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Abstract

Higher-order recursion schemes (HORS) have recently received
much attention as a useful abstraction of higher-order functional
programs with a number of new verification techniques employ-
ing HORS model-checking as their centrepiece. This paper con-
tributes to the ongoing quest for a truly scalable model-checker
for HORS by offering a different, automata theoretic perspective.
We introduce the first practical model-checking algorithm that acts
on a generalisation of pushdown automata equi-expressive with
HORS called collapsible pushdown systems (CPDS). At its core
is a substantial modification of a recently studied saturation algo-
rithm for CPDS. In particular it is able to use information gath-
ered from an approximate forward reachability analysis to guide its
backward search. Moreover, we introduce an algorithm that prunes
the CPDS prior to model-checking and a method for extracting
counter-examples in negative instances. We compare our tool with
the state-of-the-art verification tools for HORS and obtain encour-
aging results. In contrast to some of the main competition tack-
ling the same problem, our algorithm is fixed-parameter tractable,
and we also offer significantly improved performance over the only
previously published tool of which we are aware that also enjoys
this property. The tool and additional material are available from
http://cshore.cs.rhul.ac.uk.

Categories and Subject Descriptors F.1.1 [Models of Computa-
tion]: Automata
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1. Introduction
Functional languages such as Haskell, OCaML and Scala strongly
encourage the use of higher-order functions. This represents a chal-
lenge for software verification, which usually does not model re-
cursion accurately, or models only first-order calls (e.g. SLAM [2]
and Moped [33]). However, there has recently been much inter-
est in a model called higher-order recursion schemes (HORS) (see
e.g. [29]), which offers a way of abstracting functional programs in
a manner that precisely models higher-order control-flow.

The execution trees of HORS enjoy decidable µ-calculus theo-
ries [29], which testifies to the good algorithmic properties of the
model. Even ‘reachability’ properties (subsumed by the µ-calculus)
are very useful in practice. As a simple example, the safety of
incomplete pattern matching clauses could be checked by asking
whether the program can ‘reach a state’ where a pattern match
failure occurs. More complex ‘reachability’ properties can be ex-
pressed using a finite automaton and could, for example, specify
that the program respects a certain discipline when accessing a par-
ticular resource (see [22]). Despite even reachability being (n−1)-
EXPTIME complete, recent research has revealed that useful prop-
erties of HORS can be checked in practice.

Kobayashi’s TRecS [23] tool, which checks properties express-
ible by a deterministic trivial Büchi automaton (all states accept-
ing), was the first to achieve this. It works by determining whether
a HORS is typable in an intersection-type system characterising
the property to be checked [22]. In a bid to improve scalability, a
number of other algorithms have subsequently been designed and
implemented such as Kobayashi et al.’s GTRecS(2) [25, 26] and
Neatherway et al.’s TravMC [28] tools (appearing in ICFP 2012),
all of which remain based on intersection type inference.

This work is the basis of various techniques for verifying func-
tional programs. Kobayashi et al. have developed MoCHi [27] that
checks safety properties of (OCaML) programs, and EHMTT Ver-
ifier [38] for tree processing programs. Both use a model-checker
for recursion schemes as a central component. Similarly, Ramsay
and Ong [30] provide a verification procedure for programs with
pattern matching employing recursion schemes as an abstraction.

Despite much progress, even the state-of-the-art TRecS does
not scale to recursion schemes big enough to model realistically
sized programs; achieving scalability while accurately tracking
higher-order control-flow is a challenging problem. This paper of-
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fers an automata-theoretic perspective on this challenge, providing
a fresh set of tools that contrast with previous intersection-type
approaches. Techniques based on pushdown automata have previ-
ously visited ICFP, such as the approximate higher-order control-
flow analysis CFA2 [40], but our aims are a bit different in that we
wish to match the expressivity of HORS. Consequently we require
a more sophisticated notion of pushdown automaton.

Collapsible pushdown systems (CPDS) [16] are an alternative
representation of the class of execution trees that can be gener-
ated by recursion schemes (with linear-time mutual-translations be-
tween the two formalisms [10, 16]). While pushdown systems aug-
ment a finite-state machine with a stack and provide an ideal model
for first-order programs [20], collapsible pushdown systems model
higher-order programs by extending the stack of a pushdown sys-
tem to a nested “stack-of-stacks” structure. The nested stack struc-
ture enables one to represent closures. Indeed the reader might find
it helpful to view a CPDS as being Krivine’s Abstract Machine in
a guise making it amenable to the generalisation of techniques for
pushdown model-checking. Salvati and Walukiewicz have studied
in detail the connection with the Krivine abstract machine [32].

For ordinary (‘order-1’) pushdown systems, a model-checking
approach called saturation has been successfully implemented by
tools such as Moped [33] and PDSolver [15]. Given a regular set
of configurations of the pushdown system (represented by a finite
automaton A acting on stacks), saturation can solve the ‘back-
ward reachability problem’ by computing another finite automaton
recognising a set of configurations from which a configuration in
L(A) can be reached. This is a fixed-point computation that gradu-
ally adds transitions to A until it is ‘saturated’. If A recognises a set
of error configurations, one can determine whether the pushdown
system is ‘safe’ by checking if its initial configuration is recognised
by the automaton computed by saturation.

We recently extended the saturation method to a backward
reachability analysis of collapsible pushdown systems [7]. This
runs in PTIME when the number of control states is bounded.
Crucially, this condition is satisfied when translating from recursion
schemes of bounded arity with properties represented by automata
of bounded size [16]. Whilst the HORS/intersection-type based tool
GTRecS(2) also enjoys this fixed-parameter tractability (others do
not), it times out on many benchmarks that our tool solves quickly.

Motivated by these facts, we revisit the foundations of higher-
order verification tools and introduce C-SHORe — the first model-
checking tool for the (direct) analysis of collapsible pushdown
systems. Whilst the tool is based on the ICALP 2012 result, some
substantial modifications and additions are made to the algorithm,
leading to several novel practical and theoretical contributions:

1. An approximate forward reachability algorithm providing data

(a) . . . allowing for the CPDS to be pruned so that saturation
receives a smaller input.

(b) . . . employed by a modified saturation algorithm to guide its
backward search.

This is essential for termination on most of our benchmarks.

2. A method for extracting witnesses to reachability.

3. A complete reworking of the saturation algorithm that speeds
up the fixed-point computation.

4. Experimental results showing our approach compares well with
TRecS, GTRecS(2) and TravMC.

It is worth remarking that the other type-based tools mentioned
above all work by propagating information in a forward direction
with respect to the evaluation of the model. In contrast, the raw
saturation algorithm works backwards, but we also show here how
forward and backward propagation can be combined.

In Sections 5 to 8 we describe the original contributions of this
paper. These sections can be understood independently of one an-
other, and hence the reader does not need to fully grasp each section
before continuing to the next. The remaining sections describe the
background, related work and conclusions.

In Section 3 we recall the basic structures used in the paper
as well as recapping the ICALP 2012 algorithm. In Section 5 we
describe the approximate forwards-reachability analysis and how
it is exploited. In Section 6 we show how to generate witnesses to
reachability. In Section 7, we then consider how to restructure the
saturation algorithm to more efficiently compute the fixed-point.
We provide experimental results in Section 8. Note that we do not
discuss in formal detail the translation from HORS model-checking
to reachability for CPDS, which essentially follows [10]. However,
we do give an informal overview in Section 2, which we hope
serves to demonstrate how closures can be accurately modelled.

The tool is available at http://cshore.cs.rhul.ac.uk.

2. Modelling Higher-Order Programs
In this section we give an informal introduction to the process of
modelling higher-order programs for verification. In particular, we
show how a simple example program can be modelled using a
higher-order recursion scheme, and then we show how this scheme
is evaluated using a collapsible pushdown system. For a more sys-
tematic approach to modelling higher-order programs with recur-
sion schemes, we refer the reader to work by Kobayashi et al. [27].
This section is for background only, and can be safely skipped.

For this section, consider the toy example below.

Main = MakeReport Nil
MakeReport x = if * (Commit x)

else (AddData x MakeReport)
AddData y f = if * (f Error) else (f Cons(_, y))

In this example, * represents a non-deterministic choice (that may,
for example, be a result of some input by the user). Execution
begins at the Main function whose aim is to make a report which is
a list. We begin with an empty report and send it to MakeReport.
Either MakeReport indicates the report is finished and commits the
report somehow, or it adds an item to the head of the list, using the
AddData function, which takes the report so far, and a continuation.
AddData either detects a problem with the new data (maybe it is
inconsistent with the rest of the report) and flags an error by passing
Error to the continuation, or extends the report with some item. In
this case, the programmer has not provided error handling as part
of the MakeReport function, and so an Error may be committed.

2.1 Higher-Order Recursion Schemes
As a first step in modelling this program, we introduce, informally,
higher-order recursion schemes. These are rewrite systems that
generate the computation tree of a functional program. A rewrite
rule takes the form

N ϕ x ↪→ t

where N is a typed non-terminal with (possibly higher-order) argu-
ments ϕ and x. A term N tϕ tx rewrites to t with tϕ substituted for
ϕ and tx substituted for x. Note that recursion schemes require t to
be of ground type. We will illustrate the behaviour of a recursion
scheme and its use in analysis using the toy example from above.

We can directly model our example with the scheme

main ↪→ M nil
M x ↪→ or (commit x) (A xM)
A y ϕ ↪→ or (ϕ error) (ϕ (cons y))

where M is the non-terminal associated with the MakeReport
function, and A is the non-terminal associated with the AddData
function; nil, or, commit, error and cons are terminal symbols
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of arity 0, 2, 1, 0 and 1 respectively (e.g. in the second rule, or
takes the two arguments (commit x) and (A x M)). The scheme
above begins with the non-terminal main and, through a sequence
of rewrite steps, generates a tree representation of the evolution of
the program. Figure 1, described below, shows such a sequence.

Beginning with the non-terminal main, we apply the first
rewrite rule to obtain the tree representing the term (A nil). We
then apply the second rewrite rule, instantiating x with nil to ob-
tain the next tree in the sequence. This continues ad infinitum to
produce a possibly infinite tree labelled only by terminals.

We are interested in ensuring the correctness of the program.
In our case, this means ensuring that the program never attempts
to commit an error. By inspecting the rightmost tree in Fig-
ure 1, we can identify a branch labelled or, or, or, commit, error.
This is an error situation because commit is being called with
an error report. In general we can define the regular language
Lerr = or∗commit or∗error. If the tree generated by the re-
cursion scheme contains a branch labelled by a word appearing in
Lerr , then we have identified an error in the program.

2.2 Collapsible Pushdown Automata

Previous research into the verification of recursion schemes has
used an approach based on intersection types (e.g. [24, 28]). In
this work we investigate a radically different approach exploiting
the connection between higher-order recursion schemes and an
automata model called collapsible pushdown automata (CPDA).
These two formalisms are, in fact, equivalent.

Theorem 2.1 (Equi-expressivity [16]). For each order-n recursion
scheme, there is an order-n collapsible pushdown automaton gen-
erating the same tree, and vice-versa. Furthermore, the translations
in both directions are linear.

We describe at a high level the structure of a CPDA and how
they can be used to evaluate recursion schemes. In our case, this
means outputting a sequence of non-terminals representing each
path in the tree. More formal definitions are given in Section 3.
At any moment, a CPDA is in a configuration ⟨p, w⟩, where p
is a control state taken from a finite set P , and w is a higher-
order collapsible stack. In the following we will focus on the stack.
Control states are only needed to ensure that sequences of stack
operations occur in the correct order and are thus elided for clarity.

In the case of our toy example, we have an order-2 recursion
scheme and hence an order-2 stack. An order-1 stack is a stack of
characters a from a finite alphabet Σ. An order-2 stack is a stack of
order-1 stacks. Thus we can write [[main]] to denote the order-
2 stack containing only the order-1 stack [main]; [main] is an
order-1 stack containing only the character main. In general Σ
will contain all subterms appearing in the original statement of our
toy example recursion scheme. The evolution of the CPDA stack is
given in Figure 2 and explained below.

The first step is to rewrite main using main ↪→ M nil. Since
(M nil) is a subterm of our recursion scheme, we have (M nil) ∈
Σ and we simply rewrite the stack [[main]] to [[M nil]].

The next step is to call the function M . As is typical in the
execution of programs, a function call necessitates a new stack
frame. In particular, this means pushing the body of M (that is
(or (commit x) (A x M))) onto the stack, resulting in the third
stack in Figure 2. Note that we do not instantiate the variable x,
hence we use only the subterms appearing in the recursion scheme.

Recall that we want to obtain a CPDA that outputs a sequence
of terminals representing each path in the tree. To evaluate the term
or (· · · ) (· · · ) we have to output the terminal or and then (non-
deterministically) choose a branch of the tree to follow. Let us
choose (A x M). Hence, the CPDA outputs the terminal or and
rewrites the top term to (A x M). Next we make a call to the A

function, pushing its body on to the stack, and then pick out the
(ϕ error) branch of the or terminal. This takes us to the beginning
of the second row of Figure 2.

To proceed, we have to evaluate (ϕ error). To be able to do this,
we have to know the value of ϕ. We can obtain this information by
inspecting the stack and seeing that the second argument of the call
of A is M . However, since we can only see the top of a stack,
we would have to remove the character (ϕ error) to be able to
determine that ϕ = M , thus losing our place in the computation.

This is where we use the power of order-2 stacks. An order-2
stack is able — via a push2 operation — to create a copy of its
topmost order-1 stack. Hence, we perform this copy (note that the
top of the stack is written on the left) and delve into the copy of the
stack to ascertain the value of ϕ. While doing this we also create a
collapse link, pictured as an arrow from M to the term (ϕ error).
This collapse link is a pointer from M to the context in which
M will be evaluated. In particular, if we need to know the value
of x in the body of M , we will need to know that M was called
with the error argument, within the term (ϕ error); the collapse
link provides a pointer to this information (in other words we have
encoded a closure in the stack). We can access this information via
a collapse operation. These are the two main features of a higher-
order collapsible stack, described formally in the next section.

To continue the execution, we push the body of M on to the
stack, output the or symbol and choose the (commit x) branch.
Since commit is a terminal, we output it and pick out x for
evaluation. To know the value of x, we have to look into the stack
and follow the collapse link from M to (ϕ error). Note that we do
not need to create a copy of the stack here because x is an order-
0 variable and thus represents a self-contained execution. Since
error is the value of the argument we are considering, we pick
it out and then output it before terminating. This completes the
execution corresponding to the error branch identified in Figure 1.

2.3 Collapsible Pushdown Systems

The CPDA output or, or, or, commit, error in the execution
above. This is an error sequence in Lerr and should be flagged.
In general, we take the finite automaton A representing the regular
language Lerr and form a product with the CPDA described above.
This results in a CPDA that does not output any symbols, but in-
stead keeps in its control state the progression of A. Thus we are
interested in whether the CPDA is able to reach an accepting state
of A, not the language it generates. We call a CPDA without output
symbols a collapsible pushdown system (CPDS), and the question
of whether a CPDS can reach a given state is the reachability prob-
lem. This is the subject of the remainder of the paper.

3. Preliminaries
3.1 Collapsible Pushdown Systems

We first introduce higher-order collapsible stacks and their opera-
tions, before giving the definition of collapsible pushdown systems.

3.1.1 Higher-Order Collapsible Stacks and Their Operations

Higher-order collapsible stacks are built from a stack alphabet Σ
and form a nested “stack-of-stacks” structure. Using an idea from
panic automata [21], each stack character contains a pointer —
called a “link” — to a position lower down in the stack. Operations
updating stacks (defined below) may create copies of sub-stacks.
The link is intuitively a pointer to the context in which the stack
character was first created. In the sequel, we fix the maximal order
to n, and use k to range between 1 and n. In the definition below,
we defer the meaning of collapse link to Definition 3.2.

Definition 3.1 (Order-n Collapsible Stacks). Given a finite set of
stack characters Σ, an order-0 stack is simply a character a ∈ Σ.



main ↪→ M

nil

↪→ or

commit A

nil nil M

↪→ · · · ↪→ or

commit or

nil or M

commit A cons

error nil M nil

↪→ · · ·

Figure 1: The behaviour of a toy recursion scheme.

[[main]] −→ [[A nil]] −→
[[

or (commit x) (A x M)
M nil

]]
or−→

[[
A x M
M nil

]]
−→

 or · · ·
A xM
M nil

 or−→

 ϕ error
A x M
M nil

 −→

 ϕ error
A x M
M nil

 ϕ error
A x M
M nil

 −→

[ M
M nil

] ϕ error
A x M
M nil

 −→

 or · · ·
M

M nil

 ϕ error
A x M
M nil

 or−→

 commit x
M

M nil

 ϕ error
A x M
M nil

 commit−−−−−→

 x
M

M nil

 ϕ error
A x M
M nil

 −→

 error
A x M
M nil

 error−−−→ •

Figure 2: A stack evaluating the toy example.

An order-n stack is a sequence w = [wℓ . . . w1]n such that each
wi is an order-(n − 1) stack and each character a on the stack
is augmented with a collapse link. The top-most stack is wℓ. Let
Stacksn denote the set of order-n stacks.

Collapse links point to positions in the stack. Before describing
them formally, we give an informal description and some basic def-
initions. An order-n stack can be represented naturally as an edge-
labelled word-graph over the alphabet {[n−1, . . . , [1, ]1, . . . , ]n−1}⊎
Σ, with additional collapse-links pointing from a stack character in
Σ to the beginning of the graph representing the target of the link.
For technical convenience we do not use [n or ]n symbols (these
appear uniquely at the beginning and end of the stack). An example
order-3 stack is given in Figure 3, with only a few collapse links
shown, ranging from order-3 to order-1 respectively.

Stacks are written with the top on the left. Given an order-n
stack [wℓ . . . w1]n, we define

topn+1([wℓ . . . w1]n) = [wℓ . . . w1]n
topn([wℓ . . . w1]n) = wℓ if ℓ > 0

topn([ ]n) = [ ]n−1 otherwise
topk([wℓ . . . w1]n) = topk(wℓ) if k < n and ℓ > 0

noting that topk(w) is undefined if topk′(w) is empty for any
k′ > k. We also remove the top portion of a topk stack using

botin([wℓ . . . w1]n) = [wi . . . w1]n

when i ≤ ℓ and ℓ > 0, and

botik([wℓ . . . w1]n) = [botik(wℓ)wℓ−1 . . . w1]n

when k < n and ℓ > 0. We are now ready to define collapse links.

Definition 3.2 (Collapse Links). An order-k collapse link is a pair
(k, i) where 1 ≤ k ≤ n and i > 0.

For top1(w) = a where a has the link (k, i), the destination
of the link is botik(w). We disallow collapse links where botik
does not lead to a valid stack. The example stack in Figure 3 is
thus [[[a(3,1)b]1]2[[c

(2,1)]1[d
(1,1)e]1]2]3, where collapse links are

denoted as superscripts. Often (as we have done for the stack
characters b and e) we will omit these superscripts for readability.

Finally the following notation appends a stack on top of another.
Given an order-k stack v = [vℓ . . . v1]k and an order-(k′−1) stack

u (with k′ ≤ k), we define u :k′ v = [u vℓ . . . v1]k if k′ = k and
u :k′ v = [(u :k′ vℓ) . . . v1]k if k′ < k.

The following operations apply to an order-n collapsible stack.

On = {pop1, . . . , popn} ∪ {push2, . . . , pushn} ∪
{collapse2, . . . , collapsen} ∪{
push2

a, . . . , push
n
a , rewa | a ∈ Σ

}
We define each stack operation for an order-n stack w. Collapse
links are created by pushk

a, which add a character to the top of a
given stack w with a link pointing to topk+1(popk(w)). This gives
a access to the context in which it was created. We set

1. popk(u :k v) = v,

2. pushk(u :k v) = u :k (u :k v),

3. collapsek(w) = botik(w) where top1(w) = a(k,i) for some i,

4. pushk
b (w) = b(k,ℓ−1) :1 w where topk+1(w) = [wℓ . . . w1]k,

5. rewb

(
a(k,i) :1 v

)
= b(k,i) :1 v.

Note that, for a pushk operation, links outside of u = topk(w)
point to the same destination in both copies of u, while links
pointing within u point within the respective copies of u. Since
collapse1 would always be equivalent to pop1, we neither create
nor follow order-1 links. (Often in examples we do not illustrate
links that are never used.) For a more detailed introduction see [10].

3.1.2 Collapsible Pushdown Systems

We are now ready to define collapsible pushdown systems.

Definition 3.3 (Collapsible Pushdown Systems). An order-n col-
lapsible pushdown system (n-CPDS) is a tuple C = (P,Σ,R)
where P is a finite set of control states, Σ is a finite stack alphabet,
and R ⊆ P × Σ×On × P is a set of rules.

A configuration of a CPDS is a pair ⟨p,w⟩ where p ∈ P and
w ∈ Stacksn. We denote by ⟨p, w⟩ −→ ⟨p′, w′⟩ a transition from
a rule (p, a, o, p′) with top1(w) = a and w′ = o(w). A run of a
CPDS is a finite sequence ⟨p0, w0⟩ −→ · · · −→ ⟨pℓ, wℓ⟩.



• • • • • • • • • • • • • • • •
[2 [1 a b ]1 ]2 [2 [1 c ]1 [1 d e ]1 ]2

Figure 3: A graph representation of a stack.

3.2 Representing Sets of Stacks

Our algorithm represents sets of configurations using order-n stack
automata. These are a kind of alternating automata with a nested
structure that mimics the nesting in a higher-order collapsible stack.
We recall the definition below.

Definition 3.4 (Order-n Stack Automata). An order-n stack au-
tomaton A = (Qn, . . . ,Q1,Σ,∆n, . . . ,∆1,Fn, . . . ,F1) is a tu-
ple where Σ is a finite stack alphabet, and

1. for all n ≥ k ≥ 2, we have Qk is a finite set of states, Fk ⊆ Qk

is a set of accepting states, and ∆k ⊆ Qk × Qk−1 × 2Qk is a
transition relation such that for all q and Q there is at most one
q′ with (q, q′, Q) ∈ ∆k, and

2. Q1 is a finite set of states, F1 ⊆ Q1 a set of accepting states,
and ∆1 ⊆

∪
2≤k≤n

(
Q1 × Σ× 2Qk × 2Q1

)
a transition rela-

tion.

The sets Qk are disjoint and their states recognise order-
k stacks. Stacks are read from “top to bottom”. A transition

(q, q′, Q) ∈ ∆k, written q
q′−→ Q, from q to Q for some k > 1

requires that the topk−1 stack is accepted from q′ ∈ Q(k−1) and
the rest of the stack is accepted from each state in Q. At order-1,
a transition (q, a,Qcol, Q) has the additional requirement that the
stack linked to by a is accepted from Qcol. A stack is accepted if a
subset of Fk is reached at the end of each order-k stack. We write
w ∈ Lq(A) to denote the set of all w accepted from q. Note that
a transition to the empty set is distinct from having no transition.
Figure 4 shows part of a run over the stack in Figure 3 where each
node in the graph is labelled by the states from which the remain-
der of the stack containing it (as well as the stacks linked to) must
be accepted. Note, e.g., that since Q2 appears at the bottom of an
order-2 stack, we must have Q2 ⊆ F2 for the run to be accepting.
The transitions used are q3

q2−→ Q3 ∈ ∆3, q2
q1−→ Q2 ∈ ∆2, and

q1
a−−−→

Qcol

Q1 ∈ ∆1. See Section 4 for further examples.

q3 q2 q1 Q1 · · · Q2 Q3 ∪Qcol · · ·
[2 [1 a b ]1 ]2 [2

Figure 4: Part of a run over an example stack.

3.2.1 Representing Transitions and States

We use a long-form notation (defined below) that captures nested
sequences of transitions. For example, we may write q3

a−−−→
Qcol

(Q1, Q2, Q3) to capture the transitions shown in Figure 4. To-
gether, these indicate that after starting from the beginning of the
stack and reading only the topmost stack character, the remainder
of the stack must be accepted by Qcol, Q1, Q2, and Q3. More gen-
erally, we may also use q3

q1−→ (Q2, Q3), and q3
q2−→ (Q3).

Formally, when q ∈ Qk, q′ ∈ Qk′ , Qi ⊆ Qi for all k ≥ i ≥ 1,
and there is some i with Qcol ⊆ Qi, we write

q
a−−−→

Qcol

(Q1, . . . , Qk) and q
q′−→ (Qk′+1, . . . , Qk) .

In the first case, there exist qk−1, . . . , q1 such that q
qk−1−−−→ Qk ∈

∆k, qk−1

qk−2−−−→ Qk−1 ∈ ∆k−1, . . . , q1
a−−−→

Qcol

Q1 ∈ ∆1. In

the second case there exist qk−1, . . . , qk′+1 with q
qk−1−−−→ Qk ∈

∆k, qk−1

qk−2−−−→ Qk−1 ∈ ∆k−1, . . . , qk′+2

qk′+1−−−−→ Qk′+2 ∈
∆k′+2 and qk′+1

q′−→ Qk′+1 ∈ ∆k′+1.

Remark 3.1. We may also write qQk,...,Qk′+1
for the q′ above

(which is uniquely determined by Qk, . . . , Qk′+1).

Note that our definitions mean that we have, e.g., q
a−−−→

Qcol

(Q1, Q2, Q3) if and only if we have qQ3,Q2

a−−−→
Qcol

Q1 in ∆1.

3.2.2 Representing Sets of Transitions

Let ∆S
k denote the set of all order-k long-form transitions q a−−−→

Qcol

(Q1, . . . , Qk) of order-k. For a set T = {t1, . . . , tℓ} ⊆ ∆S
k , we

say T is of the form

Q
a−−−→

Qcol

(Q1, . . . , Qk)

whenever Q = {q1, . . . , qℓ} and for all 1 ≤ i ≤ ℓ we have
ti = qi

a−−−→
Qi

col

(
Qi

1, . . . , Q
i
k

)
and Qcol =

∪
1≤i≤ℓ Q

i
col and for

all 1 ≤ k′ ≤ k, Qk′ =
∪

1≤i≤ℓ Q
i
k′ . Because a link can only be of

one order, we insist that Qcol ⊆ Qk′ for some 1 ≤ k′ ≤ n.

3.3 Representing Sets of Configurations
We define a notion of P-multi-automata [4] for representing sets of
configurations of collapsible pushdown systems.

Definition 3.5 (P-Multi Stack Automata). Given an order-n
CPDS with control states P , a P-multi stack automaton is an order-
n stack automaton A = (Qn, . . . ,Q1,Σ,∆n, . . . ,∆1,Fn, . . . ,F1)
such that for each p ∈ P there exists a state qp ∈ Qn.

A state is initial if it is of the form qp ∈ Qn for some control
state p or if it is a state qk ∈ Qk for k < n such that there exists
a transition qk+1

qk−→ Qk+1 in ∆k+1. The language of a P-multi
stack automaton A is the set L(A) =

{
⟨p,w⟩

∣∣ w ∈ Lqp(A)
}

.

3.4 Basic Saturation Algorithm

Our algorithm computes the set Pre∗C(A0) of a collapsible push-
down system C and a P-multi stack automaton A0. We assume
without loss of generality that initial states of A0 do not have in-
coming transitions and are not final. To accept empty stacks from
initial states, a bottom-of-stack symbol can be used.

Let Pre∗C(A0) be the smallest set with Pre∗C(A0) ⊇ L(A0),
and Pre∗C(A0) ⊇ {⟨p,w⟩ | ∃⟨p, w⟩ −→ ⟨p′, w′⟩ ∈ Pre∗C(A0)}.

We begin with A0 and iterate a saturation function Π — adding
new transitions to A0 — until a ‘fixed point’ is reached; that is, we
cannot find any more transitions to add.

Notation for Adding Transitions During saturation we designate
transitions qn

a−−−→
Qcol

(Q1, . . . , Qn) to be added to the automaton.

Recall this represents q
qn−1−−−→ Qn ∈ ∆n, qn−1

qn−2−−−→ Qn−1 ∈
∆n−1, . . . , q1

a−−−→
Qcol

Q1 ∈ ∆1. Hence, we first, for each n ≥ k >

1, add qk
qk−1−−−→ Qk to ∆k if it does not already exist. Then, we

add q1
a−−−→

Qcol

Q1 to ∆1.

Justified Transitions In this paper, we extend the saturation func-
tion to add justifications to new transitions that indicate the prove-
nance of each new transition. This permits counter example gen-



eration. To each t = q
a−−−→

Qcol

(Q1, . . . , Qn) we will define the

justification J(t) to be either 0 (indicating the transition is in A0),
a pair (r, i), a tuple (r, t′, i) or a tuple (r, t′, T, i) where r is a rule
of the CPDS, i is the number of iterations of the saturation function
required to introduce the transition, t′ is a long-form transition and
T is a set of such transitions. This information will be used in Sec-
tion 6 for generating counter examples. Note that we apply J to the
long-form notation. In reality, we associate each justification with
the unique order-1 transition q1

a−−−→
Qcol

Q1 associated to each t.

The Saturation Function We are now ready to recall the sat-
uration function Π for a given C = (P,Σ,R). As described
above, we apply this function to A0 until a fixed point is reached.
First set J(t) = 0 for all transitions of A0. The intuition be-
hind the saturation rules can be quickly understood via a rewrite
rule (p, a, rewb, p

′) which leads to the addition of a transition
qp

a−−−→
Qcol

(Q1, . . . , Qn) whenever there already existed a transi-

tion qp′
b−−−→

Qcol

(Q1, . . . , Qn). Because the rewrite can change the

control state from p to p′ and the top character from a to b, we must
have an accepting run from qp with a on top whenever we had an
accepting run from qp′ with b on top. We give examples and intu-
ition of the more complex steps in Section 4, which may be read
alongside the definition below.

Definition 3.6 (The Saturation Function Π). Given an order-n
stack automaton Ai we define Ai+1 = Π(Ai). The state-sets of
Ai+1 are defined implicitly by the transitions which are those in Ai

plus, for each r = (p, a, o, p′) ∈ R,

1. when o = popk, for each qp′
qk−→ (Qk+1, . . . , Qn) in Ai, add

t = qp
a−→
∅

(∅, . . . , ∅, {qk} , Qk+1, . . . , Qn) to Ai+1 and set

J(t) = (r, i+ 1) whenever t is not already in Ai+1,
2. when o = pushk, for each t = qp′

a−−−→
Qcol

(Q1, . . . , Qk, . . . , Qn)

and T of the form Qk
a−−−→

Q′
col

(Q′
1, . . . , Q

′
k) in Ai, add to Ai+1

the transition

t′ = qp
a−−−−−−−→

Qcol∪Q′
col

 Q1 ∪Q′
1, . . . , Qk−1 ∪Q′

k−1,
Q′

k,
Qk+1, . . . , Qn


and set J(t′) = (r, t, T, i+ 1) if t′ is not already in Ai+1,

3. when o = collapsek, when k = n, add t = qp
a−−−−→

{qp′}
(∅, . . . , ∅) if it does not exist, and when k < n, for each
transition qp′

qk−→ (Qk+1, . . . , Qn) in Ai, add to Ai+1 the
transition t = qp

a−−−→
{qk}

(∅, . . . , ∅, Qk+1, . . . , Qn) if t does not

already exist. In all cases, if t is added, set J(t) = (r, i+ 1),

4. when o = pushk
b for all transitions t = qp′

b−−−→
Qcol

(Q1, . . . , Qn)

and T = Q1
a−−−→

Q′
col

Q′
1 in Ai with Qcol ⊆ Qk, add to Ai+1

the transition

t′ = qp
a−−−→

Q′
col

(
Q′

1, Q2, . . . , Qk ∪Qcol, . . . , Qn

)
,

and set J(t′) = (r, t, T, i+ 1) if t′ is not already in Ai+1,

5. when o = rewb for each transition t = qp′
b−−−→

Qcol

(Q1, . . . , Qn)

in Ai, add to Ai+1 the transition t′ = qp
a−−−→

Qcol

(Q1, . . . , Qn),

setting J(t′) = (r, t, i) when t′ is not already in Ai+1.

From A0, we iterate Ai+1 = Π(Ai) until Ai+1 = Ai. Gen-
erally, we terminate in n-EXPTIME. When A0 satisfies a “non-
alternating” property (e.g. when we’re only interested in reaching a
designated control state), we can restrict Π to only add transitions
where Qn has at most one element, giving (n−1)-EXPTIME com-
plexity. In all cases saturation is linear in the size of Σ.

4. Examples of Saturation
As an example of saturation, consider a CPDS with the run

⟨p1, [b] [c] [d]⟩
push2

a−−−−→ ⟨p2, [ab] [c] [d]⟩
push2−−−−→

⟨p3, [ab] [ab] [c] [d]⟩
collapse2−−−−−−→ ⟨p4, [c] [d]⟩

pop2−−−→ ⟨p5, [d]⟩ .

Figure 5 shows the sequence of saturation steps, beginning with
an accepting run of ⟨p5, [d]⟩ and finishing with an accepting run of
⟨p1, [b] [c] [d]⟩. The individual steps are explained below.

Initial Automaton We begin at the top of Figure 5 with a stack
automaton containing the transitions qp5

q1−→ ∅ and q1
d−→
∅

∅, which

we write qp5
d−→
∅

(∅, ∅). This gives the pictured run over ⟨p5, [d]⟩.

Rule (p4, c, pop2, p5) When the saturation step considers such
a pop rule, it adds qp4

c−→
∅

(∅, {qp5}). We add such a transition

because we only require the top order-1 stack (removed by pop2)
to have the top character c (hence ∅ is the next order-1 label), and
after the pop2 the remaining stack needs to be accepted from qp5
(hence {qp5} is the next order-2 label). This new transition allows
us to construct the next run over ⟨p4, [c] [d]⟩ in Figure 5.

Rule (p3, a, collapse2, p4) Similarly to the pop rule above, the
saturation step adds the transition qp3

a−−−−→
{qp4}

(∅, ∅). The addition

of such a transition allows us to construct the pictured run over
⟨p3, [ab] [ab] [c] [d]⟩ (collapse links omitted), recalling that ∅ ∅−→ ∅,
∅ a−→

∅
∅ and ∅ b−→

∅
∅ transitions are always possible due to the empty

initial set. Note that the labelling of {qp4} in the run comes from
the collapse link on the topmost a character on the stack.

Rule (p2, a, push2, p3) Consider the run from qp3 in Figure 5.
The initial transition of the run accepting the first order-1 stack is
qp3

a−−−−→
{qp4}

(∅, ∅). We also have ∅ ∅−→ ∅ (trivially) accepting the

second order-1 stack. Any push2 predecessor of this stack must
have a top order-1 stack that could have appeared twice at the top of
the stack from qp3 . Thus, the saturation step makes the intersection
of the initial order-1 transitions of first two order-1 stacks. This
results in the transition qp2

a−−−−−−→
{qp4}∪∅

(∅ ∪ ∅, ∅), which is used to

form the shown run over ⟨p2, [ab] [c] [d]⟩ (collapse links omitted).

Rule
(
p1, b, push

2
a, p2

)
The run from qp2 in Figure 5 begins with

qp2
a−−−−→

{qp4}
(∅, ∅) and ∅ b−→

∅
∅. Note that the push2

a gives a stack

with ab on top. Moreover, the collapse link on a should point to the
order-1 stack just below the current top one. Since the transition
from qp2 requires that the linked-to stack is accepted from qp4 , we
need this requirement in the preceding stack (accepted from qp1
and without the a on top). Thus, we move the target of the collapse
link into the order-2 destination of the new transition. That is, the
saturation step for push2

a rules creates qp1
b−→
∅

(∅, ∅ ∪ {qp4}). This

can be used to construct an accepting run over ⟨p1, [b] [c] [d]⟩.



(1) qp5 q1 ∅ ∅
[1 d ]1

(2) qp4 q2 ∅ {qp5} q1 ∅ ∅
[1 c ]1 [1 d ]1

(3) qp3 q3 ∅ ∅ ∅ ∅ ∅ ∅ {qp4} q2 ∅ {qp5} q1 ∅ ∅
[1 a b ]1 [1 a b ]1 [1 c ]1 [1 d ]1

(4) qp2 q4 ∅ ∅ {qp4} q2 ∅ {qp5} q1 ∅ ∅
[1 a b ]1 [1 c ]1 [1 d ]1

(5) qp1 q5 ∅ {qp4} q2 ∅ {qp5} q1 ∅ ∅
[1 b ]1 [1 c ]1 [1 d ]1

Figure 5: A sequence of saturation steps.

5. Initial Forward Analysis
In this section we distinguish an error state perr and we are in-
terested only in whether C can reach a configuration of the form
⟨perr , w⟩ (hence our A0 is “non-alternating”). This suffices to cap-
ture the same safety (reachability) properties of recursion schemes
as TRecS. We fix a stack-automaton E recognising all error config-
urations (those with the state perr ). We write Post∗C for the set of
configurations reachable by C from the initial configuration. This
set cannot be represented precisely by a stack automaton [5] (for
instance using push2, we can create [[an]1[a

n]1]2 from [[an]1]2
for any n ≥ 0). We summarise our approach then give details in
Sections 5.1, 5.2 and 5.3.

It is generally completely impractical to compute Pre∗C(E)
in full (most non-trivial examples considered in our experiments
would time-out). For our saturation algorithm to be usable in prac-
tice, it is therefore essential that the search space is restricted, which
we achieve by means of an initial forward analysis of the CPDS.
Ideally we would compute only Pre∗C(E)∩Post∗C . Since this can-
not be represented by an automaton, we instead compute a suffi-
cient approximation T (ideally a strict subset of Pre∗C(E)) where:

Pre∗C(E) ∩ Post∗C ⊆ T ⊆ Pre∗C(E).

The initial configuration will belong to T iff it can reach a configu-
ration recognised by E . Computing such a T is much more feasible.

We first compute an over-approximation of Post∗C . For this we
use a summary algorithm [34] (that happens to be precise at order-
1) from which we extract an over-approximation of the set of CPDS
rules that may be used on a run to perr . Let C′ be the (smaller)
CPDS containing only these rules. That is, we remove all rules
that we know cannot appear on a run to perr . We could thus take
T = Pre∗C′(E) (computable by saturation for C′) since it satisfies
the conditions above. This is what we meant by ‘pruning’ the CPDS
(1a in the list on page 2)

However, we further improve performance by computing an
even smaller T (1b in the list on page 2). We extract contextual
information from our over-approximation of Post∗C about how
pops and collapses might be used during a run to perr . Our C′

is then restricted to a model C′′ that ‘guards’ its rules by these
contextual constraints. Taking T = Pre∗C′′(E) we have a T smaller
than Pre∗C′(E), but still satisfying our sufficient conditions. In fact,
C′′ will be a ‘guarded CPDS’ (defined in the next subsection). We
cannot compute Pre∗C′′(E) precisely for a guarded CPDS, but we
can adjust saturation to compute T such that Pre∗C′′(E) ⊆ T ⊆
Pre∗C′(E). This set will thus also satisfy our sufficient conditions.

5.1 Guarded Destruction

An order-n guarded CPDS (n-GCPDS) is an n-CPDS where con-
ventional popk and collapsek operations are replaced by guarded
operations of the form popSk and collapseSk where S ⊆ Σ. These
operations may only be fired if the resulting stack has a member of

S on top. That is, for o ∈ {collapsek, popk | 1 ≤ k ≤ n}:

oS(u) :=

{
o(u) if o(u) defined and top1(o(u)) ∈ S

undefined otherwise .

Note, we do not guard the other stack operations since these them-
selves guarantee the symbol on top of the new stack (e.g. when a
transition (p, a, push2, p

′) fires it must always result in a stack with
a on top, and (p, a, pushb

k, p
′) produces a stack with b on top).

Given a GCPDS C, we write Triv(C) for the ordinary CPDS that
is the trivialisation of C, obtained by replacing each popSk (resp.
collapseSk ) in the rules of C with popk (resp. collapsek).

We modify the saturation algorithm to use ‘guarded’ saturation
steps for pop and collapse rules. Other saturation steps are un-
changed. Non-trivial guards reduce the size of the stack-automaton
constructed by avoiding certain additions that are only relevant for
unreachable (and hence uninteresting) configurations in the pre-
image. This thus improves performance.

1. when o = popSk , for each qp′
qk−→ (Qk+1, . . . , Qn) in A such

that there is a transition of the form qk
b−→ ( , . . . , ) in A such

that b ∈ S, add qp
a−→
∅

(∅, . . . , ∅, {qk} , Qk+1, . . . , Qn) to A′,

3. when o = collapseSk , for each qp′
qk−→ (Qk+1, . . . , Qn) in A

such that there is a transition of the form qk
b−→ ( , . . . , ) in A

with b ∈ S, add qp
a−−−→

{qk}
(∅, . . . , ∅, Qk+1, . . . , Qn) to A′.

E.g., suppose that an ordinary (non-guarded) 2-CPDS has rules
(p1, c, collapse2, p) and (p2, d, collapse2, p

′). The original satu-
ration algorithm would process these rules to add the transitions:

qp1
c−−−→

{qp}
(∅, ∅) and qp2

d−−−−→
{qp′}

(∅, ∅)

Now suppose that the saturation algorithm has produced two
transitions of the form qp

a−→ ( , ) and qp′
b−→ ( , ). If a

GCPDS had, for example, the rules (p1, c, collapse
{a}
2 , p) and

(p2, d, collapse
{b}
2 , p′), then these same two transitions would be

added by the modified saturation algorithm. On the other hand,
the rules (p1, c, collapse

{a}
2 , p) and (p2, d, collapse

{a}
2 , p′) would

only result in the first of the two transitions being added.

Lemma 5.1. The revised saturation algorithm applied to E (for
a GCPDS C) gives a stack automaton recognising T such that
Pre∗C(E) ⊆ T ⊆ Pre∗Triv(C)(E)
Remark 5.1. The algorithm may result in a stack-automaton
recognising configurations that do not belong to Pre∗C(E) (al-
though still in Pre∗Triv(C)(E)). This is because a state qk having

a transition qk
b−→ ( , . . . , ) may also have another transition



qk
b′−→ ( , . . . , ) with b ̸= b′ (and so it might recognise a stack

from which a popk, say, guarded by b cannot be performed).

Remark 5.2. The above modification to the naive saturation algo-
rithm can also be easily incorporated into the efficient fixed point
algorithm described in Section 7.

5.2 Approximate Reachability Graphs
We now give an overview of the summary algorithm used to obtain
an over-approximation of Post∗C and thus compute the GCPDS
C′′ mentioned previously. We refer the reader to Appendix A for
details, including a formal account of the invariants on the graph
maintained by the algorithm. For simplicity, we assume that a stack
symbol uniquely determines the order of any link that it emits
(which is the case for a CPDS obtained from a HORS).

An approximate reachability graph for C is a structure (H,E)
describing an over-approximation of the reachable configurations
of C. The set of nodes of the graph H consists of heads of the
CPDS, where a head is a pair (p, a) ∈ P × Σ and describes con-
figurations of the form ⟨p, u⟩ where top1(u) = a. The set E con-
tains directed edges ((p, a), r, (p′, a′)) labelled by rules of C. Such
edges over-approximate the transitions that C might make using a
rule r from a configuration described by (p, a) to one described by
(p′, a′). For example, suppose that C is order-2 and has, amongst
others, the rules r1 := (p1, b, push2, p2), r2 := (p2, b, push

2
c , p3)

and r3 := (p3, c, pop1, p4) so that it can perform transitions:⟨
p1,

[[
b
a

]]⟩
r1−−→

⟨
p2,

[[
b
a

] [
b
a

]]⟩

r2−−→

⟨
p3,

 c
b
a

  b
a

⟩ r3−−→

⟨
p4,

 b
a

  b
a

⟩
where the first configuration mentioned here is reachable. We
should then have edges ((p1, b), r1, (p2, b)), ((p2, b), r2, (p3, c))
and ((p3, c), r3, (p4, b)) in E. We denote the configurations above
C1, C2, C3 and C4 respectively, with respective stacks s1, s2, s3, s4.

Such a graph can be computed using an approximate summary
algorithm, which builds up an object (H,E,B,U) consisting of an
approximate reachability graph together with two additional com-
ponents. B is a map assigning each head h in the graph a set B(h)
of stack descriptors, which are (n + 1)-tuples (hn, . . . , h1, hc) of
heads. In the following, we refer to hk as the order-k component
and hc the collapse component. Roughly speaking, hk describes
at which head the new topk-stack resulting from a popk operation
(applied to a configuration with head h) may have been created,
and hc does likewise for a collapse operation. (We will use ⊥ in
place of a head to indicate when popk or collapse is undefined.)

Consider C3 = ⟨p3, s3⟩ from the example above. This has
control-state p3 and top stack symbol c and so is associated with the
head (p3, c). Thus B((p3, c)) should contain the stack-descriptor
((p1, b), (p2, b), (p1, b)), which describes s3. The first (order-2)
component is because top2(s3) was created by a push2 operation
from a configuration with head (p1, b). The second (order-1) com-
ponent is because the top symbol was created via an order-1 push
from (p2, b). Finally, the order-2 link from the top of s3 points to a
stack occurring on top of a configuration at the head (p1, b), giving
rise to the final (collapse) component describing the collapse link.

Tracking this information allows the summary algorithm to pro-
cess the rule r3 to obtain a description of C4 from the description
of C3. Since this rule performs a pop1, it can look at the order-1
component of the stack descriptor to see the head (p2, b), telling us
that pop1 results in b being on top of the stack. Since the rule r3
moves into control-state p4, this tells us that the new head should
be (p4, b). It also tells us that certain pieces of information in

B((p2, b)) are relevant to the description of top2(s4) contained in
B((p4, b)). First remark that this situation only occurs for the popk
and collapsek operations. To keep track of these correlations, we
use the component U of the graph.

The component U is a set of approximate higher-order sum-
mary edges. A summary edge describes how information contained
in stack descriptors should be shared between heads. An order-
k summary edge from a head h to a head h′ is a triple of the
form (h, (h′

n, . . . , h
′
k+1) , h

′) where each h′
i is a head. Such a sum-

mary edge is added when processing either a popk or a collapsek
operation on an order-k link. Intuitively such a summary edge
means that if (hn, . . . , hk+1, hk, . . . , h1, hc) ∈ B(h), then we
should also have (h′

n, . . . , h
′
k+1, hk, . . . , h1, hc) ∈ B(h′). To con-

tinue our example, the r3 rule (which performs a pop1 operation)
from C3 to C4 means U should contain an order-1 summary edge
((p2, b), ((p1, b)) , (p4, b)). Since pop1 is an order-1 operation, we
have pop2(s3) = pop2(s4). Hence (p1, b) (the order-2 component
of the stack descriptor for s3) should also be the first component
of a stack descriptor for s4. However, since top1(s4) was created
at a configuration with head (p2, b), the order-1 and collapse com-
ponents of such a stack descriptor for s4 should be inherited from
a stack descriptor in B((p2, b)). In general if we go from a con-
figuration (p, s) with h to a configuration (p′, s′) with head h′

by the popk operation or collapsek on an order-k link, we have
that popk+1(s) = popk+1(s

′) and hence we have a summary edge
(h, (h′

n, . . . , h
′
k+1) , h

′)
The construction of the approximate reachability graph is de-

scribed in algorithms 7, 8, 9 and 10. The main work is done in
the function ProcessHeadWithDescriptor. In particular, this is
where summary edges are added for the popk and collapsek oper-
ations.

5.3 Extracting the Guarded CPDA

Let G = (H,E) be an approximate reachability graph for C.
Let Heads(E) be the set of heads of error configurations, i.e.
Heads(E) := {(perr , a) | a ∈ Σ}. We do a simple backwards
reachability computation on the finite graph G to compute the set
BackRules(G), which is defined to be the smallest set satisfying:

BackRules(G) =
{
e ∈ E

∣∣∣∣ e = (h, r, h′) ∈ E for some
h′ ∈ Heads(E)

}
∪

{
e ∈ E

∣∣∣∣ e = (h, r, h′) ∈ E for some
(h′, , ) ∈ BackRules(G)

}
The CPDS rules occurring in the triples in BackRules(G) can be
used to define a pruned CPDS C′ that reaches an error state if and
only if the original also does. However, the approximate reacha-
bility graph provides enough information to construct a guarded
CPDS C′′ whose guards are non-trivial. It should be clear that the
following set BackRulesG(G) of guarded rules can be computed:
(
p, a, o′, p′

)
∣∣∣∣∣∣∣∣∣∣∣∣∣

( , (p, a, o, p′) , ) ∈ BackRules(G) and

o′ =



oS if o is a pop or a collapse and S

=

{
b

∣∣∣∣∣ ((p, a), r, (p′, b))

∈ E

}
with r = (p, a, o, p′)

o if o is a rewrite or push


These rules define a GCPDS on which C-SHORe finally per-

forms saturation.

Lemma 5.2. The GCPDS C′′ defined using BackRulesG(G) sat-
isfies: Post∗C ∩ Pre∗C(E) ⊆ Pre∗C′′(E) ⊆ Pre∗C(E)



Algorithm 1 The Approximate Summary Algorithm

Require: An n-CPDS with rules R and heads P × Σ and initial
configuration ⟨p0, [· · · [a0]1 · · · ]n⟩

Ensure: The creation of a structure (H,E,B,U) where (H,E) is
an approximate reachability graph and U is a set of approximate
higher-order summary edges.
Set H := {(p0, a0)} and set E, B and U to be empty
Call AddStackDescriptor((p0, a0), (⊥, . . . ,⊥,⊥))
return Done, (H,E,B,U) will now be as required

Algorithm 2 AddStackDescriptor(h, (hn, . . . , h1, hc))

Require: A head h ∈ H and a stack descriptor (hn, . . . , h1, hc)
Ensure: (hn, . . . , h1, hc) ∈ B(h) and all additions to B(h′) for

all h′ ∈ H needed to respect summary edges are made.
if (hn, . . . , h1, hc) ∈ B(h) then

return Done (Nothing to do)
Add (hn, . . . , h1, hc) to B(h)
Call ProcessHeadWithDescriptor(h, (hn, . . . , h1, hc))
for h′ ∈ H such that (h, (h′

n, . . . , h
′
k+1) , h

′) ∈ U do
Call AddStackDescriptor(h′, (h′

n, . . . , h
′
k+1, hk, . . . , h1, hc))

return Done

Algorithm 3 ProcessHeadWithDescriptor(h, (hn, . . . , h1, hc))

Require: A head h := (p, a) ∈ H and a stack descriptor
(hn, . . . , h1, hc) ∈ B(h)

Ensure: All necessary modifications to the graph are made so that
it is consistent with (hn, . . . , h1, hc) ∈ B(h). In particular this
is the procedure that processes the CPDS rules from h (with
respect to a stack described by h and the stack descriptor).
for o and p′ such that r = (p, a, o, p′) ∈ R do

if o = rewb then
Add (p′, b) to H and ((p, a), r, (p′, b)) to E
Call AddStackDescriptor((p′, b), (hn, . . . , h1, hc))

else if o = pushk
b then

Add (p′, b) to H and ((p, a), r, (p′, b)) to E
Call AddStackDescriptor((p′, b), (hn, . . . , h2, (p, a), hk))

else if o = pushk then
Add (p′, a) to H and ((p, a), r, (p′, a)) to E
Call AddStackDescriptor((p′, a), (hn, . . . , hk+1, (p, a),

hk−1, . . . , h1, hc))
else if o = popk with hk = (pk, ak) where ak ̸= ⊥ then

Add (p′, ak) to H and ((p, a), r, (p′, ak)) to E
Call AddSummary((pk, ak), (hn, . . . , hk+1) , (p

′, ak))
else if o = collapsek, hc = (pc, ac) and ac ̸= ⊥ then

Add (pc, ac) to H and ((p, a), r, (p′, ac)) to E
Call AddSummary((pc, ac), (hn, . . . , hk+1) , (p

′, ac))
return Done

5.4 An Example

Figure 6 gives the approximate reachability graph G for a 2-CPDS
C with initial configuration (p1, [2[1 a ]1]2) (so the construc-
tion of the graph starts at (p1, a)). The set of stack descriptors
B(h) for each head h is written beneath h. Summary edges are
indicated by dashed arrows. Solid and dotted arrows represent
edges associated with the rules of C with the the dots indicat-
ing those rules that G guarantees not to reach the error state perr .
BackRules(G) will thus consist of all the push and rewrite rules
labelling solid arrows together with the following guarded rules:
(p4, c, pop

{c}
2 , p5), (p1, a, pop

{b}
1 , p4), (p3, c, pop

{b}
1 , p4),

(p4, c, collapse
{b}
2 , p5) and (p4, b, collapse

{b}
2 , p5) Note that b is

the only guard in the rule (p4, b, collapse
{b}
2 , p5) despite there be-

Algorithm 4 AddSummary(h, (h′
n, . . . , hk+1) , h

′)

Require: An approximate higher-order summary edge
(h, (h′

n, . . . , hk+1) , h
′)

Ensure: (h, (h′
n, . . . , h

′
k+1) , h

′) ∈ U and that all necessary stack
descriptors are added to the appropriate B(h′′) for h′′ ∈ H so
that all summary edges (including the new one) are respected.
if (h, (h′

n, . . . , h
′
k+1) , h

′) ∈ U then
return Done (Nothing to do)

Add (h, (h′
n, . . . , h

′
k+1) , h

′) to U
for (hn, . . . , hk+1, hk, . . . , h1, hc) ∈ B(h) do

AddStackDescriptor(h′, (h′
n, . . . , h

′
k+1, hk, . . . , h1, hc))

return Done

ing a (p4, b, collapse2, p5)-labelled edge to (p5, a) since this edge
cannot be used in a run of the CPDS leading to perr .

6. Counter Example Generation

In this section, we describe an algorithm that given a CPDS C
and a stack automaton A0 such that a configuration ⟨p,w⟩ of C
belongs Pre∗C(A0), constructs a sequence of rules of C which when
applied from ⟨p,w⟩ leads to a configuration in L(A0). In practice,
we use the algorithm with A0 accepting the set of all configurations
starting with some error state perr . The output is a counter-example
showing how the CPDS can reach this error state.

The algorithm itself is a natural one and the full details are given
in the appendix. We describe it informally here by means of the
example in Figure 5, described in Section 4.

To construct a trace from ⟨p1, [b] [c] [d]⟩ to ⟨p5, [d]⟩ we first note
that, when adding the initial transition of the pictured run from qp1 ,
the saturation step marked that the transition was added due to the
rule

(
p1, b, push

2
a, p2

)
. If we apply this rule to ⟨p1, [b] [c] [d]⟩ we

obtain ⟨p2, [ab] [c] [d]⟩ (collapse links omitted). Furthermore, the
justifications added during the saturation step tell us which transi-
tions to use to construct the pictured run from qp2 . Hence, we have
completed the first step of counter example extraction and moved
one step closer to the target configuration. To continue, we con-
sider the initial transition of the run from qp2 . Again, the justifica-
tions added during saturation tell us which CPDS rule to apply and
which stack automaton transitions to use to build an accepting run
of the next configuration. Thus, we follow the justifications back to
a run of A0, constructing a complete trace on the way.

The main technical difficulty lies in proving that the reasoning
outlined above leads to a terminating algorithm. For example, we
need to prove that following the justifications does not result us
following a loop indefinitely. Since the stack may shrink and grow
during a run, this is a non-trivial property. To prove it, we require a
subtle relation on runs over higher-order collapsible stacks.

6.1 A Well-Founded Relation on Stack Automaton Runs

We aim to define a well-founded relation over runs of the stack
automaton A constructed by saturation from C and A0. To do
this we represent a run over a stack as another stack of (sets of)
transitions of A. This can be obtained by replacing each instance
of a stack character with the set of order-1 transitions that read it.
This is formally defined in Appendix B.1 and described by example
here. Consider the run over [[b] [c] [d]] from qp1 in Figure 5. We
can represent this run as the stack [[{t1}] [{t2}] [{t3}]] where t1 =

q5
b−→
∅

∅, t2 = q2
c−→
∅

∅ and t3 = q1
d−→
∅

∅. Note that since q5

uniquely labels the order-2 transition qp1
q5−→ {qp4} (and similarly

for the transitions from qp4 and qp5 ) we do not need to explicitly
store these transitions in our stack representation of runs.



..
(p1, a)
(⊥,⊥,⊥)

((p1, b), (p2, b), (p1, b))

((p1, a),⊥,⊥)

((p1, a), (p2, b), (p1, b))

.

(p1, b)
(⊥, (p1, a),⊥)

((p1, b), (p1, a), (p1, b))

((p1, a), (p1, a), (p1, a))

.
(p2, b)

((p1, b), (p1, a),⊥)

((p1, b), (p1, a), (p1, b))

((p1, b), (p1, a), (p1, a))

.
(p3, c)

((p1, b), (p2, b), (p1, b))

..

(p4, c)
((p3, c), (p2, b), (p1, b))

..

(p5, b)
(⊥, (p1, a),⊥)

((p1, b), (p1, a), (p1, b))

((p1, a), (p1, a), (p1, a))

.

(p5, c)
((p1, b), (p2, b), (p1, b))

.

(perr , b)
((⊥, (p1, a),⊥))

((p1, b), (p1, a), (p1, b))

((p1, a), (p1, a), (p1, a))

.

(p4, b)
((p1, b), (p1, a),⊥), ((p1, a), (p1, a),⊥)

((p1, b), (p1, a), (p1, b)), ((p1, a), (p1, a), (p1, b))

((p1, b), (p1, a), (p1, a)), ((p1, a), (p1, a), (p1, a))

. (p5, a)
(⊥,⊥,⊥), ((p1, a),⊥,⊥)

((p1, a),⊥,⊥), ((p1, b),⊥,⊥)

((p1, a), (p2, b), (p1, b)), ((p1, b), (p2, b), (p1, b))

((p1, a),⊥,⊥), ((p1, b),⊥,⊥)

((p1, a), (p2, b), (p1, b)), ((p1, b), (p2, b), (p1, b))

.
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Figure 6: An Approximate Reachability Graph

Using this representation, we can define by induction a relation
↪→k on the order-k runs of A. Note that this is not an order relation
as it is not always transitive. There are several cases to ↪→k.

1. For k = 1, we say w′ ↪→1 w if for some i ≥ 0, w contains
strictly fewer transitions in ∆1 justified at step i than w′ and that
for all j > i they both contain the same number of transitions
in ∆1 justified at step j.

2. For k > 1, we say u = [uℓ . . . u1]k ↪→k v = [vℓ′ . . . v1]k if

(a) ℓ′ < ℓ and ui = vi for i ∈ [1, ℓ′ − 1] and either uℓ′ = vℓ′
or uℓ′ ↪→k−1 vℓ′ , or

(b) ℓ′ ≥ ℓ and ui = vi for i ∈ [1, ℓ − 1] and uℓ ↪→k−1 vi for
all i ∈ [ℓ, ℓ′].

Lemma 6.1. For all k ∈ [1, n], the relation ↪→k is well-founded.
Namely there is no infinite sequence w0 ↪→k w1 ↪→k w2 ↪→k · · · .

It is possible to show that by following the justifications, from
stack w to a w′, we always have w ↪→n w′. Since this relation is
well-founded, the witness generation algorithm always terminates.

7. Efficient Fixed Point Computation
We introduce an efficient method of computing the fixed point in
Section 3, inspired by Schwoon et al.’s algorithm for alternating
(order-1) pushdown systems [36]. Rather than checking all CPDS
rules at each iteration, we fully process all consequences of each
new transition at once. New transitions are kept in a set ∆new

(implemented as a stack), processed, then moved to a set ∆done,
which forms the transition relation of the final stack automaton.
We assume w.l.o.g. that a character’s link order is determined by
the character. This is true of all CPDSs obtained from HORSs.

In most cases, new transitions only depend on a single existing
transition, hence processing the consequences of a new transition
is straightforward. The key difficulty is the push rules, which de-
pend on sets of existing transitions. Given a rule (p, a, pushk, p

′),
processing t = qp′

a−−−→
Qcol

(Q1, . . . , Qk, . . . , Qn) ‘once and once

only’ must somehow include adding a new transition whenever
there is a set of transitions of the form Qk

a−−−→
Q′

col

(Q′
1, . . . , Q

′
k)

in Ai either now or in the future. When t is processed, we there-
fore create a trip-wire, consisting of a source and target. A target
collects transitions from a given set of states (such as Qk above),
whilst a source describes how such a collection could be used to
form a new transition according to a push saturation step.

Definition 7.1. An order-k source for k ≥ 1 is defined as a tuple
(qk, qk−1, a,Qk) in Qk × Q⊥

k−1 × Σ × 2Qk where Q⊥
0 := {⊥}

and Q⊥
i = Qi ∪ {⊥} for i ≥ 1. An order-k target is a tuple

(Qk, Q
C
k , Qlbl , Q

′
k) ∈ 2Qk × 2Qk × 2Qk−1 × 2Qk

if k ≥ 2, and if k = 1

(Q1, Q
C
1 , a,Qcol, Q

′
1) ∈

n∪
k′=2

(
2Q1 × 2Q1 × Σ× 2Qk′ × 2Q1

)
.



The set QC
k is a countdown containing states in Qk still awaiting

a transition. We always have QC
k ⊆ Qk and

(
Qk \QC

k

) Qlbl−−→
Q′

k. Likewise, an order-1 target (Q1, Q
C
1 , a,Qcol, Q1) will satisfy

(Q1 \QC
1 )

a−−−→
Qcol

Q′
1. A target is complete if QC

k = ∅ or QC
1 = ∅.

A trip-wire of order-k is an order-k source-target pair of the
form (( , , , Qk), (Qk, , , )) when k ≥ 2 or
(( , , a,Qk), (Qk, , a, , )) when k = 1. When the target in a
trip-wire is complete, the action specified by its source is triggered,
which we now sketch.

An order-k source for k ≥ 2 describes how an order-(k − 1)
source should be created from a complete target, propagating the
computation to the level below, and an order-1 source describes
how a new long-form transition should be created from a complete
target. That is, when we have (qk, , a,Qk) (we hide the second
component for simplicity of description) and (Qk, ∅, Qlbl , Q

′
k) this

means we’ve found a set of transitions witnessing Qk
Qlbl−−→ Q′

k

and should now look for transitions from Qlbl . Hence the algorithm
creates a new source and target for the order-(k− 1) state-set Qlbl .
When this process reaches order-1, a new transition is created. This
results in the construction of the t′ from a push saturation step.

Algorithm 5 gives the main loop and introduces the global sets
∆done and ∆new, and two arrays Usrc[k] and Utarg[k] containing
sources and targets for each order. Omitted are loops processing
popn and collapsen rules like the naive algorithm. Algorithm 6
gives the main steps processing a new transition. We present only
two CPDS rule cases here. In most cases a new transition is cre-
ated, however, for push rules we create a trip-wire. Remaining al-
gorithms, definitions, justification handling, and proofs are given in
Appendix C. We describe some informally below.

In create trip wire we create a trip-wire with a new target
(Qk, Qk, ∅, ∅). This is added using an add target procedure which
also checks ∆done to create further targets. E.g., a new target(
Qk, Q

C
k , Qlbl , Q

′
k

)
combines with an existing qk

qk−1−−−→ Q′′
k to

create a new target
(
Q,QC

k \ {qk} , Qlbl ∪ {qk−1} , Q′
k ∪Q′′

k

)
.

(This step corrects a bug in the algorithm of Schwoon et al.) Simi-
larly update trip wires updates existing targets by new transitions.
In all cases, when a source and matching complete target are cre-
ated, we perform the propagations described above.

Proposition 7.1. Given a CPDS C and stack automaton A0, let A
be the result of Algorithm 5. We have L(A) = Pre∗C(A0).

8. Experimental Results
We compared C-SHORe with the current state-of-the-art verifica-
tion tools for higher-order recursion schemes (HORS): TRecS [23],
GTRecS2 [26] (the successor of [25]), and TravMC [28]. Bench-
marks are from the TRecS and TravMC benchmark suites, plus
several larger examples provided by Kobayashi. The majority of
the TravMC benchmarks were translated into HORS from an ex-
tended formalism, HORS with Case statements (HORSC), using a
script by Kobayashi. For fairness, all tools in our experiments took
a pure HORS as input. However, the authors of TravMC report that
TravMC performs faster on the original HORSC examples than on
their HORS translations.

In all cases, the benchmarks consist of a HORS (generating
a computation tree) and a property automaton. In the case of C-
SHORe, the property automaton is a regular automaton describing
branches of the generated tree that are considered errors. Thus, fol-
lowing the intuition in Section 2, we can construct a reachability
query over a CPDS, where the reachability of a control state perr
indicates an erroneous branch (see [10] for more details). All other
tools check co-reachability properties of HORS and thus the prop-
erty automaton describes only valid branches of the computation

tree. In all cases, it was straightforward to translate between the
co-reachability and reachability properties.

The experiments were run on a Dell Latitude e6320 laptop with
4Gb of RAM and four 2.7GHz Intel i7-2620M cores. We ran C-
SHORe on OpenJDK 7.0 with IcedTea7 replacing binary plugs,
using the argument “-Xmx” to limit RAM usage to 2.5Gb. As ad-
vised by the TravMC developers, we ran TravMC on the Mono JIT
Compiler version 3.0.3 with no command line arguments. Finally
TRecS (version 1.34) and GTRecS2 (version 3.17) were compiled
with the OCaml version 4.00.1 compilers. On negative examples,
GTRecS2 was run with its -neg argument. We used the “ulimit”
command to limit memory usage to 2.5Gb and set a CPU timeout
of 600 seconds (per benchmark). The given runtimes were reported
by the respective tools and are the means of three separate runs
on each example. Note that C-SHORe was run until the automaton
was completely saturated.

Table 1 shows trials where at least one tool took over 1s. This
is because virtual machine “warm-up” and HORS to CPDS con-
version can skew the results on small benchmarks. Full results
are in Appendix D. Examples violating their property are marked
“(bug)”. The order (Ord) and size (Sz) of the schemes were re-
ported by TRecS. We show reported times in seconds for TRecS
(T), GTRecS2 (G), TravMC (TMC) and C-SHORe (C) where “—
” means analysis failed. For C-SHORe, we report the times for
HORS to CPDS translation (Ctran), CPDS analysis (Ccpds), and
building the approximation graph (Capprox). Capprox is part of
Ccpds, and the full time (C) is the sum of Ctran and Ccpds.

Of 26 benchmarks, C-SHORe performed best on 5 examples. In
6 cases, C-SHORe was the slowest. In particular, C-SHORe does
not perform well on exp4-1 and exp4-5. These belong to a class
of benchmarks that stress higher-order model-checkers and indi-
cate that our tool currently does not always scale well. However,
C-SHORe seems to show a more promising capacity to scale on
larger HORS produced by tools such as MoCHi [27], which are
particularly pertinent in that they are generated by an actual soft-
ware verification tool. We also note that C-SHORe timed out on the
fewest examples despite not always terminating in the fastest time.

It is also very important to note that C-SHORe and GTRecS2
are the only implemented fixed-parameter tractable algorithms
in the literature for HORS model-checking of which we are
aware (both TRecS and TravMC have worst-case run-times non-
elementary in the size of the recursion scheme). Moreover, C-
SHORe generally performs much better than GTRecS2. Thus not
only does C-SHORe’s performance seem promising when com-
pared to the competition, there is also theoretical reason to suggest
that the approach could in principle be scalable, in contrast to some
of the alternatives. Thus initial work justifies further investigation
into saturation based algorithms for higher-order model-checking.

Finally, we remark that without the forwards analysis described
in Section 5, all shown examples except filepath timed out. We
also note that we did not implement a naive version of the saturation
algorithm, where after each change to the stack automaton, each
rule of the CPDS is checked for further updates. However, experi-
ence implementing PDSolver [15] (for order-1 pushdown systems)
indicates that the naive approach is at least an order of magnitude
slower than the techniques [36] we generalised in Section 7.

9. Related Work
The saturation technique has proved popular in the literature. It was
introduced by Bouajjani et al. [4] and Finkel et al. [13] and based
on a string rewriting algorithm by Benois [3]. It has since been ex-
tended to Büchi games [8], parity and µ-calculus conditions [15],
and concurrent systems [1, 37], as well as weighted pushdown sys-
tems [31]. In addition to various implementations, efficient versions
of these algorithms have also been developed [12, 36].



Algorithm 5 Computing Pre∗C(A0)

Let ∆done = ∅, ∆new =
∪

n≥k≥1 ∆k,
Usrc[k] = ∅, Utarg[k] = {(∅, ∅, ∅, ∅)}
for each n ≥ k > 1 and Utarg[1] =
{(∅, ∅, a, ∅, ∅) | a ∈ Σ}.
. . .
while ∃t ∈ ∆new do

update rules(t); update trip wires(t); move
t from ∆new to ∆done

Algorithm 6 update rules(t)

if t is an order-k transition for 2 ≤ k ≤ n of the form qp′Qn···Qk+1
−−→ Qk then

for p ∈ P and a ∈ Σ such that r := (p, a, popk, p
′) ∈ R do

add to worklist
(
qp

a−−−→
Qcol

(∅, . . . , ∅,
{
qp′Qn···Qk+1

}
,Qk+1, . . . ,Qn), r

)
for p ∈ P and a ∈ Σ such that r := (p, a, pushk, p

′) ∈ R do
create trip wire

(
qp,Qn,...,Qk+1 , qp′,Qn,...,Qk+1,Qk

, a,Qk, (r, t)
)

· · ·

Benchmark file Ord Sz T TMC G C Ctran Ccpds Capprox 3/ 7

order5 5 52 0.007 0.039 — 0.415 0.057 0.358 0.205
order5-2 5 40 0.022 0.084 — 0.305 0.050 0.255 0.157
order5-variant 5 55 0.019 0.039 1.519 0.427 0.057 0.370 0.177
filepath 2 5956 210.102 — — 0.397 0.168 0.229 0.221 3
filter-nonzero (bug) 5 484 0.006 0.115 0.182 1.443 0.100 1.344 1.006 7
filter-nonzero-1 5 890 0.176 211.907 — 4.492 0.159 4.332 3.484
map-head-filter-1 3 880 0.141 1.343 — 0.400 0.119 0.281 0.273
map-plusone-1 5 459 0.030 0.736 — 1.247 0.119 1.128 0.908
map-plusone-2 5 704 1.358 13.962 — 2.634 0.142 2.491 2.183
exp4-1 4 31 — 0.047 0.114 — 0.039 — 0.240 7
exp4-5 4 55 — — 0.818 — 0.046 — 2.128 7
cfa-life2 14 7648 — — — — 0.479 — —
cfa-matrix-1 8 2944 16.937 — — 19.230 0.332 18.898 18.892
cfa-psdes 7 1819 17.654 — — 1.920 0.273 1.647 1.640 3
dna 2 411 0.031 0.263 0.046 6.918 0.175 6.743 6.206 7
fibstring 4 29 — 74.569 0.114 — 0.042 — 0.256 7
fold fun list 7 1346 0.519 — — 1.356 0.202 1.154 1.147
fold right 5 1310 31.624 — — 1.255 0.191 1.064 1.043 3
jwig-cal main 2 7627 0.062 0.052 0.161 3.802 3.739 0.063 0.057 7
l 3 35 — 15.743 0.010 0.248 0.042 0.206 0.199
search-e-church (bug) 6 837 0.012 0.258 — 4.741 0.155 4.586 1.760
specialize cps coerce1-c 3 2731 — — — 1.131 0.293 0.838 0.830 3
tak (bug) 8 451 — 3.945 — 41.772 0.136 41.636 34.855
xhtmlf-div-2 (bug) 2 3003 0.234 — 39.961 2.743 2.303 0.440 0.422
xhtmlf-m-church 2 3027 0.238 — 8.420 2.708 2.319 0.389 0.382
zip 4 2952 22.251 — — 3.356 0.295 3.061 1.609 3

Table 1: Comparison of model-checking tools. Shown in bold are the two fixed-parameter tractable algorithms, GTRecS2 and C-SHORe.

The saturation algorithm for CPDS that we introduced in [7],
extending and improving [14] (and [5]), follows a number of papers
solving parity games on the configuration graphs of higher-order
automata [6, 9, 11, 16]. While only handling reachability, saturation
lends itself well to implementation. This paper describes such a
practical incarnation and a number of significant optimisations,
such as using a forwards analysis to guide the backward search.

This latter point is an important way in which C-SHORe differs
from previous model-checkers for HORS, which employ intersec-
tion types and propagate information purely in a forward direction.
This is related to the fact that the latter accept ‘co-reachability prop-
erties’ (represented by trivial Büchi automata) as input, expressing
the complement of properties taken by C-SHORe.

Indeed it would be interesting to investigate in more detail how
approximate forward and backward analyses of varying degrees of
accuracy could be combined for efficiency. It would also be helpful
to more closely analyse the relationship between CPDS and type-
based algorithms allowing a transfer of ideas. In any case, this paper
shows that saturation-based algorithms for HORS/CPDS perform
sufficiently well in practice to warrant further study.

To finish, we briefly mention several approaches to analysing
higher-order programs with differing aims to ours. In static anal-

ysis, k-CFA [35] and CFA2 [39] perform an over-approximative
analysis of higher-order languages with at-most first-order granu-
larity. Similarly Jhala et al. use refinement types to analyse OCaml
programs by reducing the problem to first-order model-checking,
which is thus incomplete [19]. Finally, Hopkins et al. have pro-
duced tools for equivalence checking fragments of ML and Ideal-
ized Algol up to order-3 [17, 18].

10. Conclusion

We have considered the problem of verifying safety properties of
a model that can be used to precisely capture control-flow in the
presence of higher-order recursion. Whilst previous approaches
to such an analysis are based on higher-order recursion schemes
and intersection types, our approach is based on automata and
saturation techniques previously only applied in practice to the
first-order case. At a more conceptual level, our algorithm works
by propagating information backwards from error states towards
the initial state. Moreover, it combines this with an approximate
forward analysis to gather information that guides the backward
search. In contrast, the preceding type-based algorithms all work
by propagating information purely in a forward direction.



Our preliminary work brings new techniques to the table for
tackling a problem, which in contrast to its first-order counterpart,
has proven difficult to solve in a scalable manner. Our algorithm
has the advantage that it accurately models higher-order recursion
whilst also being fixed-parameter tractable, therefore giving a the-
oretical reason for hope that it could scale. In contrast TRecS and
TravMC have worst-case run-times non-elementary in the size of
the recursion scheme. Our tool also seems to work significantly bet-
ter in practice than GTRecS2, the only other HORS model-checker
in the literature that does enjoy fixed-parameter tractability.

We therefore believe that a C-SHORe-like approach shows
much promise and warrants further investigation.
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A. Initial Forward Analysis

A.1 The variant of the saturation algorithm for guarded CPDS

Let C be a guarded CPDS.

Lemma 5.1 If the revised saturation algorithm is applied to a stack automaton E , then it will output a stack
automaton recognising a set T such that:

Pre∗C(E) ⊆ T ⊆ Pre∗Triv(C)(E)

Proof. We can see that T ⊆ Pre∗Triv(C)(E) since every time we can add a transition during the modified saturation
algorithm we could have added the corresponding guard-free rule in the original, and the original is already known
to be sound.

Checking that Pre∗C(E) ⊆ T is an easy modification of the completeness proof for the original algorithm in
[7]. This works by induction on the length of a path from a configuration in Pre∗E(C) to one in E . Suppose we have a
stack-automaton A recognising a configuration (p′, u′) together with a rule (p, a, oS , p′) of C where o is either a pop
or a collapse operation. Suppose that (p, u) can reach (p′, u′) in a single step via this rule. By definition it must then
be the case that top1(u′) = b for some b ∈ S (and also that u′ = o(u)). But then the run recognising (p′, u′) must
begin with a transition of the form qp′

b−−−→
Qcol

(Q1, . . . , Qn). Thus in particular qp′,Qn,...,Qk+1

b−−−→
Qcol

(Q1, . . . , Qk) is

the first long-form order-k transition in this run. But then taking qk := qp′,Qn,...,Qk+1
we can see that applying the

step for the operation oS in the revised saturation algorithm will create a stack-automaton recognising u.

The reason that the algorithm may result in a stack-automaton recognising configurations that do not belong to
Pre∗C(E) (albeit still in Pre∗Triv(C)(E)) is that a stack-automaton state qk emitting a transition qk

b−→ ( , . . . , ) may

also emit another transition qk
b′−→ ( , . . . , ) with b ̸= b′. We could obtain a precise algorithm by taking level-n

stack-automaton states of the form P × Σ so that they represent the top stack-character of a configuration as well
as its control-state. However, since Σ is usually large compared to P and since the worst-case size of the stack-
automaton is n-exponential in the number of level-n states this would potentially come at a large practical cost and
in any case destroy fixed-parameter tractability. We leave it for future work to investigate how this potential for
accuracy could be balanced with the inevitable cost.

A.2 The Approximate Reachability Graph and Approximate Summary Algorithm

Let us fix an ordinary n-CPDS with rules R and initial configuration c0 := (p0, [· · · [a0] · · · ]). A head is an element
(p, a) ∈ P ×Σ and should be viewed as describing stacks u such that there is a reachable configuration of the form
(p, u) where top1(u) = a. Formally we define:

J(p, a)K := {u ∈ Stacksn | top1(u) = a and (p, u) ∈ Post∗C }

A stack descriptor is an (n + 1)-tuple (hn, . . . , h1, hc) where for each 1 ≤ i ≤ n, each of hi and hc is either
a head or ⊥. We write SDesc := (P × Σ)⊥

n+1 for the set of stack descriptors and it will also be useful to have
SDesck := (P × Σ)⊥

n−k for the set of order-k stack-descriptor prefixes. Note that SDescn = {()}—i.e. consists
only of the empty tuple. Assuming a map B : (P × Σ) → SDesc a stack descriptor describes a set of stacks



J(hn, . . . , h1, hc)K :=

u ∈ Stacksn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

popk(u) is undefined if hk = ⊥ otherwise
top1(popk(u)) = bk where hk = ( , bk) and
popk(u) ∈ J(hn, . . . , hk+1, h

′
k, . . . , h

′
1, h

′
c)K

for some ( , . . . , , h′k, . . . , h
′
1, h

′
c) ∈ B(hk),

for every 1 ≤ k ≤ n,
and top1(u) emits no link if hc = ⊥ otherwise
top1(collapsek(u)) = bc where hc = ( , bc) and
collapsek(u) ∈ J(hn, . . . , hk+1, h

′
k, . . . , h

′
1, h

′
c)K

for some ( , . . . , , h′k, . . . , h
′
1, h

′
c) ∈ B(hc),

for every 1 ≤ k ≤ n


We now define an approximate reachability graph. In the main body of the paper we defined this to be a pair

(H,E), and then later consider an extended structure (H,E,B,U). This is because H and E contain all of the
information used to extract the GCPDS. However, for the soundness proof we will express an invariant in terms of
the ‘semantics’ of an approximate reachability graph, and it is helpful to have B as part of this semantics. We thus
add the B component to the approximate reachability graph for the purposes of the appendix (so it is now a triple
(H,E,B).

Definition A.1. An approximate reachability graph for the CPDS C is a triple (H,E,B) such that (i) H ⊆ P ×Σ
is a set of heads such that (p, u) ∈ Post∗C implies that (p, top1(u)) ∈ H , (ii) E ⊆ H × R × H is a
set of triples such that if (p, u) ∈ Post∗C and r = (p, top1(u), o, p

′) ∈ R for which o(u) is defined, then
((p, top1(u)), r, (p

′, top1(o(u)))) ∈ E, (iii) B is a map B : H → SDesc such that for every h ∈ H we haveJhK ⊆ {JdK | d ∈ B(h)}.

Let G = (H,E,B) be an approximate reachability graph for C. Let Heads(E) be the set of heads of error
configurations, i.e. Heads(E) := {(perr , a) | a ∈ Σ}. We do a simple backwards reachability computation on the
finite graph G to compute BackRules(G), defined to be the smallest set satisfying:

BackRules(G) =
{
e ∈ E

∣∣ e = (h, r, h′) ∈ E for some h′ ∈ Heads(E)
}

∪
{
e ∈ E

∣∣ e = (h, r, h′) ∈ E for some (h′, , ) ∈ BackRules(G)
}

The CPDS rules occurring in the triples in BackRules(G) can be used to define a pruned CPDS that is safe if and
only if the original also is. However, the approximate reachability graph provides enough information to construct
a guarded CPDS whose guards are non-trivial. It should be clear that the following set BackRulesG(G) of guarded
rules can be computed:

(
p, a, o′, p′

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

( , (p, a, o, p′) , ) ∈ BackRules(G) and

o′ =



oS if o is a pop or a collapse and S is{
b ∈ Σ

∣∣∣∣∣ ((p, a), r, (p′, b))

∈ E

}
with r = (p, a, o, p′)

o if o is a rewrite or push


These rules define a GCPDS on which C-SHORe finally performs saturation.

Lemma A.1. The GCPDS C′ defined using the rules BackRulesG(G) satisfies:

Post∗C ∩ Pre∗C(E) ⊆ Pre∗C′(E) ⊆ Pre∗C(E)



Algorithm 7 The Approximate Summary Algorithm

Require: An n-CPDS with rules R and heads P × Σ and initial configuration
(p0, [· · · [a0] · · · ])

Ensure: The creation of a structure (H,E,B,U) where (H,E,B) is an approxi-
mate reachability graph and U is a set of approximate higher-order summary edges.

Set H := {(p0, a0)} and set E, B and U to be empty
Call AddStackDescriptor((p0, a0), (⊥, . . . ,⊥,⊥))
return Done, (H,E,B,U) will now be as required

Proof. Pre∗C′(E) ⊆ Pre∗C(E) is trivial since the rules of Triv(C′) are a subset of the rules for C.
Now suppose that (p1, u1) ∈ Post∗C ∩ Pre∗C(E). By (i) in the definition of approximate reachability graph it

must be the case that (p1, top1(u1)) ∈ H (since (p1, u1) ∈ Post∗C).
Since (p, u) ∈ Pre∗C(E) we must also have a finite sequence of C-rules ri = (pi, ai, oi, pi+1) for 1 ≤ i < m,

and a finite sequence of configurations such that (pi+1, ui+1) = (pi, oi(ui)), and pm = perr . But then by (i) and
(ii) in the definition of approximate reachability graph, hi := (pi, top1(ui)) ∈ H for every 1 ≤ i ≤ m and
(hi, ri, hi+1) ∈ E for every 1 ≤ i < m.

Thus when oi is neither a pop nor collapse operation r′i := ri will itself occur as a rule of C′. Otherwise
r′i := (pi, ai, o

S
i , pi+1) will be in C′ where ai+1 ∈ S. Thus r′1, . . . , r

′
m−1 witnesses (p1, u1) ∈ Pre∗C′(E), as

required.

A non-trivial approximate reachability graph is computed using an algorithm that works in the forwards direction
(unlike saturation which works backwards), and which resembles a summary algorithm.

A.3 The Approximate Summary Algorithm

The approximate summary algorithm computes an approximate reachability graph (H,E,B) ‘as accurately as
possible based on an order-1 approximation’. In order to do this, the algorithm builds up an object (H,E,B,U)
where the additional component U is a set of approximate higher-order summary edges. An order-k summary
edge is a triple in H × SDesck × H . Intuitively such a summary (h,

(
h′n, . . . , h

′
k+1

)
, h′) indicates that if

(hn, . . . , hk+1, hk, . . . , h1, hc) ∈ B(h), then we should also have
(
h′n, . . . , h

′
k+1, hk, . . . , h1, hc

)
∈ B(h′). When

n = k = 1 (so that hc is also unnecessary since there would be no links) note that (h, () , h′) behaves like a summary
edge in a standard order-1 summary algorithm [34], which is complete at order-1.

The algorithm is presented as Algorithm 7.

Lemma A.2. Algorithm 7 terminates and the resulting structure (H,E,B,U) gives an approximate reachability
graph (H,E,B).

Proof. For termination note that the respective procedures in Algorithms 8 and 10 will immediately return if the
stack-descriptor (respectively summary) that they are called with is already contained in a particular set. If it does
not belong to this set, then it is added. Since there are only finitely many possible arguments for these functions,
they can thus only be called finitely many times without immediately returning. From this fact it is easy to see that
the entire algorithm must always terminate.

Now we show that (H,E,B) is an approximate reachability graph. Recursively define Post0C := {c0} and

Posti+1
C := PostiC ∪

{
c
∣∣ ∃c− ∈ PostiC s.t. c− →C c in one step

}



Algorithm 8 AddStackDescriptor(h, (hn, . . . , h1, hc))

Require: A head h ∈ H and a stack descriptor (hn, . . . , h1, hc)
Ensure: (hn, . . . , h1, hc) ∈ B(h) and that any further additions to B(h′) for each

h′ ∈ H necessary to respect summary edges are made.

if (hn, . . . , h1, hc) ∈ B(h) then
return Done (Nothing to do)

Add (hn, . . . , h1, hc) to B(h)
Call ProcessHeadWithDescriptor(h, (hn, . . . , h1, hc))
for h′ ∈ H such that (h,

(
h′n, . . . , h

′
k+1

)
, h′) ∈ U do

Call AddStackDescriptor(h′,
(
h′n, . . . , h

′
k+1, hk, . . . , h1, hc

)
)

return Done

Algorithm 9 ProcessHeadWithDescriptor(h, (hn, . . . , h1, hc))

Require: A head h := (p, a) ∈ H and a stack descriptor (hn, . . . , h1, hc) ∈ B(h)
Ensure: All necessary modifications to the graph are made so that it is consistent

with the presence of (hn, . . . , h1, hc) ∈ B(h). In particular this is the procedure
that processes the CPDS rules from h (with respect to a stack described by h and
the stack descriptor)

for o and p′ such that r = (p, a, o, p′) ∈ R do
if o of form rewb then

Add (p′, b) to H
Add ((p, a), r, (p′, b)) to E
Call AddStackDescriptor((p′, b), (hn, . . . , h1, hc))

else if o of form pushkb then
Add (p′, b) to H
Add ((p, a), r, (p′, b)) to E
Call AddStackDescriptor((p′, b), (hn, . . . , h2, (p, a), hk))

else if o of form pushk then
Add (p′, a) to H
Add ((p, a), r, (p′, a)) to E
Call AddStackDescriptor((p′, a), (hn, . . . , hk+1, (p, a),)
hk−1, . . . , h1, hc))

else if o of form popk with hk = (pk, ak) where ak ̸= ⊥ then
Add (p′, ak) to H
Add ((p, a), r, (p′, ak)) to E
Call AddSummary((pk, ak), (hn, . . . , hk+1) , (p

′, ak))
else if o of form collapsek with hc = (pc, ac) where ac ̸= ⊥ then

Add (pc, ac) to H
Add ((p, a), r, (p′, ac)) to E
Call AddSummary((pc, ac), (hn, . . . , hk+1) , (p

′, ac))
return Done



Algorithm 10 AddSummary(h, (h′n, . . . , hk+1) , h
′)

Require: An approximate higher-order summary edge (h, (h′n, . . . , hk+1) , h
′)

Ensure:
(
h,
(
h′n, . . . , h

′
k+1

)
, h′
)
∈ U and that all necessary stack descriptors are

added to the appropriate B(h′′) for h′′ ∈ H so that all summary edges (including
the new one) are respected.

if
(
h,
(
h′n, . . . , h

′
k+1

)
, h′
)
∈ U then

return Done (Nothing to do)
Add

(
h,
(
h′n, . . . , h

′
k+1

)
, h′
)

to U
for (hn, . . . , hk+1, hk, . . . , h1, hc) ∈ B(h) do

AddStackDescriptor(h′,
(
h′n, . . . , h

′
k+1, hk, . . . , h1, hc

)
)

return Done

That is PostiC is the set of configurations that can be reached from the initial configuration in at most i steps. For a
head (p, a) ∈ P × Σ, define

J(p, a)Ki := {(p, u) ∣∣ (p, u) ∈ PostiC and top1(u) = a
}

We can now define an i-partial approximate reachability graph to be a version of an approximate reachability
graph defined for ‘reachability up to depth i’.

Definition A.2. An i-partial approximate reachability graph for the CPDS C is a triple (H,E,B) such that (i)
H ⊆ P × Σ is a set of heads such that (p, u) ∈ PostiC implies that (p, top1(u)) ∈ H , (ii) E ⊆ H × R × H is
a set of triples such that if i > 0 and (p, u) ∈ Posti−1

C and r = (p, top1(u), o, p
′) ∈ R for which o(u) is defined,

then ((p, top1(u)), r, (p
′, top1(o(u)))) ∈ E, (iii) B is a map B : H → SDesc such that for every h ∈ H we haveJhKi ⊆ {JdK | d ∈ B(h)}.

Observe that a structure (H,E,B) is an approximate reachability graph if and only if it is an i-partial
approximate reachability graph for every i ≥ 0.

Now observe that the algorithm monotonically grows the sets making up (H,E,B,U) (it only adds to the sets,
it never removes from them). We may thus argue by induction to show that the (H,E,B) after termination is an i-
partial approximate reachability graph for every i ≥ 0 (and hence an approximate reachability graph). First note that
the opening statements of Algorithm 7 (including the call to add (⊥, . . . ,⊥,⊥) as a stack descriptor to B(p0, a0))
guarantees that (H,E,B) is a 0-partial approximate reachability graph.

Now suppose that (H,E,B) is an i-partial approximate reachability graph. We show that it is also an (i + 1)-
partial approximate reachability graph. Let (p, u) ∈ PostiC and let r := (p, a, o, p′) ∈ R be such that o(u) is defined
and top1(u) = a so that (p′, o(u)) ∈ Posti+1

C . Let a′ := top1(o(u)). It suffices to show that (i) h′ := (p′, a′) ∈ H ,
(ii) e := ((p, a), r, (p′, a′)) ∈ E and that (iii) Some d′ := (h′n, . . . , h

′
1, h

′
c) ∈ B(p′, a′) with o(u) ∈ Jd′K.

By the induction hypothesis (that the structure is an i-partial approximate reachability graph) we must have
h := (p, top1(u)) ∈ H and d = (hn, . . . , h1, hc) ∈ B(h) such that u ∈ JdK. Inspection of the algorithm shows
that the addition of d to B(h) is only possible if AddStackDescriptor(h, d) was called at some point during its
execution. However, this also implies that
ProcessHeadWithDescriptor(h, d) must have been called.

Note also that when o is a rewrite operation we must have popj(o(u)) = popj(u) and collapsej(o(u)) =
collapsej(u) for all j. When o = pushk for k ≥ 2 we must have topj+1(popj(o(u))) = topj+1(popj(u)) and
topj+1(collapsej(o(u))) = topj+1(collapsej(u)) for all j ̸= k and popk(o(u)) = u. When o = pushkb′ we must
have popj(o(u)) = popj(u) for all j ≥ 2, but pop1(o(u)) = u and collapsek(o(u)) = popk(u).



Thus if o is any operation other than popk or collapsek it can be seen that AddStackDescriptor(h′, d′) must
be called for a d′ such that u ∈ Jd′K. Also, e is added to E. Since the algorithm never deletes elements from sets,
this ensures that (H,E,B) must satisfy the constraints (i), (ii) and (iii) above.

Now consider the case when o is either popk or collapsek. Suppose again that top1(o(u)) = a′. Since u ∈ JdK
we must have:

• For some control-state p− we have: hk = (p−, a′) if o = popk and hc = (p−, a′) if o = collapsek such that. . .

• . . . there exists ( , . . . , , h′k, . . . , h
′
1, h

′
c) ∈ B((p−, a′)) such that

o(u) ∈ J(hn, . . . , hk+1, h
′
k, . . . , h

′
1, h

′
c)K.

Thus a suitable d′ is d′ = (hn, . . . , hk+1, h
′
k, . . . , h

′
1, h

′
c).

The call to ProcessHeadWithDescriptor(h, d) guarantees that (i) h′ = (p′, a′) ∈ H and (ii) e :=
((p, a), r, (p′, a′)) ∈ E. It just remains to check that d′ ∈ B((p′, a′)).

Note that the above call must also ensure a call to
AddSummary((p−, a′), (hn, . . . , hk+1), (p

′, a′)). We are thus guaranteed the existence of a summary edge s:

((p−, a′), (hn, . . . , hk+1), (p
′, a′)) ∈ U

(although it may have been added at an earlier point in the algorithm).
There are two cases to consider:

• If the summary edge s was created after a stack-descriptor of the form ( , . . . , , h′k, . . . , h
′
1, h

′
c) was added to

B((p−, a′)), then the call to AddSummary creating s must add d′ to B((p′, a′)).

• If the summary edge s was created before a stack-descriptor of the form d− = ( , . . . , , h′k, . . . , h
′
1, h

′
c) was

added to B((p−, a′)), then the call to ProcessHeadWithDescriptor((p−, d−)) creating this stack-descriptor
must result in d′ being added to B((p′, a′)).

Either way, (iii) must also be satisfied.

A.4 A Remark On Complexity

The approximate summary algorithm runs in time polynomial in the size of the CPDS. Since the graph constructed
must also be of polynomial size, it follows that the rules for the guarded CPDS C′ can also be extracted in polynomial
time. Since the raw saturation algorithm is also PTIME when the number of control-states is fixed, it follows that
the C-SHORe algorithm as a whole is fixed-parameter tractable.

We sketch here how to see that the approximate summary algorithm runs in polynomial time. First note that
an approximate reachability graph can contain at most |Q|.|Σ| heads and at most |Q|.|Σ|.|R|.|Q|.|Σ| edges (re-
calling that R is the set of CPDS rules). Moreover the maximum size of the function B (viewed as a rela-
tion

{
(h, d) ∈ (Q× Σ)× (Q× Σ)n+1 | d ∈ B(h)

}
) is |Q|.|Σ|.(|Q|.|Σ|)n+1. The maximum number of summary

edges is
n∑

i=2

|Q|.|Σ|.(|Q|.|Σ|)n−i.|Q|.|Σ|

It follows that the size of the structure (H,E,B,U) constructed by algorithm is at most polynomial in the size of
the original CPDS. Moreover, since the algorithm only adds to the structure and never removes elements previously
added, it will perform at most polynomially many additions. Let Z be this polynomial bound on the size of the
structure.

Moreover, recall that the procedures for adding summaries and heads/stack-descriptors are guarded so that the
procedure only processes the new object if it had not already been added; if it had already been added, the procedure
in question will return after constant time.



So we consider the cases when the object being created is new. For each new head/stack-descriptor pair,
ProcessHeadWithDescriptor will check it against every rule and for each rule may attempt to create a new
object. Disregarding the result of the calls to create new objects (with calls to create old objects returning in constant
time), the run-time of this procedure will thus be bounded by O(|R|). Likewise each time a new stack descriptor is
added, AddStackDescriptor will compare it against existing summary edges and so run in time O(Z).

Similarly the run-time of a call to AddSummary on a new summary edge (disregarding run-times to calls from
this procedure that create new objects) is O(Z) since the new summary edge will, at worst, be compared against
every possible stack-descriptor.

Thus creating a new object takes at most O(Z.|R|) time and new objects are created only during the call to
a procedure that itself is creating a new object. Thus the overall run-time is bounded by O(Z.Z.|R|) and so is
polynomial.

B. Counter Example Extraction
First, to describe how to construct counter examples, we need an alternative, more manipulable, definition of
stack automaton runs. For this section, fix a CPDS C, initial stack automaton A0 and automaton A constructed
by saturation from C and A0.

B.1 Alternative definition of the runs

We give an alternative definition of a run of a stack automaton that is more appropriate to perform the run surgery
needed below. The definition of an accepting run requires two intermediary notions.

A run of A on an order-≤n stack v is an annotation of each symbol of this stack by a subset of ∆1, the order-1
transitions of A. Formally a run over an order-k stack v is an order-k stack over the alphabet Σ × 2∆1 such that
when projecting on the Σ-component we retrieve the stack v.

Let w be an order-k run of A. For a set Q ⊆ Qk of order-k states, we say that w is Q-valid if the following holds.
If the run w is empty, Q must be a subset of Fk. Assume now that w is not empty. If k = 1 and w = (a, T ) :1 w′,
there must exist Q′ ⊆ Q1 such that w′ is Q′-valid and for all q ∈ Q, there exists a transition in T of the form
q

a−−−→
Qcol

Q′′ with Q′′ ⊆ Q′. If k > 1 and w = u :k w′ then there must exist a subset Q′⊆ Qk of order-k states such

that w′ is Q′-valid and for all q ∈ Q, there exists a transition q
qQ′′
−−→ Q′′ ∈ ∆k such that u is {qQ′′}-valid.

Note that the notion of Q-validity does not check the constraint imposed by the Qcol component appearing in
order-1 transitions. This is done by the notion of link-validity which is only meaningful on order-n runs: An order-n
run w is link-valid if for every substack of w of the form w′ = (a, T )k,i : w′′ and every transition q

a−−−→
Qcol

Q then

topk+1(collapsek(w
′)) is Qcol-valid.

For q ∈ Qn, an order-n run w is q-accepting if it is both {q}-valid and link-valid. In addition, we require that if
w is non empty and hence of the form (a, T ) :1 w

′ then T is reduced to a singleton {t} and we refer to t as the head
transition of the run.

B.2 The Algorithm

Algorithm 11 shows how we construct counter examples. Variable w contains a run of A which is qp-accepting for
some state p. The initial value of w, denoted w0, is an accepting run for the initial configuration ⟨p0, u0⟩. We update
w at the end of each iteration of the while-loop. Let wi be the value of w at the end of the i-th iteration which we
assume to be an accepting run for a configuration ⟨pi, ui⟩. Moreover, let ti denote the head transition of wi.

The invariant of the algorithm is that ti−1 has a justification containing a rule of the form (pi−1, ai−1, o, pi)
with top1(ui−1) = ai−1 and ui = o(ui−1). Moreover and crucially for termination, wi−1 ↪→n wi. As ↪→n is well-
founded, we eventually exit the while-loop after N iterations with tN justified by 0. It is then possible to prune
the last run wN to form a run that consists entirely of transitions already belonging to A0 by the assumption that
initial states at every level of A have no incoming transitions. It follows that the last configuration reached ⟨pN , uN ⟩
belongs to L(A0).



Algorithm 11 Counter-example Extraction

Require: A stack-automaton A generated by saturating A0.
Ensure: Print a finite sequence of CPDS rules that when executed will lead from

the initial configuration ⟨p0, [· · · [a]1 · · ·]n⟩ to one in L(A0).
w := [· · · [{t0}]1 · · ·]n where t0 := qp0

a−→
∅

(∅, . . . , ∅)
while the head transition t of w is not justified by 0 do

Print r = (p, a, o, p′), the CPDS transition appearing in the justification of
t.
if o = popk for some 1 ≤ k ≤ n then

The transition t is of the form qp
a−→
∅

(∅, . . . , ∅,
{
qp′,Qn,...,Qk+1

}
, Qk+1, . . . , Qn)

Pick Qk, . . . , Q1, Qcol such that t′ := qp′
a−−−→

Qcol

(Q1, . . . , Qk, Qk+1, . . . , Qn)

is in top1(popk(w))
w := rew{t′}(popk(w))

else if o = collapsek for 2 ≤ k ≤ n then
The transition t is of the form t = qp

a−−−−−−−−−−−→{
qp′,Qn,...,Qk+1

} (∅, . . . , ∅, Qk+1, . . . , Qn)

Pick Qk, . . . , Q1, Qcol such that t′ := qp′
a−−−→

Qcol

(Q1, . . . , Qk, Qk+1, . . . , Qn)

is in top1(collapsek(w))
w := rew{t′}(collapsek(w))

else if o = rewb for some b ∈ Σ then
J(t) must be of form (r, t′, i), set w := rew{t′}(rewb(w))

else if o = pushk or o = pushk
′

b then
J(t) must be of the form (r, t′, T, i), set w := rew{t′}(o(rewT (w)))

B.3 Correctness of the Algorithm

In this section, we establish the correctness of Algorithm 11 and give omitted proofs. We start with the proof of
Lemma 6.1.

Proof. For k = 1, consider for any order-1 run w the tuple |w| = (nm, . . . , n0) where m is the step at which the
saturation algorithm terminates and for all i ∈ [0,m], ni is the number of occurrences in w of transitions in ∆1

justified at step i. The relation ↪→1 can be equivalently defined as w ↪→1 w′ if |r′| is lexicographically smaller than
|r|. It immediately follows that ↪→1 is well-founded.

For k + 1 > 1 assuming the property holds for ↪→k. Suppose for contradiction that ↪→k+1 is not well-founded.
Then there must be an infinite chain of runs of the form:

w1 ↪→k+1 w2 ↪→k+1 w3 ↪→k+1 · · ·

Now pick an index i such that for every j > i it is the case that wj is at least as long (w.r.t the number of order-
(k − 1) stacks) as the run wi (infinitely many such indices must clearly exist since comparing runs by their lengths
is a well-founded relation.). If wi = u : w′

i, it is a straightforward induction to see that for every j > i wj is of the
form w′′

jw
′
i with u ↪→+

k v for all order-krun v occuring in w′′
j where ↪→+

k designates the transitive closure of ↪→k.



So in particular if we pick infinitely many positions in the chain iℓ such that the run wiℓ = uiℓ : w
′
iℓ

is at least as
long as the sequence wj for all j > iℓ it must be the case that:

ui1 ↪→k
+ ui2 ↪→k

+ ui3 ↪→k
+ · · ·

This in turn contradicts the fact that ↪→k is well-founded.

The following lemma describes two simple sufficient conditions condition for r ↪→k r′ to hold.

Lemma B.1. The following properties hold:

1. Let w and w′ be two order-n runs such that for some 1 ≤ k < n, topk+1 ↪→k topk+1(w
′) and popk+1(w) =

popk+1(w
′) then r ↪→n r′.

2. Let w be an order-k run and let T be a set of transitions that is smaller that some transition appearing in top1(w),
r ↪→k rewT (w).

Proof. For the first property, we will show by induction on k′ that for all k′ ∈ [k, n], topk′+1(w) ↪→k′ topk′+1(w
′).

The case k′ = k is assumed to hold in the hypothesis. Assume that the property holds for k′. We have
topk′+2(w) = topk′+1(w) :k′ topk′+2(popk′+1(w)) and topk′+2(w

′) = topk′+1(w
′) :k′ topk′+2(popk′+1(w

′)).
Remark that popk′+1(w) = popk′+1(w

′) = u. This is by assumption for k = k′ and if k′ > k popk′+2(w) =
popk′+2(popk+1(w)) = popk′+2(popk+1(w

′)) = popk′+2(popk+1(w
′)). Hence topk′+2(w) = topk′+1(w) :k′ u

and topk′+2(w
′) = topk′+1(w

′) :k′ u with topk′+1 ↪→k′ topk′+1(w
′). By definition of ↪→k′+1, we have

topk′+2 ↪→k′+1 topk′+2(w
′).

For the second property, we have top2(w) ↪→1 top2(rewT (w)) (by definition of ↪→1) and pop2(w) = pop2(w
′).

Hence by the first-property r ↪→n rewT (w).

We now prove the correctness of Algorithm 11.
As it is often the case, we restrict our attention to runs containing only “useful” transitions. A run w is trimmed

if for any o1, . . . , oj of pop operations producing a subrun w′ = oj(. . . o1(w) . . .), for any order-1 transition

q
a−−−→

Qcol

(Q1, . . . , Qn)

appearing in top1(w
′), we have for all i ∈ [1,m − 1], that topi+1(popi(w

′)) is Qi-valid where m is the smallest
index such that popm appears in the sequence o1, . . . , oj .

Proposition B.1. Algorithm 11 is correct.

Proof. The initial value of w, denoted w0, is an accepting run for the initial configuration ⟨p0, u0⟩. The value of
w is updated at the end of each iteration of the while-loop. We denote by wi the value of w at the end of the i-th
iteration. Let N be the total number of the iteration of the while-loop. Strictly speaking we have not yet proved that
the algorithm terminates so N could be equal to ∞.

We are going to prove by induction on the iteration step i that wi is a trimmed qpi-accepting run on some stack
si. Furthermore for i > 0, the head transition has a justification containing a transition of the CPDS of the form
(pi−1, top1(si−1), o, pi) and si = o(si−1). Furthermore we have wi−1 ↪→n wi.

For i = 0 the property is immediate as w0 which contains only one transition is necessarily trimmed. Assume
that the property holds for i ≥ 0, let us prove it for i + 1. To simplify the writing let us write w for wi and w′ for
wi+1. Similarly, we write p for pi. By the induction hypothesis, w is a trimmed qp-accepting run on a stack s. This
implies that its head transition is of the form:

t = qp
a−−−→

Qcol

(Q1, . . . , Qn) .



Hence its justification contains a transition of the CPDS of the form (p, a, o, p′). We take pi+1 equal to p′.
We now reason by case distinction on the operation o.
If o = rewb for some b ∈ Σ. The transition t is of the form

qp
a−−−→

Qcol

(Q1, . . . , Qn)

with a justification of the form J(t) = (r, t′, i) with t′ of the form

qp′
a−−−→

Qcol

(Q1, . . . , Qn)

Note that t′ was introduced before t.
The run w′ is equal to rew{t′}(rewb(w)) It is clear that w′ is a trimmed qp′-accepting run on the stack rewb(s).

By the second property of Lemma B.1,w ↪→n w′.
If o = popk for some k ∈ [1, n]. The transition t is of the form

qp
a−→
∅

(∅, . . . , ∅,
{
qp′,Qn,...,Qk+1

}
, Qk+1, . . . , Qn).

As by w is qp-accepting, it follows that for all j ∈ [k + 1, n], topj+1(popj(w)) is Qj-valid and that
topk+1(popk(w)) is {q∗}-valid for q∗ = qp′,Qn,...,Qk+1

. By unfolding the notion of {q∗}-validity, we obtain that
top1(popk(w)) contains at least one transition t′ of the form:

qp′
a−−−→

Qcol

(Q1, . . . , Qk, Qk+1, . . . , Qn)

Let t′ the transition of this form picked by the algorithm. As w is trimmed it follows that for all j ∈ [1, k],
topj+1(popj(popk(w))) is Qj-valid.

We have w′ = rew{t′}(popk(w)). As w′ is a subrun of w (which is link-valid and trimmed), it is link-valid and
trimmed. It is also qp′-valid it is enought to show that for all i ∈ [1, n], we have topi+1(popi(w

′) is Qi-valid. For
i ∈ [k+ 1, n], we have seen that topi+1(popi(w

′)) = topi+1(popi(w)) is Qi-valid. For i ∈ [1, k], we have seen that
topi+1(popi(w

′)) = topi+1(popi(popk(w)) is Qi-valid.
It only remains to show that r ↪→n r′. By the first property of Lemma B.1, it is enought to show that

topk+1(w) ↪→k topk(w
′) (as popk+1(w

′) = popk+1(w) if k < n). First consider the case when k = 1. It follows
from the fact that the set of order-1 transitions appearing in top2(w

′) is stricly included in top2(w). Now assume
that k > 1. The run topk+1(w) can be written as u :k+1 u′ :k+1 v and topk+1(w) = rewT (u

′) :k+1 v. By the
second property of Lemma B.1, u′ ↪→ k − 1rewT (u

′) and by defintion of ↪→ k, topk+1(w) ↪→k topk(w
′).

If o = collapsek for some k ∈ [2, n]. This case is similar to the pop case.
If o = pushk for some k ∈ [2, n].
The transition t is of the form

t = qp
a−−−−−−→

Qcol∪Q′
col

(
Q1 ∪Q′

1, . . . , Qk−1 ∪Q′
k−1, Q

′
k, Qk+1, . . . , Qn

)
with J(t) = (r, t′, T, i+ 1) where

t′ = qp′
a−−−→

Qcol

(Q1, . . . , Qk, . . . , Qn)

and T is a set of transitions of the form:
Qk

a−−−→
Q′

col

(
Q′

1, . . . , Q
′
k

)
The run w′ is equal to rew{t′}(o(rewT (w))). Let w = u :k v. The run w′ is then equal to rew{t′}(u) :k

rewT (u) :k v.
Let us first show that w′ is

{
qp′
}

-valid. For this it is enough to show that:



• for all k′ ∈ [k+1, n], topk′+1(popk′(w
′)) = topk′+1(popk′(w)) is Qk′-valid. This immediately follows from the

fact that w is q-accepting with head transition t.

• topk(popk(w
′)) = rewT (u) :k v = rewT (w) is Qk-valid. As T has the form Qk

a−−−→
Q′

col

(Q′
1, . . . , Q

′
k), it is

enough for us to show that for all k′ ∈ [1, k], topk′+1(popk′(rewT (w))) = topk′+1(popk′(w)) is Qk′-valid. This
immediately follows from the fact that w is qp-accepting with head transition t.

• for all k′ ∈ [1, k − 1], topk′+1(popk′(w
′)) = topk′+1(popk′(w)) is Qk′-valid.This immediately follows from the

fact that w is q-accepting with head transition t.

We now show that w′ is link-valid. We only need to check the validity for the substack rewT (u) :k v and
the substacks of the form u′ :k rewT (u) :k v where u′ is a substack of rew{t′}(u). Let us first consider the stack
rewT (u) :k v and let h be a transition in T of the form

qh
a−−−→

Qh
col

(
Qh

1 , . . . , Q
h
n

)
We have that Qh

col is a subset of Q′
col. Let k′ be the order of the link on top of rewT (u) :k v. As w is link-valid,

we now that topk′+1(collapsek′(w)) = topk+1(collapsek′(rewT (u) :k v)) is Qcol ∪ Q′
col-valid hence it is also

Qh
col-valid. We now move on to the case of x = rew{t′}(u) :k rewT (u) :k v. Let k′ be the order of the link on

top of x. We have that topk′+1(collapsek′(x)) = topk′+1(collapsek′(w)). By link-validity of w, it is the case that
topk′+1(collapsek′(w)) is Qcol ∪Q′

col-valid and in particular Qcol-valid.
Finally let u′ be a strict substack of rew{t′}(u). Let k′ be the order of the link appearing on top of x = u′ :k

rewT (u) :k v and let h be a transition attached to the top of x of the form:

qh
a−−−→

Qh
col

(
Qh

1 , . . . , Q
h
n

)
We have that topk′+1(collapsek′(x)) = topk′+1(collapsek′(w)). By link-validity of w, it is the case that

topk′+1(collapsek′(w)) is Qh
col-valid.

It now remains to show that w′ is trimmed. The only interesting case is that of the substack rewT (u) :k v which
is reach by a popk operation. Any transition h ∈ T , is of the form

qh
a−−−→

Qh
col

(
Qh

1 , . . . , Q
h
n

)
with for all k′ ∈ [1, k], Qh

k′ ⊆ Q′
k′ . Hence it is enough for us to show that for all k′ ∈ [1, k], topk′+1(popk′(rewT (u) :k

v)) = topk′+1(popk′(w)) is Q′
k-valid. This immediately follows from the fact that w is q-accepting with head tran-

sition t.
It only remains to show that r ↪→n r′. First remark that u ↪→k−1 rew{t′}(u) and u ↪→k−1 rewT (u) as in both

cases t is replaced by one or several transition with a smaller timestamp (cf. second property of Lemma B.1). By
definition of ↪→k, we have topk+1(w) ↪→k topk+1(w

′). The first property of Lemma B.1 then implies that w ↪→k w′.
If o = pushkb for some b ∈ Σ and k ∈ [2, n]. This case is similar to the pushk case.

C. Efficient Fixed Point Computation
C.1 Omitted Algorithms

We present the full definitions of the subroutines used in the efficient fixed point computation described in Section 7.
Let the function extract short forms obtain from a long-form transition its (unique) corresponding set of (short-
form) transitions.



Algorithm 12 Computing Pre∗C(A0)

Let ∆done = ∅, ∆new =
∪

n≥k≥1∆k, Usrc[k] = ∅, Utarg[k] = {(∅, ∅, ∅, ∅)} for
each n ≥ k > 1 and Utarg[1] = {(∅, ∅, a, ∅, ∅) | a ∈ Σ}.
for r := (p, a, popn, p

′) ∈ R do

add to worklist
(
qp

a−→
∅

(
∅, . . . , ∅,

{
qp′
})

, r

)
for r := (p, a, collapsen, p

′) ∈ R do

add to worklist

(
qp

a−−−→
{qp′}

(∅, . . . , ∅) , r

)
while ∃t ∈ ∆new do

update rules(t); update trip wires(t); move t from ∆new to ∆done

Algorithm 13 update rules(t)

Require: A transition t to be processed against ∆done

if t is an order-k transition for 2 ≤ k ≤ n of the form qp′Qn···Qk+1
−−→ Qk then

for p ∈ P and a ∈ Σ such that r := (p, a, popk−1, p
′) ∈ R do

add to worklist
(
qp

a−−→
Qcol

(∅, . . . , ∅,
{
qp′Qn···Qk

}
,Qk, . . . ,Qn), r

)
for p ∈ P and a ∈ Σ such that r := (p, a, collapsek−1, p

′) ∈ R do

add to worklist

qp
a−−−−−−−−→{

qp′Qn···Qk

} (∅, . . . , ∅, Qk, . . . , Qn) , r


for p ∈ P and a ∈ Σ such that r := (p, a, pushk, p

′) ∈ R do
create trip wire

(
qp,Qn,...,Qk+1

, qp′,Qn,...,Qk+1,Qk
, a,Qk, (r, t)

)
else if t is an order-1 transition of the form qp′Qn···Q2

b−−−→
Qcol

Q1 then

for p ∈ P and a ∈ Σ such that r := (p, a, rewb, p
′) ∈ R do

add to worklist
(
qp

a−−−→
Qcol

(Q1, . . . , Qn) , (r, t)

)
for p ∈ P and a ∈ Σ such that r :=

(
p, a, pushkb , p

′) ∈ R do
create trip wire

(
qp,Qn,...,Qk+1,Qk∪Qcol,Qk−1,...,Q2 ,⊥, a,Q1, (r, t)

)

Algorithm 14 update trip wires
(
t = qp

a−−−→
Qcol

(Q1, . . . , Qn)

)
for tk = qk −−→ Qk ∈ extract short forms(t) do

for targ ∈ Utarg[k] with targ = ( , QC
k′ , , ) or ( , QC

k′ , a, , ) and qk ∈ QC
k′ do

proc targ against tran(targ , tk)



Algorithm 15 create trip wire(qk, qk−1, a,Qk, (r, t))

if (qk, qk−1, a,Qk) /∈ Usrc[k] then
Add src := (qk, qk−1, a,Qk) to Usrc[k], set J(src) := (r, t)
Let targ := (Qk, Qk, ∅, ∅) if k > 1 or (Qk, Qk, a, ∅, ∅) if k = 1
if targ ∈ Utarg[k] then

for each complete target targ matching src do
proc source complete targ(src, targ)

else
add target(targ , k); set J(targ) := ∅

Algorithm 16 proc targ against tran(targ , t)

Suppose

{
t = qk −−→ Q′′

k and targ = (Qk, Q
C
k , Qlbl , Q

′
k) if k ≥ 2

t = q1
a−−−→

Qcol

Q′′
1 and targ = (Q1, Q

C
1 , a,Qlbl , Q

′
1) if k = 1

Let targ ′ :=

{
(Qk, Q

C
k \ {qk} , Qlbl ∪

{
qkQ′′

k

}
, Q′

k ∪Q′′
k) if k ≥ 2

(Q1, Q
C
1 \ {q1} , a,Qlbl ∪Qcol, Q

′
1 ∪Q′′

1) if k = 1

if qk ∈ QC
k and targ ′ /∈ Utarg[k] then

add target(targ ′, k); if k = 1, set J(targ ′) := J(targ) ∪ {t}
if QC

k \ {qk} = ∅ then
for each source src ∈ Usrc[k] of form ( , , , Qk) do

proc source complete targ(src, targ ′)

Algorithm 17 proc source complete targ(src, comp targ)

Require: An order-k source of the form src = (qk, qk−1, a,Qk) and an order-k
complete target of the form comp targ = (Qk, ∅, Qlbl , Q

′
k) when k ≥ 2 and

(Q1, ∅, a,Qlbl , Q
′
1) when k = 1

if k ≥ 2 then
Let S := {qk−1 | qk−1 ̸= ⊥}
create trip wire

(
qkQ′

k
,⊥, a,Qlbl ∪ S, J(src)

)
else if k = 1 then

Suppose q1 = qp,Qn,...,Q2 and J(src) = (r, t) and J(comp targ) = T

add to worklist
(
qp

a−−→
Qlbl

(Q′
1, Q2, . . . , Qn), (r, t, T )

)

Algorithm 18 add to worklist(t, justif )

Require: A long form transition t and justification justif .
for u ∈ extract short forms(t) such that u /∈ ∆done ∪∆new do

Add u to ∆new and set J(u) := (justif , |∆new ∪∆done|) if u is order-1



Algorithm 19 add target(targ , k)

if targ /∈ Utarg[k] then
Add targ to Utarg[k]
for t′ ∈ ∆done do

proc targ against tran(targ , t′)

C.2 Correctness

We prove Proposition 7.1 that states the fast algorithm is correct. The proposition is proved in two parts in the
following sub-sections. In particular in Lemma C.8 and Lemma C.3.

In the sequel, we fix the following notation. Let (Ai)i≥0 be the sequence of automata constructed by the naive

fixed point algorithm. Then, let
(
∆j

done

)
j≥0

be the sequence of sets of transitions such that ∆j
done is ∆done after j

iterations of the main loop of Algorithm 5. Similarly, define U j
src[k] and U j

targ[k].

C.3 Soundness

We prove that the algorithm is sound. First, we show two preliminary lemmas about the data-structures maintained
by the algorithm.

Lemma C.1. For all j ≥ 0 and n ≥ k > 1, if
(
Qk, Qk \QT

k , Q
T
k−1, Q

T ′
k

)
∈ U j

targ[k], then we have T ⊆ ∆j
done

that witnesses QT
k

QT
k−1−−−→ QT ′

k .

Proof. We proceed by induction over j and the order in which targets are created. In the base case we only have
(∅, ∅, ∅, ∅) ∈ U0

targ[k]. Setting T = ∅ witnesses ∅ ∅−→ ∅.
In the inductive case, consider the location of the call to add target. This is either in create trip wire or

proc targ against tran. When the call location is create trip wire, we have a target of the form (Qk, Qk, ∅, ∅), hence

QT
k = ∅ and we trivially have T = ∅ ⊂ ∆j

done witnessing ∅ ∅−→ ∅.
Otherwise the call is from proc targ against tran against a transition t = qk −−→ Q′′

k and a target targ =(
Qk, Qk \QT

k , Q
T
k−1, Q

T ′
k

)
already in Utarg. Hence, by induction, we know that there is some T ⊆ ∆j

done[k]

witnessing QT
k

QT
k−1−−−→ QT ′

k . The transition t is either already in ∆j
done or will be moved there at the end of the jth

iteration. Combining t with T we have T ∪{t} ⊆ ∆j
done witnessing QT

k ∪{qk}
QT

k−1∪
{
qkQ′′

k

}
−−−−−−−−−→ QT ′

k ∪Q′′
k. Since the

new target added is
(
Qk, Qk \

(
QT

k ∪ {qk}
)
, QT

col ∪
{
qkQ′′

k

}
, QT ′

k ∪Q′′
k

)
we are done.

Lemma C.2. For all j ≥ 0, if
(
Q1, Q1 \QT

1 , a,Q
T
col, Q

T ′
1

)
∈ U j

targ[1], then we have T ⊆ ∆j
done that witnesses

QT
1

a−−−→
QT

col

QT ′
1 .

Proof. The proof is essentially the same as the order-k case above. We proceed by induction over j and the order in
which targets are created. In the base case we only have (∅, ∅, a, ∅, ∅) ∈ U0

targ[1]. Setting T = ∅ witnesses ∅ a−→
∅

∅.

In the inductive case, consider the location of the call to add target. This is either in create trip wire or
proc targ against tran. When the call location is create trip wire, we have a target of the form (Q1, Q1, a, ∅, ∅),
hence QT

1 = ∅ and we trivially have T = ∅ ⊂ ∆j
done witnessing ∅ a−→

∅
∅.



Otherwise the call is from proc targ against tran against a transition t = q1
a−−−→

Qcol

Q′′
1 and a target targ =(

Q1, Q1 \QT
1 , Q

T
col, Q

T ′
1

)
already in Utarg. Hence, by induction, we know that there is some T ⊆ ∆j

done[1]

witnessing QT
1

QT
col−−−→ QT ′

1 . The transition t is either already in ∆j
done or will be moved there at the end of the

jth iteration. Combining t with T we have T ∪ {t} ⊆ ∆j
done witnessing QT

1 ∪ {q1}
a−−−−−−→

QT
col∪Qcol

QT ′
1 ∪Q′′

1 . Since the

new target is
(
Q1, Q1 \

(
QT

1 ∪ {q1}
)
, a,Qcol ∪QT

col, Q
T ′
1 ∪Q′′

1

)
we are done.

We are now ready to prove the algorithm sound.

Lemma C.3. Given a CPDS C and stack automaton A0, let A be the result of Algorithm 5. We have L(A) ⊆
Pre∗C(A0).

Proof. We proceed by induction over j and show every transition appearing in ∆j
done appears in Ai for some i. This

implies the lemma.
When j = 0 the property is immediate, since the only transitions added are already in A0, or added to A1 during

the first processing of the popn and collapsen rules.
In the inductive step, we consider some t first appearing in ∆j

new (and thus, eventually in ∆j′

done for some j′).
There are several cases depending on how t was added to ∆new (i.e. from where add to worklist was called). We
consider the simple cases first. In all the following cases, t was added during update rules against a transition t′

appearing in ∆j−1
new.

• If t′ = qp′Qn···Qk+1
−−→ Qk and t was added as part of

t1 = qp
a−−→

Qcol

(
∅, . . . , ∅,

{
qp′Qn···Qk

}
,Qk, . . . ,Qn

)
during the processing of t′ against a popk−1 rule. By induction t′ appears in Ai for some i, and hence t1 (which
includes t) is present in Ai+1.

• If t′ = qp′Qn···Qk+1
−−→ Qk and t was added as part of

t1 = qp
a−−−−−−−−→{

qp′Qn···Qk

} (∅, . . . , ∅, Qk, . . . , Qn)

during the processing of t′ against a collapsek−1 rule. By induction t′ appears in Ai for some i, and hence t1
(which includes t) is present in Ai+1.

• If t′ = qp′Qn···Q2

b−−−→
Qcol

Q1 and t was added as part of

t1 = qp
a−−−→

Qcol

(Q1, . . . , Qn)

during the processing of t′ against a rewb rule. By induction t′ appears in Ai for some i, and hence t1 (which
includes t) is present in Ai+1.

In the final case, add to worklist is called during proc source complete targ. There are two cases depending on
the provenance of the source. In the first case, the source was added by a call to create trip wire from update rules
while processing a pushkb rule against t′ = qp′Qn···Q2

b−−−→
Qcol

Q1. Therefore, t was added as part of

qp
a−−−→

Q′
col

(
Q′

1, Q2, . . . , Qk−1, Qk ∪Qcol, Qk+1, Qn

)



from a source (q1,⊥, a,Q1) ∈ U j
src[1] with

q1 = qp,Qn,...,Qk+1,Qk∪Qcol,Qk−1,...,Q2 .

By induction, from t′ we know that
qp′

b−−−→
Qcol

(Q1, . . . , Qn)

appears in Ai for some i. Now, consider the target (Q1, ∅, a,Q′
col, Q

′
1) ∈ U j

targ[1] that was combined with the source
to add the new transition. By Lemma C.2 we have Q1

a−−−→
Q′

col

Q′
1 in ∆j

done and hence (since all transitions in ∆j
done

passed through ∆new) by induction we have Q1
a−−−→

Q′
col

Q′
1 in Ai′ for some i′. Hence, in Amax(i,i′)+1 we have t as

required.
In the second case we have a source (q1,⊥, a,Qs

1) ∈ U j
src[1] and a complete target of the form

(
Qs

1, ∅, a,Qt
col, Q

t′
1

)
∈

U j
targ[1] and the source derived from a call to create trip wire in proc source complete targ. Note, by Lemma C.2

we have Qs
1

a−−−→
Qt

col

Qt′
1 in ∆j

done. The call to create trip wire implies we have a source (q2, q
′
1, a,Q

s
2) ∈ U j

src[2]

and complete target of the form
(
Qs

2, ∅, Qt
1, Q

t′
2

)
∈ U j

targ[2], with Qs
1 = Qt

1 ∪ S1 where S1 = {q′1 | q′1 ̸= ⊥} and
q1 = q2Qt′

2
. The proof will now iterate from k = 2 upwards until a source is discovered that was added during a

call to create trip wire from update rules while processing some pushk′ rule. Note that sources not added by pushkb
rules can only be added in this way and, for all k < k′, the second component of the source (q′k−1) will be ⊥.

Hence, inductively, we have a source src =
(
qk, q

′
k−1, a,Q

s
k

)
∈ U j

src[k] and complete target
(
Qs

k, ∅, Qt
k−1, Q

t′
k

)
∈

U j
targ[k] with Qs

k−1 = Qt
k−1 ∪ Sk−1 where Sk−1 =

{
q′k−1

∣∣ q′k−1 ̸= ⊥
}

and qk−1 = qkQt′
k

. Furthermore, by

Lemma C.1 we have Qs
k

Qt
k−1−−−→ Qt′

k in ∆j
done.

In the first case, suppose src was added due to a call to create trip wire in proc source complete targ.
The call to create trip wire implies we have a source

(
qk+1, q

′
k, a,Q

s
k+1

)
∈ U j

src[k + 1] and complete target(
Qs

k+1, ∅, Qt
k, Q

t′
k+1

)
∈ U j

targ[k + 1], with Qs
k = Qt

k ∪ Sk where Sk = {q′k | q′k ̸= ⊥} and qk = qk+1Qt′
k+1

.
For the final case, suppose that src was added due to a call to create trip wire in update rules from a pushk

rule. Then we were processing a new transition qp′Qn···Qk+1
−−→ Qk, and we have qk = qp,Qn,...,Qk+1

and q′k−1 =

qp′,Qn,...,Qk
and Qs

k = Qk. From the induction and since q′k′ = ⊥ for all k′ < k, we have Qt
k−1 ∪

{
q′k−1

} a−−−→
Qt

col(
Qt′

1 , . . . , Q
t′
k−1

)
in ∆j

done which can be split into Qt
k−1

a−−−→
Q′

col

(
Q′

1, . . . , Q
′
k−1

)
and q′k−1

a−−−→
Qcol

(Q1, . . . , Qk−1).

Thus, because q′k−1 = qp′,Qn,...,Qk
and Qs

k = Qk and letting Q′
k = Qt′

k , we have

qp′
a−−−→

Qcol

(Q1, . . . , Qn) and Qk
a−−−→

Q′
col

(
Q′

1, . . . , Q
′
k

)
in ∆j

done and thus by induction in Ai for some i. Since we have

q1 = qkQ′
k,Qk−1∪Q′

k−1,...,Q1∪Q′
1
= qp,Qn,...,Qk+1,Q

′
k,Qk−1∪Q′

k−1,...,Q2∪Q′
2

we added t as part of a transition

qp
a−−−−−−→

Qcol∪Q′
col

(
Q1 ∪Q′

1, . . . , Qk−1 ∪Q′
k−1, Q

′
k, Qk+1, . . . , Qn

)
which is the transition added by the naive saturation algorithm from the pushk rule and the transitions in Ai. Hence,
we satisfy the lemma.



C.4 Completeness

We prove that the algorithm is complete. For this we need some preliminary lemmas stating properties of the data-
structures maintained by the algorithm.

Lemma C.4. For all k ≥ 2 and j ≥ 0, all T ⊆ ∆j
done witnessing QT

k

QT
k−1−−−→ Q′

k, and all (qk, qk−1, a,Qk) ∈ U j
src[k]

such that QT
k ⊆ Qk, we have the target

(
Qk, Qk \QT

k , Q
T
k−1, Q

′
k

)
in U j

targ[k].

Proof. Let j1 be the iteration of Algorithm 5 where (qk, qk−1, a,Qk) was first added to U j1
src[k]. We perform an

induction over j1. In the base case the lemma is trivially true. In the inductive case, the only position where a source
may be added is in the create trip wire procedure. After adding the source, the induction hypothesis needs to be
re-established. There are two cases.

Let targ = (Qk, Qk, ∅, ∅). If targ is already in U j1
targ then we observe that a target of the form (Qk, Qk, . . .) is

only created in create trip wire (targets are also created in proc targ against tran, but these targets are obtained by
removing a state from the second component of an existing target, hence the two first components cannot be equal).
This implies the existence of a source ( , , , Qk) ∈ U j′

src[k] for some j′ < j1. This implies the result by induction
since neither T nor the desired target depend any but the final component of the source.

If targ is not in U j1
targ[k], then we add it. Next, split T = T1 ∪ T2 such that T1 contains all t ∈ T appearing

in ∆j1−1
done . The balance is contained in T2. The algorithm proceeds to call proc targ against tran on targ and all

t ∈ ∆j1
done. In particular, this includes all t ∈ T1.

We aim to prove that, after the execution of this loop, we have (Qk, Qk \ Q1
k, Q

1
k−1, Q

1′
k ) ∈ U j1

targ[k] when T1

witnesses Q1
k

Q1
k−1−−−→ Q1′

k .
Let t1, . . . , tℓ be a linearisation of T1 in the order they appear in iterations over ∆done (we assume a fixed

order here for convenience, though the proof can generalise if the order changes between iterations). Additionally,

let Tz = {t1, . . . , tz} witness Qtz
k

Qtz
k−1−−−→ Q

t′z
k . We show after Tz has been processed, we have (Qk, Qk \

Qtz
k , Qtz

k−1, Q
t′z
k ) ∈ U j1

targ[k]. This gives us the property once z = ℓ. In the base case z = 0 and we are done.

Otherwise, we know targz = (Qk, Qk \ Qtz
k , Qtz

k−1, Q
t′z
k ) ∈ U j1

targ[k] and prove the case for (z + 1). Consider the
call to add target that added targz . Now take the iteration against ∆done that processes tz+1. This results in the
addition of (Qk, Qk \Q

tz+1

k , Q
tz+1

k−1 , Q
t′z+1

k ) as required.
Hence, we have (Qk, Qk \ Q1

k, Q
1
k−1, Q

1′
k ) ∈ U j1

targ[k]. Now, let t1, . . . , tℓ be a linearisation of T2 in the order

they are added to ∆done. Additionally, we write Qtz
k

Qtz
k−1−−−→ Q

t′z
k for the state-sets and transitions witnessed by

T1 ∪ {t1, . . . , tz}.
We show after tz has been added to ∆done on the j′th iteration, we have (Qk, Qk \Qtz

k , Qtz
k−1, Q

t′z
k ) ∈ U j′

targ[k]
for some j′. In the base case z = 0 and we are done by the argument above. Otherwise, we know targz =

(Qk, Qk \ Qtz
k , Qtz

k−1, Q
t′z
k ) ∈ U j′

targ[k] and prove the case for (z + 1). Consider the call to update trip wires with

tz+1. This results in the addition of the target (Qk, Qk \Q
tz+1

k , Q
tz+1

k−1 , Q
t′z+1

k ) via the call to proc targ against tran.
When z = ℓ, we have the lemma as required.

Lemma C.5. For all j ≥ 0, all T ⊆ ∆j
done witnessing QT

1
a−−−→

QT
col

Q′
1, and all (q1,⊥, a,Q1) ∈ U j

src[1] such that

QT
k ⊆ Q1, we have

(
Q1, Q1 \QT

1 , a,Q
T
col, Q

′
1

)
in U j

targ[1].

Proof. The proof is essentially the same as the proof when k ≥ 2. Let j1 be the iteration of Algorithm 5 where
(q1, qk−1, a,Q1) was first added to U j1

src[1]. We perform an induction over j1. In the base case the lemma is trivially
true. In the inductive case, the only position where a source may be added is in the create trip wire procedure. After
adding the source, the induction hypothesis needs to be re-established. There are two cases.



Let targ = (Q1, Q1, a, ∅, ∅). If targ is already in U j1
targ then we observe that a target of the form (Q1, Q1, . . .)

is only created in create trip wire. This implies the existence of a source ( , , , Q1) ∈ U j′
src[1] for some j′ < j1.

This implies the result by induction since neither T nor the desired target depend any but the final component of the
source.

If targ is not in U j1
targ[1], then we add it. Next, split T = T1 ∪ T2 such that T1 contains all t ∈ T appearing

in ∆j1−1
done . The balance is contained in T2. The algorithm proceeds to call proc targ against tran on targ and all

t ∈ ∆j1
done. In particular, this includes all t ∈ T1.

We aim to prove that, after the execution of this loop, we have (Q1, Q1 \Q1
1, a,Q

1
col, Q

1′
1 ) ∈ U j1

targ[1] when T1

witnesses Q1
1

a−−−→
Q1

col

Q1′
1 .

Let t1, . . . , tℓ be a linearisation of T1 in the order they appear in iterations over ∆done. Additionally, let Tz =

{t1, . . . , tz} witness Qtz
1

a−−−→
Qtz

col

Q
t′z
1 . We show after Tz has been processed, we have (Q1, Q1, \Qtz

1 , a,Qtz
col, Q

t′z
1 ) ∈

U j1
targ[1]. This gives us the property once z = ℓ. In the base case z = 0 and we are done. Otherwise, we

know targz = (Q1, Q1 \ Qtz
1 , aQtz

col, Q
t′z
1 ) ∈ U j1

targ[1] and prove the case for (z + 1). Consider the call to
add target that added targz . Now take the iteration against ∆done that processes tz+1. This results in the addition of
(Q1, Q1 \Qtz+1

1 , a,Q
tz+1

col , Q
t′z+1

1 ) as required.
Hence, we have (Q1, Q1 \ Q1

1, a,Q
1
col, Q

1′
1 ) ∈ U j1

targ[1]. Now, let t1, . . . , tℓ be a linearisation of T2 in the order

they are added to ∆done. Additionally, we write Qtz
1

a−−−→
Qtz

col

Q
t′z
1 for the state-sets and transitions witnessed by

T1 ∪ {t1, . . . , tz}.
We show after tz is added to ∆done on the j′th iteration, we have (Q1, Q1 \ Qtz

1 , a,Qtz
col, Q

t′z
1 ) ∈ U j′

targ[1]
for some j′. In the base case z = 0 and we are done by the argument above. Otherwise, we know targz =

(Q1, Q1 \ Qtz
1 , a,Qtz

col, Q
t′z
1 ) ∈ U j′

targ[1] and prove the case for (z + 1). Consider the call to update trip wires with

tz+1. This results in the addition of the target (Q1, Q1 \Qtz+1

1 , aQ
tz+1

col , Q
t′z+1

1 ) via the call to proc targ against tran.
When z = ℓ, we have the lemma as required.

Lemma C.6. For all k > 1 and j ≥ 0, if we have (qk, qk−1, a,Qk) ∈ U j
src[k] and (Qk, ∅, Qk−1, Q

′
k) ∈

U j
targ[k], then it is the case that there exists j′ ≥ 0 such that

(
qkQ′

k
,⊥, a,Qk−1 ∪ S

)
∈ U j′

src[k − 1] where
S = {qk−1 | qk−1 ̸= ⊥}.

Proof. Let j1 be the smallest such that (qk, qk−1, a,Qk) ∈ U j1
src[k] and j2 be the smallest such that (Qk, ∅, Qk−1, Q

′
k) ∈

U j2
targ[k].

In the case j1 ≤ j2, we consider the j2th iteration of Algorithm 5 at the moment where the target is added
to U j2

targ[k]. This has to be a result of the call to add target during Algorithm 16. The only other place add target
may be called is during Algorithm 15; however, this implies the target is of the form (Qk, Qk, ∅, ∅) and hence, for
the target to be complete, it must be (∅, ∅, ∅, ∅) and hence j2 = 0, and since j1 > 0 (since there are initially no
sources) we have a contradiction. Hence, the target is added during Algorithm 16 and the procedure goes on to call
proc source complete targ against each matching source in U j2

src[k], including (qk, qk−1, a,Qk). This results in the
addition of

(
qkQ′

k
,⊥, a,Qk−1 ∪ S

)
to U j2

src[k − 1], if it is not there already, satisfying the lemma.
In the case j1 > j2, we consider the j1th iteration of Algorithm 5 at the moment where the source is added.

This is necessarily in the create trip wire procedure. Since (Qk, ∅, Qk−1, Q
′
k) ∈ U j1

targ[k] and since this target must
have been obtained from a target of the form (Qk, Qk, ∅, ∅), we know (Qk, Qk, ∅, ∅) ∈ U j1

targ[k] and thus the
procedure calls proc source complete targ against each complete target including (Qk, ∅, Qk−1, Q

′
k). This results

in the addition of
(
qkQ′

k
,⊥, a,Qk−1 ∪ S

)
to U j2

src[k − 1], if it is not there already, satisfying the lemma.



Lemma C.7. For all j ≥ 0, if (q1,⊥, a,Q1) ∈ U j
src[1] and (Q1, ∅, Qcol, Q

′
1) ∈ U j

targ[1], if q1 = qp,Qn,...,Q2 , then
for each t in

extract short forms

(
qp

a−−−→
Qcol

(
Q′

1, Q2, . . . , Qn

))
there exists some j′ ≥ 0 such that t ∈ ∆j′

done.

Proof. As before, the proof of this order-1 case is very similar to the order-k proof.
Let j1 be the smallest such that (q1,⊥, a,Q1) ∈ U j1

src[1] and j2 be the smallest such that (Q1, ∅, a,Qcol, Q
′
1) ∈

U j2
targ[1].

In the case j1 ≤ j2, we consider the j2th iteration of Algorithm 5 at the moment where the target is added
to U j2

targ[1]. This has to be a result of the call to add target during Algorithm 16. The only other place add target
may be called is during Algorithm 15; however, this implies the target is of the form (Q1, Q1, ∅, ∅) and hence, for
the target to be complete, it must be (∅, ∅, ∅, ∅) and hence j2 = 0, and since j1 > 0 (since there are initially no
sources) we have a contradiction. Hence, the target is added during Algorithm 16 and the procedure goes on to
call proc source complete targ against each matching source in U j2

src[1], including (q1,⊥, a,Q1). This results in the
addition of qp

a−−−→
Qcol

(Q′
1, Q2, . . . , Qn) satisfying the lemma.

In the case j1 > j2, we consider the j1th iteration of Algorithm 5 at the moment where the source is added.
This is necessarily in the create trip wire procedure. Since (Q1, ∅, a,Qcol, Q

′
1) ∈ U j1

targ[1] and since this target must
have been obtained from a target of the form (Q1, Q1, a, ∅, ∅), we know (Q1, Q1, a, ∅, ∅) ∈ U j1

targ[1] and thus the
procedure calls proc source complete targ against each complete target including (Q1, ∅, a,Qcol, Q

′
1). This results

in the addition of the source qp
a−−−→

Qcol

(Q′
1, Q2, . . . , Qn) satisfying the lemma.

We are now ready to prove completeness.

Lemma C.8. Given a CPDS C and stack automaton A0, let A be the result of Algorithm 5. We have L(A) ⊇
Pre∗C(A0).

Proof. We know (from ICALP [7]) that the fixed point of (Ai)i≥0 is an automaton recognising Pre∗C(A0). We prove,
by induction, that for each transition t appearing in Ai for some i, there exists some j such that t appears in ∆j

done.
We first prove the only if direction. In the base case we have all transitions in A0 in ∆new at the beginning of

Algorithm 5. Since the main loop continues until ∆new has been completely transferred to ∆done, the result follows.
Now, let t be an order-k transition appearing for the first time in Ai (i > 0). We perform a case split on the

pushdown operation that led to the introduction of the new transition. Let r = (p, a, o, p′) be the rule that led to the
new transition. We first deal with the simple cases.

• When o = popk, then there was qp′
qk−→ (Qk+1, . . . , Qn) in Ai and we added to Ai+1

qp
a−→
∅

(∅, . . . , ∅, {qk} , Qk+1, . . . , Qn)

of which t is a transition. By induction we have j such that t′ = qp′Qn···Qk+2

qk−→ Qk+1 appears in ∆j
done.

Consider the jth iteration of Algorithm 5 when update rules is called on t′. The popk′ loop immediately adds

qp
a−→
∅

(∅, . . . , ∅, {qk} , Qk+1, . . . , Qn)

and hence t to ∆new, giving us some j′ > j such that t appears in ∆j′

done.

• When o = collapsek, when k = n, we added t as part of qp
a−−−→

{qp′}
(∅, . . . , ∅). In this case we also

added t to ∆new as part of the initialisation steps of Algorithm 5. Otherwise, n > k and from a transition



qp′
qk−→ (Qk+1, . . . , Qn) we added t as part of

qp
a−−−→

{qk}
(∅, . . . , ∅, Qk+1, . . . , Qn)

By induction we have j such that t′ = qp′Qn···Qk+2

qk−→ Qk+1 appears in ∆j
done. Consider the jth iteration of

Algorithm 5 when update rules is called on t′. The collapsek loop immediately adds

qp
a−−−→

{qk}
(∅, . . . , ∅, Qk+1, . . . , Qn)

and hence t to ∆new, giving us some j′ > j such that t appears in ∆j′

done.

• when o = rewb then from a transition qp′
b−−−→

Qcol

(Q1, . . . , Qn) we added t as part of a transition qp
a−−−→

Qcol

(Q1, . . . , Qn). By induction, we know that t′ = qp′,Qn,...,Q2

b−−−→
Qcol

Q1 appears in ∆j
done for some j. Consider

the jth iteration of the main loop of Algorithm 5. During this iteration t′ is passed to update rules, and the loop
handling rules containing rewb adds qp

a−−−→
Qcol

(Q1, . . . , Qn) to ∆new. Since this transition contains t, there must

be some j′ such that t appears in ∆j′

done.

We now consider the push rules, which require more intricate reasoning.

• when o = pushk, we had qp′
a−−−→

Qcol

(Q1, . . . , Qk, . . . , Qn) and T of the form Qk
a−−−→

Q′
col

(Q′
1, . . . , Q

′
k) in Ai, and

we added to the transition

qp
a−−−−−−→

Qcol∪Q′
col

(
Q1 ∪Q′

1, . . . , Qk−1 ∪Q′
k−1, Q

′
k, Qk+1, . . . , Qn

)
which contains t. By induction, there exists some j where t1 = qp′Qn,...,Qk+1

−−→ Qk first appears in ∆j
done. Also

by induction, for each t′ ∈ T , there is some j′ such that t′ first appears in ∆j′

done. We divide T into T1 ∪ · · · ∪ Tk,
where Tk′ contains all order-k′ transitions in T .

Consider the jth iteration where t1 is added to ∆done. During the call to update rules we call create trip wire in
the loop handling push rules with qk = qp,Qn,...,Qk+1

, qk−1 = qp′,Qn,...,Qk+1
, a = a and Qk = Qk.

The call ensures (qk, qk−1, a,Qk) ∈ U j
src[k]. Now take j′ such that all Tk ∈ ∆j′

done. We know Tk witnesses

Qk
Qk−1−−−→ Q′

k. By Lemma C.4 we know that we have (Qk, ∅, Qk−1, Q
′
k) ∈ U j′

targ[k], and then by Lemma C.6

that we have
(
qkQ′

k
,⊥, a,Qk−1 ∪ {qk−1}

)
∈ U j′′

src[k − 1] for some j′′.

We essentially iterate the above argument from k′ = k − 1 down to k′ = 1. Begin with j′ such that(
qk′ ,⊥, a,Qlbl

k′
)
∈ U j′

src[k′] and all Tk′ ∈ ∆j′

done. We know Tk′ witnesses Qlbl
k′

Qlbl
k′−1−−−−→ Qk′ ∪Q′

k′ . By Lemma C.4
we know it to be the case that

(
Qlbl

k′ , ∅, Qlbl
k′−1, Qk′ ∪Q′

k′
)
∈ U j′

targ[k], and then by Lemma C.6 that we have(
qk′Qk′∪Q′

k′
,⊥, a,Qlbl

k′−1

)
∈ U j′′

src[k − 1] for some j′′.

Finally, when k′ = 1, we have some j′ such that
(
q1,⊥, a,Qlbl

1

)
∈ U j′

src[1] and T1 ∈ ∆j′

done. Note that

q1 = qp,Qn,...,Qk+1,Q
′
k,Qk−1∪Q′

k−1,...,Q2∪Q′
2
.

We know Tk′ witnesses Qlbl
1

a−−−−−−→
Qcol∪Q′

col

Q1 ∪Q′
1. By Lemma C.5 we know

(
Qlbl

1 , ∅, a,Qcol ∪Q′
col, Q1 ∪Q′

1

)
∈

U j′

targ[k], and then by Lemma C.7 we have j′′ such that we have all t′ in

qp
a−−−−−−→

Qcol∪Q′
col

(
Q1 ∪Q′

1, . . . , Qk−1 ∪Q′
k−1, Q

′
k, Qk+1, . . . , Qn

)



in ∆j′′

done. This, in particular, includes t.

• when o = pushkb we had transitions qp′
b−−−→

Qcol

(Q1, . . . , Qn) and T = Q1
a−−−→

Q′
col

Q′
1 in Ai with Qcol ⊆ Qk and

added the transitions
qp

a−−−→
Q′

col

(
Q′

1, Q2, . . . , Qk−1, Qk ∪Qcol, Qk+1, . . . , Qn

)
which include t.

By induction, there exists some j where t1 = qp′Qn,...,Q2

b−−−→
Qcol

Q1 first appears in ∆j
done. Also by induction, for

each t′ ∈ T , there is some j′ such that t′ first appears in ∆j′

done.

Consider the jth iteration where t1 is added to ∆done. During the call to update rules we call create trip wire in
the loop handling push rules with q1 = qk = qp,Qn,...,Qk+1,Qk∪Qcol,Qk−1,...,Q2 , qk−1 = ⊥, a = b and Qk = Q1.

The call ensures (q1,⊥, b, Q1) ∈ U j
src[1]. Now take j′ such that all T1 ∈ ∆j′

done. We know T witnesses
Q1

a−−−→
Qcol

Q′
1. By Lemma C.5 we know that we have (Q1, ∅, a,Qcol, Q

′
1) ∈ U j′

targ[1], and then by Lemma C.7 we

have j′′ such that we have all t′ in

qp
a−−−→

Q′
col

(
Q1 ∪Q′

1, Q2, . . . , Qk−1, Qk ∪Qcol, Qk+1, . . . , Qn

)
in ∆j′′

done. This, in particular, includes t.

This completes the proof.

D. Full Experimental Results
The full experimental results are given in Table 2. In the main paper we restricted attention to trials where at least
one tool took over 1s. This is because virtual machine “warm-up” and HORS to CPDS conversion can skew the
results on small benchmarks.



Benchmark file Ord Sz T TMC G C Ctran Ccpds Capprox 3/ 7

example2-1 1 7 0.003 0.029 0.006 0.051 0.027 0.023 0.017 7

example2-3 1 13 0.003 0.027 0.006 0.044 0.027 0.018 0.012 7

example3-1 (bug) 1 8 0.000 0.059 0.003 0.057 0.027 0.030 0.016
exception 1 18 0.002 0.026 0.004 0.044 0.026 0.018 0.012 7

file 1 8 0.002 0.028 0.006 0.050 0.027 0.023 0.017 7

fileocamlc 4 111 0.012 0.048 0.069 0.362 0.073 0.288 0.238 7

filewrong (bug) 4 45 0.001 0.061 0.024 0.236 0.052 0.184 0.087 7

flow 4 16 0.003 0.029 0.006 0.075 0.028 0.047 0.026 7

lock1 4 38 0.006 0.032 0.011 0.089 0.039 0.050 0.043 7

lock2 4 45 0.014 0.053 0.273 0.389 0.048 0.341 0.218 7

order5 5 52 0.007 0.039 — 0.415 0.057 0.358 0.205
order5-2 5 40 0.022 0.084 — 0.305 0.050 0.255 0.157
order5-variant 5 55 0.019 0.039 1.519 0.427 0.057 0.370 0.177
twofiles 4 47 0.009 0.039 0.091 0.257 0.053 0.204 0.107 7

twofilesexn 4 56 0.009 0.038 0.041 0.256 0.058 0.198 0.099 7

checknz 2 93 0.004 0.032 0.013 0.076 0.040 0.037 0.031 7

checkpairs (bug) 2 251 0.003 0.065 0.037 0.244 0.062 0.182 0.070 7

filepath 2 5956 210.102 — — 0.397 0.168 0.229 0.221 3

filter-nonzero (bug) 5 484 0.006 0.115 0.182 1.443 0.100 1.344 1.006 7

filter-nonzero-1 5 890 0.176 211.907 — 4.492 0.159 4.332 3.484
last 2 193 0.011 0.037 0.019 0.120 0.055 0.065 0.059 7

map-head-filter (bug) 3 370 0.008 0.081 0.139 0.413 0.077 0.336 0.152 7

map-head-filter-1 3 880 0.141 1.343 — 0.400 0.119 0.281 0.273
map-plusone 5 302 0.018 0.122 0.137 0.855 0.098 0.757 0.609 7

map-plusone-1 5 459 0.030 0.736 — 1.247 0.119 1.128 0.908
map-plusone-2 5 704 1.358 13.962 — 2.634 0.142 2.491 2.183
mkgroundterm 2 379 0.041 0.072 0.048 0.228 0.077 0.151 0.143 7

risers 2 563 0.060 0.097 0.062 0.328 0.095 0.234 0.133 7

safe-head 3 354 0.021 0.045 0.056 0.361 0.077 0.284 0.107 7

safe-init 3 680 0.039 0.221 0.302 0.660 0.100 0.560 0.193 7

safe-tail 3 468 0.028 0.057 0.088 0.526 0.091 0.435 0.146 7

tails 3 259 0.019 0.045 0.450 0.143 0.064 0.079 0.073
exp4-1 4 31 — 0.047 0.114 — 0.039 — 0.240 7

exp4-5 4 55 — — 0.818 — 0.046 — 2.128 7

merge4 2 141 0.068 0.229 0.494 0.530 0.261 0.269 0.190 7

stress 1 35 0.024 0.132 0.006 0.056 0.027 0.029 0.023
cfa-life2 14 7648 — — — — 0.479 — —
cfa-matrix-1 8 2944 16.937 — — 19.230 0.332 18.898 18.892
cfa-psdes 7 1819 17.654 — — 1.920 0.273 1.647 1.640 3

dna 2 411 0.031 0.263 0.046 6.918 0.175 6.743 6.206 7

fibstring 4 29 — 74.569 0.114 — 0.042 — 0.256 7

filewrong (bug) 4 45 0.001 0.060 0.028 0.218 0.052 0.166 0.085 7

fold fun list 7 1346 0.519 — — 1.356 0.202 1.154 1.147
fold right 5 1310 31.624 — — 1.255 0.191 1.064 1.043 3

jwig-cal main 2 7627 0.062 0.052 0.161 3.802 3.739 0.063 0.057 7

l 3 35 — 15.743 0.010 0.248 0.042 0.206 0.199



search-e-church (bug) 6 837 0.012 0.258 — 4.741 0.155 4.586 1.760
specialize cps coerce1-c 3 2731 — — — 1.131 0.293 0.838 0.830 3

tak (bug) 8 451 — 3.945 — 41.772 0.136 41.636 34.855
xhtmlf-div-2 (bug) 2 3003 0.234 — 39.961 2.743 2.303 0.440 0.422
xhtmlf-m-church 2 3027 0.238 — 8.420 2.708 2.319 0.389 0.382
zip 4 2952 22.251 — — 3.356 0.295 3.061 1.609 3

Table 2: Comparison of model-checking tools on all benchmarks.
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