural analyses of connectivity reconstructions
(which detail the existence of functional relationships
between network components, see BOX 2) can generate
hypotheses regarding the structure of the global net-
work as well as the function of individual proteins
(for example, see FIG. 2). Recently published examples
illustrate the analyses that have led to hypotheses con-
cerning global, modular and individual protein func-
tion. At a global level, a scale-free nature was observed
in the yeast protein–protein interaction network (that
is, there are a small number of network components
with a high degree of connectivity)94. At a modular
level, CLUSTERING ANALYSIS of the yeast signalling protein

and showed that 14% of EGF receptors in A431 cells
were oligomerized before growth factor binding84. It has
also been used to study membrane-associated signalling
mechanisms (for example, activation of heterotrimeric
G-protein complexes might involve rearrangement of
the subunits rather than their dissociation85) and intra-
cellular signalling events (such as the phosphorylation
states of insulin-receptor substrates86).

As each of these techniques has distinct advantages
and disadvantages, there is a growing need to integrate
various data sources to represent most accurately the
biochemical processes in a network.

Integrative and iterative approaches. Initial studies that
have integrated disparate data sources have recently
been published. For example, a recent study integrated
three distinct data sets (from RNAi phenotyping,
expression arrays and yeast two-hybrid analysis) to 
generate observations at a systems level for the
Caenorhabditis elegans germline. Such observations
included the tendency of essential proteins to interact
with each other and similar expression profiles of pairs
of genes that interact at the protein level87. Gene-expres-
sion array data for Escherichia coli and S. cerevisiae have
also been integrated with reconstructed regulatory net-
works, which has yielded interesting results88. These
include the result that the regulatory patterns observed
from expression arrays and calculated from literature-
based reconstructions are generally less consistent with
each other for genes controlled by repressor proteins
than for genes controlled by activator proteins.

Integrative approaches have also been used recently
to characterize several signalling reactions in the RAS–
ERK/MAPK89, transforming growth factor β (TGFβ)90,
and tumour-necrosis factor α (TNFα)–NF-κB91

signalling pathways. These approaches require the
integration of several types of datum, as no single
experimental protocol can accurately characterize all
of the parameters that are necessary for a systems-level
biological description. Large-scale-reconstruction
efforts have already begun to integrate various experi-
mental technologies and resources to reconstruct
large-scale signalling networks. The Alliance for
Cellular Signaling (see the online links box)6 has focused
resources on elucidating signalling mechanisms in the
murine B cell92 and cardiac myocyte93 and, more
recently, in a mouse macrophage cell line RAW 264.7.
The Cell Migration Consortium and LIPID MAPS con-
sortium (see the online links box) have also begun work
on elucidating components of signalling networks in
RAW 264.7 cells.

Underlying such large-scale efforts is the iterative
process of reconstructing cellular signalling networks
(FIG. 1). Reconstruction incorporates diverse data sets to
represent biochemical processes in a given system. Each
source of data contributes unique information, which
needs to be integrated into a network reconstruction that
is based on a mathematical framework (for example, a
stoichiometric matrix). Mathematical methods can then
be used to generate new hypotheses and describe the
properties that emerge from network analyses. These

CLUSTERING ANALYSIS 

An approach for identifying and
grouping similar data points.

Figure 2 | Structural analyses of signalling networks.
Structural analyses can identify components that are well or
poorly connected (and therefore of potential interest for drug
targeting). For example, the green component is the most
highly connected in this schematic of a signalling network, and
so drugs that inhibit the activity of this hypothetical component
could have the broadest effect on the functions of the network.
Structural analyses can also characterize which signalling
inputs generate which signalling outputs. For example, in this
schematic of a signalling network, the signalling inputs 1 and 4
can generate signalling outputs 2, 3 and 5. 
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signalling responses occur over a timescale that is an
order of magnitude slower. For example, transcriptional
events108–110, cellular growth44 and receptor internaliza-
tion43,111–113 require several minutes, or longer, in
response to a signal. This timescale separation is a crucial
consideration for dynamic network analyses and can
lead to simplifications that enable more thorough analy-
ses which would otherwise be difficult. Further work is
needed to account for the many timescales that occur in
signalling systems. One promising approach involves
MONTE CARLO SAMPLING for efficiently simulating a system of
kinetic equations over several timescales114.

As numerical values for kinetic parameters are typically
difficult to obtain115, dynamic analyses are usually only
carried out for causal and stoichiometric reconstructions
of smaller cellular signalling network reconstructions
(FIG. 3). These studies have analysed complex network
properties. For example, kinetic descriptions of complex
reaction networks with feedback loops have been
analysed to describe BISTABLE BEHAVIOUR116.

The coupling of experimental data with these mathe-
matical analyses can enable the identification of previ-
ously unknown signalling mechanisms.An elegant study
that shows the benefit of integrative experimental and
mathematical analyses deciphered the importance of
particular IκB isoforms in feedback loops that involved
the NF-κB SIGNALLING MODULE. Predictions were experi-
mentally verified in knockout mouse models117. The WNT

signalling module, which is important for development as
well as oncogenesis, was recently represented using an
extensive set of kinetic reactions118. Predictions were made
for dynamic profiles of concentrations of β-catenin and
other signalling mediators, and these matched experi-
mental results. These dynamic analyses of signalling
modules show the complex properties that can be studied
once the reconstruction of only a limited number of
reactions has been completed and experimental data are
integrated with the model predictions.

Conclusions
The main objective of this review is to emphasize the
role and importance of the careful reconstruction of
signalling networks and the advent of mathematical
methods for their analysis. A brief inventory of the
experimental approaches that are being developed to
help unravel signalling mechanisms and an apprecia-
tion of the orders of magnitude in the human cellular
signalling network have been provided. Furthermore, a
survey of the existing structural and dynamic analysis
methods was presented, with a sampling of the results
and hypotheses that they have provided. Although
lipids, proteins and metabolites are the principal com-
ponents of signalling networks as they are known at
present, further research in molecular biology will
uncover additional signalling components and their
concomitant mechanisms — as exemplified by the
recent discovery of the regulatory functions of
microRNAs119. As the different biochemical reactions
that occur in entire cellular signalling networks are
delineated, reconstructions will contain sufficient detail
to simultaneously account for all of the necessary 

interaction network successfully partitioned groups of
proteins that are associated with known signalling fami-
lies such as the RAS–ERK/MAPK pathway53. At the level
of individual protein function, SPECTRAL ANALYSIS defined
groups of protein–protein interactions that had func-
tional significance in the yeast proteome95. This spectral
analysis provided hypotheses regarding the potential
functions of proteins on the basis of their position in the
network topology.

Initial structural analyses of causal reconstructions
of signalling networks (BOX 2) have also highlighted the
value of these analyses in describing network properties
(for example, see REF. 96). So far, stoichiometric analyses
of signalling networks are limited, owing to a lack of
corresponding reconstructions. Recent work by our
group involved the analysis of network features of the
JAK (Janus-activated kinase)–STAT (signal transducer
and activator of transcription) signalling network97.
This analysis of a stoichiometric reconstruction has led
to descriptions of protein synthesis requirements and
energy demands of signalling networks, as well as math-
ematical definitions of network properties such as
crosstalk and pathway redundancy.

Dynamic network analysis. A dynamic analysis of a
reconstructed signalling network can be carried out once
the associated kinetic parameters are known. The
timescales that are associated with signalling processes
can be estimated (TABLE 2), and can be crudely divided
into two groups: signalling activities and signalling
responses. Signalling activities typically occur rapidly.
For example, most protein conformational changes,
kinase/phosphatase reactions98,99, and the physical
movement of signalling compounds by diffusion or
cytoskeleton-dependent mechanisms100–105 occur over
a timeframe that ranges from fractions of a second to
seconds. However, signalling responses can occur over
a wider range of timescales. Signalling responses that
are coupled with metabolic processes or ‘intermediate
phenotypes’ (for example, the conversion of glycogen
to glucose, or increases in cyclic-AMP concentrations in
response to stimuli) can occur over a timeframe of frac-
tions of a second106,107, as can elements of chemotactic
and mechanotransduction behaviour106. However, other

SPECTRAL ANALYSIS 

A method derived from graph
theory that describes high-level
structures in complicated
networks of relationships.

MONTE CARLO SAMPLING 

An approach for choosing
pseudo-random data points that
represent the characteristics of a
larger population or function.

BISTABLE BEHAVIOUR 

A property in which there are
two stable points of a dynamic
system, which provides a sense
of ‘memory’.

WNT PROTEINS 

A family of highly conserved
secreted signalling molecules
that regulate cell–cell
interactions during
embryogenesis.

Table 2 | Orders of magnitude for timescales in signalling networks

Cellular signalling process Time (in seconds) References

Activities

Kinase/phosphatase reactions 10–3 98,99

Protein conformational changes 10–3 106,127

Cell-scale protein diffusion (passive) 100–101 101–103

Cell-scale protein diffusion (active) <100 104,105,128

Responses

Cell migration 100–102 44,129

Receptor internalization 102 43,111–113

Transcriptional control 102 108–110

Cellular growth 104 44
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network reconstructions, which will further direct
experimental programmes. Furthermore, network
analysis might reveal strategies that are used in 
signalling cascades, and thereby generate theoretical
arguments for network function. Stoichiometric 
signalling network reconstructions are likely to drive
structural and dynamic network analyses and there-
fore lead to predictions of systems-level behaviour that
will be important for future biochemical and medical
research124,125. Network analysis will therefore meet the
growing need to move beyond causal descriptions 
to mechanistic, bioengineering analysis of cellular 
signalling networks at various levels of detail126.

cellular network components (such as the demands for
ATP and protein synthesis), and provide the level of
detail that is necessary to integrate signalling networks
with reconstructions of regulatory and metabolic
networks120,121. These steps will lead to the recon-
struction of whole-cell signalling networks. Recent
efforts to automate network reconstruction
processes122 and extract molecular-interaction data
from the literature123 are important computational
developments that will allow these more extensive
network reconstructions.

Improvements in analysis methods will enable the
characterization of previously incomplete sections of
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Figure 3 | Dynamic analyses of cellular signalling networks. When there is sufficient knowledge of parameters for a subset of a
cellular signalling network (a; subset components A–F), complex dynamic profiles of various concentrations can be modelled and
studied with dynamic analyses of signalling networks — as illustrated in the representative plot (b). For example, in this hypothetical
system, an increase in the concentration of A results in an increase in the concentration of B. After A is depleted, B is slowly
degraded. This relationship is indicated with the differential equation that relates the time derivative of B with the concentration of A
and the constant k. Complex kinetics of network responses to signalling inputs can also be predicted from models that consist of
kinetic descriptions of individual reactions (c). For example, in this hypothetical network, the fraction of activated transcription factors
might be significantly reduced when compound D is absent from the network.
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