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Abstract

Annotated pushdown automata provide an automaton model of higher-order recursion
schemes, which may in turn be used to model higher-order programs for the purposes of
verification. We study Ground Annotated Stack Tree Rewrite Systems – a tree rewrite
system where each node is labelled by the configuration of an annotated pushdown au-
tomaton. This allows the modelling of fork and join constructs in higher-order programs
and is a generalisation of higher-order stack trees recently introduced by Penelle.

We show that, given a regular set of annotated stack trees, the set of trees that can
reach this set is also regular, and constructible in n-EXPTIME for an order-n system,
which is optimal. We also show that our construction can be extended to allow a global
state through which unrelated nodes of the tree may communicate, provided the number
of communications is subject to a fixed bound.

1 Introduction
Modern day programming increasingly embraces higher-order programming, both via the in-
clusion of higher-order constructs in languages such as C++, JavaScript and Python, but also
via the importance of callbacks in highly popular technologies such as jQuery and Node.js. For
example, to read a file in Node.js, one would write

fs.readFile('f.txt', function (err, data) { ..use data.. });

In this code, the call to readFile spawns a new thread that asynchronously reads f.txt and
sends the data to the function argument. This function will have access to, and frequently use,
the closure information of the scope in which it appears. The rest of the program runs in parallel
with this call. This style of programming is fundamental to both jQuery and Node.js program-
ming, as well as being a popular for programs handling input events or slow IO operations such
as fetching remote data or querying databases (e.g. HTML5’s indexedDB).

Analysing such programs is a challenge for verification tools which usually do not model
higher-order recursion, or closures, accurately. However, several higher-order model-checking
tools have been recently developed. This trend was pioneered by Kobayashi et al. [17] who de-
veloped an intersection type technique for analysing higher-order recursion schemes – a model
of higher-order computation. This was implemented in the TRecS tool [16] which demonstrated
the feasibility of higher-order model-checking in practice, despite the high theoretical complex-
ities ((n − 1)-EXPTIME for an order-n recursion scheme). This success has led to the devel-
opment of several new tools for analysing recursion schemes: GTRecS [18, 20], TravMC [27],
C-SHORe [6], HorSat [7], and Preface [31].

In particular, the C-SHORe tool is based on an automata model of recursion schemes called
annotated (or collapsible) pushdown systems [14]. This is a generalisation of pushdown systems
– which accurately model first-order recursion – to the higher-order case. C-SHORe implements
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a saturation algorithm to perform a backwards reachability analysis, which first appeared in
ICALP 2012 [5]. Saturation was popularised by Bouajjani et al. [1] for the analysis of pushdown
systems, which was implemented in the successful Moped tool [34, 36].

Contributions In this work we introduce a generalisation of annotated pushdown systems:
ground annotated stack tree rewrite systems (GASTRS). A configuration of a GASTRS is an
annotated stack tree – that is, a tree where each node is labelled by the configuration of an
annotated pushdown system. Operations may update the leaf nodes of the tree, either by
updating the configuration, creating new leaf nodes, or destroying them. Nodes are created
and destroyed using

p
+−→ (p1, . . . , pm) and (p′1, . . . , p

′
m)

−−→ p′

which can be seen as spawning m copies of the current process (including closure information)
using the first rule, and then later joining these processes with the second rule, returning control
to the previous execution (parent node). Alternatively, we can just use p

+−→ (p1, p2) for a basic
fork that does not join.

This model is a generalisation of higher-order stack trees recently introduced by Penelle [30],
where the tree nodes are labelled by a restriction of annotated pushdown automata called
higher-order pushdown automata.

As our main contribution, we show that the global backwards reachability problem for
GASTRSs can be solved via a saturation technique. That is, given a regular target set of
annotated stack trees, we compute a regular representation of all trees from which there is a
run of the system to the target set. Note that being able to specify a target set of trees allows us
to identify error states such as race conditions between threads. Our result is a generalisation
of the ICALP 2012 algorithm, and as such, may be implemented as part of the C-SHORe tool.

Moreover, we define a notion of regularity amenable to saturation which is also closed under
the standard boolean operations.

As a final contribution, we show that the model can be extended to allow a bounded amount
of communication between separate nodes of the tree. I.e., we add a global state to the system
and perform a “context-bounded” analysis [32], where the global state can only be changed an
a priori fixed number of times.

Related Work Annotated pushdown systems are a generalisation of higher-order pushdown
systems that provide a model of recursion schemes subject to a technical constraint called
safety [26, 15] and are closely related to the Caucal hierarchy [9]. Parys has shown that safety
is a genuine constraint on definable traces [29]. Panic automata provided the first model of
order-2 schemes, while annotated pushdown systems model schemes of arbitrary order. These
formalisms have good model-checking properties. E.g. µ-calculus decidability [28, 14]. Krivine
machines can also be used to model recursion schemes [33].

There has been some work studying concurrent variants of recursion scheme model checking,
including a context-bounded algorithm for recursion schemes [19], and further underapproxi-
mation methods such as phase-bounded, ordered, and scope-bounding [12, 35]. These works
allow only a fixed number of threads.

Dynamic thread creation is permitted by both Yasukata et al. [37] and by Chadha and
Viswanathan [10]. In Yasukata et al.’s model, recursion schemes may spawn and join threads.
Communication is permitted only via nested locks, whereas in our model we allow shared
memory, but only a bounded number of memory updates. Their work is a generalisation
of results for order-1 pushdown systems [11]. Chadha and Viswanathan allow threads to be
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spawned, but only one thread runs at a time, and must run to completion. Moreover, the tree
structure is not maintained.

Saturation methods also exist for ground tree rewrite systems and related systems [24, 4, 25],
though use different techniques. Our context-bounded model relates to weak GTRS with state
introduced by Lin [23]. Adding such weak state to process rewrite systems was considered by
Kretínský et al. [21].

A saturation technique has also been developed for dynamic trees of pushdown processes [3].
These are trees where each process on each node is active (in our model, only the leaf nodes are
active). However, their spawn operations do not copy the current process, losing closure infor-
mation. It would be interesting and non-trivial to study the combination of both approaches.

Penelle proves decidability of first order logic with reachabilty over rewriting graphs of
ground stack tree rewriting systems [30]. This may be used for a context-bounded reachability
result for higher-order stack trees. This result relies on MSO decidability over the configuration
graphs of higher-order pushdown automata, through a finite set interpretation of any rewriting
graph of a ground stack tree rewriting system into a configuration graph of a higher pushdown
automaton. This does not hold for annotated pushdown automata.

2 Preliminaries

Trees

An ordered tree over arity at most d over a set of labels Γ is a tuple (D, λ) where D ⊂ {1, . . . , d}∗
is a tree domain such that vi ∈ D implies v ∈ D (prefix closed), and vj ∈ D for all j < i
(younger-sibling closed), and λ : D → Γ is a labelling of the nodes of the tree. Let v ⪯ v′

denote that v is an ancestor (inclusive) of v′ in the tree. We write t[v → γ] to denote the
tree t′ = (D ∪ {v} , λ′) where λ′(v) = γ and λ′(v′) = λ(v′) for v′ ̸= v, whenever t = (D, λ) and
D ∪ {v} is a valid tree domain. We will also write t′ = t \ V to denote the tree obtained by
removing all subtrees rooted at v ∈ V from t. That is t′ = (D′, λ′) when t = (D, λ) and

D′ = D \ {v′ | v ∈ V ∧ v ⪯ v′ }

λ′(v) =

{
λ(v) v ∈ D′

undefined otherwise.

Annotated stacks

Let Σ be a set of stack symbols. An annotated stack of order-n is an order-n stack in which
stack symbols are annotated with stacks of order at most n. For the rest of the paper, we fix
the maximal order to n, and use k to range between n and 1. We simultaneously define for all
1 ≤ k ≤ n, the set SΣk,n of stacks of order-k whose symbols are annotated by stacks of order at
most n. Note, we use subscripts to indicate the order of a stack. We ensure all stacks are finite
by using the least fixed-point. When the maximal order n is clear, we write SΣk instead of SΣk,n.

Definition 2.1 (Annotated Stacks). The family of sets
(
SΣk,n

)
1≤k≤n

is the smallest family (for

point-wise inclusion) such that:

• for all 2 ≤ k ≤ n, SΣk,n is the set of all (possibly empty) sequences [s1 . . . sm]k with
s1, . . . , sm ∈ SΣk−1,n.
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• SΣ1,n is all sequences [as11 . . . asmm ]1 with m ≥ 0 and for all 1 ≤ i ≤ m, j ai is a stack symbol
in Σ and si is an annotated stack in

∪
1≤k≤n

SΣk,n.

We write s :k s′ — where s is order-(k− 1) — to denote the stack obtained by placing s on
top of s′. That is,

• if s′ = [s1 . . . sm]k then s :k s′ = [ss1 . . . sm]k, and

• if s′ = [s1 . . . sm]k′ with k′ > k then s :k s′ = [(s :k s1) s2 . . . sm]k′ .

This composition associates to the right. For example, the order-3 stack
[
[[asb]1]2

]
3

can be
written s1 :3 s2 where s1 is the order-2 stack [[asb]1]2 and s2 is the empty order-3 stack []3.
Then s1 :3 s1 :3 s2 is

[
[[asb]1]2 [[a

sb]1]2
]
3
.

Note that we cannot write (s1 :k s2) :k s3 since (s1 :k s2) is not order-(k − 1).

Operations on Order-n Annotated Stacks

For a given alphabet Σ, we define the set OpsΣn of stack operations inductively as follows:

OpsΣ0 = {rewa→b | a, b ∈ Σ} OpsΣ1 =
{
push11,pop1

}
∪OpsΣ0

OpsΣn = {pushn1 , pushn, popn, collapsen} ∪OpsΣ(n−1)

We define each operation for a stack s. Annotations are created by pushk1 , which adds a
character to the top of a stack s :(k+1) s

′ annotated by popk(s). This gives the new character
access to the context in which it was created.

1. We set rewa→b

(
as

′
:1 s

)
= bs

′
:1 s.

2. We set pushk1(s) = ask :1 s when s = as1 :1 s2 :2 · · · :k sk :(k+1) · · · :n sn.

3. We set pushk(s :k s′) = s :k s :k s′.

4. We set popk(s :k s′) = s′.

5. We set collapsek
(
as :1 s1 :(k+1) s2

)
= s :(k+1) s2 when s is order-k and n > k ≥ 1; and

collapsen(a
s :1 s′) = s when s is order-n.

3 Annotated Stack Trees

An annotated stack tree is a tree whose nodes are labelled by annotated stacks. Furthermore,
each leaf node is also labelled with a control state. Let STreesnΣ denote the set of order-n
annotated stack trees over Σ.

Definition 3.1 (Order-n Annotated Stack Trees). An order-n annotated stack tree over an
alphabet Σ and set of control states P is a

(
SΣn ∪

(
P× SΣn

))
-labelled tree t = (D, λ) such that

for all leaves v of t we have λ(v) ∈ P×SΣn and for all internal nodes v of t we have λ(v) ∈ SΣn .
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3.1 Annotated Stack Tree Operations

Definition 3.2 (Order-n Annotated Stack Tree Operations). Over a given finite alphabet Σ
and finite set of control states P, the set of order-n stack tree operations is defined to be

STOpsΣ,P
n =

{
p

+−→ (p1, . . . , pm) , (p1, . . . , pm)
−−→ p | p, p1, . . . , pm ∈ P

}
∪{

p
σ−→ p′

∣∣ σ ∈ OpsΣn ∧ p, p′ ∈ P
}

.

Stack operations may be applied to any leaf of the tree. Let t•i
denote the ith leaf of tree

t. We define the local application of a operation to the ith leaf as follows. Let t = (D, λ) and
λ(t•i) = (p, s)

Ap
(
p

σ−→ p′, i, t
)

= t[t•i → (p′, σ(s))]

Ap
(
p

+−→ (p1, . . . , pm) , i, t
)

= t[t•i → s][t•i1→ (p1, s)] · · ·[t•im→ (pm, s)]

and when t•i = v1, . . . , t•i+m−1 = vm are the only children of v, λ(t•i) = (p1, s1), . . . ,
λ
(
t•i+m−1

)
= (pm, sm), and λ(v) = s,

Ap
(
(p1, . . . , pm)

−−→ p, i, t
)
=

(
t \

{
t•i , . . . , t•i+m−1

})
[v → (p, s)] .

For all θ ∈ STOpsΣ,P
n we write θ(t) to denote the set {t′ | ∃i.t′ = Ap(θ, i, t)}.

3.2 Ground Annotated Stack Tree Rewrite Systems

Definition 3.3 (Order-n Ground Annotatee Stack Tree Rewrite Systems). An order-n ground
annotated stack tree rewrite system (GASTRS) G is a tuple (Σ,P,R) where Σ is a finite stack
alphabet, P is a finite set of control states, and R ⊂ STOpsΣ,P

n is a finite set of operations.

A configuration of an order-n GASTRS is an order-n annotated stack tree t over alphabet
Σ. We have a transition t → t′ whenever there is some θ ∈ R and t′ ∈ θ(t). We write t →∗ t′

when there is a run t = t0 → · · · → tm = t′.

3.3 Regular Sets of Annotated Stack Trees

We define a notion of annotated stack tree automata for recognising regular sets of annotated
stack trees. We give an initial exposition here, with more details (definitions and proofs) in
Appendix A. In particular, we have the following result.

Proposition 3.1. Annotated stack tree automata form an effective boolean algebra, membership
is in linear time, and emptiness is PSPACE-complete.

Transitions of stack tree automata are labelled by states of stack automata which have
a further nested structure [5]. These automata are based on a similar automata model by
Bouajjani and Meyer [2]. We give the formal definition with intuition following.

Definition 3.4 (Order-n Annotated Stack Tree Automata). An order-n stack tree automaton
over a given stack alphabet Σ and set of control states P is a tuple

T = (Q,Rn, . . . ,R1,Σ,∆,∆n, . . . ,∆1,P,F,Fn, . . . ,F1)
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where Σ is a finite stack alphabet, Q is a finite set of states,

∆ ⊂ Q× {(i,m) | 1 ≤ i ≤ m} × (Q \ F)× Rn

is a finite set of transitions, P ⊆ Q and F ⊆ Q are initial and final states respectively, and

1. for all n ≥ k ≥ 2, we have Rk is a finite set of states, ∆k ⊆ Rk×Rk−1×2Rk is a transition
relation, and Fk ⊆ Rk is a set of accepting states, and

2. R1 is a finite set of states, ∆1 ⊆
∪

2≤k≤n

(
R1 × Σ× 2Rk × 2R1

)
is a transition relation, and

F1 ⊆ R1 is a set of accepting states.

3.3.1 Accepting Stacks

Order-k stacks are recognised from states in Rk. A transition (r, r′, R) ∈ ∆k from r to R for

some k > 1 is denoted r
r′−→ R and can be fired when the stack is s :k s′ and s is accepted from

r′ ∈ R(k−1). The remainder of the stack s′ must be accepted from all states in R. At order-1,
a transition (r, a,Rbr, R) ∈ ∆1 is denoted r

a−−→
Rbr

R and is a standard alternating a-transition

with the additional requirement that the stack annotating a is accepted from all states in Rbr.
A stack is accepted if a subset of Fk is reached at the end of each order-k stack. Note, we give
a more formal definition of a run in Appendix A. We write s ∈ Lr(T ) whenever s is accepted
from a state r.

An order-n stack can be represented naturally as an edge-labelled tree over the alphabet
{[n−1, . . . , [1, ]1, . . . , ]n−1} ⊎ Σ, with Σ-labelled edges having a second target to the tree repre-
senting the annotation. For technical convenience, a tree representing an order-k stack does
not use [k or ]k symbols (these appear uniquely at the beginning and end of the stack). An
example order-3 stack is given below, with only a few annotations shown. The annotations are
order-3 and order-2 respectively.

• • • • • • • • • • • • • • • • •
[2 [1 a b ]1 ]2 [2 [1 c ]1 ]2 [1 c ]1

An example (partial) run over this stack is pictured below, using transitions r3
r2−→ R3 ∈ ∆3,

r2
r1−→ R2 ∈ ∆2, and r1

a−−→
Rbr

R1 ∈ ∆1. The node labelled Rbr begins a run on the stack

annotating a.

r3 r2 r1 R1 · · · R2 · · · R3 · · · Rbr · · ·
[2 [1 a · · · ]1 · · · ]2 · · · · · ·

3.3.2 Accepting Stack Trees

Annotated stack tree automata are bottom-up tree automata whose transitions are labelled by
states from which stacks are accepted. We denote by

q ←i/m (q′, r)

a transition (q, i,m, q′, r) ∈ ∆. Observe that q′ /∈ F by definition. When a node v has children
v1, . . . , vm, the transition above could be applied to the ith child vi. It can be applied when vi
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is already labelled by q′ and the stack si attached to vi is accepted from state r of the stack
automaton. If it is applied, then q will be set as the label of the parent v. Over runs of the
automaton we enforce that every child is present and the transitions applied at each child agree
on the state assigned to its parent.

Let λs(v) = s when λ(v) = (p, s) or λ(v) = s. Given an order-n annotated stack tree
t = (D, λ) a run of an automaton T is a Q-labelled tree (D, λ′) where each leaf v of t has
λ′(v) = p whenever λ(v) = (p, s) for some s, and each internal node v with children v1, . . . , vm
has a label λ′(v) = q only if we have transitions

q ←1/m (q1, r1) , . . . , q ←m/m (qm, rm) ,

and λ′(vi) = qi and λs(vi) ∈ Lri(T ) for all 1 ≤ i ≤ m. Finally λ′(ε) = q and we have a
transition qf ←1/1 (q, r) with qf ∈ F and λs(ε) ∈ Lr(T ).

We write L(T ) to denote the set of trees accepted by T .

3.4 Notation and Conventions
3.4.1 Number of Transitions

We assume for all pairs of states q, q′ ∈ Q and each i,m there is at most one transition of the
form q ←i/m (q′, r). Similarly we assume for all r ∈ Rk and R ⊆ Rk that there is at most one

transition of the form r
r′−→ R ∈ ∆k. This condition can easily be ensured by replacing pairs of

transitions r
r1−→ R and r

r2−→ R with a single transition r
r′−→ R, where r′ accepts the union of

the languages of stacks accepted from r1 and r2. Similarly for transitions in ∆.

3.4.2 Short-form Notation

Consider the example run shown above. This run reads the top of every level of the stack: the
transition to R3 reads the topmost order-2 stack, the transition to R2 reads the order-1 stack
at the top of this stack, and the transition to R1 and Rbr reads the top character of the order-1
stack.

The saturation algorithm relies on stack updates only affecting the topmost part of the
stack. Thus, we need a notation for talking about the beginning of the run. Hence, we will
write the run in the figure above (that reads the topmost parts of the stack) as a “short-form”
transition

r3
a−−→

Rbr

(R1, . . . , R3) .

In the following, we define this notation formally, and generalise it to transitions of a stack tree
automaton. In general, we write

r
a−−→

Rbr

(R1, . . . , Rk) and r
r′−→ (Rk′+1, . . . , Rk) .

In the first case, r ∈ Rk and there exist rk−1, . . . , r1 such that r
rk−1−−−→ Rk ∈ ∆k, rk−1

rk−2−−−→
Rk−1 ∈ ∆k−1, . . . , r1

a−−→
Rbr

R1 ∈ ∆1. Since we assume at most one transition between any state

and set of states, the intermediate states rk−1, . . . , r1 are uniquely determined by r, a,Rbr and
R1, . . . , Rk.

In the second case, either k = k′ and r = r′ ∈ Rk, or k > k′ and we have r ∈ Rk,
r′ ∈ Rk′ , and there exist rk−1, . . . , rk′+1 with r

rk−1−−−→ Rk ∈ ∆k, rk−1
rk−2−−−→ Rk−1 ∈ ∆k−1, . . . ,

rk′+2

rk′+1−−−→ Rk′+2 ∈ ∆k′+2 and rk′+1
r′−→ Rk′+1 ∈ ∆k′+1.
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We lift the short-form transition notation to transitions from sets of states. We assume that
state-sets Rn, . . . ,R1 are disjoint. Suppose R = {r1, . . . , rm} and for all 1 ≤ i ≤ m we have
ri

a−−→
Ri

br

(
Ri

1, . . . , R
i
k

)
. Then we have R

a−−→
Rbr

(R1, . . . , Rk) where Rbr =
∪

1≤i≤m Ri
br and for all

k, Rk =
∪

1≤i≤m Ri
k. Because an annotation can only be of one order, we insist that Rbr ⊆ Rk

for some k.
We generalise this to trees as follows. We write

q ←i/m (q′, a, Rbr, R1, . . . , Rn) and q ←i/m (q′, r′, Rk+1, . . . , Rn)

when q ←i/m (q′, r) and r
a−−→

Rbr

(R1, . . . Rn) or, respectively, r r′−→ (Rk+1, . . . Rn).

Finally, we remark that a transition to the empty set is distinct from having no transition.

4 Backwards Reachability Analysis

Fix a GASTRS G and automaton T0 for the remainder of the article. We define

Pre∗G(T0) = {t | t→∗ t′ ∧ t′ ∈ L(T0)} .

We give a saturation algorithm for computing an automaton T such that L(T ) = Pre∗G(T0).
Indeed, we prove the following theorem. The upper bound is discussed in the sequel. The lower
bound comes from alternating higher-order pushdown automata [8] and appears in Appendix D.

Theorem 4.1. Given an order-n GASTRS G and stack tree automaton T0, Pre∗G(T0) is regular
and computable in n-EXPTIME, which is optimal.

For technical reasons assume for each p there is at most one rule (p1, . . . , pm)
−−→ p. E.g., we

cannot have (p1, p2)
−−→ p and (p′1, p

′
2)

−−→ p. This is not a real restriction since we can introduce
intermediate control states. E.g. (p1, p2)

−−→ p1,2 and p1,2
rewa→a−−−−−→ p and (p′1, p

′
2)

−−→ p′1,2 and
p′1,2

rewa→a−−−−−→ p for all a ∈ Σ.

Initial States

We say that all states in P are initial. Furthermore, a state r is initial if there is a transition
q ←i/m (q′, r) or if there exists a transition r′

r−→ R in some ∆k. We make the assumption that
all initial states do not have any incoming transitions and that they are not final1. Furthermore,
we assume any initial state only appears on one transition.

New Transitions

When we add a transition q ←i/m (q′, a, Rbr, R1, . . . , Rn) to the automaton, then, we add
q ←i/m (q′, rn) to ∆ if it does not exist, else we use the existing rn, and then for each n ≥ k > 1,
we add rk

rk−1−−−→ Rk to ∆k if a transition between rk and Rk does not already exist, otherwise
we use the existing transition and state rk−1; finally, we add r1

a−−→
Rbr

R1 to ∆1.

1Hence automata cannot accept empty stacks from initial states. This can be overcome by introducing a
bottom-of-stack symbol.
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The Algorithm

We give the algorithm formally here, with intuitive explanations given in the follow section.
Saturation is a fixed point algorithm. We begin with a GASTRS G = (Σ,R) and target set
of trees by T0. Then, we apply the saturation function F and obtain a sequence of automata
Ti+1 = F(Ti). The algorithm terminates when Ti+1 = Ti in which case we will have L(Ti+1) =
Pre∗G(T0).

Following the conventions described above for adding transitions to the automaton, we can
only add a finite number of states to the automaton, which implies that only a finite number
of transitions can be added. Hence, we must necessarily reach a fixed point for some i.

Given Ti, we define Ti+1 = F(Ti) to be the automaton obtained by adding to Ti the following
transitions and states.

• For each rule p
rewa→b−−−−−→ p′ ∈ R and transition q ←j/m (p′, b, Rbr, R1, . . . , Rn) in Ti, add

to Ti+1 the transition q ←j/m (p, a,Rbr, R1, . . . , Rn).

• For each rule p
pushk

1−−−−→ p′ ∈ R, transition q ←j/m (p′, a, Rbr, R1, . . . , Rn), and R1
a−−→

R′
br

R′
1

in Ti, add

q ←j/m (p, a,R′
br, R

′
1, R2, . . . , Rk−1, Rk ∪Rbr, Rk+1, . . . , Rn)

to Ti+1 when k > 1, and q ←j/m (p, a,R′
br, R

′
1 ∪Rbr, R2, . . . , Rn) when k = 1.

• For each rule p
pushk−−−−→ p′ ∈ R and q ←j/m (p′, a, Rbr, R1, . . . , Rn) and Rk

a−−→
R′

br

(R′
1, . . . , R

′
k)

in Ti, add to Ti+1

q ←j/m

(
p, a,Rbr ∪R′

br, R1 ∪R′
1, . . . , Rk−1 ∪R′

k−1, R
′
k, Rk+1, . . . , Rn

)
.

• For each rule p
popk−−−→ p′ ∈ R and q ←j/m (p′, rk, Rk+1, . . . , Rn) in Ti, add to Ti+1 for each

a ∈ Σ

q ←j/m (p, a, ∅, ∅, . . . , ∅, {rk} , Rk+1, . . . , Rn) .

• For each rule p
collapsek−−−−−−→ p′ ∈ R and q ←j/m (p′, rk, Rk+1, . . . , Rn) in Ti, add to Ti+1 for

each a ∈ Σ

q ←j/m (p, a, {rk}, ∅, . . . , ∅, Rk+1, . . . , Rn) .

• For each rule p
+−→ (p1, . . . , pm) ∈ R and q ←j/m′ (q′, a, Rbr, R1, . . . , Rn) and

q′ ←1/m

(
p1, a, R

1
br, R

1
1, . . . , R

1
n

)
, . . . , q′ ←m/m

(
p2, a, R

2
br, R

2
1, . . . , R

2
n

)
in Ti, add to Ti+1

q ←j/m′ (p, a,R′
br, R

′
1, . . . , R

′
n)

where R′
br = Rbr ∪R1

br ∪ · · · ∪Rm
br and for all k, we have R′

k = R1 ∪R1
k ∪ · · · ∪Rm

k .

• For each rule (p1, . . . , pm)
−−→ p ∈ R and a1, . . . , am ∈ Σ add to Ti+1 the transitions

p←j/m (pj , aj , ∅, ∅, . . . , ∅) for each 1 ≤ j ≤ m.
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4.0.3 Intuition of the Algorithm

Since rules may only be applied to the leaves of the tree, the algorithm works by introducing
new initial transitions that are derived from existing initial transitions. Consider a tree t with
a leaf node v labelled by (bsbr :1 s). Suppose this tree were already accepted by the automaton,
and the initial transition q ←i/m (p, b, Rbr, R1, . . . , Rn) is applied to v.

If we had a rule p′
rewa→b−−−−−→ p then we could apply this rule to a tree t′ that is identical

to t except v is labelled by (asbr :1 s). After the application, we would obtain t. Thus, if t is
accepted by the automaton, then t′ should be accepted.

The saturation algorithm will derive from the above rule and transition a new transition
q ←i/m (p′, b, Rbr, R1, . . . , Rn). This transition simply changes the control state and top char-
acter of the stack. Thus, we can substitute this transition into the accepting run of t to build
an accepting run of t′.

For a rule (p1)
−−→ p we would introduce a transition p←1/1 (b, p1, ∅, ∅, . . . , ∅). We can add

this transition to any accepting run of a tree with a leaf with control state p and it will have
the effect of adding a new node with control state p1. Since we can obtain the original tree by
applying the rule, the extended tree should also be accepted. The intuition is similar for the
popk and collapsek operations.

To understand the intuition for the pushk, pushk1 and p
+−→ (p1, . . . , pm) rules, one must

observe that these rules, applied backwards, have the effect of replacing multiple copies of
identical stacks with a single stack. Thus, the new transitions accept the intersection of the
stacks that could have been accepted by multiple previous transitions: taking the union of two
sets of automaton states means that the intersection of the language must be accepted.

Correctness

We have the following property.

Property 4.1 (Correctness of Saturation). Given an order-n GASTRS, saturation runs in
n-EXPTIME and builds an automaton T such that L(T ) = Pre∗G(T0).

Proof. The proof of completeness is given in Lemma B.1 and soundness is given in Lemma C.6.
The complexity is derived as follows. We add at most one transition of the form q ←i/m (p, r)

for each q, i, m and p. Hence we add at most a polynomial number of transitions to ∆.
Thus, to ∆n we have a polynomial number of states. We add at most one transition of the

form r
r′−→ R for each r and set of states R. Thus we have at most an exponential number of

transitions in ∆n.
Thus, in Rk we have a number of states bounded by a tower of exponentials of height (n−k).

Since we add at most one transition of the form r
r′−→ R for each r and R we have a number

of transitions bounded by a tower of exponentials of height (n − k + 1) giving the number of
states in Rk−1.

Thus, at order-1 the number of new transitions is bounded by a tower of height n, giving
the n-EXPTIME complexity.

5 Context Bounding

In the model discussed so far, communication between different nodes of the tree had to be done
locally (i.e. from parent to child, via the destruction of nodes). We show that the saturation
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algorithm can be extended to allow a bounded amount of communication between distant nodes
of the tree without destroying the nodes.

We begin by defining an extension of our model with global state. We then show that being
able to compute Pre∗G(T0) can easily be adapted to allow a bounded number of global state
changes.

5.1 GASTRS with Global State
Definition 5.1 (Order-n Ground Annotatee Stack Tree Rewrite Systems with Global State).
An order-n ground annotated stack tree rewrite system (GASTRS) with global state G is a
tuple (Σ,P,G,R) where Σ is a finite stack alphabet, P is a finite set of control states, G is a
finite set of global states, and R ⊂ G× STOpsΣ,P

n ×G is a finite set of operations.

A configuration of an order-n GASTRS with global state is a pair (g, t) where g ∈ G and
t is an order-n annotated stack tree over alphabet Σ. We have a transition (g, t) → (g′, t′)
whenever there is some (g, θ, g′) ∈ R and t′ ∈ θ(t). We write t →∗ t′ when there is a run
t = t0 → · · · → tm = t′.

5.2 The Context-Bounded Reachability Problem
The context-bounded reachability problem is to compute the set of configurations from which
there is a run to some target set of configurations, and moreover, the global state is only changed
at most ι times, where ι is some bound given as part of the input.

Definition 5.2 (Global Context-Bounded Backwards Reachability Problem). Given a GAS-
TRS with global state G, and a stack tree automaton T 0

g for each g ∈ G, and a bound ι, the
global context-bounded backwards reachability problem is to compute a stack tree automaton
Tg for each g ∈ G, such that t ∈ L(Tg) iff there is a run

(g, t) = (g0, t0)→ · · · → (gm, tm) = (g′, t′)

with t′ ∈ L
(
T 0
g′

)
and there are at most ι transitions during the run such that gi ̸= gi+1.

5.3 Decidability of Context-Bounded Reachability
Since the number of global state changes is bounded, the sequence of global state changes for
any run witnessing context-bounded reachability is of the form g0, . . . , gm where m ≤ ι. Let G̃
be the set of such sequences.

Suppose we could compute for each such sequence g̃ = g0, . . . , gm an automaton Tg̃ such
that t ∈ L(Tg̃) iff there is a run from (g0, t) to (gm, t′) with t′ ∈ L(Tgm) where the sequence
of global states appearing on the run is g̃. We could then compute an answer to the global
context-bounded backwards reachability problem by taking

Tg =
∪

gg̃∈G̃

Tgg̃ .

To compute Tg̃ we first make the simplifying assumption (without loss of generality) that
for each g ̸= g′ there is a unique (g, θ, g′) ∈ R and moreover θ = p

rewa→b−−−−−→ p′. Furthermore, for
all g ∈ G we define Gg = (Σ,P,Rg) where

Rg = {θ | (g, θ, g) ∈ R} .

11



We compute Tg̃ by backwards induction. Initially, when g̃ = g we compute

Tg̃ = Pre∗Gg
(Tg) .

It is immediate to see that Tg̃ is correct. Now, assume we have g̃ = gg̃′ and we have already
computed Tg̃′ , we show how to compute Tg̃.

The first step is to compute T ′
g̃ such that t ∈ L

(
T ′
g̃

)
iff (g, t) → (g′, t′) where g′ is the first

state of g̃′ and t′ ∈ L(Tg̃′). That is, T ′
g̃ accepts all trees from which we can change the current

global state to g′. That is, by a single application of the unique rule (g, θ, g′). Once we have
computed this automaton we need simply build

Tg̃ = Pre∗Gg

(
T ′
g̃

)
and we are done.

We first define T ′′
g̃ which is a version of Tg̃′ that has been prepared for a single application

of (g, θ, g′). From this we compute Tg̃.
The strategy for building T ′′

g̃ is to mark in the states which child, if any, of the node has
the global state change rule applied to its subtree. At each level of the tree, this marking
information enforces that only one subtree contains the application. Thus, when the root is
reached, we know there is only one application in the whole tree. Note, this automaton does
not contain any transitions corresponding to the actual application of the global change rule.
This is added afterwards to compute Tg̃. Thus, if

Tg̃ = (Q,Rn, . . . ,R1,Σ,∆,∆n, . . . ,∆1,P,F′,Fn, . . . ,F1)

then
T ′′
g̃ = (Q′,Rn, . . . ,R1,Σ,∆

′,∆n, . . . ,∆1,P,F′,Fn, . . . ,F1)

where, letting m be the maximum number of children permitted by any transition of Tg̃,

Q′ = P ∪Q× {0, . . . ,m} and F′ = {(qf , i) | qf ∈ F ∧ 0 < i ≤ m}

and we define

∆′ = ∆init ∪∆noapp ∪∆pass

∆init =
{
(q, 0)←i/m (p, r)

∣∣ q ←i/m (p, r) ∈ ∆
}
∪{

(q, j)←i/m (p, r)
∣∣ q ←i/m (p, r) ∈ ∆ ∧ i ̸= j

}
∆noapp =

{
(q, 0)←i/m ((q′, 0), r)

∣∣ q ←i/m (q′, r) ∈ ∆
}

∆pass =
{
(q, i)←i/m ((q, j), r)

∣∣ q ←i/m (q′, r) ∈ ∆
}
∪{

(q, j)←i/m ((q, 0), r)
∣∣ q ←i/m (q′, r) ∈ ∆ ∧ i ̸= j

}
.

In the above ∆init has two kinds of transitions. The first set are the initial transitions for the
nodes to which the rewrite rule is not applied (indicated by the 0). The second set are the
rules where the rewrite rule is applied at the jth sibling of the ith child. Next ∆noapp are the
transitions for subtrees which have not been marked as containing the application. Finally,
∆pass propagates information about where the application actually occurred up the tree. The
first set of transitions in ∆pass are used when the ith child contains the application (hence it
labels the parent with the information that the ith child contains the application). The second
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set of transitions guess that the jth sibling contains the application. Thus, at any node, at
most one child subtree may contain the application. The set of final states enforce that the
application has occurred in some child.

To compute T ′
g̃ , letting θ = p

rewa→b−−−−−→ p′ be the operation on the global state change, we
add to T ′′

g̃ a transition
(q, i)←i/m (p, a,Rbr, R1, . . . , Rn)

for each
q ←i/m (p′, b, Rbr, R1, . . . , Rn)

in Tg̃′ .
We remark that, as defined, Tg̃ does not satisfy the prerequisites of the saturation algorithm,

since initial states reading stacks might have incoming transitions, and, moreover, an initial
state may label more than one transition. We can convert Tg̃ to the correct format using the
automata manipulations in Appendix A.

Lemma 5.1. We have t ∈ L
(
T ′
g̃

)
iff (g, t) → (g′, t′) via a single application of the transition

(g, θ, g′) and t′ ∈ L(Tg̃′).

Proof. First, assume t ∈ L
(
T ′
g̃

)
. We argue that there is exactly one leaf t•i read by a transition

(q, i) ←i/m (p, r) and all other leaves are read by some (q, 0) ←i/m (p, r) or (q, j) ←i/m (p, r)
with j ̸= i.

If there is no such t•i then all leaf nodes are read by some (q, 0) ←i/m (p, r). Thus, all
parents of the leaf nodes are labelled by (q, 0). Thus, take any node v and assume its children
are labelled by some (q, 0). It must be the case that v is also labelled by some (q, 0) since
otherwise it is labelled (q, i) and its ith child must be labelled by some (q, j) with j > 0, which
is a contradiction. Hence, the accepting state of the run must also be some (qf , 0) which is not
possible.

If there are two or more leaves labelled by some (q, i) with i > 0 then each ancestor must
also be labelled by some (q, i) with i > 0. Take the nearest common ancestor v and suppose it
is labelled (q, i). However, since it has two children labelled with non-zero second components,
we must have used a transition (q, i)←j/m ((q′, j′), r) which, by definition, cannot exist.

Hence, we have only one leaf t•i where

(q, i)←i/m (p, a,Rbr, R1, . . . , Rn)

is used. Obtain t′ by applying p
rewa→b−−−−−→ p′ at this leaf. We build an accepting run of Tg̃′ by

taking the run of T ′
g̃ over t, projecting out the second component of each label, and replacing

the transition used at t•i with

q ←i/m (p′, b, Rbr, R1, . . . , Rn) .

Hence, we are done.
In the other direction take t and t′ obtained by applying p

rewa→b−−−−−→ p′ at leaf t•i . We take
the accepting run of Tg̃′ over t′ and build an accepting run of T ′

g̃ over t. Let

q ←i/m (p′, b, Rbr, R1, . . . , Rn) .

be the transition used at t•i . We replace it with

(q, i)←i/m (p, a,Rbr, R1, . . . , Rn) .
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Starting from above the root node, let the jth child be the first on the path to t•i (the root node
is the 1st child of “above the root node”). For all children except the jth, take the transition
q ←j′/m (q′, r) used in the run over t′ and replace it with (q, j)←j′/m ((q′, 0), r). The remainder
of the run in the descendents of these children requires us to use (q, 0) ←i′/m ((q′, 0), r) or
(q, 0)←i′/m (q, r) instead of q ←i′/m (q′, r).

For the jth child, we use instead of q ←j/m (q′, r). the transition (q, j) ←j/m ((q′, j′), r)
when the j′th child of this child leads to t•i or the previously identified transition when the
j′th child of this child is the leaf.

We repeat the routine above until we reach t•i , at which point we’ve constructed an accepting
run of T ′

g̃ over t.

By iterating the above procedure, we obtain our result.

Theorem 5.1 (Context-Bounded Reachability). The global context-bounded backwards reach-
ability problem for GASTRS with global state is decidable.

6 Conclusions and Future Work

We gave a saturation algorithm for annotated stack trees – a generalisation of annotated push-
down systems with the ability to fork and join threads. We build on the saturation method
implemented by the C-SHORe tool. We would like to implement this work. We may also in-
vestigate higher-order versions of senescent ground tree rewrite systems [13], which generalises
scope-bounding [22] to trees.
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A Particulars of Annotated Stack Tree Automata

Here we discuss various particulars of our stack tree automata: the definition of runs, the effec-
tive boolean algebra, membership, emptiness, transformations to normal form, and comparisons
with other possible stack tree automata definitions.

A.1 Definition of Runs over Stacks

We give a more formal definition of a run accepting a stack. First we introduce some notation.

For n ≥ k > 1, we write R1
R′

−→ R2 to denote an order-k transition from a set of states

whenever R1 = {r1, . . . , rm} and for each 1 ≤ i ≤ m we have ri
r′i−→ Ri and R′ = {r′1, . . . , r′m}

and R2 =
∪

1≤i≤m Ri. The analogous notation at order-1 is a special case of the short-form
notation defined in Section 3.4.

Formally, fix an annotated stack tree automaton

T = (Q,Rn, . . . ,R1,Σ,∆,∆n, . . . ,∆1,P,F,Fn, . . . ,F1)

We say a node contains a character if its exiting edge is labelled by the character. Recall the
tree view of an annotated stack, an example of which is given below.

• • • • • • • • • • • • • • • • •
[2 [1 a b ]1 ]2 [2 [1 c ]1 ]2 [1 c ]1

Some stack (tree) s is accepted by T from states R0 ⊆ Rk — written s ∈ LR0(T ) —
whenever the nodes of the tree can be labelled by elements of

∪
1≤k′≤n

2Rk′ such that
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1. R0 is a subset of the label of the node containing the first [k−1 character of the word, or
if k = 1, the first character a ∈ Σ, and

2. for any node containing a character [k′ labelled by R, then for all r1 ∈ R, there exists
some transition (r1, r2, R1) ∈ ∆k′+1 such that r2 appears in the label of the succeeding
node and R1 is a subset of the label of the node succeeding the matching ]k′ character,
and

3. for any node containing a character ]k′ , the label R is a subset of Fk′ , and the final node
of an order-k stack is labelled by R ⊆ Fk, and

4. for any node containing a character a ∈ Σ, labelled by R, for all r′ ∈ R, there exists
some transition (r′, a, Rbr, R

′) ∈ ∆1 such that Rbr is a subset of the label of the node
annotating a, and R′ is a subset of the label of the succeeding node.

That is, a stack automaton is essentially a stack- and annotation-aware alternating automa-
ton, where annotations are treated as special cases of the alternation.

A.2 Effective Boolean Algebra

In this section we prove the following.

Proposition A.1. Annotated stack tree automata form an effective boolean algebra.

Proof. This follows from Proposition A.2, Proposition A.3, and Proposition A.4 below.

Proposition A.2. Given two automata

T = (Q,Rn, . . . ,R1,Σ,∆,∆n, . . . ,∆1,P,F,Fn, . . . ,F1)

and
T ′ = (Q′,R′

n, . . . ,R′
1,Σ,∆

′,∆′
n, . . . ,∆

′
1,P′,F′,F′

n, . . . ,F′
1)

there is an automaton T ′′ which recognises the union of the languages of T and T ′.

Proof. Supposing T and T ′ are disjoint except for P and no state p ∈ P has any incoming
transition, the automaton we construct is:

T ′′ =


Q ∪Q′,
Rn ∪ R′

n, . . . ,R1 ∪ R′
1,

Σ,
∆ ∪∆′,∆n ∪∆′

n, . . . ,∆1 ∪∆′
1,

P,
F ∪ F′,Fn ∪ F′

n, . . . ,F1 ∪ F′
1


Every run in T (resp T ′) is a run of T ′′ as every state and transition of T is in T ′′.
A run in T ′′ is a run of T or of T ′, as every state and transition T ′′ is in T or in T ′, and

as the sets of states and transitions are disjoint except for initial states (which do not have
incoming transitions), a valid run is either entirely in T or in T ′.
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Proposition A.3. Given two automata

T = (Q,Rn, . . . ,R1,Σ,∆,∆n, . . . ,∆1,P,F,Fn, . . . ,F1)

and
T ′ = (Q′,R′

n, . . . ,R′
1,Σ,∆

′,∆′
n, . . . ,∆

′
1,P′,F′,F′

n, . . . ,F′
1)

there is an automaton T ′′ which recognises the intersection of the languages of T and T ′.

Proof. We construct the following automaton:

T ′ = (Q′′,R′′
n, . . . ,R′′

1 ,Σ,∆
′′,∆′′

n, . . . ,∆
′′
1 ,P′′,F′′,F′′

n, . . . ,F′′
1)

For any pair of states r, r′ ∈ Rn ∪R′
n we can assume a state r∩ r′ accepting the intersection

of the stacks accepted from r and r′. This comes from the fact that stack automata form
an effective boolean algebra [5]. The states and transitions in R′′

n, . . . ,R′′
1 , ∆′′

n, . . . ,∆
′′
1 , and

F′′
n, . . . ,F′′

1 come from this construction.
For q1 ∈ Q and q2 ∈ Q′, we define q1,2 to be in Q′′ such that, for every q1 ←i/m (q′1, r1) and

q2 ←i/m (q′2, r2) , we add the transition q1,2 ←i/m

(
q′1,2, r1 ∩ r2

)
.

We have q1,2 ∈ F′′ if and only if q1 ∈ F and q2 ∈ F′.
A run exists in T ′′ if and only if there is a run in T and one in T ′, by construction.

Proposition A.4. Given an automaton,

T = (Q,Rn, . . . ,R1,Σ,∆,∆n, . . . ,∆1,P,F,Fn, . . . ,F1)

there is an automaton T ′ which accepts a tree if and only if it is not accepted by T .

Proof. We define the complement as follows. We first assume that for each r ∈ Rn we also
have r ∈ Rn that accepts the complement of r. This follows from the complementation of stack
automata in ICALP 2012 [5].

Then, we define T ′ to be the complement of T , which contains

T ′ = (Q′,Rn, . . . ,R1,Σ,∆
′,∆n, . . . ,∆1,P,F′,Fn, . . . ,F1)

where, letting mmax be the maximum number of children that can appear in a tree accepted
by T (this information is easily obtained from the transitions of T ), we have

Q′ =
∪

m≤mmax

(
2Q

)m
.

That is, the automaton will label nodes of the tree with a set of states for each child. The ith
set will be the set of all labels q that could have come from the ith child in a run of T . Since
all children have to agree on the q that labels a node, then a label (Q1, . . . , Qm) means that
the set Q1 ∩ · · · ∩Qm is the set of states q that could have labelled the node in a run of T .

The transition relation ∆′ is the set of transitions of the form

(Q1, . . . , Qm)←i/m ((Q′
1, . . . , Q

′
m′), r)

where m,m′ ≤ mmax and for all j ̸= i, the set Qj is any subset of Q, and Qi ⊆ Q and r are
such that

• r =
∩
q∈Q

rq, and
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• if q ∈ Qi then
rq = r1 ∪ · · · ∪ rl

where q ←i/m (q1, r1), . . . , q ←i/m (ql, rl) are all transitions to q via the ith of m children
with the property that

qj ∈ Q′
1 ∩ · · · ∩Q′

m′

for all j.

• if q /∈ Qi then
rq = r1 ∩ · · · ∩ rl

where q ←i/m (q1, r1), . . . , q ←i/m (ql, rl) are all transitions to q via the ith of m children
with the property that

qj ∈ Q′
1 ∩ · · · ∩Q′

m′

for all j.

In each transition, the sets Qj for all j ̸= i have no constraints. The automaton effectively
guesses the set of labels that could have come from sibling nodes. The set Qi contains all
labellings that could have come from the ith child given the set of labellings that could have
labelled the child. The final condition above insists that transitions to any state not in Qi could
not have been applied to the child.

The set of accepting states is

{(Q1, . . . , Qm) | ∄qf ∈ F .qf ∈ Q1 ∩ · · · ∩Qm } .

For the initial states, we alias p = {p}
We prove that this automaton is the complement of T . Associate to each node v the set Qv

such that q ∈ Qv iff there is some (partial, starting from the leaves) run of T that labels v with
q. We prove that all runs of T ′ label v with some (Q1, . . . , Qm) such that Qv = Q1 ∩ · · · ∩Qm.

At the leaves of the tree this is immediate since T must label the node with some p, and T ′

must label it with {p}.
Now, suppose we have a node v with children v1, . . . , vm and the property holds for all

children.
Take some q ∈ Qv. Let q ←1/m (q1, r1), . . . , q ←m/m (qm, rm) be the transitions used in the

run labelling v with q. For each i we must have by induction qi appearing in all sets labelling
vi in a run of T ′. Now suppose T ′ labels v with (Q1, . . . , Qm) and moreover q /∈ Qi. Then, by
construction, we must have that the stack labelling vi is accepted from ri. However, since the
stack must have been accepted from ri we have a contradiction. Thus, q ∈ Qi.

Now take some q /∈ Qv. Thus, there is some i such that, letting q ←i/m (q1, r1), . . . ,
q ←i/m (ql, rl) be all transitions with qj appearing in Qvi, we know the stack labelling vi is not
accepted from any rj (and is accepted from all rj). Now suppose T ′ labels v with (Q1, . . . , Qm)
and moreover q ∈ Qi. Then, by construction, we must have that the stack labelling vi is
accepted from some rj , which is a contradiction. Thus, q /∈ Qi.

Hence Qv = Q1 ∩ · · · ∩Qm as required.
Now, assume there is some accepting run of T via final state qf . Assume there is an

accepting run of T ′. Then necessarily the run of T ′ has as its final label some tuple such that
qf ∈ Q1 ∩ · · · ∩Qm. This contradicts the fact that the run of T ′ is accepting.

Conversely, take some accepting run of T ′. The accepting state (Q1, . . . , Qm) of this run
has no final state qf ∈ Q1 ∩ · · · ∩Qm and thus there can be no accepting run of T .
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A.3 Membership

In this section we prove the following.

Proposition A.5. The membership problem for annotated stack tree automata is in linear
time.

Proof. We give an algorithm which checks if a tree t is recognised by an automaton.
We start by labelling every leaf labelled with control p with {p}.
For every node v such that all its sons have been labelled, we label it by every state q such

that there exist transitions q ←1/m (q1, r1) , · · · , q ←m/m (qm, rm) such that each son vi is
labelled by a set containing qi and the stack labelling vi is accepted by ri. Note, checking the
acceptance of a stack from ri can be done in linear time [5].

If we can label the root by a final state, the tree is accepted (as at each step, if we can label
a node by a state, there is a run in which it is labelled by this state), otherwise, it is not.

As knowing if a stack is accepted from a given state is linear in the size of the stack, and
we visit each node once, and explore with it once each possible transitions, the complexity of
this algorithm is linear in the size of the tree.

A.4 Emptiness

In this section we prove the following.

Proposition A.6. The emptiness problem for annotated stack tree automata is in PSPACE-
complete.

Proof. We give the following algorithm:
We set Marked = P.
If there exists a q which is not in Marked such that, there is some m such that for each

i ≤ m we have q ←i/m (q′, r′), with q′ ∈ Marked and there exists a stack recognised from r′,
we add q to Marked.

We stop when there does not exist such a state.
If Marked ∩ F = ∅, the recognised language is empty, otherwise, there is at least one tree

recognised.
There are at most |Q| steps in the algorithm, and the complexity of the emptiness problem

for the states r is PSPACE. Thus, the algorithm runs in PSPACE.

A.5 Automata Transformations

In this section we show that annotated stack tree automata can always be transformed to meet
the assumptions of the saturation algorithm.

Take a stack tree automaton

T = (Q,Rn, . . . ,R1,Σ,∆,∆n, . . . ,∆1,P,F,Fn, . . . ,F1) .

We normalise this automaton as follows. It can be easily seen at each step that we preserve the
language accepted by the automaton.

First we ensure that there are no transitions

p←i/m (q, r) .
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We do this by introducing a new state qp for each p ∈ P. Then, we replace each

p←i/m (q, r)

with
qp ←i/m (q, r)

and for each
q ←i/m (p, r)

in the resulting automaton, add a transition (not replace)

q ←i/m (qp, r) .

Thus, we obtain an automaton with no incoming transitions to any p.
To ensure unique states labelling transitions, we replace each transition

q ←i/m (q′, r)

with a transition
q ←i/m

(
q′, r(q,q′)

)
where there is one r(q,q′) for each pair of states q, q′. Then when n > 1 we have a transition

r(q,q′)
r′−→ R for each r

r′−→ R. Notice, if there are multiple possible r then r(q,q′)
r′−→ R accepts

the union of their languages. Furthermore, r(q,q′) has no incoming transitions. Moreover, we
do not remove any transitions from r but observe that r is no longer initial. When n = 1 we
have a transition r(r,R)

a−−→
Rbr

R′ for each r
a−−→

Rbr

R′.

We then iterate from k = n down to k = 3 performing a similar transformation to the above.
That is, we replace each transition in the order-k transition set

r
r′−→ R

with a transition
r

r(r,R)−−−→ R

where there is one r(r,R) for each pair of r and R. Then we have a transition r(r,R)
r′′−→ R′ for

each r′
r′′−→ R′. Again, if there are multiple possible r′ then r(r,R)

r′′−→ R′ accepts the union of
their languages. Furthermore, r(r,R) has no incoming transitions.

Finally, for k = 2 the procedure is similar. We replace each transition in the order-2
transition set

r
r′−→ R

with a transition
r

r(r,R)−−−→ R

where there is one r(r,R) for each pair of r and R. Then we have a transition r(r,R)
a−−→

Rbr

R′ for

each r′
a−−→

Rbr

R′.
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A.6 Alternative Tree Automaton Definition
An alternative definition of stack tree automata would use transitions

q ← (q1, r1) , . . . , (qm, rm)

instead of
q ←1/m (q1, r1) , . . . , q ←m/m (qm, rm) .

However, due to the dependency such transitions introduce between r1, . . . , rm it is no longer
possible to have a unique sequence r1, . . . , rm for each sequence q, q1, . . . , qm (one cannot simply
union the candidates for each ri).

For example suppose we had q ← (q1, r1) , (q2, r2) and q ← (q1, r
′
1) , (q2, r

′
2) where r1 accepts

s1, r′1 accepts s′1, r2 accepts s2, and r′2 accepts s′2. If we were to replace these two transitions
with q ← (q1, r1 ∪ r′1) , (q2, r2 ∪ r′2) we would mix up the two transitions, allowing, for example,
the first child to be labelled by s1 and the second by s′2.

At a first glance, our tree automaton model may appear weaker since we cannot enforce
dependencies between the candidate ris in

q ←1/m (q1, r1) , . . . , q ←m/m (qm, rm) .

However, it turns out that we can overcome this problem with new copies of q.
That is, suppose we had a set ∆ of transitions of the form

q ← (q1, r1) , . . . , (qm, rm) .

We could simulate the resulting tree automaton using our model by introducing a state (q, δ)
for each q and δ.

Given a transition δ of the above form, we can use a family of rules

(q, δ)←1/m ((q1, δ1), r1) , . . . , (q, δ)←m/m ((qm, δm), rm)

for all sequences δ1, . . . , δm of ∆. (Note that, although there are an exponential number of such
families, we can create them all from a polynomial number of transitions). Note that when
qi = p we would use p on the right hand side instead of (qi, δi) (recalling that p has no incoming
transitions).

B Completeness of Saturation
Lemma B.1 (Completeness of Saturation). The automaton T obtained by saturation from T0
is such that Pre∗G(T0) ⊆ L(T ).

Proof. Completeness is proved via a straightforward induction over the length of the run wit-
nessing t ∈ Pre∗G(T0). In the base case we have t ∈ L(T0) and since T was obtained only by
adding transitions to T0, we are done.

For the induction, take t ∈ θ(t′) where t′ ∈ Pre∗G(T0) and by induction T has an accepting
run of t′. We show how the transitions added by saturation can be used to build from the run
over t′ an accepting run over t.

We first consider the cases where θ adds or removes nodes to/from the tree. The remaining
cases when the stack contents are altered are almost identical to the ICALP 2012 proof, and
hence are left until the end for the interested reader.
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• When θ = p
+−→ (p1, . . . , pm) was applied to node t•j of t, we have

t′ = t
[
t•j → s

][
t•j1→ (p1, s)

]
· · ·

[
t•jm→ (pm, s)

]
where (p, s) labelled t•j .
Take the initial transitions over t•j and t•j1 to t•jm of the accepting run of t′

q ←i/m′ (q1, a, Rbr, R1, . . . , Rn)

and
q1 ←1/m

(
p1, a, R

1
br, R

1
1, . . . , R

1
n

)
, . . . , q1 ←m/m (pm, a, Rm

br, R
m
1 , . . . , Rm

n )

where the components of s were accepted from Rbr, R1, . . . , Rn and R1
br, R

1
1, . . . , R

1
n, . . . ,

Rm
br, R

m
1 , . . . , Rm

n .
By saturation we also have

q ←i/m′ (p, a,R′
br, R

′
1, . . . , R

′
n)

where R′
br = Rbr ∪R1

br ∪ · · · ∪ Rm
br and for all k, we have R′

k = R1 ∪R1
k ∪ · · · ∪ Rm

k from
which we obtain a run of T over t by simply replacing the transitions of the run over t′

identified above with δ.

• When θ = (p1, . . . , pm)
−−→ p was applied to nodes t•j to t•j+m−1 of t, we have t′ =

t\
{
t•j , . . . , t•j+m−1

}
and t•j , . . . , t•j+m were the only children of their parent v. Moreover,

let (p1, s1) label t•j , and . . . and, (pm, sm) label t•j+m−1 and v have the stack s in t and
(p, s) label v in t′.
The initial transition over v of the accepting run of t′ was from state p By saturation we
have

δ1 = p←1/m (p1, a1, ∅, ∅, . . . , ∅) , . . . , δm = p←m/m (pm, am, ∅, ∅, . . . , ∅)

for the a1, . . . , am at the top of s1, . . . , sm respectively. We get from this a run of T over
t by adding δ1 to δm to the run over t′ to read the nodes t•j

to t•j+m−1
.

We now consider the cases where θ applies a stack operation to a single node t′•j of t′. Let

δ′ = q ←i/m (p′, a, Rbr, R1, . . . , Rm)

be the transition applied at node t′•j in the run. Additionally, let s′ be the stack labelling the
node, and p′ be the control state.

There is a case for each type of stack operation, all of which are almost identical to the
ICALP 2012 proof. In all cases below, t has the same tree structure as t′ and only differs on
the labelling of t′•j = t•j .

• When θ = p
rewb→a−−−−−→ p′ then we also added the transition

δ = q ←i/m (p, b, Rbr, R1, . . . , Rm)

to T . We have
s′ = asbr :1 s1 :2 · · · :n sn

and since t•j is labelled by p and the stack

s = bsbr :1 s1 :2 · · · :n sn

we obtain an accepting run of t by simply replacing the application of δ′ with δ.

23



• When θ = p
pushk

1−−−−→ p′ then when k > 1 we have

s′ = ask :1 asbrs1 :2 · · · :n sn .

Let
R1

a−−→
R′

br

(R′
1)

be the first transitions used to accept asbr . From the saturation algorithm we also added

δ = q ←i/m (p, a,R′
br, R

′
1, R2, . . . , Rk−1, Rk ∪Rbr, Rk+1, . . . , Rn)

to T . Since t•j is labelled by p and the stack

s = asbr :1 s1 :2 · · · :n sn

we obtain an accepting run of t by replacing the application of δ′ with δ. This follows
because s′1 was accepted from R′

1, sbr from R′
br and sk was accepted from both Rk and

Rbr.
When k = 1 we have

s′ = as1 :1 asbrs1 :2 · · · :n sn .

Let
R1

a−−→
R′

br

(R′
1)

be the first transitions used to accept asbr . From the saturation algorithm we also added

δ = q ←i/m (p, a,R′
br, R

′
1 ∪Rbr, R2, . . . , Rn)

to T . Since t•j is labelled by p and the stack

s = asbr :1 s1 :2 · · · :n sn

we obtain an accepting run of t by replacing the application of δ′ with δ. This follows
because s′1 was accepted from R′

1, sbr from R′
br and sk was accepted from both Rk and

Rbr.

• When θ = p
pushk−−−−→ p′ then we have

s′ = sk :k sk :k+1 sk+1 · · · :n sn and sk = asbr :1 s′1 :2 · · · :(k−1) sk−1 .

Let
Rk

a−−→
R′

br

(R′
1, . . . , R

′
k)

be the transitions use to accept the first character of the second appearance of sk. From
the saturation algorithm we also added δ =

q ←i/m

(
p, a,Rbr ∪R′

br, R1 ∪R′
1, R2 ∪R′

2, . . . , Rk−1 ∪R′
k−1, R

′
k, Rk+1, . . . , Rn

)
to T . Since t•j is labelled by p and the stack

s = asbr :1 s1 :2 · · · :n sn

we obtain an accepting run of t by replacing the application of δ′ with δ. This follows
because stacks s1 to sk−1 are accepted from R1 and R′

1 to Rk−1 and R′
k−1 respectively,

sbr from Rbr and R′
br, and the remainder of the stack from R′

k, Rk+1, . . . , Rn.
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• When θ = p
popk−−−→ p′ Then we have

s′ = sk :k+1 sk+1 · · · :n sn

and
s = asbr :1 s1 :2 · · · :n sn

for some a, sbr, s1, . . . , sk−1. We break down δ′ to find rk such that

q ←i/m (p′, rk, Rk+1, . . . Rn)

where rk accepts sk and Rk+1 through to Rn accept sk+1 through to sn respectively. By
saturation we added the transition

δ = q ←i/m (p, a, ∅, ∅, . . . , ∅, {rk} , Rk+1, . . . , Rn)

from which we obtain an accepting run of s with p as required.

• When θ = p
collapsek−−−−−−→ p′ Then we have

s′ = sbr, :k+1 sk+1 · · · :n sn

and
s = asbr :1 s1 :2 · · · :n sn

for some a, sbr, s1, . . . , sk. We break down δ′ to find rbr such that

q ←i/m (p′, rbr, Rk+1, . . . Rn)

where rk accepts sbr and Rk+1 through to Rn accept sk+1 through to sn respectively. By
saturation we added the transition

δ = q ←i/m (p, a, {rbr}, ∅, . . . , ∅, Rk+1, . . . , Rn)

from which we obtain an accepting run of s with p as required.

Thus, in all cases we find an accepting run of T , which completes the proof.

C Soundness of Saturation
We prove that the automaton T constructed by saturation only accepts trees in Pre∗G(T0). The
proof relies on the notion of a “sound” automaton. There are several stages to the proof.

• We assign meanings to each state of the automaton that ultimately capture inclusion in
Pre∗G(T0).

• We use these meanings to derive a notion of sound transitions.

• We define a sound automaton based on the notion of sound transitions.

• We show sound tree automata only accept trees in Pre∗G(T0).

• We show the initial automaton T0 is sound, and moreover, each saturation step preserves
soundness, from which we conclude soundness of the saturation algorithm.
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To define the meanings of the states we need to reason about partial runs of our stack tree
automata. Hence for a tree automaton T we define

LW (T )

to accept trees over the set of control states Q (instead of P). That is, we can accept prefixes
of trees accepted by T by labelling the leaves with the states that would have appeared on an
accepting run of the full tree.

Furthermore, we write
Lq1,...,qm(T )

to denote the set of trees t in LW (T ) such that t has m leaves and the “control” states (which
now includes all states in Q) appearing on the leaves are q1, . . . , qm respectively. As a special
case, Lqf (T ) for all qf ∈ F contains only the empty tree.

C.1 Meaning of a State
We assign to each state of the automaton a “meaning”. This meaning captures the requirement
that the states p of the automaton should accept Pre∗G(T0), while the meanings of the non-
initial states are given by the automaton itself (i.e. the states should accept everything they
accept). For states accepting stacks, the non-initial states again have the trivial meaning (they
should accept what they accept), while the meanings of the initial states are inherited from the
transitions that they label.

We write q̃ to denote a sequence q1, . . . , qm and |q1, . . . , qm| is m.
Let V be a partial mapping of nodes to states in Q, let ∅ be the empty mapping, and let

V[v → q](v′) =

{
q v = v′

V(v′) v ̸= v′ .

We use these mappings in definition below to place conditions on nodes in the tree that restrict
runs witnessing membership in Pre∗G(T0).

Definition C.1 (t |=V q1, . . . , qm). If t has m leaves labelled q1, . . . , qm respectively then t |=V
q1, . . . , qm whenever t ∈ Pre∗G(LW (T0)) and there is a run to some t′ ∈ LW (T0) such that –
fixing an accepting run of T0 over t′ – for all nodes v of t with V(v) = q, then

• if q ∈ P then v appears as a leaf during the run and on the first such tree in the run, v
has control state q.

• if q /∈ P then v is not a leaf of any tree on the run and the accepting run of T over t′

labels v with q.

As a special case, when t is empty we have t |=∅ qf and qf ∈ F.

Once we have assigned meanings to the states of Q, we need to derive meanings for the
states in Rn, . . . ,R1. We first introduce some notation.

t+i (q1, s1) , . . . , (qm, sm) = t[t•i → s][t•i1→ (q1, s1)] · · ·[t•im→ (qm, sm)]

when t is non-empty and s is the stack labelling t•i in t. When t is empty we have

t+0 (q1, s1)
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is the single-node tree labelled by (q1, s1).
In the definition below we assign meanings to states accepting stacks. The first case is the

simple case where a state is non-initial, and its meaning is to accept the set of stacks it accepts.
The second case derives a meaning of a state in Rk by inheriting the meaning from the

states of Rk+1. Intuitively, if we have a transition rk+1
rk−→ Rk+1 then the meaning of rk is that

it should accept all stacks that could appear on top of a stack in the meaning of Rk+1 to form
a stack in the meaning of rk.

The final case is a generalisation of the above case to trees. The states in Rn should accept all
stacks that could appear on a node of the tree consistent with a run of the stack tree automaton
and the meanings of the states in Q.

Definition C.2 (s |= r). For any R ⊆ Rk and any order-k stack s, we write s |= R if s |= r
for all r ∈ R. We define s |= r by a case distinction on r.

1. When r is a non-initial state in Rk, then we have s |= r if s is accepted from r.

2. If rk is an initial state in Rk with k < n labelling a transition rk+1
rk−→ Rk+1 ∈ ∆k+1 then

we have s |= rk if for all stacks s′ such that s′ |= Rk+1 we have s :k+1 s′ |= rk+1.

3. We have s |= r where q ←i/m (q′, r) if for all transitions

q ←1/m (q1, r1) , . . . , q ←m/m (qm, rm)

trees t |=V q̃1, q, q̃2 and stacks s1, . . . , sm such that

t+j (q1, s1) , . . . , (qm, sm) |=V[t•j→q] q̃1, q1, . . . , qm, q̃2

where j = |q̃1|+ 1, we have

t+j (q1, s1) , . . . , (qi−1, si−1) , (q
′, s) , (qi+1, si+1) , . . . , (qm, sm)

|=V[t•j→q] q̃1, q1, . . . , qi−1, q
′, qi+1, . . . , qm, q̃2 .

Note that item 3 of the definition of |= contains a vacuity in that there may be no s1, . . . , sm
satisfying the antecedent (in which case all stacks would be in the meaning of r). Hence, we
require a non-redundancy condition on the automata.

Definition C.3 (Non-Redundancy). An order-n annotated stack tree automaton

T = (Q,Rn, . . . ,R1,Σ,∆,∆n, . . . ,∆1,P,F,Fn, . . . ,F1)

is non-redundant if for all q ∈ Q we have that either q has no-incoming transitions, or there
exist

q ←1/m (q1, r1) , . . . , q ←m/m (qm, rm) ∈ ∆

such that for all t |=V q̃1, q, q̃2 there exist s1, . . . , sm such that

t+j (q1, s1) , . . . , (qm, sm) |=V[t•j→q] q̃1, q1, . . . , qm, q̃2

where j = |q̃1|+ 1.

This property can be easily satisfied in T0 by removing states q that do not satisfy the
non-redundancy conditions (this does not change the language since there were no trees that
could be accepted using q). We show later that the property is maintained by saturation.
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C.2 Soundness of a Transition

After assigning meanings to states, we can define a notion of soundness for the transitions of
the automata. Intuitively, a transition is sound if it respects the meanings of its source and
target states.

One may derive some more intuition by considering a transition q
a−→ q′ of a finite word

automaton. The transition would be sound if, for every word w in the meaning of q′, the same
word with an a in front is in the meaning of q. That is, the transition is sound if an a can
appear on anything accepted from q′. The following definition translates the same idea to the
case of stack trees.

Definition C.4 (Soundness of transitions). There are two cases given below.

1. A transition rk
a−−→

Rbr

(R1, . . . , Rk) is sound if for any s1 |= R1, . . . , sk |= Rk and sbr |= Rbr

we have asbr :1 s1 :2 · · · :k sk |= rk.

2. A transition
q ←i/m (q′, a, Rbr, R1, . . . , Rn) ,

is sound if for all trees t |=V q̃1, q, q̃2 and stacks s1 |= R1, . . . sm |= Rm, and sbr |= Rbr

and for all
q ←1/m (q1, r1) , . . . , q ←m/m (qm, rm)

and stacks s′1, . . . , s
′
m such that

t+j (q1, s
′
1) , . . . , (qm, s′m) |=V[t•j→q] q̃1, q1, . . . , qm, q̃2

where j = |q̃1|+ 1, we have

t+j (q1, s
′
1) , . . . ,

(
qi−1, s

′
i−1

)
, (q′, s) ,

(
qi+1, s

′
i+1

)
, . . . , (qm, s′m)

|=V[t•j→q] q̃1, q1, . . . , qi−1, q
′, qi+1, . . . , qm, q̃2 .

where
s = asbr :1 s1 :2 · · · :n sn .

In the proof, we will have to show that saturation builds a sound automaton. This means
proving soundness for each new transition. The following lemma shows that it suffices to only
show soundness for the outer collections of transitions.

Lemma C.1 (Cascading Soundness). If a transition

q ←i/m (q′, a, Rbr, R1, . . . , Rn) ,

is sound then all transitions rk
a−−→

Rbr

(R1, . . . , Rk) appearing within the transition are also sound.

Proof. We march by induction. Initially k = n and we have r
a−−→

Rbr

(R1, . . . , Rn) where q ←i/m

(qi, r). To prove soundness of the transition from r, take s1 |= Ri
1, . . . , sn |= Ri

n, and sbr |= Ri
br.

We need to show
s = asbr :1 s1 :2 · · · :n sn |= r .
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This is the case if, letting j = |q̃1|, for all transitions

q ←1/m (q1, r1) , . . . , q ←m/m (qm, rm)

trees t |=V q̃1, q, q̃2 and stacks s1, . . . , sm such that

t+j (q1, s1) , . . . , (qm, sm) |=V[t•j→q] q̃1, q1, . . . , qm, q̃2

we have

t+j (q1, s1) , . . . , (qi−1, si−1) , (q
′, s) , (qi+1, si+1) , . . . , (qm, sm)

|=V[t•j→q] q̃1, q1, . . . , qi−1, q
′, qi+1, . . . , qm, q̃2 .

These properties are derived immediately from the fact that

q ←i/m (q′, a, Rbr, R1, . . . , Rn) ,

is sound, hence we are done.
When k < n we assume rk+1

a−−→
Rbr

(R1, . . . , Rk+1) is sound and rk+1
rk−→ Rk+1. We show

rk
a−−→

Rbr

(R1, . . . , Rk) is also sound. For this, we take any stacks s1 |= R1, . . . sk |= Rk, and

sbr |= Rbr. We need to show

s = asbr :1 s1 :2 · · · :k sk |= rk .

For this, we need for all s′ |= Rk+1 that s :(k+1) s
′ |= rk+1. From the soundness of rk+1

a−−→
Rbr

(R1, . . . , Rk+1) we have

s :(k+1) s
′ = asbr :1 s1 :2 · · · :(k+1) sk+1 |= rk+1

and we are done.

C.3 Soundness of Annotated Stack Tree Automata
We will prove the saturation constructs a sound automaton. We first define what it means for
an automaton to be sound and prove that a sound automaton only accepts trees in Pre∗G(T0).

Definition C.5 (Soundness of Annotated Stack Tree Automata). An annotated stack tree
automaton T is sound if

1. T is obtained from T0 by adding new initial states to R1, . . . ,Rn and transitions starting
at initial states, and

2. in T , all transitions
q ←i/m (q′, a, Rbr, R1, . . . , Rn)

and
rk

a−−→
Rbr

(R1, . . . , Rk)

are sound, and

3. T is non-redundant.
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We show that a sound annotated stack tree automaton can only accept trees belonging to
Pre∗G(T0). In fact, we prove a more general result. In the following lemma, note the particular
case where t ∈ Lq̃(T ) and q̃ is a sequence of states in P then we have t ∈ Pre∗G(T0). That is,
L(T ) ⊆ Pre∗G(T0).

Lemma C.2 (Sound Acceptance). Let T be a sound annotated stack automaton. For all
t ∈ Lq̃(T ) we have t |=∅ q̃.

Before we can prove the result about trees, we first prove a related result about stacks. This
result and proof is taken almost directly from ICALP 2012 [5].

Lemma C.3 (Sound Acceptance of Stacks). Let T be a sound annotated stack automaton. If
T accepts an order-k stack s from r ∈ Rk then s |= r.

Proof. We proceed by induction on the size of the stack (where the size of an annotated stack
is defined to be the size of a tree representing the stack).

Let s be an order-k stack accepted from a state r ∈ Rk. We assume that the property holds
for any smaller stack.

If s is empty then r is a final state. Recall that by assumption final states are not initial,
hence r is not initial. It follows that the empty stack is accepted from r in T0 and hence s |= r.

If s is a non-empty stack of order-1, then s = asbr :1 s1. As s is accepted from r, there
exists a transition r

a−−→
Rbr

(R1) such that s1 is accepted from R1 and sbr is accepted from Rbr.

By induction we have s1 |= R1 and sbr |= Rbr. Since the transition is sound, we have s |= r.
If s is a non-empty stack of order-k, then s = sk−1 :k sk. As s is accepted from r, there

exists a transition r
r′−→ R such that sk is accepted from R and sk−1 is accepted from r′. By

induction we have sk−1 |= r′ and sk |= Rk. Thus, by the definition of sk−1 |= r′ we also have
s = sk−1 :k sk |= r.

We are now ready to prove Lemma C.2 (Sound Acceptance).

Proof of Lemma C.2 (Sound Acceptance). We proceed by induction on the number of nodes in
the tree. In the base case, we have t ∈ Lqf (T ) for some qf ∈ F and t is empty. Thus, we
immediately have t |=∅ qf .

Thus, take some non-empty t ∈ Lq̃(T ). Let the sequence t•i , . . . , t•i+m be the first complete
group of siblings that are all leaf nodes and let q̃ = q̃1, q1, . . . , qm, q̃2 be the decomposition of q̃
such that q̃1 is of length (i−1). That is, q1, . . . , qm label the identified leaves of t. Furthermore,
let s1, . . . , sm be the respective stacks labelling these leaves. Take the set of transitions

q ←1/m (q1, r1) , . . . q ←m/m (qm, rm)

that are used in the accepting run of t and the identified leaves. Let t′ be the tree obtained by
removing t•i , . . . , t•i+m′ . We have t′ ∈ Lq̃1,q,q̃2(T ) and by induction t′ |=∅ q̃1, q, q̃2.

Since q has incoming transitions and T is non-redundant, we know there exists

q ←1/m (q′1, r
′
1) , . . . q ←m/m (q′m, r′m)

and s′1, . . . , s
′
m such that

t′ +i (q
′
1, s

′
1) , . . . , (q

′
m, s′m) |=∅[t•i→q] q̃1, q

′
1, . . . , q

′
m, q̃2 .
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Since s1 |= r1 we infer from the definition of |= at r1 that

t′ +i (q1, s1) , (q
′
2, s

′
2) , . . . , (q

′
m, s′m) |=∅[t•i→q] q̃1, q1, q

′
2, . . . , q

′
m, q̃2 .

By repeated applications of the above for each 1 < j ≤ m, we obtain

t′ +i (q1, s1) , (q2, s2) , . . . , (qm, sm) |=∅[t•i→q] q̃1, q1, . . . , qm, q̃2 .

This implies t |=∅ q̃ since |=∅ is less restrictive than |=∅[t•i→q].

C.4 Soundness of Saturation

We first prove that T0 is sound, and then that saturation maintains the property.

Lemma C.4 (Soundness of T0). The initial automaton T0 is sound.

Proof. It is trivial that T0 is obtained from T0, and moreover, we assume the non-redundancy
condition. Hence, From Lemma C.1 (Cascading Soundness) we only need to prove soundness
of non-initial transitions of the form

rk
a−−→

Rbr

(R1, . . . , Rn)

and for transitions in ∆.
We first show the case for non-initial

rk
a−−→

Rbr

(R1, . . . , Rn)

which is the same as in ICALP 2012. First note that R1, . . . , Rn and Rbr do not contain initial
states. Then we take s1 |= R1, . . . sk |= Rk and sbr |= Rbr. We have to show asbr :1 s1 :2
· · · :k sk |= rk. In particular, since rk is not initial, we only need to construct an accepting run.
Since Ri and Rbr are not initial, we have accepting runs from these states. Hence, we build
immediately the run beginning with rk

a−−→
Rbr

(R1, . . . , Rn).

We now prove the case for

q ←i/m (q′, a, Rbr, R1, . . . , Rn) .

Thus, take any s1 |= R1, . . . sm |= Rm, and sbr |= Rbr and any tree t |=V q̃1, q, q̃2 and, letting
j = |q̃1|+ 1, any

q ←1/m (q1, r1) , . . . q ←m/m (qm, rm)

and any s′1, . . . , s
′
m such that t+j (q1, s

′
1) . . . (qm, s′m) |=V[t•j→q] q̃1, q1, . . . , qm, q̃m. Since initial

states have no incoming transitions, we know q is not a control sate. We thus have a run ρ from
t+j (q1, s

′
1) . . . (qm, s′m) to some t′ ∈ LW (T ) such that t•j does not appear as a leaf of any tree

in the run.
To prove soundness we argue that

t+j (q1, s
′
1) , . . . ,

(
qi−1, s

′
i−1

)
, (q′, s) ,

(
qi+1, s

′
i+1

)
, . . . , (qm, s′m)

|=V[t•j→q] q̃1, q1, . . . , qi−1, q
′, qi+1, . . . , qm, q̃2 (1)
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where s = asbr :1 s1 :2 · · · :n sn. To do so, we take the run ρ obtained above and build a run ρ′

by removing all operations applied to nodes that are descendants of t•j i. Observe that ρ′ can
be applied to

t+j (q1, s
′
1) , . . . ,

(
qi−1, s

′
i−1

)
, (q′, s) ,

(
qi+1, s

′
i+1

)
, . . . , (qm, s′m)

since none of the operations apply to a descendant of t•j
i. By applying this run we obtain a

tree t′′ which is t′ less all nodes that are strict descendants of t•j i and where t•j i is labelled by
(q′, s). Thus, we take the accepting run of t′ witnessing t′ ∈ LW (T0), remove all nodes that are
strict descendants of t•j i and label t•j i by q′. This gives us a run witnessing t′′ ∈ LW (T0) by
using

q ←i/m (q′, a, Rbr, R1, . . . , Rn) .

at t•j i and the accepting runs from the non-initial Rbr, R1, . . . , Rn. This gives us (1) as
required.

We now show that, at every stage of saturation, we maintain a sound automaton.

Lemma C.5 (Soundness of the Saturation Step). Given a sound automaton T , we have T ′ =
F(T ) is sound.

Proof. We analyse all new transitions

q ←i/m (p, a,Rnew
br , Rnew

1 , . . . , Rnew
n ) .

Proving these transitions are sound and do not cause redundancy is sufficient via Lemma C.1
(Cascading Soundness).

Let us begin with the transitions introduced by rules that do not remove nodes from the
tree. We argue that for all trees t |=V q̃1, q, q̃2 and stacks s1 |= Rnew

1 , . . . sm |= Rnew
m , and

sbr |= Rnew
br and for all

q ←1/m (q1, r1) , . . . , q ←m/m (qm, rm)

and stacks s′1, . . . , s
′
m such that

t+j (q1, s
′
1) , . . . , (qm, s′m) |=V[t•j→q] q̃1, q1, . . . , qm, q̃2

where j = |q̃1|+ 1 we have, letting

t1 = t+j (q1, s
′
1) , . . . ,

(
qi−1, s

′
i−1

)
, (p, s) ,

(
qi+1, s

′
i+1

)
, . . . , (qm, s′m)

and q̃′1 = q̃1, q1, . . . , qi−1 and q̃′2 = qi+1, . . . , qm, q̃2 that

t1 |=V[t•j→q] q̃
′
1, p, q̃

′
2 (2)

where s = asbr :1 s1 :2 · · · :n sn.
We proceed by a case distinction on the rule θ which led to the introduction of the new

transition. In each case, let t2 ∈ θ(t1) be the result of applying θ at node t•j i. In all cases
except when θ removes nodes, q already has an incoming transition, hence we do not need to
argue non-redundancy (since T is non-redundant).

• When θ = p′
rewb→a−−−−−→ p we derived the new transition from some transtion

q ←i/m (p′, b, Rnew
br , Rnew

1 , . . . , Rnew
n )

and since this transition is sound t2 |=V[t•j→q] q̃′1, p, q̃
′
2. We take the run witnessing

soundness for t2 and prepend the application of θ to t1. This gives us a run witnessing
(2) as required.
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• When θ = p′
pushk

1−−−−→ p, then when k > 1 we derived the new transition from some

q ←i/m (p′, a, Rbr, R1, R2, . . . , Rn)

and R1
a−−→

R′
br

R′
1 and the new transition is of the form

q ←j/m (p, a,R′
br, R

′
1, R2, . . . , Rk−1, Rk ∪Rbr, Rk+1, . . . , Rn)

Furthermore, we have t2 has at t•j i the stack

ask :1 asbr :1 s1 :2 · · · :n sn

and we have sk |= Rnew
k = Rk ∪ Rbr and s1 |= Rnew

1 = R′
1 and from soundness of

R1
a−−→

R′
br

R′
1 we have asbr :1 s1 |= R1. Thus, we can apply soundness of the transition from

p′ to obtain t2 |=V[t•j→q] q̃
′
1, p

′, q̃′2. We prepend to the run witnessing this property an
application of θ to t1 at node t•j i to obtain a run witnessing (2) as required.
When k = 1 we began with a transition

q ←i/m (p′, a, Rbr, R1, R2 . . . , Rn)

and R1
a−−→

R′
br

R′
1 and the new transition is of the form

q ←j/m (p, a,R′
br, R

′
1 ∪Rbr, R2, . . . , Rn) .

Furthermore, we have t2 has at t•j i the stack

as1 :1 asbr :1 s1 :2 · · · :n sn

and we have s1 |= Rnew
1 = R′

1 ∪ Rbr and from sbr |= Rnew
br = R′

br and soundness of
R1

a−−→
R′

br

R′
1 we have asbr :1 s1 |= R′

1. Thus, we can apply soundness of the transition

from p′ using s1 |= Rbr (since s1 |= Rnew
1 = R′

1 ∪ Rbr) to obtain t2 |=V[t•j→q] q̃
′
1, p

′, q̃′2.
We prepend to the run witnessing this property an application of θ to t1 at node t•j i to
obtain a run witnessing (2) as required.

• When θ = p
pushk−−−−→ p′ we started with a transition

q ←i/m (p′, a, Rbr, R1, . . . , Rn)

and Rk
a−−→

R′
br

(R′
1, . . . , R

′
k) and the new transition is of the form

q ←j/m

(
p, a,Rbr ∪Rbr, R1 ∪R′

1, . . . , Rk−1 ∪R′
k−1, R

′
k, Rk+1, . . . , Rn

)
.

Let s′ = asbr :1 s1 :2 · · · :k−1 sk−1, we have that t2 has at node t•j i the stack

asbr :1 s1 :2 · · · :(k−1) sk−1 :k s′ :k sk+1 :(k+1) · · · :n sn .

Note, by assumption we have s1 |= Rnew
1 = R1∪R′

1, . . . , sk−1 |= Rnew
k−1 = Rk−1∪R′

k−1 and
sbr |= Rnew

br = Rbr ∪R′
br. Thus from soundness of Rk

a−−→
R′

br

(R′
1, . . . , R

′
k) we have s′ |= Rk.

Consequently, from the soundness of the transition from p′ we have t2 |=V[t•j→q] q̃
′
1, p

′, q̃′2.
We prepend to the run witnessing this property an application of θ to t1 at node t•j i to
obtain a run witnessing (2) as required.
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• When θ = p
popk−−−→ p′ we derived the new transition from

q ←i/m (p′, rk, Rk+1, . . . , Rn)

and the new transition is of the form

q ←j/m (p, a, ∅, ∅, . . . , ∅, {rk} , Rk+1, . . . , Rn)

The tree t2 has labelling t•j i the stack s′ = sk :(k+1) · · · :n sn and since sk+1 |= Rk+1, . . . ,
sn |= Rn we have from the definition of |=V and sk |= rk that t2 |=V[t•j→q] q̃

′
1, p

′, q̃′2. As
before, we prepend to the run witnessing this property an application of θ to t1 at node
t•j i to obtain a run witnessing (2) as required.

• When θ = p
collapsek−−−−−−→ p′ we began with a transition

q ←i/m (p′, rk, Rk+1, . . . , Rn)

and the new transition has the form

q ←j/m (p, a, {rk}, ∅, . . . , ∅, Rk+1, . . . , Rn)

The tree t2 has labelling t•j i the stack s′ = sbr :(k+1) sk+1 :(k+2) · · · :n sn and since
sk+1 |= Rk+1, . . . , sn |= Rn we have from the definition of |=V and sbr |= rk that
t2 |=V[t•j→q] q̃′1, p

′, q̃′2. As before, we prepend to the run witnessing this property an
application of θ to t1 at node t•j i to obtain a run witnessing (2) as required.

• When θ = p
+−→ (p1, . . . , pm′) we had transitions

q ←i/m (q′, a, Rbr, R1, . . . , Rn)

and

q′ ←1/m′
(
p1, a, R

1
br, R

1
1, . . . , R

1
n

)
, . . . , q′ ←m′/m′

(
pm′ , a, Rm′

br , R
m′

1 , . . . , Rm′

n

)
and the new transition added is of the form

q ←i/m (p, a,Rnew
br , Rnew

1 , . . . , Rnew
n )

where Rnew
br = Rbr ∪ R1

br ∪ · · · ∪ Rm′

br and for all k, we have Rnew
k = R1 ∪ R1

k ∪ · · · ∪ Rm′

k .
Letting t′1 =

t+j (q1, s
′
1) , . . . ,

(
qi−1, s

′
i−1

)
, (q′, s) ,

(
qi+1, s

′
i+1

)
, . . . , (qm, s′m)

and V ′ = V
[
t•j → q

]
we have from Rnew

br = Rbr ∪R1
br ∪ · · · ∪Rm′

br and Rnew
1 = R1 ∪R1

1 ∪
· · ·∪Rm′

1 , . . . , Rnew
n = Rn∪R1

n∪· · ·∪Rm′

n , and by soundness of the transition from q′ that
t′1 |=V′ q̃′1, q

′, q̃′2. Thus, from non-redundancy and repeated applications of the soundness
of the transition from p1 to the soundness from pm′ (as in the proof of Lemma C.2 (Sound
Acceptance)) we have

t2 = t′1 +(j+i) (p1, s) , . . . , (pm′ , s) |=V′[t•j i→q′] q̃
′
1, p1, . . . , pm′ , q̃′2 .

We prepend to the run witnessing this property an application of θ to t1 at node t•j i to
obtain a run witnessing (2) as required.
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The remaining case is for the operations that remove nodes from the tree. For (p1, . . . , pm)
−−→ p

we introduced
p←1/m (p1, a, ∅, ∅, . . . , ∅)

to
p←m/m (pm, a, ∅, ∅, . . . , ∅) .

We prove soundness of the first of these rules, with the others being symmetrical. Taking any
sequence of transitions

p←1/m (q1, r1) , . . . , p←m/m (qm, rm)

any t |=V q̃1, p, q̃2 and s1, . . . , sm such that, letting j = |q̃1|+ 1,

t′ = t+j (q1, s1) , . . . , (qm, sm) |=V[t•j→p] q̃1, q1, . . . , qm, q̃2 .

We need to show for any stack with top character a that

t+j (p1, s) , (q2, s2) , . . . , (qm, sm) |=V[t•j→p] q̃1, p1, q2, . . . , qm, q̃2 .

Take the run witnessing the property for t′. This must necessarily pass some tree where t•j

is exposed and contains control state p. Moreover, this is the first such exposure of the node.
Since we assume, for all p, there is only one rule (p′1, . . . , p

′
2)

−−→ p for any p′1, . . . , p
′
m, the node

must be exposed by an application of θ.
Thus, we can remove from the run all operations applied to a descendant of t•j1 before its

exposure. This run then can be applied to

t+j (p1, s) , (q2, s2) . . . , (qm, sm)

to witness t+j (p1, s) , (q2, s2) , . . . , (qm, sm) |=V[t•j→p] q̃1, p1, q2, . . . , qm, q̃2.
To prove non-redundancy, we simply take any stacks s1, . . . , sm and apply θ to t +j

(p1, s1) , . . . , (pm, sm) to obtain t from which the remainder of the run exists by assumption.

Lemma C.6 (Soundness of Saturation). The automaton T obtained by saturation from T0 is
such that L(T ) ⊆ Pre∗G(T0).

Proof. By Lemma C.4 (Soundness of T0) we have that T0 is sound. Thus, by induction, assume
T is sound. We have T ′ = F(T ) and by Lemma C.5 (Soundness of the Saturation Step) we
have that T ′ is sound.

Thus, the T that is the fixed point of saturation is sound, and we have from Lemma C.2
(Sound Acceptance) that L(T ) ⊆ Pre∗G(T0).

D Lower Bounds on the Reachability Problem

We show that that global backwards reachability problem is n-EXPTIME-hard for an order-n
GASTRS. The proof is by reduction from the n-EXPTIME-hardness of determining the winner
in an order-n reachability game [8].

Proposition D.1 (Lower Bound). The global backwards reachability problem for order-n GAS-
TRSs is n-EXPTIME-hard.
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Proof. We reduce from the problem of determining the winner in an order-n pushdown reach-
ability game [8].

We first need to define higher-order stacks and their operations. Essentially, they are just
annotated stacks without collapse. That is order-1 stacks are of the form [a1 . . . am]1 where
a1 . . . am ∈ Σ∗. Order-k stacks for k > 1 are of the form [s1 . . . sm]k where s1, . . . , sm are
order-(k − 1) stacks.

Their operations are

HOpsan = {pusha | a ∈ Σ} ∪ {pushk | 2 ≤ k ≤ n} ∪ {popk | 1 ≤ k ≤ n} .

The pushk and popk operations are analogous to annotated stacks. We define pusha(s) = a :1 s.
Such a game is defined as a tuple (P,Σ,R,F) where P = P1 ∪ P2 is a finite set of control

states partitioned into those belonging to player 1 and player 2 respectively, Σ is a finite set of
stack characters, R ⊆ P× Σ×HOpsΣn × P is a finite set of transition rules, and F ⊆ P is a set
of target control states.

Without loss of generality, we assume that for all p ∈ P2 and a ∈ Σ there exactly two rules
in R of the form (p, a, σ, p′) for some σ and p′.

A configuration is a tuple (p, s) of a control state and higher-order stack. A winning play
of a game from an initial configuration (p0, s0) for player 1 is a tree labelled by configurations
such that

• all leaf nodes are labelled by configurations (p, s) with p ∈ F .

• if an internal node is labelled (p, s) with p ∈ P1 then the node has one child labelled by
(p′, s′) such that for some (p, a, σ, p′) ∈ R we have s = a :1 s′′ for some s′′ and s′ = σ(s).

• if an internal node is labelled (p, s) with p ∈ P2 then when s = a :1 s′ for some s′ and we
have the rules (p, a, σ1, p1), and (p, a, σ2, p2), then the node has two children labelled by
(p1, s1) and (p2, s2) with s1 = σ1(s) and s1 = σ1(s).

Note, we assume that the players can always apply all available rules for a given p and a in the
game (unless a control in F is reached). This is standard and can be done with the use of a
“bottom-of-stack” marker at each order.

Determining if player 1 wins the game is known to be n-EXPTIME hard [8]. This amounts
to asking whether a winning game tree can be constructed from the initial configuration (p0, s0).

That the winning game trees are regular can be easily seen: we simply assert that all leaf
nodes are labelled by some p ∈ F .

We build a GASTRS that constructs play trees. We simulate a move in the game via several
steps in the GASTRS, hence its control states will contain several copies of the control states of
the game. Suppose we have a rule (p, a, σ, p′) where p ∈ P1. The first step in the simulation will
be to check that the top character is a, for which we will use p

rewa→a−−−−−→ (p, 1) where (p, 1) is a
new control state. The next step will create a new node in the play tree using (p, 1)

+−→ ((p′, 2))
which uses the intermediate control state (p′, 2). The final step is to apply the stack operation
and move to p′. When σ = pushk or σ = popk we can use (p′, 2)

σ−→ p′. When σ = pushb we

use another intermediate control state and (p′, 2)
push1

1−−−−→ (p′, 3) and (p′, 3)
rewa→b−−−−−→ p′.

When p ∈ P2 with the rules (p, a, σ1, p1) and (p, a, σ2, p2) we use p
rewa→a−−−−−→ (p, 1),

(p, 1)
+−→ ((p1, 2) , (p2, 2)) ,

and similar rules to the previous case to apply σ and move to p1 or p2.

36



Let the above GASTRS be G. From the initial single-node tree t0 whose node is labelled
(p0, s0) it is clear that a tree whose leaf nodes are only labelled by control states in F can be
reached iff there is a winning play of player 1 in the reachability game. We can easily build a tree
automaton T0 that accepts only these target trees. Since checking membership t0 ∈ Pre∗G(T0)
is linear in the size of tree automaton representing Pre∗G(T0) we obtain our lower bound as
required.
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