
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Detecting Redundant CSS Rules in HTML5
Applications: A Tree Rewriting Approach

Matthew Hague
Royal Holloway, University of

London

Anthony Widjaja Lin
Yale-NUS College, Singapore

C.-H. Luke Ong
University of Oxford

Abstract

HTML5 applications normally have a large set of CSS (Cas-
cading Style Sheets) rules for data display. Each CSS rule
consists of a node selector and a declaration block (which
assigns values to selected nodes’ display attributes). As web
applications evolve, maintaining CSS files can easily be-
come problematic. Some CSS rules will be replaced by new
ones, but these obsolete (hence redundant) CSS rules often
remain in the applications. Not only does this “bloat” the ap-
plications – increasing the bandwidth requirement – but it
also significantly increases web browsers’ processing time.
Most works on detecting redundant CSS rules in HTML5 ap-
plications do not consider the dynamic behaviors of HTML5
(specified in JavaScript); in fact, the only proposed method
that takes these into account is dynamic analysis, which can-
not soundly prove redundancy of CSS rules. In this paper,
we introduce an abstraction of HTML5 applications based
on monotonic tree-rewriting and study its “redundancy prob-
lem”. We establish the precise complexity of the problem
and various subproblems of practical importance (ranging
from P to EXP). In particular, our algorithm relies on an effi-
cient reduction to an analysis of symbolic pushdown systems
(for which highly optimised solvers are available), which
yields a fast method for checking redundancy in practice. We
implemented our algorithm and demonstrated its efficacy in
detecting redundant CSS rules in HTML5 applications.

Keywords HTML5, jQuery, CSS, redundancy analysis,
static analysis, tree-rewriting, symbolic pushdown systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OOPSLA ’15, Month d–d, 20yy, City, ST, Country.
Copyright © 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

1. Introduction

HTML5 is the latest revision of the HTML standard of the
World Wide Web Consortium (W3C), which has become a
standard markup language of the Internet. HTML5 provides
a uniform framework for designing a web application: (1)
data content is given as a standard HTML tree, (2) rules for
data display are given in Cascading Style Sheets (CSS), and
(3) dynamic behaviors are specified through JavaScript.

An HTML5 application normally contains a large set of
CSS rules for data display, each consisting of a (node) se-
lector given in an XPath-like query language and a decla-
ration block which assigns values to selected nodes’ dis-
play attributes. However, many of these styling rules are
often redundant (in the sense of unreachable code), which
“bloat” the application. As a web application evolves, some
rules will be replaced by new rules and developers often for-
get to remove obsolete rules. Another cause of redundant
styling rules is the common use of HTML5 boilerplate (e.g.
WordPress) since they include many rules that the applica-
tion will not need. A recent case study [46] shows that in
several industrial web applications on average 60% of the
CSS rules are redundant. These bloated applications are not
only harder to maintain, but they also increase the band-
width requirement of the website and significantly increase
web browsers’ processing time. In fact, a recent study [47]
reports that when web browsers are loading popular pages
around 30% of the CPU time is spent on CSS selectors
(18%) and parsing (11%). [These numbers are calculated
without even including the extra 31% uncategorised oper-
ations of the total CPU time, which could include opera-
tions from these two categories.] This suggests the impor-
tance of detecting and removing redundant CSS rules in an
HTML5 application. Indeed, a sound and automatic redun-
dancy checker would allow bloated CSS stylesheets to be
streamlined during development, and generic stylesheets to
be minimised before deployment.

There has been a lot of work on optimising CSS (e.g. [14,
21, 44, 46, 47]), which include merging “duplicated” CSS
rules, refactoring CSS declaration blocks, and simplifying

CSS selectors, to name a few. However, most of these works
analyse the set of CSS rules in isolation. In fact, the only
available methods (e.g. Cilla [46] and UnCSS [58]) that
take into account the dynamic nature of HTML5 introduced
by JavaScript are based on simple dynamic analysis (a.k.a.
testing), which cannot soundly prove redundancy of CSS
rules since such techniques cannot in general test all possible
behaviors of the HTML5 application. For example, from
the benchmarks of Mesbah and Mirshokraie [46] there are
some non-redundant CSS rules that their tool Cilla falsely
identifies as redundant, e.g., due to the use of JavaScript
to compensate for browser-specific behavior under certain
HTML5 tags like <input/> (see Section 6 for more details).
Removing such rules can distort the presentation of HTML5
applications, which is undesirable.

Static Analysis of JavaScript A different approach to
identifying redundant CSS rules by using static analysis
for HTML5. Since JavaScript is a Turing-complete pro-
gramming language, the best one can hope for is approxi-
mating the behaviors of HTML5 applications. Static anal-
ysis of JavaScript code is a challenging goal, especially
in the presence of libraries like jQuery. The current state
of the art is well surveyed by Andreasen and Møller [9],
with the main tools in the field being WALA [51, 55] and
TAJS [9, 28, 29]. These tools (and others) provide traditional
static analysis frameworks encompassing features such as
points-to [27, 55] and determinacy analysis [9, 51], type in-
ference [28, 34] and security properties [23, 24]. The mod-
elling of the HTML DOM is generally treated as part of the
heap abstraction [24, 29] and thus the tree structure is not
precisely tracked.

For the purpose of soundly identifying redundant CSS
rules, we need a technique for computing a symbolic repre-
sentation of an overapproximation of the set of all reachable
HTML trees that is sufficiently precise for real-world appli-
cations. Currently there is no clean abstract model that cap-
tures common dynamics of the HTML (DOM) tree caused
by the JavaScript component of an HTML5 application and
at the same time is amenable to algorithmic analysis. Such
a model is not only important from a theoretical viewpoint,
but it can also serve as a useful intermediate language for the
analysis of HTML5 applications which among others can be
used to identify redundant CSS rules.

Tree rewriting as an intermediate language. The tree-
rewriting paradigm — which is commonly used in databases
(e.g. [7, 8, 16, 19, 20, 40]) and verification (e.g. [5, 25, 36–
39]) — offers a clean theoretical framework for modelling
the dynamics of tree updates and usually lends itself to fully-
algorithmic analysis. This makes tree-rewriting a suitable
framework in which to model the dynamics of tree updates
commonly performed by HTML5 applications. Surveying
real-world HTML5 applications (including Nivo-Slider [49]

and real-world examples from the benchmarks in Mesbah
and Mirshokraie [46]), we were surprised to learn that one-
step tree updates used in these applications are extremely
simple, despite the complexity of the JavaScript code from
the point of view of static analysers. That said, we found
that these updates are not restricted to modifying only cer-
tain regions of the HTML tree. As a result, models such
as ground tree rewrite systems [38] and their extensions
[22, 25, 36, 39, 43] (where only the bottom part of the tree
may be modified) are not appropriate. However, systems
with rules that may rewrite nodes in any region of a tree are
problematic since they render the simplest problem of reach-
ability undecidable. Recently, owing to the study of active
XML, some restrictions that admit decidability of verifica-
tion (e.g. [7, 8, 19, 20]) have been obtained. However, these
models have very high complexity (ranging from double ex-
ponential time to nonelementary), which makes practical im-
plementation difficult.

Contributions. The main contribution of the paper is to
give a simple and clean tree-rewriting model which strikes
a good balance between: (1) expressivity in capturing the
dynamics of tree updates commonly performed in HTML5
applications (esp. insofar as detecting redundant CSS rules
is concerned), and (2) decidability and complexity of rule
redundancy analysis (i.e. whether a given rewrite rule can
ever be fired in a reachable tree). We show that the com-
plexity of the problem is EXP-complete1, though under var-
ious practical restrictions the complexity becomes PSPACE
or even P. This is substantially better than the complexity
of the more powerful tree rewriting models studied in the
context of active XML, which is at least double-exponential
time. Moreover, our algorithm relies on an efficient reduc-
tion to a reachability analysis in symbolic pushdown systems
for which highly optimised solvers (e.g. Bebop [12], Getafix
[33], and Moped [48]) are available.

We have implemented our reduction, together with a
proof-of-concept translation tool from HTML5 to our tree
rewriting model. Our translation by no means captures the
full feature-set of JavaScript and is simply a means of test-
ing the underlying model and analysis we introduce2. We
specifically focus on modelling standard features of jQuery
[30] — a simple JavaScript library that makes HTML docu-
ment traversal, manipulation, event handling, and animation
easy from a web application developer’s viewpoint. Since
its use is so widespread in HTML5 applications nowadays
(e.g., used in more than half of the top hundred thousand
websites [31]) some authors [34] have advocated a study
of jQuery as a language in its own right. Our experiments
demonstrate the efficacy of our techniques in detecting re-

1 These complexity classes are defined below and we describe the roles they
play in our investigation.
2 Handling JavaScript in its full generality is a difficult problem [9], which
is beyond the scope of this paper.

dundant CSS rules in HTML5 applications. Furthermore,
unlike dynamic analysis, our techniques will not falsely re-
port CSS rules that may be invoked as redundant (at least
within the fragment of HTML5 applications that our proto-
typical implementation can handle). We demonstrate this on
a number of non-trivial examples (including a specific exam-
ple from the benchmarks of Mesbah and Mirshokraie [46]
and an HTML application using the image slider package
Nivo-Slider [49]).

Connection with existing works on static analysis of
JavaScript. As surveyed by Andreasen and Møller [9],
the static analysis of JavaScript in the presence of the jQuery
library — which is essential for analysing HTML5 applica-
tions — is currently a formidable task for existing static
analysers. We consider our work to be complementary to
these works: first, our tree-rewriting model may form part
of a static analysis abstraction, and second, static analysis
will be essential in translating HTML5 applications into our
tree rewriting model by extracting accurate tree update oper-
ations. In our implementation, we provide an ad-hoc extrac-
tion of tree update operations that allows us to demonstrate
the applicability of our approach. Creating a robust static
analysis that achieves this is an interesting and worthwhile
research challenge, which might benefit from the recent re-
markable effort by Bodin et al. [13] of capturing the full
JavaScript semantics and verifying it with Coq.

Organisation. We give a quick overview of HTML5 ap-
plications via a simple example in Section 2. We then intro-
duce our tree rewriting model in Section 3. Since the general
model is undecidable, we introduce a monotonic abstraction
in Section 4. We provide an efficient reduction from an anal-
ysis of the monotonic abstraction to symbolic pushdown sys-
tems in Section 5. Experiments are reported in Section 6. We
conclude with future work in Section 7. Missing proofs and
further technical details can be found in the full version [26].

Notes on computational complexity. In this paper, we
study not only decidability but also the complexity of com-
putational problems. We believe that pinpointing the precise
complexity of verification problems is not only of funda-
mental importance, but also it often suggests algorithmic
techniques that are most suitable for attacking the prob-
lem in practice. In this paper, we deal with the following
computational complexity classes (see [54] for more de-
tails): P (problems solvable in polynomial-time), PSPACE
(problems solvable in polynomial space), and EXP (prob-
lems solvable in exponential time). Verification problems
that have complexity PSPACE and EXP or beyond — see
[32, 53] for a few examples — have substantially benefited
from techniques like symbolic model checking [45]. The re-
dundancy problem that we study in this paper is another
instance of a hard computational problem that can be effi-

1 <html>

2 <head><style>.warn { color: red }</style></head>

3 <body>

4 <div class="input_wrap">

5 <button class="button">Add Fields</button>

6 <div><input type="text" name="mytext[]"> </div>

7 </div>

8 <div>Total: </div><div id="counter">1</div>

9 <div id="limit">Limits not reached</div>

10

11 <script src="http://ajax.googleapis.com/ajax/libs/

jquery/1.11.1/jquery.min.js"></script>↪→

12 <script type="text/javascript">

13 $(document).ready(function() {

14 var x = 1;

15

16 $('.button').click(function(e){

17 if(x < 10){

18 x++;

19 $('.input_wrap').append(

20 '<div>' +

21 ' <input type="text" name="mytext[]"/>' +

22 ' Remove' +

23 '</div>'

24);

25 $('#counter').html(x);

26 }

27 else {

28 $('#limit').html('Limits reached');

29 $('#limit').addClass('warn');

30 }

31 });

32

33 $('.input_wrap').on('click', '.delete', function(e){

34 $(this).parent('div').remove();

35 x--;

36 $('#counter').html(x);

37 $('.warn').removeClass('warn');

38 $('#limit').html('Limits not reached');

39 })

40 });

41 </script>

42 </body>

43 </html>

Figure 1. A simple HTML5 application (see [2]).

ciently solved by BDD-based symbolic techniques in prac-
tice.

2. HTML5: a quick overview
In this section, we provide a brief overview of a simple
HTML application. We assume basic familiarity with the
static elements of HTML5, i.e., HTML documents (a.k.a.
HTML DOM document objects) and CSS rules (e.g. see
[59]). We will discuss their formal models in Section 3. Our
example (also available at the URL [2]) is a small modifica-
tion of an example taken from an online tutorial [50], which
is given in Figure 1. To better understand the application, we
suggest the reader open it with a web browser and interact
with it.

In this example the page displays a list of input text boxes
contained in a div with class input_wrap. The user can
add more input boxes by clicking the “add field” button, and
can remove a text box by clicking its neighbouring “remove”
button. The script, however, imposes a limit (i.e. 10) on the
number of text boxes that can be added. If the user attempts
to add another text box when this limit is reached, the div

with ID limit displays the text “Limits reached” in red.
This dynamic behavior is specified within the second

<script/> tag starting at Line 11 (the first simply loads the
jQuery library). To understand the script, we will provide a
quick overview of jQuery calls (see [30] for more detail). A
simple jQuery call may take the form

$(selector).action(...);

where ‘$’ denotes that it is a jQuery call, selector is a
CSS selector, and action is a rule for modifying the subtree
rooted at this node. For example, in Figure 1, Line 29, we
have

$('#limit').addClass('warn');

The CSS selector #limit identifies the unique node in the
tree with ID limit, while the addClass() call adds the
class warn to this node. The CSS rule

.warn { color: red }

appearing in the head of the document at Line 2 will now
match the node, and thus its contents will be displayed in
red.

Another simple example of a jQuery call in Figure 1 is at
Line 37

$('.warn').removeClass('warn');

The selector .warn matches all3 nodes in the tree with class
warn. The call to removeClass() removes the class warn
from these nodes. Observe that when this call is invoked, the
CSS rule above will no longer be matched.

Some jQuery calls may contain an event listener. E.g. at
Line 16 we have

$('.button').click(...);

in Figure 1. This specifies that the function in ‘...’ should
fire when a node with class button is clicked. Similarly at
Line 33,

$('.input_wrap').on('click', '.delete', ...);

adds a click listener to any node within the input_wrap div
that has the class delete.

In general, jQuery calls might form chains. E.g. at Line
34 we have

$(this).parent('div').remove();

In this line, the call $(this) selects the node which has
been clicked. The call to parent() and then remove()

3 Unlike node IDs, a single class might be associated with multiple nodes

moves one step up the tree and if it finds a div ele-
ment, removes the entire subtree (which is of the form
<div><input/><a></div>) from the document.

In addition to the action remove() which erases an entire
subtree from the document, Figure 1 also contains other
actions that potentially modify the shape of the HTML tree.
The first such action is append(string1) (at Line 19),
which simply appends string1 at the end of the string
inside the selected node tag. Of course, string1 might
represent an HTML tree; in our example, it is a tree with
three nodes. So, in effect append() adds this tree as the
right-most child of the selected node. The second such action
is html(string1) (e.g. at Line 25), which first erases the
string inside the selected node tag and then appends it with
string1. In effect, this erases all the descendants of the
selected node and adds a forest represented by string1.
Remark 1. An example where the CSS rule in Figure 1
becomes redundant is when the limit on the number of boxes
is removed from the application (in effect, removing x), but
the CSS is not updated to reflect the change (e.g. see [1]).

In general, CSS selectors are non-trivial. For example

.a.b .c { color: red }

matches all nodes with class c and some ancestor contain-
ing both classes a and b (the space indicates c appears on a
descendant). Thus, detecting redundant CSS rules requires a
good knowledge of the kind of trees constructed by the ap-
plication. In practice, redundant CSS rules easily arise when
one modifies a sufficiently complex HTML5 application (the
size of the top 1000 websites has recently exceeded 1600K
Bytes [10]). Some popular web pages are known to have an
average of 60% redundant CSS rules, as suggested by recent
case studies [46].

3. A tree-rewriting approach
In this section, we present our tree-rewriting model. Our de-
sign philosophy is to put a special emphasis on model sim-
plicity and fully-algorithmic analysis with good complexity,
while retaining adequate expressivity in modelling common
tree updates in HTML5 applications (insofar as detecting re-
dundant CSS rules is concerned). We will start by giving an
informal description of our approach and then proceed to our
formal model.

3.1 An informal description of the approach
Data representation The data model of HTML5 applica-
tions is the standard HTML (DOM) tree. In designing our
tree rewriting model, we will adopt a data representation
consisting of a finite set K of classes, and an unordered, un-
ranked tree with the set 2K of node labels. An unordered tree
does not have a sibling ordering, and an unranked tree does
not fix the number of children of its nodes. Since jQuery

and CSS selectors may reason about adjacent node siblings,
unordered trees are in general only an overapproximation
of HTML trees. As we shall see later, the consequence of
this approximation is that some CSS rules that we identify
in our analysis as non-redundant might turn out to be redun-
dant when sibling ordering is accounted for, though all CSS
rules that we identify as redundant will definitely be redun-
dant even with the sibling ordering (see Remark 2 in Section
4). Although it is possible in theory to extend our techniques
to ordered unranked trees, we choose to use unordered trees
in our model for the purpose of simplicity. Not only do un-
ordered trees give a clean data model, but they turn out to
be sufficient for analysing redundancy of CSS rules in most
HTML5 applications. In the examples we studied, no false
positives were reported as a consequence of the unordered
approximation. The choice of tree labels is motivated by
CSS and HTML5. Nodes in an HTML document are tagged
by HTML elements (e.g. div or a) and associated with a set
of classes, which can be added/removed by HTML5 scripts.
Node IDs and data attributes are also often assigned to spe-
cific nodes, but they tend to remain unmodified throughout
the execution of the application and so can conveniently be
treated as classes.

An “event-driven” abstraction Our tree-rewriting model
is an “event-driven” abstraction of the script component of
HTML5 applications. The abstraction consists of a (finite)
set of tree-rewrite rules that can be fired any time in any or-
der (so long as they are enabled). In this abstraction, one can
imagine that each rewrite rule is associated with an external
event listener (e.g. listening for a mouse click, hover, etc.).
Since these external events cannot be controlled by the sys-
tem, it is standard to treat them (e.g. see [41]) as nondeter-
ministic components, i.e., that they can occur concurrently
and in any order4 Incidentally, the case for event-driven ab-
stractions has been made in the context of transformations
of XML data [11].

A tree-rewrite rule σ in our rewrite systems is a tuple
(g, χ) consisting of a node selector g (a.k.a. guard) and a
rewrite operation χ.

To get a feel for our approach, we will construct an event-
driven abstraction for the script component of the HTML5
example in Figure 1. For simplicity, we will now use jQuery
calls as tree-rewrite rules. We will formalise them later.

The event-driven abstraction for the example in Figure 1
contains four rewrite rules as follows:

4 Note, although, in our model, each rewrite rule is executed atomically,
an event that leads to two or more tree updates will be modelled by several
rewrite rules. Our analysis will be a “path-insensitive” over-approximation
in that no ordering or connection is maintained between these individual
update rules. Thus, an event leading to several tree updates is not assumed
to be handled atomically. Indeed, the order of the updates is also not
maintained. In our experiments this over-approximation did not lead to false
positives in the analysis.

(1) $('#limit').addClass('warn');

(2) $('.warn').removeClass('warn');

(3) $('.input_wrap').append('<div>

<input/></div>');

(4) $('.input_wrap').find('.delete').

parent('div').remove();

Note that we removed irrelevant attributes (e.g. href) and
text contents since they do not affect our analysis of redun-
dant CSS rules. Rules (1)–(3) were extracted directly from
the script. However, the extraction of Rule (4) is more in-
volved. First, the calls to parent() and remove() come
directly from the script. Second, the other calls — which se-
lect all elements with class delete that are descendants of
a node with class input_wrap — derive from the semantics
of on(). The connection of the two parts arrives because
the jQuery selection is passed to the event handler via the
this variable. This connection may be inferred by a data-
flow analysis that is sensitive to the behaviour of jQuery.

Detecting CSS Redundancy It can be shown that the set
S1 of all reachable HTML trees in the example in Figure 1 is
a subset of the set S2 of all HTML trees that can be reached
by applying Rules (1)–(4) to the initial HTML document.
We may detect whether

.warn { color: red }

is redundant by checking whether its selector may match
some part of a tree in S2. If not, then since S1 ⊆ S2 we can
conclude that the rule is definitely redundant. In contrast, if
the rule can be matched in S2, we cannot conclude that the
rule is redundant in the original application.

Let us test our abstraction. First, by applying Rule (1) to
the initial HTML tree, we confirm that warn can appear in
a tree in S2 and hence the CSS rule may be fired. We now
revisit the scenario in Remark 1 in Section 2 where the
limit on the number of boxes is removed, but the CSS is not
updated. In this case, the new event-driven abstraction for
the modified script will not contain Rule (1) and the CSS rule
can be seen to be redundant in S2. This necessarily implies
that the rule is definitely redundant in S1.

Thus, we guarantee that redundancies will not be falsely
identified, but may fail to identify some redundancies in the
original application.

3.2 Notations for trees
Before defining our formal model, we briefly fix our nota-
tions for describing trees. In this paper we use unordered,
unranked trees. A tree domain is a nonempty finite sub-
set D of N∗ (i.e. the set of all strings over the alphabet
N = {0, 1, · · · }) satisfying prefix-closure, i.e., w · i ∈ D
with i ∈ N implies w ∈ D. Note that the natural linear order
of N is immaterial in this definition, i.e., we could use any
countably infinite set in place of N.

A (labeled) tree over the nonempty finite set (a.k.a. al-
phabet) Σ is a tuple T = (D,λ) where D is a tree do-
main and λ is a mapping (a.k.a. node labeling) from D to
Σ. We use standard terminologies for trees, e.g., parents,
children, ancestors, descendants, and siblings. The level of
a node v ∈ D in T is |v|. Likewise, the height of the tree T
is max{|v| : v ∈ D}. Let TREE(Σ) denote the set of trees
over Σ. For every k ∈ N, we define TREEk(Σ) to be the set
of trees of height k.

If T = (D,λ) and v ∈ D, the subtree of T rooted at v is
the tree T|v = (D′, λ′), where D′ := {w ∈ N∗ : vw ∈ D}
and λ′(w) := λ(vw).

We remark, for example, that in our definitions, the trees
T1 = ({ε, 1} , λ1) and T2 = ({ε, 2} , λ2) with λ1(ε) =
λ2(ε) and λ1(1) = λ2(2) define distinct trees, although both
trees contain a root node with a single child with the same
labels. It is easy to see that our guards discussed in the fol-
lowing sections cannot distinguish trees up to isomorphism.
In Section 4 we discuss morphisms between trees in the con-
text of a monotonicity property.

3.3 The formal model
We now formally define our tree-rewriting model TRS for
HTML5 tree updates. A rewrite systemR in TRS is a (finite)
set of rewrite rules. Each rule σ is a tuple (g, χ) of a guard
g and a (rewrite) operation χ. Let us define the notion of
guards and rewrite operations in turn.

Our language for guards is simply modal logic with spe-
cial types of modalities. It is a subset of Tree Temporal Logic,
which is a formal model of the query language XPath for
XML data [35, 42, 52]. More formally, a guard over the node
labeling Σ = 2K with K = {c1, · · · , cn} can be defined by
the following grammar:

g ::= ⊤ | c | g ∧ g | g ∨ g | ¬g | ⟨d⟩g

where c ranges over K and d ranges over {↑, ↑∗, ↓, ↓∗},
standing for parent, ancestor, child, and descendant respec-
tively. Note, we will also use ⟨↓+⟩g as shorthand for the
formula ⟨↓∗⟩⟨↓⟩g and similarly for ⟨↑+⟩g. The guard g is
said to be positive if there is no occurrence of ¬ in g. Given
a tree T = (D,λ) and a node v ∈ D, we define whether v
matches a guard g (written v, T |= g) below. Intuitively, we
interpret v, T |= c (for a class c ∈ K) as c ∈ λ(v), and each
modality ⟨d⟩ (where d ∈ {↑, ↑∗, ↓, ↓∗}) in accordance with
the arrow orientation.

Given a tree T = (D,λ) and a node v ∈ D, we define
whether v of T matches a guard g (written v, T |= g) by
induction over the following rules:

• v, T |= ⊤.
• v, T |= c if c ∈ λ(v).
• v, T |= g ∧ g′ if v, T |= g and v, T |= g′.
• v, T |= g ∨ g′ if v, T |= g or v, T |= g′.

• v, T |= ¬g if it is not the case that v, T |= g.
• v, T |= ⟨↑⟩g if v = w.i (for some i ∈ N), and w, T |= g.
• v, T |= ⟨↑∗⟩g if v = w.w′ (for some w′ ∈ N∗), and
w, T |= g.

• v, T |= ⟨↓⟩g if there exists a node v.i ∈ D (for some
i ∈ N) such that v.i, T |= g.

• v, T |= ⟨↓∗⟩g if there exists a node v.w ∈ D (for some
w ∈ N∗) such that v.w, T |= g.

See the section below on encoding jQuery rules for some
examples.

We say that g is matched in T if v, T |= g for some node v
in T . Likewise, we say that g is matched in a set S of Σ-trees
if it is matched in some T ∈ S. In the sequel, we sometimes
omit mention of the tree T from v, T |= g whenever there is
no possibility of confusion.

Having defined the notion of guards, we now define our
rewrite operations, which can be one of the following: (1)
AddChild(X), (2) AddClass(X), (3) RemoveClass(X),
and (4) RemoveNode, where X ⊆ K. Intuitively, the se-
mantics of Operations (2)–(4) coincides with the seman-
tics of the jQuery actions addClass(.), removeClass(.),
and remove(), respectively. Similarly, the semantics of
AddChild(X) coincides with the semantics of the jQuery
action append(str) in the case when str represents a sin-
gle node associated with classes X . By adding extra classes,
appending a larger subtree can be easily simulated by several
steps of AddChild(X) operations. This is demonstrated in
the next section.

We now formally define the semantics of these rewrite
operations. Given two trees T = (D,λ) and T ′ = (D′, λ′),
we say that T rewrites to T ′ via σ = (g, χ) (written
T →σ T ′) if there exists a node v ∈ D such that v |= g
and

• if χ = AddClass(X) then D′ = D and λ′ := λ[v 7→
X ∪ λ(v)]. 5

• if χ = AddChild(X) then D′ = D ∪ {v.i} and λ′ :=
λ[v.i 7→ X] and v.i /∈ D

• if χ = RemoveClass(X) then D′ = D and λ′ := λ[v 7→
λ(v) \X]

• if χ = RemoveNode and v is not the root node, D′ :=
D \ {v.w : w ∈ N∗} and λ′ is the restriction of λ to D′.

Note that the system cannot execute a RemoveNode op-
eration on the root node of a tree. I.e. there is no transition
T →σ T ′ if σ would erase the root node of T .

Given a rewrite systemR over Σ-trees, we define→R to
be the union of→σ , for all σ ∈ R. For every k ∈ N, we de-
fine→R,k to be the restriction of→R to TREEk(Σ). Given a
set C of Σ-trees, we write post∗R(C) (resp. post∗R,k(C)) to be

5 Given a map f : A → B, a′ ∈ A and b′ ∈ B, we write f [a′ 7→ b′] to
mean the map (f \ {(a′, f(a′))}) ∪ {(a′, b′)}

the set of trees T ′ satisfying T →∗
R T ′ (resp. T →∗

R,k T ′)
for some tree T ∈ C.

Encoding jQuery Rewrite Rules Let us translate the
four “jQuery rewrite rules” for the application in Figure
1 into our formalism. The first rule translates directly to
the rule (#limit, AddClass({.warn})), while the second
rule translates to (.warn, RemoveClass({.warn})). The
fourth rule identifies div nodes that have some child with
class delete that in turn has some ancestor with class
input_wrap. Thus, it translates to

(div ∧ ⟨↓⟩(.delete ∧ ⟨↑+⟩.input_wrap), RemoveNode).

Finally, the third rule requires the construction of a new sub-
tree. We achieve this through several rules and a new class
tmp. We first add the new div element as a child node, and
use the class tmp to mark this new node:

(.input_wrap, AddChild({div, tmp})) .

Then, we add the children of the div node with the two rules

(tmp, AddChild({input}))
and (tmp, AddChild({a, .delete})) .

We show in the full version. how to encode a large number
of jQuery tree traversals into our guard language. In general,
some of these traversals have to be approximated. For ex-
ample the .next() operation can be approximated by the
modalities ⟨↑⟩⟨↓⟩ which select a sibling of the current node.

The redundancy problem The redundancy problem for
TRS is the problem that, given a rewrite system R over
Σ-trees, a finite nonempty set S of guards over Σ, and an
initial Σ-labeled tree T0, compute the subset S′ ⊆ S of
guards that are not matched in post∗R(T0). The decision
version of the redundancy problem for TRS is simply to
check if the aforementioned set S′ is empty. Similarly, for
each k ∈ N, we define the k-redundancy problem for TRS to
be the restriction of the redundancy problem for TRS to trees
of height k (i.e. we use post∗R,k instead of post∗R).

The problem of identifying redundant CSS node selectors
in a CSS file can be reduced to the problem of the redun-
dancy problem for TRS. This is because CSS node selectors
can easily be translated into our guard language (e.g. using
the translation given in [21]). Observe that the converse is
false. E.g., ⟨↓⟩a ∧ ⟨↓⟩b cannot be expressed as a CSS se-
lector since a and b may appear on different children of the
matched node. The guard in the fourth rule of our running
example is also not expressible as a CSS selector. However,
this increased expressivity is required to model tree traver-
sals in jQuery. Note that the redundancy problem for TRS
could also have potential applications beyond detecting re-
dundant CSS rules, e.g., detecting redundant jQuery calls in
HTML5.

Despite the simplicity of our rewrite rules, it turns out
that the redundancy problem is in general undecidable (even
restricted to trees of height at most two); see the full version.

Proposition 1. The 1-redundancy problem for R is unde-
cidable.

4. A monotonic abstraction
The undecidability proof of Proposition 1 in fact relies fun-
damentally on the power of negation in the guards. A natural
question, therefore, is what happens in the case of positive
guards. Not only is this an interesting theoretical question,
such a restriction often suffices in practice. This is partly be-
cause the use of negations in CSS and jQuery selectors (i.e.
:not(...)) is rather limited in practice. In particular, there
was no use of negations in CSS selectors found in the bench-
mark in [46] containing 15 live web applications. In practice,
negations are almost always limited to negating atomic for-
mulas, i.e., ¬c (for a class c ∈ K) which can be overapprox-
imated by ⊤ often without losing too much precision.

Note, in general it is not possible to express¬c via the for-
mula

∨
c′∈K\{c} c

′ since nodes may be labelled by multiple
classes. That is, labelling a node by c′ does not prevent the
node also being labelled by c. However, when c is an HTML
tag name (e.g. div or img), we can assert ¬c by checking
whether the node is labelled by some other tag name, since
a node can only have one tag (e.g. a node cannot be both a
div and an img).

A main result of the paper is that the “monotonic” ab-
straction that is obtained by restricting to positive guards
gives us decidability with a good complexity. In this section,
we prove the resulting tree rewriting class is “monotonic”
in a technical sense of the word, and summarise the main
technical results of the paper.

Notation. Let us denote by TRS0 the set of rewrite systems
with positive guards. The guard databases in the input to
redundancy and k-redudancy problems for TRS0 will only
contain positive guards as well. In the sequel, unless oth-
erwise stated, a “guard” is understood to mean a positive
guard.

4.1 Formalising and proving “monotonicity”
Recall that a binary relation R ⊆ S × S is a preorder if
it is transitive, i.e., if (x, y) ∈ R and (y, z) ∈ R, then
(x, z) ∈ R. We start with a definition of a preorder ⪯ over
TREE(Σ), where Σ = 2K. Given two Σ-trees T = (D,λ)
and T ′ = (D′, λ′), we write T ⪯ T ′ if there exists an
embedding from T ′ to T , i.e., a function f : D → D′ such
that:

(H1) f(ϵ) = ϵ

(H2) For each v ∈ D, λ(v) ⊆ λ′(f(v))

(H3) For each v.a ∈ D where v ∈ N∗ and a ∈ N, we have
f(v.a) = f(v).b for some b ∈ N.

Note that this is equivalent to the standard notion of homo-
morphisms from database theory (e.g. see [6]) when each
class c ∈ K is treated as a unary relation. The following is
a basic property of ⪯, whose proof is easy and is left to the
reader.

Fact. ⪯ is a preorder on TREE(Σ).

The following lemma shows that embeddings preserve
positive guards.

Lemma 1. Given trees T = (D,λ) and T ′ = (D′, λ′) ∈
TREE(Σ) satisfying T ⪯ T ′ with a witnessing embedding
f : D → D′, and a positive guard g over Σ, then if v, T |= g
then f(v), T ′ |= g.

We relegate to the full version the proof of Lemma 1,
which is similar to (part of) the proof of the homomor-
phism theorem for conjunctive queries (e.g. see [6, Theorem
6.2.3]). This lemma yields the following monotonicity prop-
erty of TRS0.

Lemma 2 (Monotonicity). For each σ ∈ R, if T1 ⪯ T2 and
T1 →σ T ′

1, then either T ′
1 ⪯ T2 or T2 →σ T ′

2 for some T ′
2

satisfying T ′
1 ⪯ T ′

2.

Intuitively, the property states that any rewriting step of
the “smaller” tree either does not expand the tree beyond the
“bigger tree”, or, the step can be simulated by the “bigger”
tree while still preserving the embedding relation. The proof
of the lemma is easy (by considering all four possible rewrite
operations), and is relegated to the full version.

One consequence of this monotonicity property is that,
when dealing with the redundancy problem, we can safely
ignore rewrite rules that use one of the rewrite operations
RemoveNode or RemoveClass(X). This is formalised in the
following lemma, whose proof is given in the full version.

Lemma 3. Given a rewrite system R over Σ-trees, a
guard database S, and an initial tree T0, let R− be the
set of R-rules less those that use either RemoveNode or
RemoveClass(X). Then, for each g ∈ S, g is matched in
post∗R(T0) iff g is matched in post∗R−(T0).

Convention. In the sequel, we assume that there are only
two possible rewrite operations, namely, AddChild(X), and
AddClass(X).

Remark 2. When choosing unordered trees for our CSS
redundancy analysis in Section 3 (i.e. instead of ordered
trees), we remarked that we have added a layer of sound
approximation to our analysis. We will now explain why this
is a sound approximation. We could consider the extension
of our guard language with the left-sibling and right-sibling
operators ⟨←⟩ and ⟨→⟩ (which would still be contained in
Tree Temporal Logic, which as we already mentioned is
a formal model of XPath [35, 42, 52]). The semantics of
formulas of the form ⟨←⟩g and ⟨→⟩g (with respect ordered

trees) can be defined in the same way as our guard language.
Given an ordered tree T , let T ′ be the unordered version
of T obtained by ignoring the sibling ordering from T .
Given a formula g with left/right sibling operators, we could
define its “unordered approximation” g′ by replacing every
occurrence of ⟨←⟩ and ⟨→⟩ by ⟨↑⟩⟨↓⟩. For positive guards
g, it is easy to show by induction on g that v, T |= g implies
v, T ′ |= g′. By the same token, we could also consider an
extension of our tree rewriting to ordered trees that allows
adding an immediate left/right sibling, e.g., by the operators
AddLeftKin(X) and AddRightKin(X) (these are akin to
the .before() and .after() jQuery methods). Given a
tree rewriting R in this extended rewrite system, we could
construct an approximated rewriting R′ in TRS0 as follows:
(1) for every rewrite rule of the form (g, AddLeftKin(X))
or (g, AddRightKin(X)) in this extended tree rewriting,
add the rewrite rule (⟨↓⟩g′, AddChild(X)) in R′, and (2)
for every other rewrite rule (g, χ) in R, add the rewrite rule
(g′, χ) in R. A consequence of this approximation is that
a guard g can be matched in a reachable tree post∗R(T0)
implies that the unordered approximation g′ can be matched
in a reachable tree post∗R′(T ′

0). That is, if g′ is redundant
in R′, then g is redundant in R, i.e., that g can be safely
removed.

4.2 Summary of technical results
We have completely identified the computational complexity
of the redundancy and k-redundancy problem for TRS0. Our
first result is:

Theorem 3. The redundancy problem for TRS0 is EXP-
complete.

Our upper bound was obtained via an efficient reduction
to an analysis of symbolic pushdown systems (see Section
5), for which there are highly optimised tools (e.g. Bebop
[12], Getafix [33], and Moped [48]). We have implemented
our reduction and demonstrate its viability in detecting re-
dundant CSS rules in HTML5 applications (see Section 6).
The proof of the lower bound in Theorem 3 is provided in
the full version. In the case of k-redundancy problem, a bet-
ter complexity can be obtained.

Theorem 4. The k-redundancy problem TRS0 is:

(i) PSPACE-complete if k is part of the input in unary.
(ii) solvable in P-time — nO(k) — for each fixed parameter

k, but is W[1]-hard.

Recall that PSPACE ⊆ EXP. The second item of The-
orem 4 contains the complexity class W[1] from parame-
terised complexity theory (e.g. see [18]), which provides a
theory for answering whether a computational problem with
multiple input parameters is efficiently solvable when certain
parameters are fixed. In the case of the k-redundancy prob-
lem for TRS0 a problem instance contains k ∈ N and R ∈

TRS0 as the input parameters. The problem can be solved in
time nO(k), where n is the size ofR. We would like to know
whether the parameter k can be removed from the exponent
of n in the time-complexity. That is, whether the problem
is solvable in time f(k)nc for some computable function
f : N → N and a constant c ∈ N (a.k.a. fixed-parameter-
tractable (FPT) algorithms). Observe that, asymptotically,
f(k)nc is smaller than nO(k) for every fixed value of k. By
showing that the problem is W[1]-hard, we have in effect
shown that the parameter k cannot be removed from the ex-
ponent of n, i.e., that our nO(k)-time algorithm is, in a sense,
optimal. For space reasons, we relegate the proofs of Theo-
rem 4 to the full version.
Remark 5. Decidability for the k-redundancy problem for
TRS0 is immediate from the theory of well-structured tran-
sition systems (e.g. see [4, 17]). We have shown in Lemma
2 that the tree embedding relation ⪯ is monotonic. It can
be shown that ⪯ is also well-founded on trees of height
k (e.g. see [19]), i.e., there is no infinite descending chain
T1 ≻ T2 ≻ · · · for trees T1, . . . of height k. The theory
of well-structured transition systems (e.g. see [4, 17]) would
imply decidability for the k-redundancy problem. Unfortu-
nately, this only gives a nonelementary upper bound com-
plexity (i.e. an unbounded tower of exponential) for the k-
redundancy and does yield decidability for the general re-
dundancy problem.

5. The algorithm
In this section, we provide an efficient reduction to an
analysis of symbolic pushdown systems, which will give
an algorithm with an exponential-time (resp. polynomial-
space) worst-case upper bound for the redundancy (resp. k-
redundancy) problem for TRS0. To this end, we first provide
a preliminary background on symbolic pushdown systems.
We will then provide a roadmap of our reduction to sym-
bolic pushdown systems, which will consist of a sequence
of three polynomial-time reductions described in the last
three subsections.

5.1 Pushdown systems: a preliminary
Before describing our reduction, we will first provide a pre-
liminary background on pushdown systems and their exten-
sions to symbolic pushdown systems.

Pushdown systems are standard (nondeterministic) push-
down automata without input labels. Input labels are irrele-
vant since one mostly asks about their transition graphs (in
our case, reachability). More formally, a pushdown system
(PDS) is a tuple

P = (Q,Γ,∆)

where

• Q is a finite set of control states,

• Γ is a finite set of stack symbols, and
• ∆ is a finite subset of (Q × Γ) × (Q × Γ∗) such that if
((q, a), (q′, w)) ∈ ∆ then |w| ≤ 2.

This PDS generates a transition relation→P⊆ (Q× Γ∗) ×
(Q× Γ∗) as follows: (q, v)→P (q′, v′) if there exists a rule
((q, a), (q′, w)) ∈ ∆ such that v = ua and v′ = uw for
some word u ∈ Γ∗.

Symbolic pushdown systems are pushdown systems that
are succinctly represented by boolean formulas. They are
equivalent to (recursive) boolean programs. More precisely,
a symbolic pushdown system (sPDS) is a tuple

(V,W,∆)

where

• V = {x1, . . . , xn} and W = {y1, . . . , ym} are two
disjoint sets of boolean variables, and

• ∆ is a finite set of pairs (i, φ) of number i ∈ {0, 1, 2}
and boolean formula φ over the set of variables V ∪W ∪
V ′ ∪W ′, where

V ′ := {x′
1, . . . , x

′
n}, and

W ′ :=
∪i

j=1Wj withWj := {yj1, . . . , yjm}.
This sPDS generates a (exponentially bigger) pushdown sys-
tem P = (Q,Γ,∆′), where Q = {0, 1}n, Γ = {0, 1}m, and
((q, a), (q′, w)) ∈ ∆′ iff there exists a pair (i, φ) ∈ ∆ sat-
isfying i = |w|, and φ is satisfied by the assignment that
assigns6 q to V , a toW , q′ to V ′, and w toW ′ (i.e. assigning
the jth letter of w toWj).

The bit-toggling problem for sPDS is a simple reach-
ability problem over symbolic pushdown systems. Intu-
itively, we want to decide if we can toggle on the variable
yi from the initial configuration. More precisely, given an
sPDS P = (V,W,∆) with V = {x1, . . . , xn} and W =
{y1, . . . , ym}, a variable yi ∈ W , and an initial configura-
tion I0 = ((b1, . . . , bn), (b

′
1, . . . , b

′
m)) ∈ {0, 1}n × {0, 1}m,

decide if I0 →∗
P (q, a) for some q ∈ {0, 1}n and a =

(b′′1 , . . . , b
′′
m) ∈ {0, 1}m with b′′i = 1.

The bounded bit-toggling problem is the same as the
bit-toggling problem but the stack height of the pushdown
system cannot exceed some given input parameter h ∈ N
(given in unary).

Proposition 2. The bit-toggling (resp. bounded bit-toggling)
problem for sPDS is solvable in EXP (resp. PSPACE).

The proof of this is standard (e.g. see [53]), which for
completeness we provide in the full version.

Despite the relatively high complexity mentioned in
Proposition 2, nowadays there are highly optimised sPDS
and boolean program solvers (e.g. Moped [48, 53], Getafix
[33], and Bebop [12]) that can solve sPDS bit-toggling prob-
lem efficiently using BDD (Binary Decision Diagram) repre-
sentation of boolean formulas. In fact, the boolean formulas

6 Meaning that if q = (q1, . . . , qn), then qi is assigned to xi

that we produce in our polynomial-time reductions below
have straightforward small representations as BDDs.

5.2 Intuition/Roadmap of the reduction
The following theorem formalises our reduction claim.

Theorem 6. The redundancy (resp. k-redundancy) problem
for TRS0 is polynomial-time reducible to the bit-toggling
(resp. bounded bit-toggling) problem for sPDS.

Together with Proposition 2, Theorem 6 implies an EXP
(resp. PSPACE) upper bound for the redundancy (resp. k-
redundancy) problem for sPDS. Moreover, as discussed in
the full version, it is straightforward to construct from our
reduction a counterexample path in the rewrite system wit-
nessing the non-redundancy of a given guard.

The actual reduction in Theorem 6 involves several inter-
mediate polynomial-time reductions. Here is a roadmap.

• We first show that it suffices to consider “simple” rewrite
systems. These systems are simple in the sense that
guards only test direct parents or children of the nodes.
Furthermore, these systems have the property that we
only need to check redundancy at the root node. This is
given in Section 5.3.

• We then show that the simplified problem can be solved
by a “saturation” algorithm that uses a subroutine to
check whether a given class can be added to a given
node via a sequence of rewrite rules. This subroutine
solves what we call the “class-adding problem”: a simple
reachability problem that checks whether a class can be
added to a given node via a series of rewrite rules that
do not change any other existing nodes in the tree (but
may add new nodes). That is, the node is considered as
the only node in a single node tree, possibly with some
contextual (immutable) information about its parent. This
is given in Section 5.4.

• Finally, we show that the class-adding problem is effi-
ciently reducible to the bit-toggling problem for sPDS.
This is given in Section 5.5.

The case of k-redundancy for TRS0 is similar but each inter-
mediate problem is relativised to the version with bounded
height.

The reason we need to simplify the system is because,
in the simplified system, we can test redundancy only by
inspection of the root node, and all guards only refer to
direct neighbours of each node. The latter simplification
makes the reduction to sPDS possible. As explained in
Section 5.5, the constructed sPDS performs a kind of depth-
first search over the constructed trees. Since an sPDS can
only see the top of its stack, it is important that it only needs
to maintain local information about the node being inspected
by the depth-first search. The former simplification justifies
us only maintaining labelling information about the nodes in

root

team

P1 P2 success

team team

P1

Figure 2. A reachable configuration

the original tree (in particular, the root node) without having
to (explicitly) add new nodes.

Running Example. We provide a running example for our
sequence of reductions. Imagine a tennis double tournament
web page which can be used to keep track of a list of teams
(containing exactly two players). The page allows a user to
create a team, and add players to a team. The page will also
indicate a success next to the team details after both players
have been added. An overapproximation of the behavior
of the page could be abstracted as a rewrite system R as
follows:

• The initial tree is the single-node tree with label root.
• The set of node labels is {root, team, P1, P2, success}.
• A team can be added to the tournament, i.e., there is a

rule (root, AddChild(team)) ∈ R.
• Player 1 can be added to a team, i.e., there is a rule
(team, AddChild(P1)) ∈ R

• Player 2 can be added to a team, i.e., there is a rule
(team, AddChild(P2)) ∈ R

• Success after Player 1 & Player 2 are added, i.e., there is
a rule (⟨↓⟩P1 ∧ ⟨↓⟩P2, AddChild(success)) ∈ R

The set S of guards that we want to check for redundancy
is {success}. A snapshot of a reachable configuration is
provided in Figure 2.

5.3 Simplifying the rewrite system
We will make the following two simplifications: (1) restrict-
ing the problem to only checking redundancy at the root
node, (2) restrict the guards to be used.

To achieve simplification (1), one can simply define a new
set of guards from S as {⟨↓∗⟩g : g ∈ S}. Then, for each tree
T = (D,λ) ∈ TREE(Σ) and guard g, it is the case that
(∃v ∈ D : v, T |= g) iff ϵ, T |= ⟨↓∗⟩g.

We now proceed to simplification (2). A guard over the
node labeling Σ = 2K is said to be simple if it is of one of

the following two forms
m∧
i=1

ci or ⟨d⟩
m∧
i=1

ci

for some m ∈ N, where each ci ranges over K and d ranges
over {↑, ↓}. [Note: if m = 0, then

∧m
i=1 ci ≡ ⊤.] For

notational convenience, if X = {c1, . . . , cm}, we shall write
X (resp. ⟨d⟩X) to mean

∧m
i=1 cm (resp. ⟨d⟩

∧m
i=1 cm). A

rewrite systemR ∈ TRS0 is said to be simple if (i) all guards
occurring inR are simple, and (ii) if (⟨d⟩X,χ) ∈ R, then χ
is of the form AddClass(Y).

We define TRS′0 ⊆ TRS0 to be the set of simple rewrite
systems. The redundancy (resp. k-redundancy) problem for
TRS′0 is defined in the same way as for TRS0 except that all
the guards in the set of guards are restricted to be a subset of
K.

The following lemma shows that the redundancy (resp.
k-redundancy) problem for TRS0 can be reduced in polyno-
mial time to the redundancy (resp. k-redundancy) problem
for TRS′0. Essentially, the reduction works by introducing
new classes representing (non-simple) subformulas of the
guards. New rewrite rules are introduced that inductively
calculate which subformulas are true. That is, if a subfor-
mula g is true at v, then the labelling of v will include a class
representing g.

Note, in the lemma below, S′ is a set of atomic guards.
That is, each guard in S′ is of the form c for some c ∈ K′.

Lemma 4. Given a R ∈ TRS0 over Σ = 2K and a set S
of guards over Σ, there exists R′ ∈ TRS′0 over Σ′ = 2K

′

(where K ⊆ K′) and a set S′ of atomic guards such that:

(P1) For each k ∈ N, S is k-redundant for R iff S′ is k-
redundant forR′.

(P2) S is redundant forR iff S′ is redundant forR′.

Moreover, we can computeR′ and S′ in polynomial time.

We show how to compute R′. The set K′ is defined as
the union of K with the set G of all non-atomic subformulas
(i.e. occurring in the parse tree) of guard formulas in S and
R. In the sequel, to avoid potential confusion, we will often
underline members of G in K′, e.g., write ⟨↓⟩c instead of
⟨↓⟩c. Note that c = c for all c ∈ K.

We now define the simple rewrite system R′. Initially,
we will define a rewrite systemR1 that allows the operators
⟨↑∗⟩ and ⟨↓∗⟩; later we will show how to remove them. We
first add the following “intermediate” rules toR1:

1. ({g, g′}, AddClass(g ∧ g′)), for each (g ∧ g′) ∈ G.

2. (g, AddClass(g ∨ g′)) and (g′, AddClass(g ∨ g′)), for
each (g ∨ g′) ∈ G.

3. (⟨d⟩g, AddClass(⟨d⟩g)), for each ⟨d⟩g ∈ G.

4. (g, χ), for each (g, χ) ∈ R.

Note that in Rule (3) the guard ⟨d⟩g is understood to mean
a non-atomic guard over 2K

′
– that is, g is an atomic guard.

Finally, we define S′ := {g : g ∈ S}. Notice that each guard
in S′ is atomic. The aforementioned algorithm computesR1

and S′ in linear time.
We now show how to remove the operators ⟨↑∗⟩ and ⟨↓∗⟩

(i.e. rules of type (3)). To do this we will introduce new rules
R2 that essentially compute the required transitive closures
using the ↑ and ↓ operators. Our final rewrite system R′

will be R1 ∪ R2. We define R2 to be the set containing
the following rules for each rule (⟨d∗⟩g, χ) ∈ R1 where
d ∈ {↑, ↓}:

(a) (g, AddClass(⟨d∗⟩g)).
(b) (⟨d⟩⟨d∗⟩g, AddClass(⟨d∗⟩g)).

Note that from Rule (4) R1 contains the rule (⟨d∗⟩g, χ),
where ⟨d∗⟩g is understood to mean an atomic guard over
2K

′
. Intuitively, this simplification can be done because

v, T |= ⟨d∗⟩g iff at least one of the following cases holds:
(i) v, T |= g, (ii) there exists a node w in T such that
w, T |= ⟨d∗⟩g and w can be reached from v by following the
direction d for one step. The aforementioned computation
step again can be done in linear time. The proof of correct-
ness (i.e. (P1) and (P2)) is provided in the full version. In
particular, for all g ∈ S, it is the case that g is redundant in
R iff g is redundant inR′.

Running Example. In our example, initially, S is changed
into {⟨↓∗⟩success} after the first simplification. To perform
the second, we first obtain the rewrite systemR1 containing
the following rules (recall we equate c and c for each class):

• (success, AddClass(⟨↓∗⟩success))
• ({⟨↓⟩P1, ⟨↓⟩P2}, AddClass(⟨↓⟩P1 ∧ ⟨↓⟩P2))
• (⟨↓⟩P , AddClass(⟨↓⟩P)) for each P ∈ {P1, P2}

and from Rule (4) we also have inR1.

• (root, AddChild(team)),
• (team, AddChild(P1)),
• (team, AddChild(P2)),
• (⟨↓⟩P1 ∧ ⟨↓⟩P2, AddChild(success)).

Now,R2 contains the following rules:

• (success, AddClass(⟨↓∗⟩success))
• (⟨↓⟩⟨↓∗⟩success, AddClass(⟨↓∗⟩success))

Finally, we define S′ to be
{
⟨↓∗⟩success

}
.

5.4 Redundancy→ class-adding
We will show that redundancy for TRS′0 can be solved in
polynomial time assuming an oracle to the “class adding
problem” for TRS′0. The class-adding problem is a reach-
ability problem for TRS′0 involving only single-node input

trees possibly with a parent node that only provides a “con-
text” (i.e. cannot be modified). As we will see in the follow-
ing subsection, the class-adding problem for TRS′0 lends it-
self to a fast reduction to the bit-toggling problem for sPDS.
Similarly, k-redundancy can be solved via the same routine,
where intermediate problems are restricted to their bounded
height equivalents.

High-level idea. We first provide the high-level idea the
reduction. After simplifying the rewrite system in the previ-
ous step, we only need to check redundancy at the root node
of the tree. Our approach is a “saturation” algorithm that ex-
ploits the monotonicity property: we begin with an initial
tree and then repeatedly apply a “saturation step” to build the
tree where each node is labelled by all classes that may label
the node during any execution. The saturation step examines
the tree built so far and the rules of the rewrite system. If it
finds that it is possible to apply a sequence of rewrite rules
to the tree to add a class c to some node v, it updates the tree
by adding c to the label of v. In this way, larger and larger
trees are built. Once it is no longer possible to add any new
classes to the existing nodes of the tree, the algorithm termi-
nates. In particular, we have all classes that could label the
root node, and thus we can detect which classes are redun-
dant by inspecting the labelling of the root.

Given a rewrite system R ∈ TRS0, an initial tree T =
(D,λ) ∈ TREE(Σ) with Σ = 2K, and a set S of guards, we
try to “saturate” each node v ∈ D with the classes that may
be added to v. Our saturation step is able to reason about the
addition of nodes when determining if a class c can be added
to v, but does not need to remember which new nodes needed
to be added to T to add c to v. This is due to monotonicity:
since each saturation step begins with a larger tree than the
previous step, additional nodes can be regenerated on-the-fly
if needed.

Each saturation step proceeds as follows. Let T1 =
(D,λ1) be the tree before the saturation step, and T2 =
(D,λ2) be the tree after applying then saturation step. The
tree domain does not change and there exists a node v ∈ D
such that λ1(v) ⊂ λ2(v) (i.e. some classes are added to
λ1(v)). In particular, we have T1 ≺ T2.

There are two saturation rules that are repeatedly applied
until we reach a fixpoint.

• The first saturation rule corresponds to the application of
a rewrite rule (g, AddClass(X)) ∈ R at v. We simply
set λ2(v) = λ1(v)∪X . Note, in this case we do not need
to reason about the addition of nodes to the tree.

• The second saturation rule is a call to the class-adding
subroutine and asks whether some class c can be added
to node v. This step incorporates the behaviour of rewrite
rules of the form (g, AddChild(X)). In this case we
need to reason about whether the node added by these
rules could lead to the addition of c to v. To do this, we

construct a pushdown systemP that explores the possible
impact of these new nodes. This is discussed in the next
section. If it is found that c could be added to v, we set
λ2(v) = λ1(v) ∪ {c}.

In sum, our “reduction” is in fact an algorithm for the (k-)
redundancy problem for TRS0 that runs in polynomial-time
with an oracle to the bit-toggling (resp. for bounded stack
height) for sPDS.

The formal reduction. Before formally defining the class-
adding problem, we first need the definition of an “assump-
tion function”, which plays the role of the possible parent
context node but is treated as a separate entity from the
input tree. As we shall see, this leads to a more natural
formulation of the computational problem. More precisely,
an assumption function f over the alphabet Σ = 2K is a
function mapping each element of {root} ∪ K to {0, 1}.
The boolean value of f(root) is used to indicate whether
the input single-node tree is a root node7. Given a tree
T = (D,λ) ∈ TREE(Σ), a node v ∈ D, and a simple guard
g over Σ, we write v, T |=f g if one of the following three
cases holds: (i) v ̸= ϵ and v, T |= g, (ii) v = ϵ, g is not of
the form ⟨↑⟩X , and v, T |= g, and (iii) v = ϵ, g = ⟨↑⟩X ,
f(root) = 0, and X ⊆ {c ∈ K : f(c) = 1}. In other words,
v, T |=f g checks whether g is satisfied at node v assuming
the assumption function f (in particular, if f(root) = 0,
then any guard referring to the parent of the root node of T
is checked against f).

Given a simple rewrite system R ∈ TRS′0 over Σ and an
assumption function f , we may define the rewriting relation
→R,f ⊆ TREE(Σ)×TREE(Σ) in the same way as we define
→R, except that |=f is used to check guard satisfaction. The
class-adding (reachability) problem is defined as follows:
given a single-node tree T0 = ({ϵ}, λ0) ∈ TREE(Σ) with
Σ = 2K, an assumption function f : ({root} ∪ K) →
{0, 1}, a class c ∈ K, and a simple rewrite systemR, decide
if there exists a tree T = (D,λ) such that T0 →∗

R,f T and
c ∈ λ(ϵ). Similarly, the k-class-adding problem is defined
in the same way as the class-adding problem except that the
reachable trees are restricted to height k (k is part of the
input).

Lemma 5. The redundancy (resp. k-redundancy) problem
for simple rewrite systems is P-time solvable assuming ora-
cle calls to the class-adding (resp. k-class-adding) problem.

Given a tree is T0 = (D0, λ0) ∈ TREE(Σ) with Σ = 2K,
a simple rewrite systemR over Σ, and a set S ⊆ K, the task
is to decide whether S is redundant (or k-redundant). We
shall give the algorithm for the redundancy problem; the k-
redundancy problem can be obtained by simply replacing or-
acle calls to the class-adding problem by the k-class-adding
problem.

7 Note that the guard ⟨↑⟩⊤ evaluates to false on the root node

The algorithm is a fixpoint computation. Let T = (D,λ)
:= T0. At each step, we can apply any of the following
“saturation rules”:

• if (g, AddClass(B)) is applicable at a node v ∈ D0 in
T , then λ(v) := λ(v) ∪B.

• If the class-adding problem has a positive answer on
input ⟨Tv, f, c,R⟩, then λ(v) := λ(v) ∪ {c}, where v ∈
D, c ∈ K \ λ(v), and Tv := (ϵ, λv) with λv(ϵ) = λ(v),
where we define f : ({root} ∪ K) → {0, 1} with
f(root) = 1 ⇔ v = ϵ and, if f(root) = 0 and u is
the parent of v, then f(a) = 1⇔ a ∈ λ(u).

Observe that saturation rules can be applied at most K×|D|
times. Therefore, when they can be applied no further, we
check whether S ∩ λ(ϵ) ̸= ∅ and terminate. Assuming
constant-time oracle calls to the class-adding problem, the
algorithm easily runs in polynomial time. Furthermore, since
each saturation rule only adds new classes to a node label,
the correctness of the algorithm can be easily proven using
Lemma 1 and Lemma 2; see the full version.

Running Example The application of the saturation algo-
rithm to our running example is quite simple. Since the only
node in the initial tree is the root node, we can solve the
redundancy problem with a single call to the class-adding
problem. That is, is it possible to add the class ⟨↓∗⟩success
to the root node?

5.5 Class-adding→ bit-toggling
We now show how to solve the class-adding problem for a
given node v and class c. Let λ(v) be the labelling of node
v. We reduce the class-adding problem to the bit-toggling
problem as follows. The pushdown system performs a kind
of “depth-first search” of the trees that could be built from
the new node and the rewrite rules. It starts with an initial
stack of height 1 containing the node being inspected. More
precisely, the single item on this stack is the set λ(v) (pos-
sibly with some extra “context” information). It then “simu-
lates” each possible branch that is spawned from v by push-
ing items onto the stack when a new node is created (i.e.
at each given moment, the stack contains a single branch
in a reachable configuration). It pops these nodes from the
stack when it wishes to backtrack and search other potential
branches of the tree.

The pushdown system is an sPDS that keeps one boolean
variable for each class c ∈ K. If P reaches a single item
stack (i.e. corresponding to the node v) where the item con-
tains c then the answer to the class adding problem is pos-
itive. That is, the sPDS has explored the application of the
rewrite rules to the possible children of v and determined
that the label of v can be expanded to include c.

The reason why it suffices to only keep track of the
labelling of v (instead of the entire subtree rooted at v that P

explored) is monotonicity of TRS0 (cf. Lemma 2), i.e., that
the labelling of v contains sufficient information to “regrow”
the destroyed subtree.

Lemma 6. The class-adding (resp. k-class-adding) problem
for TRS′0 is polynomial-time reducible to the bit-toggling
(resp. bounded bit-toggling) problem for sPDS.

We prove the lemma above. Fix a simple rewrite system
R over the node labeling Σ = 2K, an assumption function
f : ({root} ∪ K) → {0, 1}, a single node tree T0 =
({ϵ}, λ0) ∈ TREE(Σ), and a class α ∈ K.

We construct an sPDS P = (V,W,∆). Intuitively, the
sPDSP will simulateR by exploring all branches in all trees
reachable from T0 while accumulating the classes that are
satisfied at the root node. Define V := {xc : c ∈ K}∪{pop},
andW := {yc, zc : c ∈ K}∪{root}. Roughly speaking, we
will use the variable yc (resp. zc) to remember whether the
class c is satisfied at the current (resp. parent of the current)
node being explored. The variable xc is needed to remember
whether the class c is satisfied at a child of the current
node (i.e. after a pop operation). The variable root signifies
whether the current node is a root node, while the variable
pop indicates whether the last operation that changed the
stack height is a pop. We next define ∆:

• For each (A, AddClass(B)) ∈ R, add the rule (1, φ),
where φ asserts

(a)
∧

a∈A ya (A satisfied), and

(b)
∧

b∈B y1b (B set to true), and

(c) all other variables remain unchanged, that is we assert
pop ↔ pop′, root ↔ root1,

∧
c∈K\B(yc ↔ y1c),∧

c∈K(zc ↔ z1c), and
∧

c∈K(xc ↔ x′
c).

• For each (⟨↑⟩A, AddClass(B)) ∈ R, add the rule (1, φ)
where φ asserts

(a)
∧

a∈A za (A satisfied in the parent), and

(b)
∧

b∈B y1b (B set to true), and

(c) all other variables remain unchanged, that is pop ↔
pop′, root↔ root1,

∧
c∈K(xc ↔ x′

c),
∧

c∈K(zc ↔
z1c), and

∧
c∈K\B(yc ↔ y1c).

• For each (⟨↓⟩A, AddClass(B)) ∈ R, add the rule (1, φ)
where φ asserts

(a) pop (we popped from a child), and

(b)
∧

a∈A xa (A satisfied in child), and

(c)
∧

b∈B y1b (B set to true), and

(d) all other variables remain unchanged, that is pop ↔
pop′, root↔ root1,

∧
c∈K(xc ↔ x′

c),
∧

c∈K(zc ↔
z1c), and

∧
c∈K\B(yc ↔ y1c).

• For each (A, AddChild(B)) ∈ R, add the rule (2, φ),
where φ asserts

(a)
∧

a∈A ya (A satisfied), and

(b)
∧

b∈B y2b (B true in new child), and

(c)
∧

c∈K\B ¬y2c (new child has no other classes), and

(d)
∧

c∈K(yc ↔ z2c) (new child’s parent classes), and

(e) ¬root2 (new child is not root), and

(f) ¬pop′∧
∧

c∈K ¬x′
c (new child does not have a child),

and

(g) the current node is unchanged, that is
∧

c∈K(yc ↔
y1c),

∧
c∈K(zc ↔ z1c), and (root↔ root′)

• Finally, add the rule (0, φ), where φ asserts

(a) ¬root (can return to parent), and

(b) pop′ (flag the return), and

(c)
∧

c∈K(yc ↔ x′
c) (return classes to parent).

These boolean formulas can easily be represented as BDDs
of linear size (see full version).

Continuing with our translation, the bit that needs to be
toggled on is yα. We now construct the initial configura-
tion for our bit-toggling problem. For each subset X ⊆
K and a function q : V → {0, 1}, define the function
IX,f,q : (V ∪ W) → {0, 1} as follows: IX,f,q(root) :=
f(root), IX,f,q(pop) := q(pop), and for each c ∈ K: (i)
IX,f,q(xc) := q(xc), (ii) IX,f,q(yc) = 1 iff c ∈ X , and (iii)
IX,f,q(zc) := f(c). We shall write IX,f to mean IX,f,q with
q(x) = 0 for each x ∈ V . Define the initial configuration I0
as the function Iλ0(ϵ),f .

Let us now analyse our translation. The translation is
easily seen to run in polynomial time. In fact, with a more
careful analysis, one can show that the output sPDS is of
linear size and that the translation can be implemented in
polynomial time. Correctness of our translation immediately
follows from the following technical lemma:

Lemma 7. For each subset X ⊆ K, the following are
equivalent:

(A1) There exists a tree T = (D,λ) ∈ TREE(Σ) such that
T0 →∗

R,f T and λ(ϵ) = X .
(A2) There exists q′ : V → {0, 1} such that Iλ0(ϵ),f →∗

P
IX,f,q′ .

This lemma intuitively states that the constructed sPDS
performs a “faithful simulation” of R. Moreover, the di-
rection (A2)⇒(A1) gives soundness of our reduction, while
(A1)⇒(A2) gives completeness of our reduction. The proof
is very technical, which we relegate to the full version.

Running Example We show how the sPDS constructed
can determine that ⟨↓∗⟩success can be added to the root
node of the tree, thus implying that there are no redundant
selectors.

We write configurations of a symbolic pushdown system
using the notation (X,Y1 . . . Ym) where X is the set of
classes c such that the variable xc is true, and Y1 . . . Ym is

a stack of sets of classes (with the top on the right) such
that each Yi is a set of classes c such that yc is true at stack
position i. Note, we do not show the zc variables’ values
since they are only needed to evaluate ⟨↑⟩ modalities, which
do not appear in our example.

First we apply the rule (root, AddChild(team)) and
then (team, AddChild(P1)). Each step pushes a new item
onto the stack. By executing these steps the sPDS is explor-
ing a branch from root to P1.

(∅, {root})→
(∅, {root} {team})→
(∅, {root} {team} {P1})

At this point there’s nothing more we can do with the
P1 node. Hence, the sPDS backtracks, remembering in its
control state the classes contained in the child it has returned
from. Once this information is remembered in its control
state, it knows that a child is labelled P1 and hence (⟨↓
⟩P1, AddClass(⟨↓⟩P1)) can be applied.

(∅, {root} {team} {P1})→
({P1}, {root} {team})→(
{P1}, {root}

{
team, ⟨↓⟩P1

})
Now the sPDS can repeat the analogous sequence of actions
to obtain that ⟨↓⟩P2 can also label the team node.(

{P1}, {root}
{
team, ⟨↓⟩P1

})
→(

∅, {root}
{
team, ⟨↓⟩P1

}
{P2}

)
→(

{P2}, {root}
{
team, ⟨↓⟩P1

})
→(

{P2}, {root}
{
team, ⟨↓⟩P1, ⟨↓⟩P2

})
Now we are able to deduce that success can also label the
team node.(

{P2}, {root}
{
team, ⟨↓⟩P1, ⟨↓⟩P2

})
→(

{P2}, {root}
{
. . . , ⟨↓⟩P1 ∧ ⟨↓⟩P2

})
→

(∅, {root} {. . .} {success})

We are then able to backtrack to the root node, accumulating
the information that ⟨↓∗⟩success holds at the root node, and
thus (⟨↓∗⟩success) is not redundant.

(∅, {root} {. . .} {success})→
(∅, {root} {. . .} {. . . , ⟨↓∗⟩success})→
({. . . , ⟨↓∗⟩success}, {root} {. . .})→

({. . . , ⟨↓∗⟩success}, {root} {. . . , ⟨↓∗⟩success})→
({. . . , ⟨↓∗⟩success}, {root})→(
{. . .},

{
. . . , ⟨↓∗⟩success

})
6. Experiments
We have implemented our approach in a new tool TreePed
which is available for download [57]. We tested it on several

case studies. Our implementation contains two main compo-
nents: a proof-of-concept translation from HTML5 applica-
tions using jQuery to our model, and a redundancy checker
(with non-redundancy witness generation) for our model.
Both tools were developed in Java. The redundancy checker
uses jMoped [56] to analyse symbolic pushdown systems. In
the following sections we discuss the redundancy checker,
translation from jQuery, and the results of our case studies.

6.1 The Redundancy Checker
The main component of our tool implements the redundancy
checking algorithm for proving Theorem 3. Largely, the al-
gorithm is implemented directly. The most interesting dif-
ferences are in the use of jMoped to perform the analysis
of sPDSs to answer class-adding checks. In the following,
assume a tree Tv, rewrite rulesR, and a set K of classes.

Optimising the sPDS For each class c ∈ K we construct
an sPDS. We can optimise by restricting the set of rules inR
used to build the sPDS. In particular, we can safely ignore all
rules in R that cannot appear in a sequence of rules leading
to the addition of c. To do this, we begin with the set of all
rules that either directly add the class c or add a child to
the tree (since these may lead to new nodes matching other
rules). We then add all rules that directly add a class c′ that
appears in the guard of any rules included so far. This is
iterated until a fixed point is reached. The rules in the fixed
point are the rules used to build the sPDS.

Reducing the number of calls. We re-implemented the
global backwards reachability analysis (and witness genera-
tion) of Moped [53] in jMoped. This means that a single call
to jMoped can allow us to obtain a BDD representation of
all initial configurations of the sPDSs obtained from class-
adding problems ⟨Tv, f, c,R⟩ that have a positive answer to
the class-adding problem for a given class c ∈ K. Thus, we
only call jMoped once per class.

6.2 Translation from HTML5
The second component of our tool provides a proof-of-
concept prototypical translation from HTML5 using jQuery
to our model. We provide a detailed description in the Ap-
pendix and provide a small example below. There are three
main parts to the translation.

• The DOM tree of the HTML document is directly trans-
lated to a tree in our model. We use classes to encode
element types (e.g. div or a), IDs and CSS classes.

• We support a subset of CSS covering the most common
selectors and all selectors in our case studies. Each se-
lector in the CSS stylesheet is translated to a guard to
be analysed for redundancy. For pseudo-selectors such as

g:hover and g:before we simply check for the redun-
dancy of g.

• Dynamic rules are extracted from the JavaScript in the
document by identifying jQuery calls and generating
rules as outlined in Section 3.3. Developing a transla-
tion tool that covers all covers all aspects of such an
extremely rich and complex language as JavaScript is
a difficult problem [9]. Our proof-of-concept prototype
covers many, but by no means all, interesting features of
the language. The implemented translation is described
in more detail in the full version.

Sites formed of multiple pages with common CSS files are
supported by automatically collating the results of indepen-
dent page analyses and reporting site-wide redundancies.

To give a flavour of the translation of a single line we
recall one of the rules from the example in Figure 1, except
we adjust it to a call addClass() instead of remove()

(since calls to remove() are ignored by our abstraction).

$('.input_wrap').find('.delete')

.parent('div')

.addClass('deleted');

We can translate this rule inductively. From the initial jQuery
call $('.input_wrap') we obtain a guard that is sim-
ply .input_wrap that matches any node with the class
input_wrap. We can then extend this guard to handle
the find() call. This looks for any child of the currently
matched node that has the class delete. Thus, we build up
the guard to

.delete ∧ ⟨↑+⟩.input_wrap

Next, because of the call to .parent() we have to extend
the guard further to match the parent of the currently selected
node, and enforce that the parent node is a div.

div ∧ ⟨↓⟩(.delete ∧ ⟨↑+⟩.input_wrap)

Finally, we encounter the call to addClass() which we
translate to an AddClass({deleted}) rule.

(div ∧ ⟨↓⟩(.delete ∧ ⟨↑+⟩.input_wrap),
AddClass({deleted}))

6.3 Case Studies
We performed several case studies. One is based on the Igloo
example from the benchmark suite of the dynamic CSS anal-
yser Cilla [46], and is described in detail below. Another
(and the largest) is based on the Nivo Slider plugin [49] for
animating transitions between a series of images. The re-
maining examples are hand built and use jQuery to make fre-
quent additions to and removals from the DOM tree. The first
bikes.html allows a user to select different frames, wheels

and groupsets to build a custom bike, comments.html dis-
plays a comments section that is loaded dynamically via
an AJAX call, and transactions.html is a finance page
where previous transactions are loaded via AJAX and new
transactions may be added and removed via a form. The ex-
ample in Figure 1 is example.html and example-up.html
is the version without the limit on the number of input boxes.
These examples are available in the src/examples/html

directory of the tool distribution [57].
All case studies contained non-trivial CSS selectors

whose redundancy depended on the dynamic behaviour of
the system. In each case our tool constructed a rewrite sys-
tem following the process outlined above, and identified all
redundant rules correctly. Below we provide the answers
provided by UnCSS [58] and Cilla [15] when they are avail-
able8.

The experiments were run on a Dell Latitude e6320 lap-
top with 4Gb of RAM and four 2.7GHz Intel i7-2620M
cores. We used OpenJDK 7, using the argument “-Xmx” to
limit RAM usage to 2.5Gb. The results are shown in Table 1.
Ns is the initial number of elements in the DOM tree, Ss is
the number of CSS selectors (with the number of redundant
selectors shown in brackets), Ls is the number of Javascript
lines reported by cloc, and Rs is the number of rules in
the rewrite system obtained from the JavaScript9 after sim-
plification (unsimplified rules may have arbitrarily complex
guards). The figures for the Igloo example are reported per
file or for the full analysis as appropriate.

We remark that the translation from JavaScript and
jQuery is the main limitation of the tool in its application
to industrial websites, since we do not support JavaScript
and jQuery in its full generality. However, we also note
that the number of rules required to model websites is of-
ten much smaller than the size of the code. For example, the
Nivo-Slider example contains 501 lines of JavaScript, but
its abstraction only requires 21 rules in our model. It is the
number of these rules and the number of CSS selectors (and
the number of classes appearing in the guards) that will have
the main effect on the scalability of the tool.

Although we report the number of nodes in the webpages
of our examples, checking CSS matching against these pre-
existing nodes is no harder than standard CSS matching. The
dynamic addition of nodes to the webpage is where symbolic
pushdown analysis is required, hence the number of rewrite
rules gives a better indication of the difficulty of an analysis
instance.

Example from Figure 1 TreePed suggests that the selec-
tor .warn might be reachable and, therefore, is not deleted.

8 We did not manage to successfully set up Cilla [46] and so only provide
the output for the Igloo example that has been provided by the authors in
[15].
9 Not including the number of rules required to represent the CSS selectors.

Case Study Ns Ss Ls Rs Time

bikes.html 22 18 (0) 97 37 3.6s
comments.html 5 13 (1) 43 26 2.9s
example.html 11 1 (0) 28 4 .6s
example-up.html 8 1 (1) 15 3 .6s
igloo/ 261 (89) 3.4s
index.html 145 24 1
engineering.html 236 24 1

Nivo-Slider/

demo.html 15 172 (131) 501 21 6.3s
transactions.html 19 9 (0) 37 6 1.6s

Table 1. Case study results.

(function($) {

function supportsInputPlaceholder() {

var el = document.createElement('input');

return 'placeholder' in el;

}

$(function() {

if (!supportsInputPlaceholder()) {

var searchInput = $('#searchInput'),

placeholder = searchInput.attr('placeholder');

searchInput.val(placeholder).focus(function() {

var $this = $(this);

$this.addClass('touched');

...

})

...

});

}

})(jQuery);

Figure 3. JavaScript code snippet from Igloo example

We have run UnCSS on this example, which incorrectly
identifies .warn as unreachable.

The Igloo example The Igloo example is a mock company
website with a home page (index.html) and an engineering
services page (engineering.html). There are a total of
261 CSS selectors, out of which 89 of them are actually
redundant (we have verified this by hand). UnCSS reports
108 of them are redundant rules.

We mention one interesting selector which both Cilla
and UnCSS have identified as redundant, but is actually
reachable. The Igloo main page includes a search bar that
contains some placeholder text which is present only when
the search bar is empty and does not have focus. Placeholder
text is supported by most modern browsers, but not all (e.g.
IE9), and the page contains a small amount of JavaScript
to simulate this functionality when it is not provided by
the browser. The relevant code is shown in Figure 3. In
particular, the CSS class touched, and rule

#search .touched { color: #333; }

are used for this purpose. Both Cilla and UnCSS incorrectly
claim that the rule is redundant. Since we only identify

genuinely redundant rules, our tool correctly does not report
the rule as redundant.

In addition, TreePed identified a further unexpected mis-
take in Igloo’s CSS. The rule

h2 a:hover, h2 a:active, h2 a:focus

h3 a:hover, h3 a:active, h2 a:focus { ... }

is missing a comma from the end of the first line. This re-
sults in the redundant selector “h2 a:focus h3 a:hover”
rather than two separate selectors as was intended. Cilla
did not report this redundancy as it appears to ignore all
CSS rules with pseudo-selectors. Finally, we remark that
the second line of the above rule contains a further error:
“h2 a:focus” should in fact be “h3 a:focus”. This raises
the question of selector subsumption, on which there is al-
ready a lot of research work (e.g. see [14, 46]). These algo-
rithms may be incorporated into our tool to obtain a further
size reduction of CSS files.

The Nivo-Slider example Nivo-Slider [49] is an easy-to-
use image slider JavaScript package that heavily employs
jQuery. In particular, it provides some beautiful transition
effects when displaying a gallery of images. In this case
study, we use a demo file that displays a series of four
images. The file contains a total of 172 CSS selectors, out of
which 131 are actually redundant (we verified this by hand).
UnCSS reports 152 redundant CSS selectors (i.e. about 50%
of false positives).

We mention the following interesting rule that UnCSS
reports as redundant:

.nivoSlider a.nivo-imageLink {

...

z-index:6;

...

}

Recall that the z-index of an HTML element specifies the
vertical stack order; a greater stack order means that the
element is in front of an element with a lower stack order.
This CSS rule, among others, sets the z-index of an HTML
element that matches the selector to a higher value. In effect,
this allows a hyperlink that overlaps with the second image
in the series to be clicked (which takes the user to a different
web page). Removing this rule disables the hyperlink from
the page. The code snippet in Figure 4 provides the relevant
part of the HTML document.

In particular, the class nivo-imageLinkwill be added by
the JavaScript bit of the page to the the depicted hyperlink
element above, as is shown in the JavaScript code snippet in
Figure 5. In contrast to UnCSS, TreePed correctly identifies
that the above CSS rule may be used.

...

<div id="slider" class="nivoSlider">

...

<img src="images/up.jpg"

data-thumb="images/up.jpg"

alt=""

title="This is an example of a caption"/>

...

<div>

...

Figure 4. HTML code snippet for Nivo-Slider demo.

var slider = $('#slider');

slider.data('nivo:vars', vars)

.addClass('nivoSlider');

// Find our slider children
var kids = slider.children();

kids.each(function() {

var child = $(this);

var link = '';

if(!child.is('img')){

if(child.is('a')){

child.addClass('nivo-imageLink');

link = child;

}

...

}

...

}

Figure 5. JavaScript code snippet for Nivo-Slider demo.

7. Conclusion and Future Work

At the moment our translation from HTML5 applications
to our tree-rewriting model is prototypical and does not
incorporate many features that such a rich and complex
language as JavaScript has, especially in the presence of
libraries. Therefore, an important research direction is to
develop a more robust translation, perhaps by building on top
of existing JavaScript static analysers like WALA [51, 55]
and TAJS [9, 28, 29]. As Andreasen and Møller [9] describe,
a static analysis of JavaScript in the presence of jQuery
is presently a formidable task for existing static analysers
for JavaScript. For this reason, we do not expect the task
of building a more robust translation to our tree-rewriting
model to be easy.

Our technique should not be seen as competing with
dynamic analysis techniques for identifying redundant CSS
rules (e.g. UnCSS and Cilla). In fact, they can be combined
to obtain a more precise CSS redundancy checker. Our tool
TreePed attempts to output the definitely redundant rules,
while Uncss/Cilla attempts to output those that are definitely
non-redundant. The complement of the union of these sets
is the “dont know set”, which can (for example) be checked
manually by the developer. For future work, we would like to

combine static and dynamic analysis to build a more precise
and robust CSS redundancy checker.

Another direction is to find better ways of overapproxi-
mating redundancy problems for the undecidable class TRS
of rewrite systems using our monotonic abstractions (other
than replacing non-positive guards by⊤). In particular, for a
general guard, can we automatically construct a more precise
positive guard that serves as an overapproximation? A more
precise abstraction would be useful in identifying redundant
CSS rules with negations in the node selectors, which can
be found in real-world HTML5 applications (though not as
common as those rules without negations).

We may also consider other ways of improving CSS per-
formance using the results of our analysis. For example, a
descendant selector

.a .b { ... }

is less efficient than a direct child selector

.a > .b { ... }

since the descendant selector must search through all de-
scendants of a given node. However, it is very common for
the former to be used in place of the latter. If we can identify
that the guard a∧⟨↓⟩⟨↓+⟩b is never matched, while a∧⟨↓⟩b
is matched, then we can safely replace the descendant selec-
tor with the direct child selector.

Acknowledgments
We sincerely thank Max Schaefer for fruitful discussions.
Hague is supported by the Engineering and Physical Sci-
ences Research Council [EP/K009907/1]. Lin is supported
by a Yale-NUS Startup Grant. Ong is partially supported by
a visiting professorship, National University of Singapore.

References
[1] A no-limit version of [2]. http://treeped.bitbucket.

org/example-up.html, March 2015.

[2] A simple HTML5 application. http://treeped.

bitbucket.org/example.html, March 2015.

[3] A simple HTML5 application. https://bitbucket.org/

TreePed/treeped/raw/master/src/examples/html/

example.html, March 2015.

[4] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General
decidability theorems for infinite-state systems. In LICS,
pages 313–321, 1996.

[5] P. A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. Regular
tree model checking. In CAV, pages 555–568, 2002.

[6] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1994.

[7] S. Abiteboul, O. Benjelloun, and T. Milo. Positive active
XML. In PODS, pages 35–45, 2004.

[8] S. Abiteboul, L. Segoufin, and V. Vianu. Static analysis of
active XML systems. ACM Trans. Database Syst., 34(4),
2009.

[9] E. Andreasen and A. Møller. Determinacy in static analysis
for jquery. In OOPSLA, pages 17–31, 2014. . URL http:

//doi.acm.org/10.1145/2660193.2660214.

[10] Average Web Page Size. http://www.

websiteoptimization.com/speed/tweak/

average-web-page/.

[11] J. Bailey, A. Poulovassilis, and P. T. Wood. An event-
condition-action language for XML. In WWW, pages 486–
495, 2002.

[12] T. Ball and S. K. Rajamani. Bebop: A symbolic model checker
for boolean programs. In SPIN, pages 113–130, 2000.

[13] M. Bodin, A. Charguéraud, D. Filaretti, P. Gardner, S. Maf-
feis, D. Naudziuniene, A. Schmitt, and G. Smith. A trusted
mechanised javasript specification. In POPL, pages 87–100,
2014. . URL http://doi.acm.org/10.1145/2535838.

2535876.

[14] M. Bosch, P. Genevès, and N. Layaïda. Automated refactoring
for size reduction of CSS style sheets. In DocEng, pages 13–
16, 2014.

[15] Cilla website. https://github.com/saltlab/cilla/.

[16] W. Fan, F. Geerts, and F. Neven. Expressiveness and complex-
ity of XML publishing transducers. ACM Trans. Database
Syst., 33(4), 2008.

[17] A. Finkel and P. Schnoebelen. Well-structured transition sys-
tems everywhere! Theor. Comput. Sci., 256(1-2):63–92, 2001.

[18] J. Flum and M. Grohe. Parameterized Complexity Theory.
Springer, 2006.

[19] B. Genest, A. Muscholl, O. Serre, and M. Zeitoun. Tree
pattern rewriting systems. In ATVA, pages 332–346, 2008.

[20] B. Genest, A. Muscholl, and Z. Wu. Verifying recursive active
documents with positive data tree rewriting. In FSTTCS, pages
469–480, 2010.

[21] P. Geneves, N. Layaida, and V. Quint. On the Analysis of
Cascading Style Sheets. In WWW, pages 809–818, 2012.

[22] S. Göller and A. W. Lin. Refining the process rewrite sys-
tems hierarchy via ground tree rewrite systems. ACM Trans.
Comput. Log., 15(4):26:1–26:28, 2014. .

[23] S. Guarnieri and V. B. Livshits. GATEKEEPER:
mostly static enforcement of security and reliability poli-
cies for javascript code. In USENIX, pages 151–168,
2009. URL http://www.usenix.org/events/sec09/

tech/full_papers/guarnieri.pdf.

[24] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet,
and R. Berg. Saving the world wide web from vulnera-
ble javascript. In ISSTA, pages 177–187, 2011. . URL
http://doi.acm.org/10.1145/2001420.2001442.

[25] M. Hague. Senescent ground tree rewrite systems. In CSL-
LICS, page 48, 2014.

[26] M. Hague, A. W. Lin, and L. Ong. Detecting redundant
CSS rules in HTML5 applications: A tree-rewriting approach.
CoRR, abs/1412.5143, 2014. URL http://arxiv.org/

abs/1412.5143.

http://treeped.bitbucket.org/example-up.html
http://treeped.bitbucket.org/example-up.html
http://treeped.bitbucket.org/example.html
http://treeped.bitbucket.org/example.html
https://bitbucket.org/TreePed/treeped/raw/master/src/examples/html/example.html
https://bitbucket.org/TreePed/treeped/raw/master/src/examples/html/example.html
https://bitbucket.org/TreePed/treeped/raw/master/src/examples/html/example.html
http://doi.acm.org/10.1145/2660193.2660214
http://doi.acm.org/10.1145/2660193.2660214
http://www.websiteoptimization.com/speed/tweak/average-web-page/
http://www.websiteoptimization.com/speed/tweak/average-web-page/
http://www.websiteoptimization.com/speed/tweak/average-web-page/
http://doi.acm.org/10.1145/2535838.2535876
http://doi.acm.org/10.1145/2535838.2535876
https://github.com/saltlab/cilla/
http://www.usenix.org/events/sec09/tech/full_papers/guarnieri.pdf
http://www.usenix.org/events/sec09/tech/full_papers/guarnieri.pdf
http://doi.acm.org/10.1145/2001420.2001442
http://arxiv.org/abs/1412.5143
http://arxiv.org/abs/1412.5143

[27] D. Jang and K. M. Choe. Points-to analysis for javascript.
In SAC, pages 1930–1937, 2009. . URL http://doi.acm.

org/10.1145/1529282.1529711.

[28] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for
javascript. In SAS, pages 238–255, 2009. . URL http:

//dx.doi.org/10.1007/978-3-642-03237-0_17.

[29] S. H. Jensen, M. Madsen, and A. Møller. Modeling the HTML
DOM and browser API in static analysis of javascript web
applications. In SIGSOFT/FSE, pages 59–69, 2011. . URL
http://doi.acm.org/10.1145/2025113.2025125.

[30] jQuery. http://jquery.com/.

[31] jQuery stats (Dec 2014). http://trends.builtwith.com/
javascript/jQuery.

[32] N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA
implementation secrets. Int. J. Found. Comput. Sci., 13(4):
571–586, 2002. . URL http://dx.doi.org/10.1142/

S012905410200128X.

[33] S. La Torre, P. Madhusudan, and G. Parlato. Analyzing re-
cursive programs using a fixed-point calculus. In PLDI, pages
211–222, 2009.

[34] B. S. Lerner, L. Elberty, J. Li, and S. Krishnamurthi. Com-
bining form and function: Static types for jquery programs. In
ECOOP, pages 79–103, 2013.

[35] L. Libkin. Logics for unranked trees: An overview. Logical
Methods in Computer Science, 2(3), 2006.

[36] A. W. Lin. Weakly-synchronized ground tree rewriting. In
MFCS, pages 630–642, 2012.

[37] A. W. Lin. Accelerating tree-automatic relations. In FSTTCS,
pages 313–324, 2012.

[38] C. Löding. Reachability problems on regular ground tree
rewriting graphs. Theory Comput. Syst., 39(2):347–383, 2006.

[39] C. Löding and A. Spelten. Transition graphs of rewriting
systems over unranked trees. In MFCS, pages 67–77, 2007.

[40] S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML type
checking with macro tree transducers. In PODS, pages 283–
294, 2005.

[41] Z. Manna and A. Pnueli. Temporal Verification of Reactive
Systems: Safety. Springer, 1995.

[42] M. Marx. Conditional xpath. ACM Trans. Database Syst., 30
(4):929–959, 2005.

[43] R. Mayr. Process rewrite systems. Inf. Comput., 156(1-2):
264–286, 2000. .

[44] D. Mazinanian, N. Tsantalis, and A. Mesbah. Discovering
refactoring opportunities in cascading style sheets. In FSE,
pages 496–506, 2014.

[45] K. L. McMillan. Symbolic model checking. Kluwer, 1993.
ISBN 978-0-7923-9380-1.

[46] A. Mesbah and S. Mirshokraie. Automated Analysis of CSS
Rules to Support Style Maintenance. In ICSE, pages 408–418,
2012.

[47] L. A. Meyerovich and R. Bodik. Fast and parallel webpage
layout. In WWW, pages 711–720, 2010.

[48] Moped. http://www2.informatik.uni-stuttgart.de/

fmi/szs/tools/moped/.

[49] Nivo Slider. https://github.com/gilbitron/

Nivo-Slider.

[50] Sanwebe. http://www.sanwebe.com/2013/03/

addremove-input-fields-dynamically-with-jquery.

[51] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip. Dynamic
determinacy analysis. In PLDI, pages 165–174, 2013. . URL
http://doi.acm.org/10.1145/2462156.2462168.

[52] B. Schlingloff. Expressive completeness of temporal logic
of trees. Journal of Applied Non-Classical Logics, 2(2):157–
180, 1992.

[53] S. Schwoon. Model-Checking Pushdown Systems. PhD thesis,
Technischen Universität München, 2002.

[54] M. Sipser. Introduction to The Theory of Computation. Cen-
gage Learning, 3 edition, 2012.

[55] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip.
Correlation tracking for points-to analysis of javascript. In
ECOOP, pages 435–458, 2012. . URL http://dx.doi.

org/10.1007/978-3-642-31057-7_20.

[56] D. Suwimonteerabuth, F. Berger, S. Schwoon, and J. Esparza.
jMoped: A test environment for Java programs. In CAV, pages
164–167, 2007.

[57] TreePed. https://bitbucket.org/TreePed/treeped.

[58] UnCSS website. https://github.com/giakki/uncss.

[59] W3 Schools. http://www.w3schools.com/.

http://doi.acm.org/10.1145/1529282.1529711
http://doi.acm.org/10.1145/1529282.1529711
http://dx.doi.org/10.1007/978-3-642-03237-0_17
http://dx.doi.org/10.1007/978-3-642-03237-0_17
http://doi.acm.org/10.1145/2025113.2025125
http://jquery.com/
http://trends.builtwith.com/javascript/jQuery
http://trends.builtwith.com/javascript/jQuery
http://dx.doi.org/10.1142/S012905410200128X
http://dx.doi.org/10.1142/S012905410200128X
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
https://github.com/gilbitron/Nivo-Slider
https://github.com/gilbitron/Nivo-Slider
http://www.sanwebe.com/2013/03/addremove-input-fields-dynamically-with-jquery
http://www.sanwebe.com/2013/03/addremove-input-fields-dynamically-with-jquery
http://doi.acm.org/10.1145/2462156.2462168
http://dx.doi.org/10.1007/978-3-642-31057-7_20
http://dx.doi.org/10.1007/978-3-642-31057-7_20
https://bitbucket.org/TreePed/treeped
https://github.com/giakki/uncss
http://www.w3schools.com/

	Introduction
	HTML5: a quick overview
	A tree-rewriting approach
	An informal description of the approach
	Notations for trees
	The formal model

	A monotonic abstraction
	Formalising and proving ``monotonicity''
	Summary of technical results

	The algorithm
	Pushdown systems: a preliminary
	Intuition/Roadmap of the reduction
	Simplifying the rewrite system
	Redundancy class-adding
	Class-adding bit-toggling

	Experiments
	The Redundancy Checker
	Translation from HTML5
	Case Studies

	Conclusion and Future Work

