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Abstract. We introduce a natural extension of collapsible pushdown
systems called annotated pushdown systems that replaces collapse links
with stack annotations. We believe this new model has many advan-
tages. We present a saturation method for global backwards reachability
analysis of these models that can also be used to analyse collapsible
pushdown systems. Beginning with an automaton representing a set of
configurations, we build an automaton accepting all configurations that
can reach this set. We also improve upon previous saturation techniques
for higher-order pushdown systems by significantly reducing the size of
the automaton constructed and simplifying the algorithm and proofs.

1 Introduction

Via languages such as C++, Haskell, Javascript, Python, or Scala, modern day
programming increasingly embraces higher-order procedure calls. This is a chal-
lenge for software verification, which usually does not model recursion accurately,
or models only first-order calls (e.g. SLAM [2] and Moped [29]). Collapsible
pushdown systems (collapsible PDS) are an automaton model of (higher-order
recursion) schemes [11, 24], which allow reasoning about higher-order recursion.

Collapsible pushdown systems are a generalisation of higher-order pushdown
systems (higher-order PDS). Higher-order PDS provide a model of schemes sub-
ject to a technical constraint called safety [23, 19] and are closely related to the
Caucal hierarchy [9]. These systems extend the stack of a pushdown system to
allow a nested “stack-of-stacks” structure. Recently it has been shown by Parys
that safety is a genuine constraint on definable traces [26]. Hence, to model
higher-order recursion fully, we require collapsible PDS, which — using an idea
from panic automata [20] — add additional collapse links to the stack structure.
These links allow the automaton to return to the context in which a character
was added to the stack.

These formalisms are known to have good model-checking properties. For ex-
ample, it is decidable whether a given µ-calculus formula holds on the execution
graph of a scheme [24] (or collapsible PDS [14]). Although, the complexity of
such analyses is high — for an order-n collapsible PDS, reachability checking is
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complete for (n − 1)-EXPTIME, while µ-calculus is complete for n-EXPTIME
— the problem becomes PTIME if the arity of the recursion scheme, and the
number of alternations in the formula, is bounded. The same holds true for col-
lapsible PDS when the number of control states is bounded. Furthermore, when
translating from a scheme to a collapsible PDS, it is the arity that determines
the number of control states [14]. It has been shown by Kobayashi [21] that these
analyses can be performed in practice. For example, resource usage properties
of programs of orders up to five can be verified in a matter of seconds.

Kobayashi’s approach uses intersection types. In the order-1 case, an alter-
native approach called saturation has been successfully implemented by tools
such as Moped [29] and PDSolver [16]. Saturation techniques begin with a small
automaton — representing a set of configurations — and add new transitions
as they become necessary until a fixed point is reached. These algorithms, then,
naturally do not pay the worst case complexity immediately, and hence, repre-
sent ideal algorithms for efficient verification. Furthermore, they also provide a
solution to the global model checking problem: that is, determining the set of all
system states that satisfy a property. This is particularly useful when, for ex-
ample, composing analyses. Furthermore, when testing reachability from a given
initial state, we may terminate the analysis as soon as this state is found. That
is, we do not need to compute the whole fixed point.

Our first contribution is a new model of higher-order execution called anno-
tated pushdown systems (annotated PDS)3, which replace the collapse links of
a collapsible PDS with annotations containing the stack the link pointed to. In
addition to allowing a more straightforward definition of regularity and greatly
simplifying the proofs of the paper, this model provides a more natural handling
of collapse links, highlighting their connection with closures. In addition, con-
figuration graphs of this model are isomorphic to those of collapsible PDS when
restricted to configurations reachable from the initial configuration.

Our second contribution is a saturation method for backwards reachability
analysis of annotated pushdown systems that can also be applied as-is to col-
lapsible PDS. This is a global model-checking algorithm that is based on satu-
ration techniques for higher-order pushdown automata [5, 15, 30]. Our algorithm
handles alternating (or “two-player”) as well as non-alternating systems.

In addition to the extension to annotated pushdown systems, the algorithm
improves on Hague and Ong’s construction for higher-order PDS [15] since the
number of states introduced by the construction is no longer multiplied by the
number of iterations it takes to reach a fixed point, potentially leading to a
large reduction in the size of the automata constructed. In addition, both the
presentation and the proofs of correctness are much less involved.

Related Work In addition to the works mentioned above, solutions to global
model checking problems have been proposed by Broadbent et al. [6]. Addition-
ally, Salvati and Walukiewicz provide a global analysis technique for µ-calculus
properties using a Krivine machine model of schemes [28]. However, there are

3 Kartzow and Parys have independently introduced a similar model [18].
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currently no versions of these algorithms available that do not pay immediately
the exponential blow up.

Extensions of schemes with pattern matching have also been considered by
Ong and Ramsay [25]. A recent algorithm by Kobayashi speeds up his techniques
using an over-approximating least fixed point computation to give an initial input
to a greatest fixed point computation [22]. Like saturation this is a ‘bottom-
up’ approach and it would be interesting to see whether there are connections.
Extensions of higher-order PDS to concurrent settings have also been considered
by Seth [31].

The saturation technique has proved popular in the literature. It was intro-
duced by Bouajjani et al. [4] and Finkel et al. [13] and based on a string rewriting
algorithm by Benois [3]. It has since been extended to Büchi games [7], parity
and µ-calculus conditions [16], and concurrent systems [32, 1], as well as weighted
pushdown systems [27]. In addition to various implementations, efficient versions
of these algorithms have also been developed [12, 33].

2 Preliminaries

2.1 Annotated Pushdown Systems

We define annotated stacks, their operations, and annotated pushdown systems.

Annotated stacks Let Σ be a set of stack symbols. We define a notion of
annotated higher-order stack. Intuitively, an annotated stack of order-n is an
order-n stack in which stack symbols have attached annotated stacks of order
at most n. For the rest of the formal definitions, we fix the maximal order to n,
and use k to range between n and 1. We simultaneously define for all 1 ≤ k ≤ n,
the set Stacksnk of stacks of order-k whose symbols are annotated by stacks of
order at most n. Note, we use subscripts to indicate the order of a stack.

Definition 1 (Annotated Stacks). The family of sets (Stacksnk )1≤k≤n is the
smallest family (for point-wise inclusion) such that:

– for all 2 ≤ k ≤ n, Stacksnk is the set of all (possibly empty) sequences
[w1 . . . wℓ]k with w1, . . . , wℓ ∈ Stacksnk−1.

– Stacksn1 is all sequences [a1
w1 . . . aℓ

wℓ ]1 with ℓ ≥ 0 and for all 1 ≤ i ≤ ℓ, ai
is a stack symbol in Σ and wi is an annotated stack in

⋃

1≤k≤n

Stacksnk .

Observe that the above definition uses a least fixed-point. This ensures that
all stacks are finite; in particular a stack cannot contain itself as an annotation.
When the maximal order n is clear, we simply write Stacksk instead of Stacksnk .
We also write order-k stack to designate an annotated stack in Stacksnk .

An order-n stack can be represented naturally as an edge-labelled tree over
the alphabet {[n−1, . . . , [1, ]1, . . . , ]n−1} ⊎Σ, with Σ-labelled edges having a sec-
ond target to the tree representing the annotation. For technical convenience, a
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tree representing an order-k stack does not use [k or ]k symbols (these appear
uniquely at the beginning and end of the stack). An example order-3 stack is
given below, with only a few annotations shown. The annotations are order-3
and order-2 respectively.

• • • • • • • • • • • • • • • • •
[2 [1 a b ]1 ]2 [2 [1 c ]1 ]2 [1 d ]1

Given an order-n stack w = [w1 . . . wℓ]n, we define topn+1(w) = w and

topn([w1 . . . wℓ]n) = w1 when ℓ > 0
topn([]n) = []n−1 otherwise

topk([w1 . . . wℓ]n) = topk(w1) when k < n and ℓ > 0

noting that topk(w) is undefined if topk′(w) is empty for any k′ > k.
We write u :k v — where u is order-(k − 1) — to denote the stack obtained

by placing u on top of the topk stack of v. That is, if v = [v1 . . . vℓ]k then u :k
v = [uv1 . . . vℓ]k, and if v = [v1 . . . vℓ]k′ with k′ > k, u :k v = [u :k v1, . . . , vℓ]k′ .
This composition associates to the right. For example, the order-3 stack above
can be written [[[awb]1]2]3 and also u :3 v where u is the order-2 stack [[awb]1]2
and v is the empty order-3 stack []3. Then u :3 u :3 v is [[[awb]1]2[[a

wb]1]2]3.

Operations on Order-n Annotated Stacks The following operations can be
performed on an order-n stack. We say o ∈ On is of order-k when k is minimal
such that o ∈ Ok. For example, pushk is of order k.

On = {pop1, . . . , popn} ∪ {push2, . . . , pushn} ∪ {collapse2, . . . , collapsen} ∪
{

push1
a, . . . , push

n
a , rewa | a ∈ Σ

}

We define each stack operation for an order-n stack w. Annotations are created
by pushk

a, which add a character to the top of a given stack w annotated by
topk+1(popk(w)). This gives a access to the context in which it was created. In
Section 3.2 we give several examples of these operations.

1. We set popk(u :k v) = v.
2. We set pushk(u :k v) = u :k u :k v.

3. We set collapsek

(

au
′

:1 u :(k+1) v
)

= u′ :(k+1) v when u is order-k and

n > k ≥ 1; and collapsen(a
u :1 v) = u when u is order-n.

4. We set pushk
b (w) = bu :1 w where u = topk+1(popk(w)).

5. We set rewb(a
u :1 v) = bu :1 v.

Annotated Pushdown Systems We are now ready to define annotated PDS.

Definition 2 (Annotated Pushdown Systems). An order-n alternating an-
notated pushdown system (annotated PDS) is a tuple C = (P , Σ,R) where
P is a finite set of control states, Σ is a finite stack alphabet, and the set
R ⊆ (P ×Σ ×On × P) ∪

(

P × 2P
)

is a set of rules.
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We write configurations of an annotated PDS as a pair 〈p, w〉 where p ∈ P
and w ∈ Stacksn. We write 〈p, w〉 −→ 〈p′, w′〉 to denote a transition from
a rule (p, a, o, p′) with top1(w) = a and w′ = o(w). Furthermore, we have a
transition 〈p, w〉 −→ { 〈p′, w〉 | p′ ∈ P } whenever we have a rule p → P . A
non-alternating annotated PDS has no rules of this second form. We write C to
denote a set of configurations.

Collapsible Pushdown Systems Annotated pushdown systems are based on
collapsible PDS. In this model, stacks do not contain order-k annotations, rather
they have order-k links to an order-k stack occurring lower down in the top-most
order-(k + 1) stack. We define the model formally in the appendix. We give an
example below, where links are marked with their order.

• • • • • • • • • • • • • • • •
[2 [1 a

3

b ]1 ]2 [2 [1 c

2

]1 [1 d

1

e ]1 ]2

The set On is the same as in the annotated version. Collapse links are created
by the pushk

a operation, which augments a with a link to popk of the stack being
pushed onto. A collapsek returns to the stack that is the target of the link.

Collapsible vs. Annotated To an order-n stack w with links, we associate
a canonical annotated stack [[w ]] where each link is replaced by the annotated
version of the link’s target. We inductively and simultaneously define [[w ]]k which
is the annotated stack representing topk(w).







[[ [ ]k :k+1 v ]]k = [ ]k
[[u :k′+1 v ]]k = [[u ]]k′ :k′+1 [[ v ]]k where 0 < k′ < k

[[ a∗ :1 v ]]k = a[[ collapsek′ (a∗:1v) ]]k′ :1 [[ v ]]k where ∗ is an order-k′ link

For example, the order-3 stack above becomes [[[aw1b]1]2[[c
w2 ]1[d

w3e]1]2]3 where
w1 = [[[cw2 ]1[d

w3e]1]2]3, w2 = [[dw3e]1]2 and w3 = [e]1.
Note that some annotated stacks such as [[aw]1]2 with w = [[b[]1 ]1]2 do not

correspond to any stacks with links. However for all order-n stacks with links w
and for any operation o of order at most n, we have [[ o(w) ]] = o([[w ]]).

Remark 1. The configuration graphs of annotated pushdown systems of order-n
are isomorphic to their collapsible counter-part when restricted to configura-
tions reachable from the initial configuration. This implies annotated pushdown
automata generate the same trees as higher-order recursion schemes, as in [6].

2.2 Regularity of Annotated Stacks

We will present an algorithm that operates on sets of configurations. For this
we use order-n stack automata, thus defining a notion of regular sets of stacks.
These have a nested structure based on a similar automata model by Bouajjani
and Meyer [5]. The handling of annotations is similar to automata introduced
by Broadbent et al. [6], except we read stacks top-down rather than bottom-up.

5



Definition 3 (Order-n Stack Automata). An order-n stack automaton

A = (Qn, . . . ,Q1, Σ,∆n, . . . , ∆1,Fn, . . . ,F1)

is a tuple where Σ is a finite stack alphabet, and

1. for all n ≥ k ≥ 2, we have Qk is a finite set of states, ∆k ⊆ Qk×Qk−1×2Qk

is a transition relation, and Fk ⊆ Qk is a set of accepting states, and
2. Q1 is a finite set of states, ∆1 ⊆

⋃

2≤k≤n

(

Q1 ×Σ × 2Qk × 2Q1

)

a transition

relation, and F1 ⊆ Q1 a set of accepting states.

Stack automata are alternating automata that read the stack in a nested
fashion. Order-k stacks are recognised from states in Qk. A transition (q, q′, Q) ∈
∆k from q to Q for some k > 1 can be fired when the topk−1 stack is accepted
from q′ ∈ Q(k−1). The remainder of the stack must be accepted from all states
in Q. At order-1, a transition (q, a,Qbr, Q) is a standard alternating a-transition
with the additional requirement that the stack annotating a is accepted from
all states in Qbr. A stack is accepted if a subset of Fk is reached at the end
of each order-k stack. In the appendix, we formally define the runs of a stack
automaton. We write w ∈ Lq(A) whenever w is accepted from a state q.

A (partial) run is pictured below, using q3
q2
−→ Q3 ∈ ∆3, q2

q1
−→ Q2 ∈ ∆2 and

q1
a

−−→
Qbr

Q1 ∈ ∆1. The node labelled Qbr begins a run on the stack annotating a.

q3 q2 q1 Q1 · · · Q2 · · · Q3 · · · Qbr · · ·
[2 [1 a · · · ]1 · · · ]2 · · · · · ·

Remark 2. In the appendix, we show several results on stack automata: mem-
bership testing is linear time; emptiness is PSPACE-complete; the sets of stacks
accepted by these automata form an effective Boolean algebra (note that com-
plementation causes a blow-up in the size of the automaton); and they accept the
same family of collapsible stacks as the automata used by Broadbent et al. [6].

3 Algorithm

Given an annotated PDS C and a stack automaton A0 with a state qp ∈ Qn

for each control state p in C, we define Pre∗C(A0) as the smallest set such that
Pre∗C(A0) ⊇

{

〈p, w〉
∣

∣ w ∈ Lqp(A0)
}

, and

Pre∗C(A0) ⊇

{

〈p, w〉

∣

∣

∣

∣

∃〈p, w〉 −→ 〈p′, w′〉 with 〈p′, w′〉 ∈ Pre∗C(A0) ∨
∃〈p, w〉 −→ C and C ⊆ Pre∗C(A0)

}

recalling that C denotes a set of configurations. We build a stack automaton
recognising Pre∗C(A0). We begin with A0 and iterate a saturation function de-
noted Γ — which adds new transitions to A0 — until a ‘fixed point’ has been
reached. That is, we iterate Ai+1 = Γ (Ai) until Ai+1 = Ai. As the number of
states is bounded, we eventually obtain this, giving us the following theorem.
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Theorem 1. Given an alternating annotated pushdown system C and a stack
automaton A0, we can construct an automaton A accepting Pre∗C(A0).

The construction runs in n-EXPTIME for both alternating annotated PDS
and collapsible PDS — which is optimal — and can be improved to (n − 1)-
EXPTIME for non-alternating collapsible PDS when the initial automaton sat-
isfies a certain notion of non-alternation, again optimal. Correctness and com-
plexity are discussed in subsequent sections.

3.1 Notation and Conventions

Number of Transitions We assume for all q ∈ Qk and Q ⊆ Qk that there

is at most one transition of the form q
q′

−→ Q ∈ ∆k. This condition can easily

be ensured on A0 by replacing pairs of transitions q
q1
−→ Q and q

q2
−→ Q with a

single transition q
q′

−→ Q, where q′ accepts the union of the languages of stacks
accepted from q1 and q2. The construction maintains this condition.

Short-form Notation We introduce some short-form notation for runs. Con-
sider the example run in Section 2.2. In this case, we write q3

a
−−→
Qbr

(Q1, Q2, Q3),

q3
q1
−→ (Q2, Q3), and q3

q2
−→ (Q3). In general, we write

q
a

−−→
Qbr

(Q1, . . . , Qk) and q
q′

−→ (Qk′+1, . . . , Qk) .

In the first case, q ∈ Qk and there exist qk−1, . . . , q1 such that q
qk−1

−−−→ Qk ∈

∆k, qk−1
qk−2

−−−→ Qk−1 ∈ ∆k−1, . . . , q1
a

−−→
Qbr

Q1 ∈ ∆1. Thus, we capture nested

sequences of initial transitions from q. Since we assume at most one transition
between any state and set of states, the intermediate states qk−1, . . . , q1 are
uniquely determined by q, a,Qbr and Q1, . . . , Qk.

In the second case q ∈ Qk, q
′ ∈ Qk′ , and there exist qk−1, . . . , qk′+1 with

q
qk−1

−−−→ Qk ∈ ∆k, qk−1
qk−2

−−−→ Qk−1 ∈ ∆k−1, . . . , qk′+2

qk′+1

−−−→ Qk′+2 ∈ ∆k′+2 and

qk′+1
q′

−→ Qk′+1 ∈ ∆k′+1.

We lift the short-form transition notation to transitions from sets of states.
We assume that state-sets Qn, . . . ,Q1 are disjoint. Suppose Q = {q1, . . . , qℓ}

and for all 1 ≤ i ≤ ℓ we have qi
a

−−→
Qi

br

(

Qi
1, . . . , Q

i
k

)

. Then we have Q
a

−−→
Qbr

(Q1, . . . , Qk) where Qbr =
⋃

1≤i≤ℓ Q
i
br and for all k, Qk =

⋃

1≤i≤ℓ Q
i
k. Because

an annotation can only be of one order, we insist that Qbr ⊆ Qk for some k.

Finally, we remark that a transition to the empty set is distinct from having
no transition.

Initial States We say a state is initial if it is of the form qp ∈ Qn for some
control state p or if it is a state qk ∈ Qk for k < n such that there exists
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a transition qk+1
qk−→ Qk+1 in ∆k+1. We make the assumption that all initial

states do not have any incoming transitions and that they are not final4

Adding Transitions Finally, when we add a transition qn
a

−−→
Qbr

(Q1, . . . , Qn)

to the automaton, then for each n ≥ k > 1, we add qk
qk−1

−−−→ Qk to ∆k (if
a transition between qk and Qk does not already exist, otherwise we use the
existing transition and state qk−1) and add q1

a
−−→
Qbr

Q1 to ∆1.

3.2 The Saturation Function

Given an annotated PDS C = (P , Σ,R), we define the saturation function.
Examples can be found below.

Definition 4 (The Saturation Function Γ ). Given an order-n stack au-
tomaton A we define A′ = Γ (A) such that A′ is A plus, for each (p, a, o, p′) ∈ R,

1. when o = popk, for each qp′

qk−→ (Qk+1, . . . , Qn) in A, add to A′

qp
a
−→
∅

(∅, . . . , ∅, {qk} , Qk+1, . . . , Qn) ,

2. when o = pushk, for each qp′

a
−−→
Qbr

(Q1, . . . , Qk, . . . , Qn) and Qk
a

−−→
Q′

br

(Q′
1, . . . , Q

′
k) in A, add to A′ the transition

qp
a

−−−−−−→
Qbr∪Q′

br

(

Q1 ∪Q′
1, . . . , Qk−1 ∪Q′

k−1, Q
′
k, Qk+1, . . . , Qn

)

,

3. when o = collapsek, when k = n, add qp
a

−−−−→
{qp′}

(∅, . . . , ∅), and when k < n,

for each transition qp′

qk−→ (Qk+1, . . . , Qn) in A, add to A′ the transition

qp
a

−−−→
{qk}

(∅, . . . , ∅, Qk+1, . . . , Qn) ,

4. when o = pushk
b for all transitions qp′

b
−−→
Qbr

(Q1, . . . , Qn) and Q1
a

−−→
Q′

br

Q′
1 in

A with Qbr ⊆ Qk, add to A′ the transition

qp
a

−−→
Q′

br

(Q′
1, Q2, . . . , Qk ∪Qbr, . . . , Qn) ,

5. when o = rewb for each transition qp′

b
−−→
Qbr

(Q1, . . . , Qn) in A, add to A′ the

transition qp
a

−−→
Qbr

(Q1, . . . , Qn).

Finally, for every rule p → P , let Q = { qp′ | p′ ∈ P }, then, for each Q
a

−−→
Qbr

(Q1, . . . , Qn), add a transition qp
a

−−→
Qbr

(Q1, . . . , Qn). For convenience, the state-

sets of A′ are defined implicitly from the states used in the transition relations.

4 Hence automata cannot accept empty stacks from initial states. This can be overcome
by introducing a bottom-of-stack symbol.
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Examples All examples except one use the order-2 stack w′, labelled by a run
of a stack automaton, pictured below, where the sub-script indicates states in Q1

orQ2. Recall that the first transition of the run can be written qp′

a
−−→
Q2

br

(

Q1
1, Q

1
2

)

.

qp′ q1 Q1
1 Q1

2 Q3
1 Q4

1 Q2
2 Q1

br · · · Q2
br · · ·

[1 a ]1 [1 a ]1 [1 [1

Example of (p, a, pop2, p
′) Consider the stack w pictured below with pop2(w) =

w′. By the construction, we add a transition qp
a
−→
∅

(∅, {qp′}) giving the run below

labelling w, where q′1 is the state labelling the new transition qp′

q′1−→ {qp′}.

qp q′1 ∅ ∅ qp′ q1 Q1
1 Q1

2 · · · Q1
br · · ·

[1 a c ]1 [1 a ]1 [1 [1

Example of (p, a, push2, p
′) Consider the stack w below with push2(w) = w′.

Take Q1
2

a
−−→
Q1

br

(

Q4
1, Q

2
2

)

from the node labelled Q1
2 in the run over w′. By the

construction, we add qp
a

−−−−−−→
Q1

br
∪Q2

br

(

Q1
1 ∪Q4

1, Q
2
2

)

and obtain a run over w

qp q′1 Q1
1 ∪Q4

1 Q2
2 Q1

br ∪Q2
br · · · .

[1 a ]1 [1

where q′1 is the state used by the new transition. This run combines the runs
over the top two order-1 stacks of w′, ensuring any stack accepted could appear
twice on top of a stack already accepted. That is, push2(w) = w′ is in Pre∗C(A0).

Example of (p, a, collapse2, p
′) Consider the stack w below with collapse2(w) =

w′. By the construction, we add a transition qp
a

−−−−→
{qp′}

(∅, ∅); hence, we have the

run below, where q′1 is the state labelling the new transition qp′

q′1−→ {∅}.

qp q′1 ∅ ∅ ∅ ∅ ∅ qp′ q1 Q1
1 Q1

2 · · · Q1
br · · ·

[1 a ]1 [1 c ]1 [1 a ]1 [1 [1

Example of
(

p, a, push2
b, p

′
)

The stack of our running example cannot be con-
structed via a push2

b operation. Hence, we use the following stack and run for
w′

qp′ q1 Q1
1 Q2

1 Q1
2 Q3

1 Q4
1 Q2

2 Qbr Q5
1 Q6

1 Q3
2

[1 b a ]1 [1 a ]1 [1 a ]1

with qp′

b
−−→
Qbr

(

Q1
1, Q

1
2

)

and Q1
1

a
−→
∅

Q2
1. The algorithm adds qp

a
−→
∅

(

Q2
1, Q

1
2 ∪Qbr

)

.

This gives us a run on the stack w such that push2
b(w) = w′, where q′1 is the

order-1 state labelling the new order-2 transition.

9



qp′ q′1 Q2
1 Q1

2 ∪Qbr Q3
1 ∪Q5

1 Q4
1 ∪Q6

1 Q2
2 ∪Q3

2

[1 a ]1 [1 a ]1

4 Correctness and Complexity

Theorem 2. For a given C and A0, let A = Ai where i is the least index such
that Ai+1 = Γ (Ai). We have w ∈ Lqp(A) iff 〈p, w〉 ∈ Pre∗C(A0).

The proof is in the appendix. Completeness is by a straightforward induction
over the “distance” to A0. Soundness is the key technical challenge. The idea is
to assign a “meaning” to each state of the automaton. For this, we define what it
means for an order-k stack w to satisfy a state q ∈ Qk, which is denoted w |= q.

Definition 5 (w |= q). For any Q ⊆ Qk and any order-k stack w, we write
w |= Q if w |= q for all q ∈ Q, and we define w |= q by a case distinction on q.

1. q is an initial state in Qn. Then for any order-n stack w, we say that w |= q
if 〈q, w〉 ∈ Pre∗C(A0).

2. q is an initial state in Qk, labeling a transition qk+1
q
−→ Qk+1 ∈ ∆k+1. Then

for any order-k stack w, we say that w |= q if for all order-(k + 1) stacks v
s.t. v |= Qk+1, then w :(k+1) v |= qk+1.

3. q is a non-initial state in Qk. Then for any order-k stack w, we say that
w |= q if A0 accepts w from q.

We show the automaton constructed is sound with respect to this meaning.
That is, for all qk

a
−−→
Qbr

(Q1, . . . , Qk), we can place au, for any u |= Qbr, on top of

any stack satisfying Q1, . . . , Qk and obtain a stack that satisfies qk. By induction
over the length of the stack, this property extends to complete stacks. That is,
a stack is accepted from a state only if it is in its meaning. Since states qp are
assigned their meaning in Pre∗C(A0), we obtain soundness of the construction.

The construction is also sound for collapsible stacks. That is, 〈p, w〉 belongs
to Pre∗C(A0) where C is a collapsible PDS and A0 accepts collapsible stacks iff
〈p, [[w ]]n〉 belongs to Pre∗C(A0) where C and A0 are interpreted over annotated
stacks. This is due to the commutativity of [[ o(w) ]] = o([[w ]]).

Proposition 1. The saturation construction for an alternating order-n anno-
tated PDS C and an order-n stack automaton A0 runs in n-EXPTIME, which
is optimal.

Proof. Let 2 ↑0 ℓ = ℓ and 2 ↑i+1 ℓ = 22↑iℓ. The number of states of A is bounded
by 2 ↑(n−1) ℓ where ℓ is the size of C and A0: each state in Qk was either in A0

or comes from a transition in ∆k+1. Since the automata are alternating, there
is an exponential blow up at each order except at order-n. Each iteration of the
algorithm adds at least one new transition. Only 2 ↑n ℓ transitions can be added.
Since the reachability problem for alternating higher-order pushdown systems is
complete for n-EXPTIME [15], our algorithm is optimal.
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It is known that the complexity of reachability for non-alternating collapsible
PDS is in (n− 1)-EXPTIME. The cause of the additional exponential blow up
is in the alternation of the stack automata. In the appendix we show that, for a
suitable notion of non-alternating stack automata, our algorithm can be adapted
to run in (n− 1)-EXPTIME, when the collapsible PDS is also non-alternating.

Furthermore, the algorithm is PTIME for a fixed order and number of control
states. If we obtained C from a scheme, the number of control states is given by
the arity of the scheme [14]. Since the arity and order are expected to be small,
we are hopeful that our algorithm will perform well in practice.

5 Perspectives

There are several avenues of future work. First, we intend to generalise our
saturation technique to computing winning regions of parity conditions, based on
the order-1 case [17]. This will permit verification of more general specifications.
We also plan to design a prototype tool to test the algorithm in practice

An important direction is that of counter example generation. When check-
ing safety property, it is desirable to provide a trace witnessing a violation of the
property. This can be used to repair the bug and as part of a counter-example
guided abstraction refinement (CEGAR) loop enabling efficient verification algo-
rithms. However, finding shortest counter examples — due to its tight connection
with pumping lemmas — will present a challenging and interesting problem.

Saturation techniques have been extended to concurrent order-1 pushdown
systems [32, 1]; concurrency at higher-orders would be interesting.

It will also be interesting to study notions of regularity of annotated stacks.
In our notion of regularity, the forwards reachability set is not regular, due to the
copy operation pushk. This problem was addressed by Carayol for higher-order
stacks [8]; adapting these techniques to annotated PDS is a challenging problem.
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A Collapsible Pushdown Systems

We give the definition of higher-order collapsible stacks and their operations,
before giving the definition of collapsible pushdown systems.

A.1 Higher-Order Collapsible Stacks

Higher-order collapsible stacks are built from a stack alphabet Σ and form a
nested “stack-of-stacks” structure. Furthermore, each stack character contains
a pointer — called a “link” — to a position lower down in the stack. When
building stacks from the stack operations defined below, copies of sub-stacks
will be made. The link is intuitively a pointer to the context in which the stack
character was first created. We define collapse links formally below.

Definition 6 (Order-n Collapsible Stacks). Given a finite set of stack char-
acters Σ, an order-0 stack is simply a character a ∈ Σ. An order-n stack is a
sequence w = [w1 . . . wℓ]n such that each wi is an order-(n − 1) stack and each
character on the stack is augmented with a collapse link. Let Stacksn denote the
set of order-n stacks.

An order-n stack can be represented naturally as an edge-labelled word-graph
over the alphabet {[n−1, . . . , [1, ]1, . . . , ]n−1} ⊎ Σ, with additional collapse-links
pointing from a stack character in Σ to the beginning of the graph represent-
ing the target of the link. An example order-3 stack is given below, with only
a few collapse links shown. The collapse links range from order-3 to order-1
respectively.

• • • • • • • • • • • • • • • •
[2 [1 a b ]1 ]2 [2 [1 c ]1 [1 d e ]1 ]2

Given an order-n stack [w1 . . . wℓ]n, we define

topn([w1 . . . wℓ]n) = w1 when ℓ > 0
topn([]n) = []n−1 otherwise

topk([w1 . . . wℓ]n) = topk(w1) when k < n and ℓ > 0

noting that topk(w) is undefined if topk′(w) is empty for any k′ > k. We also
remove the top portion of a topk stack using

botin([w1 . . . wℓ]n) = [wℓ−i+1 . . . wℓ]n when i ≤ ℓ and ℓ > 0
botik([w1 . . . wℓ]n) = [botik(w1)w2 . . . wℓ]n when k < n and ℓ > 0 .

Formally, then, a collapse link is a pair (k, i) where 1 ≤ k ≤ n and i > 0. For
top1(w) = a where a has the link (k, i), the destination of the link is botik(w). We
disallow collapse links where botik does not lead to a valid stack. The example
stack above is thus [[[a(3,1)b]1]2[[c

(2,1)]1]2[[d
(1,1)e]1]2]3, where collapse links are

denoted as superscripts. Often, we will omit these superscripts for readability.
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A.2 Operations on Order-n Collapsible Stacks

The following operations may be performed on an order-n collapsible stack.

On = {pop1, . . . , popn} ∪
{push2, . . . , pushn} ∪
{collapse2, . . . , collapsen} ∪
{

push1
a, . . . , push

n
a , rewa | a ∈ Σ

}

We say o ∈ On is of order-k when k is minimal such that o ∈ Ok. For example,
pushk is of order k.

The collapsek operation is non-standard in the sense of Hague et al. [14]
and has the semantics of a normal collapse, with the additional constraint that
the top character has an order-k link. The standard version of collapse can be
simulated with a non-deterministic choice on the order of the stack link. In the
other direction, we can store in the stack alphabet the order of the collapse link
attached to each character on the stack.

We define each stack operation in turn for an order-n stack w. Collapse links
are created by the pushk

a operations, which add a character to the top of a given
stack w with a link pointing to popk(w).

1. We set popk(w) = v when w decomposes into u :k v for a non-empty u.
2. We set pushk(w) = u :k u :k v when w = u :k v.
3. We set collapsek(w) = botik(w) where top1(w) = a(k,i) for some i.
4. We set pushk

b (w) = b(k,ℓ−1) :1 w where topk+1(w) = [w1 . . . wℓ]k+1.
5. We set rewb(w) = b(k,i) :1 v where w = a(k,i) :1 v.

Note that, for a pushk operation, links outside of u = topk(w) point to the same
destination in both copies of u, while links pointing within u point within the
respective copies of u. For full introduction, we refer the reader to Hague et
al. [14]. In Section 3.2 we give several example stacks and show how the stack
operations affect them.

A.3 Collapsible Pushdown Systems

We are now ready to define alternating collapsible pushdown systems.

Definition 7 (Collapsible Pushdown Systems). An alternating order-n col-
lapsible pushdown system (collapsible PDS) is a tuple C = (P , Σ,R) where P is a
finite set of control states, Σ is a finite stack alphabet, and R ⊆ (P ×Σ ×On × P)∪
(

P × 2P
)

is a set of rules.

We write configurations of a collapsible PDS as a pair 〈p, w〉 where p ∈ P
and w ∈ Stacksn. We write 〈p, w〉 −→ 〈p′, w′〉 to denote a transition from
a rule (p, a, o, p′) with top1(w) = a and w′ = o(w). Furthermore, we have a
transition 〈p, w〉 −→ { 〈p′, w〉 | p′ ∈ P } whenever we have a rule p → P . A
non-alternating collapsible PDS has no rules of this second form. We write C to
denote a set of configurations.
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B Stack Automata

We present omitted proofs and definitions for stack automata. We remark that
both the definition of a run, and the test for membership, can easily be adapted
to collapsible stacks by simply following the collapse links rather than the anno-
tations.

B.1 Additional Notation

For n ≥ k > 1, we write Q1
Q′

−→ Q2 to denote an order-k transition from a set

of states whenever Q1 = {q1, . . . , qℓ} and for each 1 ≤ i ≤ ℓ we have qi
q′i−→ Qi

and Q′ = {q′1, . . . , q
′
ℓ} and Q2 =

⋃

1≤i≤ℓ Qi. The analogous notation at order-1
is a special case of the short-form notation defined in Section 3.1.

B.2 Runs of Stack Automata

Formally, fix a stack automaton

A = (Qn, . . . ,Q1, Σ,∆n, . . . , ∆1,Fn, . . . ,F1) .

We say a node contains a character if its exiting edge is labelled by the character.
Recall the tree view of an annotated stack, an example of which is given below.

• • • • • • • • • • • • • • • • •
[2 [1 a b ]1 ]2 [2 [1 c ]1 ]2 [1 d ]1

Some stack (tree) w is accepted by A from states Q0 ⊆ Qk — written
w ∈ LQ0

(A) — whenever the nodes of the tree can be labelled by elements
of

⋃

1≤k′≤n

2Qk′ such that

1. Q0 is a subset of the label of the node containing the first [k−1 character of
the word, or if k = 1, the first character a ∈ Σ, and

2. for any node containing a character [k′ labelled by Q, then for all q1 ∈ Q,
there exists some transition (q1, q2, Q1) ∈ ∆k′+1 such that q2 appears in the
label of the succeeding node and Q1 is a subset of the label of the node
succeeding the matching ]k′ character, and

3. for any node containing a character ]k′ , the label Q is a subset of Fk′ , and
the final node of an order-k stack is labelled by Q ⊆ Fk, and

4. for any node containing a character a ∈ Σ, labelled by Q, for all q′ ∈ Q,
there exists some transition (q′, a,Qbr, Q

′) ∈ ∆1 such that Qbr is a subset
of the label of the node annotating a, and Q′ is a subset of the label of the
succeeding node.

That is, a stack automaton is essentially a stack- and annotation-aware al-
ternating automaton, where annotations are treated as special cases of the al-
ternation.

15



Proposition 2 (Stack Automata Membership). Membership of order-n
stack automata can be tested in linear time in the size of the input stack and
stack automaton.

Proof. Take a stack w and let

A = (Qn, . . . ,Q1, Σ,∆n, . . . , ∆1,Fn, . . . ,F1) .

The membership algorithm iterates from the bottom (end) of the stack and
its annotations to the top (beginning). Take the graph representing w. We start
by labelling the final node with the set Fn. It is easy to verify at all stages that
if the label of a node contains a state q, then the stack from that node is in
Lq(A). Now, suppose we have labelled up to a given node. For convenience, we
will refer to nodes by their labelled state set, and we show, by cases, how to
label the preceding node with a state-set Q0.

In the first case, we have node Q1 connected to Q0 by a ]k character. That is

Q0 Q1
· · ·

]k

where Q0 is the set Fk. This is because Q0 labels the end of an order-k stack.
In the next case the connection is by a character a with an annotation and

we have

Q0 Q1
· · · Qbr

· · · .
a

where Q0 =

{

q

∣

∣

∣

∣

q
a

−−→
Q′

br

Q′
1 ∈ ∆1 ∧Q′

1 ⊆ Q1 ∧Q′
br ⊆ Qbr

}

. Thus, any state

in Q0 has a transition to states from which the remainder of the stack is accepted.
In the final case we have

Q0 Q1 · · · Q2
· · ·

[k ]k

where ]k matches [k. We defineQ0 =

{

q

∣

∣

∣

∣

q
q′

−→ Q ∈ ∆k+1 ∧ q′ ∈ Q1 ∧Q ⊆ Q2

}

.

Thus, there is a state q ∈ Q0 whenever there is a transition q
q′

−→ Q such that the
next order-k stack is accepted from q′ and the remainder of the stack is accepted
from Q.

Thus, after this labelling, we can test whether w ∈ LQ0
(A) for Q0 ⊆ Qk

by checking whether Q0 ⊆ Q where Q labels the node containing the first [k−1

character of the word, or if k = 1, the first character a ∈ Σ.

We now show that emptiness checking is PSPACE-complete.

Proposition 3 (Emptiness of Stack Automata). Given an order-n stack
automaton A and a state q of A, deciding if there exists some annotated stack
w ∈ Lq(A) is PSPACE-complete.
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Proof. The problem is already PSPACE-hard for alternating word automata
which correspond to the order-1 case [10]. We now establish the upperbound.

Let A = (Qn, . . . ,Q1, Σ,∆n, . . . , ∆1,Fn, . . . ,F1) be a stack automaton. We
use a fixed point to compute the set Qac := { q ∈ Qk | Lq(A) 6= ∅ }.

For this, we take Q0 to be the set of all final states. For all i ≥ 0, we define
Qi+1 by adding to Qi all states q ∈ Qk such that:

– for k > 1, there exists a transition q
q′

−→ Q ∈ ∆k with Q ⊆ Qi and q′ ∈ Qi.
– for k = 1, there exists a transition q

a
−−→
Qbr

Q ∈ ∆1 with Q,Qbr ⊆ Qi.

As the sequence of the Qi is increasing (for inclusion), we have Qj+1 = Qj for
some index j ≥ 0. We claim that Qj is the set Qac. A straightforward induction
shows that Qi ⊆ Qac and hence Qj ⊆ Qac. Assume toward a contradiction,
that the converse inclusion does not hold. Let w be smallest stack accepted by
a state q ∈ Qk \ Qj. If k = 1, then w = au :1 w and there exists a transition

q
a

−−→
Qbr

Q ∈ ∆1 with w′ accepted from Q and u is accepted from Qbr. As q does

not belongs to Qj, then either u or w′ is accepted from a state not in Qj . As u
and w′ are both smaller than w, this contradictes the definition of w. The case
k > 1 is similar.

The algorithm to test emptiness from a given state p ∈ Qn consists of com-
puting Qj by iteratively computing the Qi and then checking if p belongs to
Qj .

B.3 Comparison with Broadbent et al. [6]

We show that our notion of stack automata, when viewed as acceptors of col-
lapsible stacks, accept the same family of stacks as the automata introduced by
Broadbent et al. in LICS 2010 [6]. We begin by defining these models, which
for the purposes of comparison, we will call bottom-up stack automata. Let
Σ′ = {[n−1, . . . , [1, ]1, . . . , ]n−1} ⊎Σ.

Definition 8 (Bottom-up Stack Automata). A bottom-up stack automa-
ton B is a tuple (Q, Σ′, qin,F , ∆) where Q is a finite set of states, Σ′ is a finite
input alphabet, qin ∈ Q is the initial state and ∆ : (Q×Σ′)∪(Q×Σ′ ×Q) → Q
is a deterministic transition function.

Representing collapsible stacks as word graphs, a run of a bottom-up stack
automaton is a labelling of the graph with states in Q such that

1. The rightmost (final) node is labelled by qin.
2. The leftmost (initial) node is labelled by q ∈ F .
3. Whenever we have for any a ∈ Σ′, and pair of labelled nodes with an edge

· · · q q′ · · ·
a

then q = ∆(q′, a).
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4. Whenever we have for any a ∈ Σ′, and triple of labelled nodes with an edge

· · · q q′ · · · qbr · · ·
a

then q = ∆(q′, a, qbr).

An example run over an order-2 stack is given below

qf q1 q11 q21 q12 q31 q41 q51 qin

[1 a b ]1 [1 a b ]1

where qf ∈ F .
We prove the following proposition.

Proposition 4 (Equivalence of Stack Automata). For every order-n stack
automaton A with initial state q, there is a bottom-up stack automaton B with
initial state q′ such that Lq(A) = Lq′(B) and vice-versa.

There are two directions. We begin by constructing a stack automaton from a
bottom-up stack automaton. Intuitively this construction implements the mem-
bership algorithm as a bottom up automaton. This labels each position of a
candidate stack bottom-up (right-to-left) with sets of states from which the top-
down automaton would have an accepting run. The states of the bottom-up
automaton will therefore be sets of states of the top-down version, creating at
worst an exponential blow-up.

Definition 9 (Bottom-Up Automata to Stack Automata). Given a bottom-
up stack automaton B = (Q, Σ′, qin,F , ∆), we define

AB = (Qn, . . . ,Q1, Σ,∆n, . . . , ∆1,Fn, . . . ,F1) .

First we stratify the states of Q into

F ′
k = { q ∈ Q | ∃q′ ∈ Q. q = ∆(q′, ]k) } where 1 ≤ k < n

F ′
n = {qin}

and

Q′
k = { q ∈ Q | ∃q′ ∈ Q. q = ∆(q′, a, [k−1) } ∪ F ′

k when 1 < k ≤ n
Q′

1 = { q ∈ Q | ∃q′, qbr ∈ Q, a ∈ Σ. q = ∆(q′, a, qbr) } ∪ F ′
1 .

Then we define the states of AB to be Qk = Q′
k ×· · ·×Q′

n for all 1 ≤ k < n and
Qn = Q′

n ∪ {q0} where q0 is a fresh state, with Fn = F ′
n ∪ { q0 | qin ∈ F } and

Fk = { (qk, qk+1, . . . , qn) | qk = ∆(qk+1, ]k) }

for all 1 ≤ k < n. That is, we have to keep track of where to return to after the
completion of a stack. We need to keep complete information when handling the
collapse links.
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We then have the transition relations

∆1 =

{

(q1, q2, . . . , qn)
a

−−−−−−−−−−−→
{(qbr ,qk+1,...,qn)}

{(q′1, q2, . . . , qn)}

∣

∣

∣

∣

q1 = ∆(q′1, a, qbr)
∧ qbr ∈ Q′

k

}

and when 1 < k < n we have ∆k =






(qk, qk+1, . . . , qn)
(qk−1,q

′

k,qk+1,...,qn)
−−−−−−−−−−−−−→ {(q′k, qk+1, . . . , qn)}

∣

∣

∣

∣

∣

∣

qk = ∆(qk−1, [k−1)
∧

q′k ∈ Q′
k







and

∆n =

{

qn
(qn−1,q

′

n)
−−−−−−→ {q′n} | qn = ∆(qn−1, [n−1) ∧ q′n ∈ Q′

n

}

∪
{

q0
(qn−1,q

′

n)
−−−−−−→ {q′n} | ∃qn = ∆(qn−1, [n−1) ∧ qn ∈ F ∧ q′n ∈ Q′

n

}

We then have

Lemma 1 (Correctness of AB). For a given bottom-up stack automaton B
with initial state qin, for every order-n collapsible stack w we have w ∈ Lqin(B)
iff [[w ]] ∈ Lq0(AB).

Proof. There are two directions: take an accepting run of B and show how to
construct an accepting run of AB , then consider the opposite direction.

1. Take the run graph R over any accepted stack w. We take an unlabelled
graph of w which we will label with an accepting run of AB , proceeding
from left to right.
In the case when w is empty, R has a single node labelled qin. For this to be
accepting, qin must be final. Hence q0 is final, and we build the run graph
whose single node is labelled q0.
Otherwise, we label the leftmost node q0 and we have in R the labelling

qn
[n−1

−−−→ qn−1 with qn = ∆(qn−1, [n−1) and qn ∈ F . Let q′n be the labelling

in R after the matching ]n−1. We use the transition q0
(qn−1,q

′

n)
−−−−−−→ {q′n} ∈ ∆n

to extend the run of AB .
We thus maintain the invariant that a node is labelled by (qk, qk+1, . . . , qn)
where qk labels the corresponding node in R and qk+1, . . . , qn are the labels
in R occurring immediately after the next ]k, . . . , ]n−1 respectively.

Suppose from the current node we have qk
[k−1

−−−→ qk−1 in R with qk =
∆(qk−1, [k−1). Let q

′
k be the labelling in R immediately after the matching

]k−1. From the invariant we extend the run being built from (qk, qk+1, . . . , qn).
We use the transition

(qk, qk+1, . . . , qn)
(qk−1,q

′

k,qk+1,...,qn)
−−−−−−−−−−−−−→ {(q′k, qk+1, . . . , qn)}

to do so, which maintains the invariant.
In the next case, we have in R
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q1 q′1 · · · qbr · · · .
a

and the node in the run we’re constructing is labelled by (q1, q2, . . . , qn). We
use the transition

(q1, q2, . . . , qn)
a

−−−−−−−−−−−→
{(qbr ,qk+1,...,qn)}

{(q′1, q2, . . . , qn)}

which maintains the invariant.

Finally, when we have in R the edge q1
]k
−→ q2, then our current node is

labelled (qk, qk+1, . . . , qn) with qk = ∆(qk+1, ]k), hence the labelling is in Fk.
This means the current stack is accepted, and from the above we know the
next node is labelled by (qk+1, . . . , qn) as required to maintain the invariant.
The rightmost node of the run constructed is necessarily labelled qin, giving
us an accepting run as required.

2. Next, we take an accepting run over any w of AB and construct an accepting
run of B. The proof relies on a key observation: the labelling of each node
may consist of a single state only. We prove this by backwards induction
over the run graph R of AB . The rightmost node is necessarily labelled q0
for empty w or qin otherwise. Since the former case is trivial, assume the
label is qin. This is the unique labelling such that acceptance can occur.

Now, induct right to left. Assume we have Q
]k−1

−−−→ (qk, . . . , qn) where the
label (qk, . . . , qn) is the unique label from which the rest of the run can be
accepting. From the determinism of B, there is one qk−1 = ∆(qk, ]k−1). Thus
we must have Q = {(qk−1, qk, . . . , qn)} being the only possible labelling of
the new node.
In the next case we have in R

Q (q′1, q2, . . . , qn) · · · (qbr, qk+1, . . . , qn) · · · .
a

noting that the labellings must be consistent in qk+1, . . . , qn. (This can be
checked by following this induction.) From the determinism of B, there is a
unique q1 = ∆(q′1, a, qbr). This implies Q can only be {(q1, q2, . . . , qn)}.

In the next case we have the case of Q
[k
−→

(

qk, q
′
k+1, qk+2, . . . , qn

)

. From the
determinism of B we have a unique qk+1 = ∆(qk, [k). Hence, it must be the
case that Q = {(qk+1, qk+2, . . . , qn)}.

Finally, we look at the leftmost node. We have q0
[n−1

−−−→ (qn−1, q
′
n) and we

know there is qn ∈ F such that qn = ∆(qn−1, [n−1).
Thus, we construct an accepting run of B by taking the labelling of R and
projecting it to the first component of each tuple, labelling the leftmost node
with qn.

Now we consider the translation from stack automata to bottom-up stack
automata.

20



Definition 10 (Stack Automata to Bottom-Up Automata). Given an
order-n stack automaton

A = (Qn, . . . ,Q1, Σ,∆n, . . . , ∆1,Fn, . . . ,F1)

and qin ∈ Qn, we construct a bottom-up stack automaton BA = (Q, Σ′,Fn,F , ∆)
where F = { Q ⊆ Qn | qin ∈ Q } and

Q =
⋃

1≤k≤n

(

2Qk × · · · × 2Qn
)

.

This structure is needed to flatten the nested structure of the automaton.
We define ∆ to be the smallest set containing

1. For all 1 < k ≤ n and Qk ⊆ Qk, . . . , Qn ⊆ Qn we have the transition
((Fk−1, Qk, . . . , Qn) , ]k−1, (Qk, . . . , Qn)). Note Qk is stored to know which
transitions to use on reading the matching [k−1, and

2. For all a ∈ Σ, 1 ≤ k ≤ n and Q2 ⊆ Q2, . . . , Qn ⊆ Qn and Qbr ⊆ Qk we have
the transition

((

Q1, Q2, . . . , Qn

)

, a, (Qbr, Qk+1, . . . , Qn) ,
(

Q2, Q2, . . . , Qn

))

where Q1 is maximal such that Q1 a
−−→
Q′

br

Q′ and Q′
br ⊆ Qbr and Q′ ⊆ Q2,

and
3. For all 1 ≤ k < n and Qk ⊆ Qk, . . . , Qn ⊆ Qn we have that there is a

transition ((Q,Qk+2, . . . , Qn) , [k, (Qk, Qk+1, Qk+2, . . . , Qn)) whenever Q is

maximal such that Q
Q′

k−−→ Q′
k+1 ∈ ∆k+1 with Q′

k ⊆ Qk and Q′
k+1 ⊆ Qk+1.

We then have

Lemma 2 (Correctness of BA). For a given order-n stack automaton A and
state qin ∈ Qn, for every order-n collapsible stack w we have w ∈ Lqin(A) iff
w ∈ LFn

(AB).

Proof. There are two directions – first we translate an accepting run of A over
any w into an accepting run of BA, then vice-versa.

1. Take any stack w and an accepting run R of A. From R we construct an
accepting run of BA. We proceed by induction from the rightmost node of
R, which we label with Fn. We now consider the inductive cases.

Suppose from the current node we have Qk−1
]k−1

−−−→ Qk in R. By induc-
tion, assume the node corresponding to Qk in the run being constructed
is labelled (Qr

k, . . . , Q
r
n) where Qr

k ⊇ Qk, . . . , Q
r
n ⊇ Qn, where Qk, . . . , Qn

are the labels in R immediately following the next ]k−1, . . . , ]n−1 charac-
ters respectively. From the construction of BA, we have a transition Fk−1 =
∆((Qr

k, . . . , Q
r
n) , ]k−1) and since R is accepting, we know Fk−1 ⊇ Qk−1.

Hence, we label the node corresponding to Qk−1 with (Fk−1, Q
r
k, . . . , Q

r
n),

maintaining the induction hypothesis.
In the next case, we have in R
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Q′
1 Q1

· · · Qbr
· · ·

a

for some order-k link and the latter two corresponding nodes in the run we’re
constructing are labelled by (Qr

1, Q
r
2, . . . , Q

r
n) and

(

Qr
br, Q

r
k+1, . . . , Q

r
n

)

with
Qr

1 ⊇ Q1, . . . , Q
r
n ⊇ Qnwhere Q2, . . . , Qn are the labels in R immediately

following the next ]k−1, . . . , ]n−1 characters respectively and Qr
br ⊇ Qbr.

From the construction, we have the transition

(

(Q,Qr
2, . . . , Q

r
n) , a,

(

Qr
br, Q

r
k+1, . . . , Q

r
n

)

, (Qr
1, Q

r
2, . . . , Q

r
n)
)

where, since Q is maximal, we have Q ⊇ Q′
1.

Finally, when we have in R the edge Qk+1
[k
−→ Qk we know by induction that

the node corresponding to the latter node is labelled by
(

Qr
k, Q

r
k+1, . . . , Q

r
n

)

with the superset property as in the previous cases. From the construction,
we have the transition

((

Q,Qr
k+2, . . . , Q

r
n

)

, [k,
(

Qr
k, Q

r
k+1, Q

r
k+2, . . . , Q

r
n

))

and since Q is maximal, we have Q ⊇ Qk+1.
Thus, when we reach the leftmost node, we have a label Q with qin ∈ Q.
Hence, Q ∈ F and the run is accepting.

2. Take any stack w and an accepting run R of BA. For any node whose label
has the first component Q, we prove for any state q ∈ Q there is an accepting
run of A from the node. The run begins with q.
We proceed by induction. In the base case, take the rightmost node. This is
labelled by Fn, hence the result is immediate. We now consider the inductive
cases.

Suppose we have (Qk−1, Qk, . . . , Qn)
]k−1

−−−→ (Qk, . . . , Qn) in R. From the
construction of BA, we have Qk−1 = Fk−1 thus an accepting run from all
states in Fk−1 (by definition of accepting runs from states in Qk−1, there is
nothing more to satisfy).
In the next case, we have in R

(Q′
1, Q2, . . . , Qn) (Q1, Q2, . . . , Qn) · · · (Qbr, Qk+1, . . . , Qn) · · ·

a

for some order-k link. For every q ∈ Q′
1 we have q

a
−−→
Q′

br

Q′′
1 ∈ ∆1, and

accepting runs from all states in Q′
br ⊆ Qbr and Q′′

1 ⊆ Q′
1. Thus, we have an

accepting run from q.
Finally, when we have in R the edge

(Q,Qk+2, . . . , Qn)
[k
−→ (Qk, Qk+1, Qk+2, . . . , Qn)

we know by construction of BA that the node occurring after the matching
]k is labelled (Qk+1, . . . , Qn). Also by construction of BA we know for all
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q ∈ Q that we have a transition q
q′

−→ Q′ with q′ ∈ Qk and Q′ ⊆ Qk+1. By
induction, we have accepting runs from q′ and Q′, giving an accepting run
from q.
Thus, when we reach the leftmost node, we have a label Q ∈ F , hence
qin ∈ Q. Hence, we have an accepting run of A from qin.

B.4 Effective Boolean Algebra

Proposition 5 (Effective Boolean Algebra for Languages of Stack Au-
tomata). The set of annotated stacks accepted by stack automata form an ef-
fective Boolean algebra.

Proof (sketch). The automata constructions follow standard techniques. Fix a
stack automaton

A = (Qn, . . . ,Q1, Σ,∆n, . . . , ∆1,Fn, . . . ,F1) .

There are three cases.

1. Take any two states q1 and q2 both elements of the same Qk. We can intro-
duce a new state q that accepts the intersection of q1 and q2.
At order-1, we make q ∈ F1 iff q1, q2 ∈ F1. Then, for each {q1, q2}

a
−−→
Qbr

Q,

introduce a transition q
a

−−→
Qbr

Q.

At order-k for 1 < k ≤ n, we can permit transitions q
Q′

−→ Q by constructing
a state q′ accepting the intersection of the states in Q′ and introducing the

transition q
q′

−→ Q. Thus, to form the intersection of q1 and q2 we set q ∈ Fk

iff q1, q2 ∈ Fk and for each transition {q1, q2}
Q′

−→ Q, add the transition

q
Q′

−→ Q.
2. To form the union of q1 and q2, we again introduce a new state q.

At order-1 we set q ∈ F1 iff q1 ∈ F1 or q2 ∈ F1, then for each transition
q1

a
−−→
Qbr

Q or q2
a

−−→
Qbr

Q, add the transition q
a

−−→
Qbr

Q.

At order-k for 1 < k ≤ n we set q ∈ Fk iff q1 ∈ Fk or q2 ∈ Fk, then for each

transition q1
q′

−→ Q or q2
q′

−→ Q, add the transition q
q′

−→ Q.
3. Finally, to negate an automaton, we introduce for every state q it’s negation

q. We also introduce q∗k states which accept any stack of order-k.

For q ∈ Q1, we set q ∈ F1 iff q /∈ F1. Then, for every a, let q
a

−−→
Q1

br

Q1, . . . , q
a

−−→
Qℓ

br

Qℓ be the transitions over a from q. We take each subset

I ⊆ {1, . . . , ℓ} in turn and for every Qbr and Q such that

– if i ∈ I, then there is some qbr ∈ Qi
br ∩ Qk′ (for some k′) with either

qbr ∈ Qbr or q∗k′′ ∈ Qbr where k′′ 6= k′, and
– if i /∈ I, then there is some q′ ∈ Qi with q′ ∈ Q,
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we introduce a transition q
a

−−→
Qbr

Q when Qbr is coherent with respect to the

order of the annotation. That is, every transition from q either rejects by
the annotation branch (by being of the wrong order, or the right order, but
the wrong shape), or by the remainder of the order-1 stack.
Finally, when q ∈ Qk for 1 < k ≤ n, we set q ∈ Fk iff q /∈ Fk. Then,

let q
q′1−→ Q1, . . . , q

q′ℓ−→ Qℓ be the transitions from q. Next, for every subset
I ⊆ {1, . . . , ℓ} and for every Q′ and Q such that

– if i ∈ I, then q′i ∈ Q′, and
– if i /∈ I, then there is some q′ ∈ Qi with q′ ∈ Q,

we introduce a transition q
Q′

−→ Q. That is, every transition from q either
rejects by the top order-(k − 1) stack, or by the remainder of the order-k
stack.

C Soundness

In this section, all stack automata are such that their initial states are not final.
This is assumed for the automaton A0 in Section 3.1. This property is preserved
by the saturation function Γ .

We start by assigning a “meaning” to each state of the automaton. For this,
we define what it means for an order-k stack w to satisfy a state q ∈ Qk, which
is denoted w |= q.

Definition 11 (w |= q). For any Q ⊆ Qk and any order-k stack w, we write
w |= Q if w |= q for all q ∈ Q, and we define w |= q by a case distinction on q.

1. q is an initial state in Qn. Then for any order-n stack w, we say that w |= q
if 〈q, w〉 ∈ Pre∗C(A0).

2. q is an initial state in Qk, labeling a transition qk+1
q
−→ Qk+1 ∈ ∆k+1. Then

for any order-k stack w, we say that w |= q if for all order-(k+1) stacks s.t.
v |= Qk+1, then w :(k+1) v |= qk+1.

3. q is a non-initial state in Qk. Then for any order-k stack w, we say that
w |= q if A0 accepts w from q.

By unfolding the definition, we have that an order-k stack wk satisfies an ini-

tial state qk ∈ Qk with q
qk−→ (Qk+1, . . . , Qn) if for any order-(k+1) stack wk+1 |=

Qk+1, . . . , and any order-n stack wn |= Qn, we have wk :(k+1) · · · :n wn |= q.

Definition 12 (Soundness of transitions). A transition q
a

−−→
Qbr

(Q1, . . . , Qk)

is sound if for any order-1 stack w1 |= Q1, . . . , and any order-k stack wk |= Qk

and any stack u |= Qbr, we have au :1 w1 :2 · · · :k wk |= q.

Lemma 3. If qp
a

−−→
Qbr

(Q1, . . . , Qn) is sound, then any transition qk
a

−−→
Qbr

(Q1, . . . , Qk)

contained within the transition from qp is sound.
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Proof. The proof is by induction over k. In the base case, k = n, then qk = qp and

the result is immediate. Otherwise, assume qk+1
a

−−→
Qbr

(Q1, . . . , Qk+1) is sound

— where qk+1 or qk+2
qk+1

−−−→ (Qk+2, . . . , Qn) — and qk+1
qk−→ Qk+1. We need to

show qk
a

−−→
Qbr

(Q1, . . . , Qk) is sound. Hence, take any w1 |= Q1, . . . , wk |= Qk

and u |= Qbr. By definition of |=, we have au :1 w1 :2 · · · :k wk |= qk if, for
all wk+1 |= Qk+1, we have au :1 w1 :2 · · · :(k+1) wk+1 |= qk+1. Since w1 |=

Q1, . . . , wk+1 |= Qk+1 and qk+1
a

−−→
Qbr

(Q1, . . . , Qk+1) is sound, we have au :1

w1 :2 · · · :(k+1) wk+1 |= qk+1 and hence au :1 w1 :2 · · · :k wk |= qk. Thus, qk
a

−−→
Qbr

(Q1, . . . , Qk) is sound.

Definition 13 (Soundness of stack automata). A stack automaton A is
sound if the following holds.

– A is obtained from A0 by adding new initial states of order < n and transi-
tions starting in an initial state .

– In A, any transition qp
a

−−→
Qbr

(Q1, . . . , Qk) for k < n is sound.

Unsurprisingly, if some order-n stack w is accepted by a sound stack automa-
ton A from a state qp then 〈p, w〉 belongs to Pre∗C(A0). More generally, we have
the following result.

Lemma 4. Let A be a sound stack automaton A and let w be an order-k stack.
If A accepts w from a state q ∈ Qk then w |= q. In particular, if A accepts an
order-n stack w from a state qp ∈ Qn then 〈p, w〉 belongs to Pre∗C(A0).

Proof. We proceed by induction on the size of the stack (where the size of an
annotated stack is defined to be the size of a tree representing the stack).

Let w be an order-k stack accepted from a state q ∈ Qk. We assume that the
property holds for any smaller stack.

If w is empty then q is a final state. Recall that by assumption final states
are not initial. Hence, q is not initial and therefore q is a final state of A0. It
follows that the empty stack is accepted from q in A0 and hence w |= q.

If w is a not empty stack of order-1. The stack w can be decompose as au :1 v.
As w is accepted by A from q, there exists a transition q

a
−−→
Qbr

(Q) such that v

is accepted from Q and u is accepted from Qbr. By induction hypothesis (both
u and v are smaller than w), we have u |= Qbr and v |= Qbr. As the transition

q
a

−−→
Qbr

(Q) is sound, we have that w |= q.

If w is a not empty stack of order-k. The stack w can be decompose as

u :k+1 v. As w is accepted by A from q, there exists a transition q
q′

−→ Q such
that v is accepted from Q and u is accepted from q′. By induction hypothesis,
we have u |= q′ and v |= Q. By definition of the satisfiability wrt the (initial)
state q′, we have w |= q′.

We first establish that the initial automaton A0 is sound.
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Lemma 5 (Soundness of A0). The automaton A0 is sound.

Proof. Let q
a

−−→
Qbr

(Q1, . . . , Qk) for k ≤ n. As we required in Section 3.1 that no

initial states of A0 has an incoming transition, the sets Qi, i ∈ [1, k] and the set
Qbr do not contain any initial states.

By Lemma 3, it is only necessary to prove the property for k = n or for k < n
with q being non-initial.

First assume that k < n and that q is not initial. For any order-1 stack
w1 |= Q1, . . . , and any order-k stack wk |= Qk and any stack u |= Qbr, we have
to show that w = au :1 w1 :2 · · · :k wk |= q. As q is not initial, we need to show
that A0 accepts w from q. As for all i ∈ [1, k], we have A0 accepts wi from the
set of states Qi and the stack u from the set Qbr, we easily derive an accepting
run of A0 from q on reading w.

Now assume that k = n. For any order-1 stack w1 |= Q1, . . . , and any order-
k stack wk |= Qn and any stack u |= Qbr, we have to show that w = au :1
w1 :2 · · · :n wn |= q. It suffices to show that A0 accepts w from q (as if q is equal
to qp for some control state p, this implies that 〈qp, w〉 belongs Pre∗C(A0)). As
for all i ∈ [1, n], we have A0 accepts wi from the set of states Qi and the stack u
from the set Qbr, we easily derive an accepting run of A0 from q on reading w.

We are now ready to prove that the stack automaton produced by our algo-
rithm is sound.

Lemma 6 (Automaton Soundness). The automaton A constructed by satu-
ration with Γ and C from A0 is sound.

Proof. The proof is by induction on the number of iterations of Γ . The base case
is the automaton A0 and the result was established in Lemma 5.

The inductive step is by case distinction on the rule (p, a, o, p′) that led to
the introduction of each new transition.

1. Assume that o = popk, that we had a transition qp′

qk−→ (Qk+1, . . . , Qn) and
that we added the transition

qp
a
−→
∅

(∅, . . . , ∅, {qk} , Qk+1, . . . , Qn) .

To establish soundness of this latter transition, we have to prove that for
any w1 |= ∅, . . ., any wk−1 |= ∅, any wk |= qk, any wk+1 |= Qk+1, . . ., any
wn |= Qn and any u |= ∅, one has w = au :1 w1 :2 · · · :n wn |= qp. For this, it
suffices to show that popk(w) |= qp′ . Indeed, as qp and qp′ are initial states
in Qn, w |= qp means that 〈p, w〉 ∈ Pre∗C(A0) and popk(w) |= qp′ means that
〈p′, popk(w)〉 ∈ Pre∗C(A0): as we have the rule (p, a, popk, p

′), we will have
the result as required.
Since wk |= qk and wk+1 |= Qk+1, . . . , wn |= Qn, we know from the definition

of |= and qp′

qk−→ (Qk+1 . . . , Qn) that popk(w) = wk :(k+1) · · · :n wn |= qp′

and we are done.
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2. Assume that o = pushk, that we had the sound transitions

qp′

a
−−→
Qbr

(Q1, . . . , Qn) and Qk
a

−−→
Q′

br

(Q′
1, . . . , Q

′
k)

and that we added

qp
a

−−−−−−→
Qbr∪Q′

br

(

Q1 ∪Q′
1, . . . , Qk−1 ∪Q′

k−1, Q
′
k, Qk+1, . . . , Qn

)

.

To establish soundness of this latter transition, we have to prove that for
any w1 |= Q1 ∪ Q′

1, . . ., any wk−1 |= Qk−1 ∪ Q′
k−1, any wk |= Q′

k, any
wk+1 |= Qk+1, . . ., any wn |= Qn and any u |= Qbr ∪ Q′

br, we have that
w = au :1 w1 :2 · · · :n wn |= qp. For this it suffices to show pushk(w) |= qp′ .
Indeed, as qp and qp′ are initial states in Qn, w |= qp means that 〈p, w〉 ∈
Pre∗C(A0) and pushk(w) |= qp′ means that 〈p′, pushk(w)〉 ∈ Pre∗C(A0): as we
have the rule (p, a, pushk, p

′), we will have the result as required.

Let v = topk(w) = au :1 w1 :2 · · · :(k−1) wk−1. From the soundness of

Qk
a

−−→
Q′

br

(Q′
1, . . . , Q

′
k) and as u |= Q′

br, w1 |= Q′
1, . . . , wk |= Q′

k, we have

v :k wk |= Qk.

Then, from w1 |= Q1, . . . , wk−1 |= Qk−1, and v :k wk |= Qk, and wk+1 |=

Qk+1, . . . , wn |= Qn and u |= Qbr and the soundness of qp′

a
−−→
Qbr

(Q1, . . . , Qn)

we get pushk(w) = v :k v :k wk :(k+1) · · · :n wn |= qp′ as required.

3. Assume that o = collapsek, that k < n and that we had a transition qp′

qk−→
(Qk+1, . . . , Qn) and we added

qp
a

−−−→
{qk}

(∅, . . . , ∅, Qk+1, . . . , Qn) .

To establish soundness of this latter transition, we have to prove that for
any w1 |= ∅, . . ., any wk |= ∅, any wk+1 |= Qk+1, . . ., any wn |= Qn and any
u |= qk, that we have w = au :1 w1 :2 · · · :n wn |= qp. For this it suffices
to show collapsek(w) |= qp′ . Indeed, as qp and qp′ are initial states in Qn,
w |= qp means that 〈p, w〉 ∈ Pre∗C(A0) and collapsek(w) |= qp′ means that
〈p′, collapsek(w)〉 ∈ Pre∗C(A0): as we have the rule (p, a, collapsek, p

′), we
will have the result as required.

Since u |= qk and wk+1 |= Qk+1, . . . , wn |= Qn, we know from the definition

of |= and qp′

qk−→ (Qk+1, . . . , Qn) that collapsek(w) = u :(k+1) wk+1 :(k+2) · · · :n wn |=
qp′ hence, we are done.

Assume now that o = collapsek, that k = n and that we added qp
a

−−−−→
{qp′}

(∅, . . . , ∅). To prove that this latter transition is sound, we have to prove
that for any w1 |= ∅, . . . , any wn |= ∅ and any u |= qp′ , we have w = au :1
w1 :2 · · · :n wn |= qp. We immediately know collapsek(w) = u |= qp′ , and we
conclude using the same argument as in the first subcase.
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4. Assume that o = pushk
b , that we had the sound transitions

qp′

b
−−→
Qbr

(Q1, . . . , Qn) and Q1
a

−−→
Q′

br

(Q′
1)

and that we added

qp
a

−−→
Q′

br

(Q′
1, Q2, . . . , Qk ∪Qbr, . . . , Qn) .

To prove that this later transition is sound, we have to prove that for any
w1 |= Q′

1, any w2 |= Q2, . . ., any wk−1 |= Qk−1, any wk |= Qk ∪ Qbr,
any wk+1 |= Qk+1, . . ., any wn |= Qn and any u |= Q′

br, that we have
w = au :1 w1 :2 · · · :n wn |= qp.
For this it suffices to show pushk

b (w) |= qp′ . Indeed, as qp and qp′ are initial
states in Qn, w |= qp means that 〈p, w〉 ∈ Pre∗C(A0) and pushk

b (w) |= qp′

means that 〈p′, pushk
b (w)〉 ∈ Pre∗C(A0): as we have the rule

(

p, a, pushk
b , p

′
)

,

we will have the result as required. From the soundness of Q1
a

−−→
Q′

br

(Q′
1) and

as u |= Q′
br and w1 |= Q′

1 we have au :1 w1 |= Q1.
Then, from au :1 w1 |= Q1, w2 |= Q2, . . . , wn |= Qn, and topk+1(popk(w)) =

wk |= Qbr, and the soundness of qp′

b
−−→
Qbr

(Q1, . . . , Qn), we get pushk
b (w) =

bwk :1 au :1 w1 :2 · · · :n wn |= qp′ as required.

5. Assume that o = rewb, that we had the sound transition qp′

b
−−→
Qbr

(Q1, . . . , Qn)

and that we added
qp

a
−−→
Qbr

(Q1, . . . , Qn) .

To prove that this later transition is sound, we have to prove that for any
w1 |= Q1, . . . , for any wn |= Qn and any u |= Qbr, we have that w = au :1
w1 :2 · · · :n wn |= qp. For this it suffices to show rewb(w) |= qp′ . Indeed, as
qp and qp′ are initial states in Qn, w |= qp means that 〈p, w〉 ∈ Pre∗C(A0)
and rewb(w) |= qp′ means that 〈p′, rewb(w)〉 ∈ Pre∗C(A0): as we have the
rule (p, a, rewb, p

′), we will have the result as required.

From w1 |= Q1, . . . , wn |= Qn, and u |= Qbr, and the soundness of qp′

b
−−→
Qbr

(Q1, . . . , Qn), we get rewb(w) = bu :1 w1 :2 · · · :n wn |= qp′ as required.

The final case is when a transition was added due to an alternating transition
p → P . Letting Q = { qp′ | p′ ∈ P } we added a rule qp

a
−−→
Qbr

(Q1, . . . , Qn) from

the sound transition Q
a

−−→
Qbr

(Q1, . . . , Qn).

To prove that this later transition is sound, we have to prove that for any
w1 |= Q1, . . . , any wn |= Qn and any u |= Qbr, we have that w = au :1
w1 :2 · · · :n wn |= qp. For this it suffices to show w |= Q. Indeed, as qp and
Q are initial states in Qn, w |= qp means that 〈p, w〉 ∈ Pre∗C(A0) and w |= Q
means that 〈p′, w〉 ∈ Pre∗C(A0) for all p′ ∈ P : as we have the rule p → P , we
will have the result as required.
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From w1 |= Q1, . . . , wn |= Qn, and u |= Qbr, and the soundness of Q
a

−−→
Qbr

(Q1, . . . , Qn), we immediately get w = au :1 w1 :2 · · · :n wn |= Q as required.

D Completeness

We know show that the automaton constructed by Γ is complete for annotated
stacks. The intuition behind the completeness proof is well illustrated by the
examples in Section 3.2, hence we encourage the reader to consult these examples
when reading the proof.

Lemma 7 (Completeness of Γ ). Given an annotated PDS C and an order-n
stack automaton A0, the automaton A constructed by saturation with Γ is such
that 〈p, w〉 ∈ Pre∗C(A0) implies w ∈ Lqp(A).

Proof. We begin with a definition of Pre∗C(A0) that permits an inductive proof
of completeness. Thus, let Pre∗C(A0) =

⋃

α<ω

PreαC (A0) where

Pre0C(A0) =
{

〈p, w〉
∣

∣ w ∈ Lqp(A0)
}

Preα+1
C (A0) =

{

〈p, w〉

∣

∣

∣

∣

∃〈p, w〉 −→ 〈p′, w′〉 ∈ PreαC (A0) ∨
∃〈p, w〉 −→ C ⊆ PreαC (A0)

}

The proof is by induction over α. In the base case, we have w ∈ Lqp(A0) and the
existence of a run of A0, and thus a run in A comes directly from the run of A0.

There are two cases. In the first, inductively assume 〈p, w〉 −→ 〈p′, w′〉 and an
accepting run of w′ from qp′ of A via a rule (p, top1(w), o, p

′). Hence w′ = o(w).

1. When o = popk, let qp′

qk−→ (Q1, . . . Qk+1) be the order-n to order-k part
of the initial transition accepting w′. We know, from the construction, we
have the transition qp

a
−→
∅

(∅, . . . , ∅, {qk} , Qk+1, . . . , Qn). Let w = uk−1 :k

uk :(k+1) · · · :n un. We know w′ = uk :(k+1) · · · :n un and the run from qk
over w′ is accepting. Hence, via the transition from qp we get an accepting
run of w which labels all nodes in w′ with the same nodes as the accepting
run of w′ from qk.

2. When o = pushk, let w = uk−1 :k · · · :n un. We know

w′ = uk−1 :k uk−1 :k uk :(k+1) · · · :n un .

Let qp′

a
−−→
Qbr

(Q1, . . . , Qk, . . . Qn) and Qk
a

−−→
Q′

br

(Q′
1, . . . , Q

′
k) be the initial

transitions used on the run of w′ (where the transition from Qk reads the
second copy of uk−1).
From the construction we the have a transition

qp
a

−−−−−−→
Qbr∪Q′

br

(

Q1 ∪Q′
1, . . . , Qk−1 ∪Q′

k−1, Q
′
k, Qk+1, . . . , Qn

)

.
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Since we know uk :(k+1) · · · :n un is accepted from Q′
k via Qk+1, . . . , Qn,

and we know that uk−1 is accepted from Q1, . . . , Qk−1 and Q′
1, . . . , Q

′
k−1 via

a-transitions labelling annotations with Qbr and Q′
br respectively, we obtain

an accepting run of w.
3. When o = collapsek, let

w = au :1 uk :(k+1) · · · :n un

where w′ = u :(k+1) uk+1 :(k+1) · · · :n un. Let qp′

qk−→ (Qk+1, . . . , Qn) in A
be the initial transition on the accepting run of w′ (or take qk = qp′ if

k = n). We know from the construction that we have the transition qp
a

−−−→
{qk}

(∅, . . . , ∅, Qk+1, . . . , Qn).
We know the run from qk via Qk+1, . . . , Qn over w′ is accepting. Hence, via
the transition from qp we get an accepting run of w which labels all nodes
in w′ with the same nodes as the accepting run of w′ from qk (we label uk

with empty sets).
4. When o = pushk

b , let w = uk−1 :k uk :k+1 · · · :n un. We know w′ = pushk
b (w)

is
buk :1 uk−1 :k · · · :n un .

Let qp′

b
−−→
Qbr

(Q1, . . . , Qn) and Q1
a

−−→
Q′

br

Q′
1 be the first transitions used

on the accepting run of w′. From the construction we introduce a transition
qp

a
−−→
Q′

br

(Q′
1, Q2, . . . , Qk ∪Qbr, . . . , Qn) from which we can construct an ac-

cepting run of w (which is w′ without the first b on top of the top order-1
stack). A run from Qk ∪Qbr exists since uk is also the annotation of b.

5. When o = rewb let qp′

b
−−→
Qbr

(Q1, . . . , Qn) be the first transition on the

accepting run of w′ = bu :1 v for some v and u. From the construction
we know we have a transition qp

a
−−→
Qbr

(Q1, . . . , Qn), from which we get an

accepting run of w = au :1 v as required.

The second case is when we have a branching transition 〈p, w〉 −→ C (where
C is a set of configurations) via a rule p → P . In this case, letQ = { qp′ | p′ ∈ P }

and Q
a

−−→
Qbr

(Q1, . . . , Qn) be the accumulation of all initial transitions from states

in Q. By construction, we have a rule qp
a

−−→
Qbr

(Q1, . . . , Qn) from which an ac-

cepting run over w can easily be built.
Hence, for every 〈p, w〉 ∈ Pre∗C(A0) we have w ∈ Lqp(A).

E Complexity of collapsible PDS Model Checking

In this section we show that the complexity of the algorithm can be improved
to (n− 1)-EXPTIME when analysing non-alternating collapsible pushdown sys-
tems, matching the known (n−1)-completeness of the problem. The cause of the
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additional exponential blow up is the alternation in the automaton constructed.
Hence, we introduce a notion of non-alternation at order-n. Note that the au-
tomata are alternating both via transitions to Q with |Q| > 1, and via collapse
links.

Definition 14 (Non-Alternation at Order-n). An order-n stack automaton
A is non-alternating at order-n whenever, for all stacks w ∈ Lq(A) for some
state q of A, there is an accepting run of A over the graph of w such that no
node is labelled by Q ⊆ Qn and |Q| > 1.

For example, take a run over an example order-2 collapsible stack

qp′ q1 Q1
1 Q2

1 Q1
2 Q3

1 Q4
1 Q5

1 Q2
2 · · · .

[1 a b ]1 [1 a b ]1 [1

This is non-alternating at order-n whenever
∣

∣Q1
2

∣

∣ ≤ 1 and
∣

∣Q2
2

∣

∣ ≤ 1.
Note, for example, that a stack automaton that does not follow collapse links,

and has no alternating transitions in ∆n, is trivially non-alternating at order-n.
Similarly, we may allow q

a
−−→
Qbr

(∅, . . . , ∅) when Qbr ⊆ Qn and |Qbr| ≤ 1.

Observe that, since annotations are always independent of each other, it is
not clear how to define a similar notion for annotated PDS, since combining
runs due to a pushn cannot exploit that the collapse links “pointed to the same
stack”.

We then define Γ ′ to be the saturation function Γ with the additional con-
straint that a transition q

a
−−→
Qbr

(Q1, . . . , Qn) is not added if |Qn| > 1. Clearly

saturation by Γ ′ remains sound, since it contains a subset of the transitions of
the automaton produced by saturation with Γ . Hence, we only need to prove
that the automaton remains complete. We have the following lemma. Intuitively,
the automaton remains correct because a collapse link at order-n can only be
used once, whereas, at lower orders, a pushk operation may make different copies
of a link (with different targets). Hence, lower order links need alternation to
keep track of the different uses of the link throughout the run.

Lemma 8 (Completeness of Γ ′). Given a non-alternating collapsible PDS
C and an order-n stack automaton A0 that is non-alternating at order-n, the
automaton A constructed by saturation with Γ ′ is such that 〈p, w〉 ∈ Pre∗C(A0)
implies w ∈ Lqp(A).

Proof. The proof is by induction over α such that 〈p, w〉 ∈ PreαC (A0). We prove
simultaneously during the induction that all 〈p, w〉 ∈ Pre∗C(A0) have an accept-
ing run from qp of A over the graph of w such that no node is labelled by Q ⊆ Qn

and |Q| > 1.
Henceforth, for convenience, we will refer to non-alternation at order-n as

simply non-alternation.
In the base case, we have w ∈ Lqp(A0) and the existence of a non-alternating

run of A0, and thus a run in A comes directly from the non-alternating run of
A0.
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Hence, inductively assume 〈p, w〉 −→ 〈p′, w′〉 and a non-alternating accepting
run of w′ from qp′ of A via a rule (p, top1(w), o, p

′). Hence w′ = o(w).

1. When o = popk, let qp′

qk−→ (Q1, . . . , Qk+1) be the order-n to order-k part
of the initial transition accepting w′. We know, from the construction, we
have the transition qp

a
−→
∅

(∅, . . . , ∅, {qk} , Qk+1, . . . , Qn). Let w = uk−1 :k

uk :(k+1) · · · :n un. We know w′ = uk :(k+1) · · · :n un and the run from qk
over w′ is accepting and non-alternating. Hence, via the transition from qp
we get an accepting run of w which labels all nodes in w′ with the same nodes
as the accepting run of w′ from qk. Since the transitions reading uk−1 are all
to the empty-set, this gives us a run over w that remains non-alternating.

2. When o = pushk, let w = uk−1 :k · · · :n un. We know

w′ = uk−1 :k uk−1 :k uk :(k+1) · · · :n un .

Let qp′

a
−−→
Qbr

(Q1, . . . , Qk, . . . , Qn) and Qk
a

−−→
Q′

br

(Q′
1, . . . , Q

′
k) be the initial

transitions used on the run of w′ (where the transition from Qk reads the
second copy of uk−1).
From the construction we the have a transition

qp
a

−−−−−−→
Qbr∪Q′

br

(

Q1 ∪Q′
1, . . . , Qk−1 ∪Q′

k−1, Q
′
k, Qk+1, . . . , Qn

)

.

Since we know uk :(k+1) · · · :n un is accepted from Q′
k via Qk+1, . . . Qn,

and we know that uk−1 is accepted from Q1, . . . , Qk−1 and Q′
1, . . . , Q

′
k−1

via a-transitions with collapse links Qbr and Q′
br respectively, we obtain an

accepting run of w.
Since we know that the destinations of the collapse links that go outside
of uk−1 (in particular, the order-n links) always point to the same stacks
in both copies of uk−1 in the non-alternating accepting run of w′, we know
that the run thus defined from qp is both accepting and non-alternating. We
remark that, while this is always the case for order-n links, it is not always
the case for order-k links with k < n, and hence, alternation is needed at
orders lower than n.

3. When o = collapsek, let

w = u1
k−1 :k · · · :k uℓ

k−1 :k uk :(k+1) · · · :n un

where w′ = uk :(k+1) · · · :n un is the stack pointed to by the order-k collapse

link of top1(w). Let qp′

qk−→ (Qk+1, . . . , Qn) in A be the initial transition on
the accepting run of w′. We know from the construction that we have the
transition qp

a
−−−→
{qk}

(∅, . . . , ∅, Qk+1, . . . , Qn).

We know the run from qk via Qk+1, . . . , Qn over w′ is accepting and non-
alternating. Hence, via the transition from qp we get an accepting run of w
which labels all nodes in w′ with the same nodes as the accepting run of w′

from qk (by following the collapse link). Since the transition reading u1
k−1

is to the empty set, this immediately allows us to label u2
k−1, . . . , u

ℓ
k−1 with

empty sets, giving us a run over w that remains non-alternating.
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4. When o = pushk
b , let w = uk−1 :k uk :k+1 · · · :n un. We know w′ = pushk

b (w)
is

buk :1 uk−1 :k · · · :n un .

Let qp′

b
−−→
Qbr

(Q1, . . . , Qn) and Q1
a

−−→
Q′

br

Q′
1 be the first transitions used

on the accepting, non-alternating run of w′. From the construction we have
qp

a
−−→
Q′

br

(Q′
1, Q2, . . . , Qk ∪Qbr, . . . , Qn) from which we can construct an ac-

cepting run of w (which is w′ without the first b on top of the top order-1
stack).
To see that the run is non-alternating, we observe that Qk∪Qbr results in the
same labelling on the nodes of the graph of w as in corresponding run over
w′. Apart from the labelling of the initial nodes (which label the beginning
of each topk stack), the run over w is identical to the run over w′, and hence,
non-alternating.

5. When o = rewb let qp′

b
−−→
Qbr

(Q1, . . . , Qn) be the first transition on the non-

alternating accepting run of w′ = b :1 v for some v. From the construction
we know we have a transition qp

a
−−→
Qbr

(Q1, . . . , Qn), from which we get an

accepting, non-alternating run of w = a :1 v as required.

Hence, for every 〈p, w〉 ∈ Pre∗C(A0) we have w ∈ Lqp(A) via a non-alternating
run.

This gives us a algorithm running in (n − 1)-EXPTIME, since by avoiding
alternation at order-n, we reduce the size of the automaton by a single exponen-
tial.

Proposition 6. The saturation construction using Γ ′ for a non-alternating order-
n collapsible PDS C and an order-n stack automaton A0 that is non-alternating
at order-n terminates in (n− 1)-EXPTIME.
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