
Symbolic Backwards-Reachability Analysis for Higher-Order

Pushdown Systems

M. Hague C.-H. L. Ong

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, UK, OX1 3QD

October 20th 2008

Abstract

Higher-order pushdown systems (PDSs) generalise pushdown systems through the use of
higher-order stacks, that is, a nested “stack of stacks” structure. These systems may be used
to model higher-order programs and are closely related to the Caucal hierarchy of infinite
graphs and safe higher-order recursion schemes.

We consider the backwards-reachability problem over higher-order Alternating PDSs (APDSs),
a generalisation of higher-order PDSs. This builds on and extends previous work on push-
down systems and context-free higher-order processes in a non-trivial manner. In particular,
we show that the set of configurations from which a regular set of higher-order APDS con-
figurations is reachable is regular and computable in n-EXPTIME. In fact, the problem is
n-EXPTIME-complete.

We show that this work has several applications in the verification of higher-order PDSs,
such as linear-time model checking, alternation-free µ-calculus model-checking, the compu-
tation of winning regions of reachability games and determining whether the word language
accepted by a higher-order pushdown automata is non-empty.

Correction, Jan 2011: we have recently discovered that this application to LTL is erroneous. In particular, the proof of Proposition 5.1 is

mistaken. For example, 〈p, [[ab]]〉 →֒ 〈q, [[ab][ab]]〉 →֒ 〈q, [[b][ab]]〉 →֒ 〈p, [[ab]]〉 forms a loop without a repeating head. A correct and optimal

algorithm for linear-time model checking was published in FSTTCS 2010 [12].

Contents

1 Introduction 2
1.1 Pushdown Automata and Pushdown Systems . 2
1.2 Backwards Reachability . 3
1.3 Our Contribution . 3
1.4 Related Work . 4
1.5 Document Structure . 5

2 Preliminaries 5
2.1 Alternation . 5
2.2 (Alternating) Higher-Order Pushdown Systems . 6
2.3 n-Store Multi-Automata . 8

3 The Order-Two Case 9
3.1 Example . 9
3.2 Preliminaries . 14
3.3 Constructing the Sequence A0, A1, . 16
3.4 Constructing the Automaton A∗ . 17

1

4 The General Case 18
4.1 Preliminaries . 19
4.2 Further Examples . 20
4.3 Constructing A0, A1, . 23
4.4 Constructing A∗ . 24
4.5 Complexity . 26

5 Applications 27
5.1 Model Checking Linear-Time Temporal Logics . 27
5.2 Reachability Games . 28
5.3 Model-Checking Branching-Time Temporal Logics 29
5.4 Non-emptiness of Higher-Order Pushdown Automata 32

6 Conclusion 33

A Notions of Regularity 37

B Algorithms over n-Store (Multi-)Automata 38
B.1 Enumerating Runs . 38
B.2 Membership . 39
B.3 Boolean Operations . 40
B.4 Soundness and Completeness for A0, A1, . 44
B.5 Proofs for A∗ . 52

C Applications: Proofs and Definitions 61
C.1 Proof of Proposition 5.1 . 61
C.2 Proof of Lemma 5.1 . 61
C.3 Proof of AttrE(R) = Pre∗(R′) \ C▽

A . 62
C.4 Non-emptiness of Order-(n + 1) Pushdown Automata 63

1 Introduction

1.1 Pushdown Automata and Pushdown Systems

Pushdown automata are an extension of finite state automata. In addition to a finite set of control
states, a pushdown automaton has a stack which can be manipulated with the usual push and
pop operations. Transitions of the automaton depend on both the current control state and the
top item of the stack. During the execution of a transition, a push or pop operation is applied
to the stack. Since there is no bound on the size of the stack, the resulting automaton has an
infinite number of “states” or configurations, which consist of the current control state and the
contents of the stack. This allows the definition of such non-regular languages as the well known
{ anbn | n ≥ 0 }.

Higher-order pushdown automata (PDA) generalise pushdown automata through the use of
higher-order stacks. Whereas a stack in the sense of a pushdown automaton is a order-one stack
— that is, a stack of characters — a order-two stack is a stack of order-one stacks. Similarly, a
order-three stack is a stack of order-two stacks, and so on. An order-n PDA has push and pop
commands for every 1 ≤ l ≤ n. When l > 1 a pop command removes the topmost order-l stack.
Conversely, the push command duplicates the topmost order-l stack.

Higher-order PDA were originally introduced by Maslov [19] in the 1970s as generators of
(a hierarchy of) finite word languages. Higher-order pushdown systems (PDSs) are higher-order
PDA viewed as generators of infinite trees or graphs. These systems provide a natural infinite-
state model for higher-order programs with recursive function calls and are therefore useful in
software verification. Several notable advances in recent years have sparked off a resurgence of
interest in higher-order PDA/PDSs in the Verification community. E.g. Knapik et al. [28] have

2

shown that the ranked trees generated by deterministic order-n PDSs are exactly those that are
generated by order-n recursion schemes satisfying the safety constraint; Carayol and Wöhrle [5]
have shown that the ǫ-closure of the configuration graphs of higher-order PDSs exactly constitute
Caucal’s graph hierarchy [8]. Remarkably these infinite trees and graphs have decidable monadic
second-order (MSO) theories [9, 5, 28].

1.2 Backwards Reachability

The decidability results discussed above only allow us to check that a property holds from a
given configuration. Alternatively, we may wish to compute the set of configurations that satisfy
a given property, especially since there may be an infinite number of such configurations. An
important step in solving this problem is the backwards reachability problem. That is, given a set
of configurations CInit, compute the set of configurations that can, via any number of transitions,
reach a configuration in CInit. This is an important verification problem in its own right: many
properties required in industry are safety properties — that is, an undesirable program state (such
as deadlock) is never reached.

This problem was solved for order-one pushdown systems by Bouajjani et al. [2]. In particular,
they gave a method for computing the regular set of configurations Pre∗(CInit) that could reach a
given regular set of configurations CInit. Regular sets of configurations are represented in the form
of a finite multi-automaton. That is, a finite automaton that accepts finite words (representing
stacks) with an initial state for each control state of the PDS. A configuration is accepted if the
stack (viewed as a word) is accepted from the appropriate initial state. Pre∗(CInit) is computed
through the addition of a number of transitions, determined by the transition relation of the PDS,
to the automaton accepting CInit, until a fixed point is reached. A fixed point is guaranteed since
no states are added and the alphabet is finite: eventually the automaton will become saturated.

This idea was generalised by Bouajjani and Meyer to the case of higher-order context-free
systems [1], which are higher-order PDSs with a single control state. A key innovation in their
work was the introduction of a new class of (finite-state) automata called nested store automata,
which captures an intuitive notion of regular sets of n-stores. An order-n nested store automaton
is a finite automaton whose transitions are labelled by order-(n−1) nested store automata. In this
way the structure of a higher-order store is reflected. The procedure is similar to the algorithm
for the order-one case: transitions are added until a fixed point is reached. Termination in this
case is more subtle. Since products are formed when processing higher-order push commands, the
state space increases. However, it can be shown that only a finite number of products will be
constructed and that termination follows.

Bouajjani and Meyer also show that forward reachability analysis does not result in regular
sets of configurations.

1.3 Our Contribution

Our paper is concerned with the non-trivial problem1 of extending the backwards reachability
result of Bouajjani and Meyer to the general case of higher-order PDSs (by taking into account
a set of control states). In fact, we consider (and solve) the backwards reachability problem for
the more general case of higher-order alternating pushdown systems (APDSs). Though slightly
unwieldy, an advantage of the alternating framework is that it conveniently lends itself to a number
of higher-order PDS verification problems. Following the work of Cachat [25], we show that the
winning region of a reachability game played over a higher-order PDS can be computed by a
reduction to the backwards reachability problem of an appropriate APDS. We also generalise
results due to Bouajjani et al. [2] to give a method for computing the set of configurations of
a higher-order PDS that satisfy a given formula of the alternation-free µ-calculus or a linear-
time temporal logic. Finally, we use the algorithm to provide a technique for calculating the

1“This does not seem to be technically trivial, and näıve extensions of our construction lead to procedures which
are not guaranteed to terminate.” [1, p. 145]

3

non-emptiness of the word language accepted by a higher-order pushdown automaton. This final
application shows that the problem is n-EXPTIME-hard.

The algorithm uses a similar form of nested automata to represent configurations and uses
a similar routine of adding transitions determined by the transition relation of the higher-order
APDS. However, näıve combinations of the multi-automaton and nested-store automaton tech-
niques do not lead to satisfactory solutions. During our own efforts with simple combined tech-
niques, it was unclear how to form the product of two automata and maintain a distinction between
the different control states as required. To perform such an operation safely it seemed that ad-
ditional states were required on top of those added by the basic product operation, invalidating
the termination arguments. We overcome this problem by using alternating automata and by
modifying the termination argument. Additionally, we reduce the complexity of Bouajjani and
Meyer from a tower of exponentials twice the size of n, to a tower of exponentials as large as n.
Hence, the problem is n-EXPTIME-complete.

Termination is reached through a cascading of fixed points. Given a (nested) store-automaton,
we fix the order-n state-set. During a number of iterations, we add a finitely bounded number of
new transitions to order-n of the automaton. We also update the automata labelling the previously
added transitions to reflect the new transition structure. Eventually we reach a stage where no new
transitions are being added at order-n, although the automata labelling their edges will continue
to be replaced. At this point the updates become repetitive and we are able to freeze the state-set
at the second highest order. This is done by adding possibly cyclical transitions between the
existing states, instead of a chain of transitions between an infinite set of new states. Because the
state-set does not change, we reach another fixed point similar to that at order-n. In this way the
fixed points cascade to order-one, where the finite alphabet ensures that the automaton eventually
becomes saturated. We are left with an automaton representing the set Pre∗(CInit).

1.4 Related Work

1.4.1 Higher-Order Pushdown Games

The definition of higher-order PDSs may be extended to higher-order pushdown games. In this
scenario, control states are partitioned into to sets ∃ and ∀. When the current configuration
contains a control state in ∃, the player Eloise chooses the next configuration with respect to the
transition relation. Conversely, Abelard chooses the next transition from a control state in ∀. The
winner of the game depends on the winning condition. A configuration is winning for Eloise if she
can satisfy the winning condition regardless of the choices made by Abelard. A winning region for
Eloise is the set of all configurations from which Eloise can force a win. Two particular problems
for these games are calculating whether a given configuration is winning for Eloise and computing
the winning region for Eloise.

In the order-one case, the problem of determining whether a configuration is winning for
Eloise with a parity winning condition was solved by Walukiewicz in 1996 [13]. The order-one
backwards reachability algorithm of Bouajjani et al. was adapted by Cachat to compute the
winning regions of order-one reachability and Büchi games [25]. Techniques for computing winning
regions in the order-one case when the winning condition is a parity condition have been discovered
independently by both Cachat [25] and Serre [20]. These results for pushdown games have been
extended to a number of winning conditions [27, 3, 11, 21, 7]. In the higher-order case with a parity
winning condition, a method for deciding whether a configuration is winning has been provided
by Cachat [25].

1.4.2 C-Regularity

Prompted by the fact that the set of configurations reachable from a given configuration of a
higher-order PDS is not regular in the sense of Bouajjani and Meyer (the stack contents cannot be
represented by a finite automaton over words), Carayol [4] has proposed an alternative definition
of regularity for higher-order stacks, which we shall call C-regularity. Our notion of regularity

4

coincides with that of Bouajjani and Meyer, which, when confusion may arise, we shall call BM-
regularity.

A set of order-n stacks is C-regular if it is obtained by a regular sequence of order-n stack
operations. This notion of regularity is not equivalent to BM-regularity. For example, the set of
order-2 stacks defined by the expression (pusha)∗; push2 are all stacks of the form [[an][an]]. This
set is clearly unrecognisable by any finite state automaton, and thus, it is not BM-regular.

Carayol shows that C-regularity coincides with MSO definability over the canonical structure
∆n

2 associated with order-n stacks. This implies, for instance, that the winning region of a par-
ity game over an order-n pushdown graph is also C-regular, as it can be defined as an MSO
formula [25].

In this paper we solve the backwards reachability problem for higher-order PDSs and apply the
solution to reachability games and model-checking. In this sense we give a weaker kind of result
that uses a different notion of regularity. Because C-regularity does not imply BM-regularity,
our result is not subsumed by the work of Carayol. However, a detailed comparison of the two
approaches may provide a fruitful direction for further research.

1.4.3 Higher-Order Recursion Schemes

Higher-order recursion schemes (HORSs) represent a further area of related work. A long standing
open problem is whether a condition called safety is a genuine restriction on the expressiveness of
a HORS. If not, then HORSs are equivalent to higher-order PDSs. It is known that safety is not
a restriction at order-two for word languages [16]. This is conjectured not to be the case at higher
orders.

MSO decidability for trees generated by arbitrary (i.e. not necessarily safe) HORSs has been
shown by Ong [22]. A variant kind of higher-order PDSs called collapsible pushdown automata
(extending panic automata [29] or pushdown automata with links [16] to all finite orders) has
recently been shown to be equi-expressive with HORSs for generating ranked trees [17]. These
new automata are conjectured to enrich the class of higher-order systems and provide many new
avenues of research.

1.5 Document Structure

In Section 2 we give the definitions of higher-order (A)PDS and n-store multi-automata. We
describe the backwards-reachability algorithm in the order-two case in three stages in Section 3:
firstly we use an example to give an intuitive explanation of the algorithm. We then give a
description of its framework and explain how we can generate an infinite sequence of 2-store
multi-automata capturing the set Pre∗(CInit). Finally, we show how this sequence can be finitely
represented (and constructed). In Section 4 we go on to give a description of the algorithm in
the order-n case. This section includes some further examples to illustrate the construction and
a complexity analysis. Section 5 discusses the applications of the main result to LTL model-
checking, reachability games, alternation-free µ-calculus model checking over higher-order PDSs
and determining whether the language accepted by a higher-order pushdown automata is empty.
This final application provides a proof that the backwards reachability problem is n-EXPTIME-
complete. Finally, we conclude in Section 6. Additional proofs and algorithms are given in the
appendix.

2 Preliminaries

2.1 Alternation

In the sequel we will introduce several kinds of alternating automata. For convenience, we will use
a non-standard definition of alternating automata that is equivalent to the standard definitions of
Brzozowski and Leiss [14] and Chandra, Kozen and Stockmeyer [6]. Similar definitions have been
used for the analysis of pushdown systems by Bouajjani et al. [2] and Cachat [25]. The alternating

5

transition relation ∆ ⊆ Q× Γ × 2Q — where Γ is an alphabet and Q is a state-set — is given in
disjunctive normal form. That is, the image ∆(q, γ) of q ∈ Q and γ ∈ Γ is a set {Q1, . . . , Qm} with
Qi ∈ 2Q for i ∈ {1, . . . ,m}. When the automaton is viewed as a game, Eloise — the existential
player — chooses a set Q ∈ ∆(q, γ); Abelard — the universal player — then chooses a state q ∈ Q.
The existential component of the automaton is reflected in Eloise’s selection of an element (q, γ,Q)
from ∆ for a given q and γ. Abelard’s choice of a state q from Q represents the universal aspect
of the automaton.

2.2 (Alternating) Higher-Order Pushdown Systems

A higher-order pushdown system comprises a finite set of control states and a higher-order store.
Transitions of the higher-order PDS depend on both the current control state and the top symbol
of the higher-order store. Each transition changes the control state and manipulates the store.

The main result of this paper is presented over alternating higher-order pushdown systems.
This is because, although we apply our results to higher-order PDSs, the power of alternation
is required to provide solutions to reachability games and alternation-free mu-calculus model-
checking over higher-order PDSs.

We begin by defining higher-order stores and their operations. We will then define higher-order
PDSs in full.

Definition 2.1 [n-Stores] The set CΣ
1 of 1-stores over an alphabet Σ is the set of words of the

form [a1, . . . , am] with m ≥ 0 and ai ∈ Σ for all i ∈ {1, . . . ,m}, [/∈ Σ and] /∈ Σ. For n > 1,
CΣ

n = [w1, . . . , wm] with m ≥ 1 and wi ∈ CΣ
n−1 for all i ∈ {1, . . . ,m}.

There are three types of operations applicable to n-stores: push, pop and top. These are defined
inductively. Over a 1-store, we have (for all w ∈ Σ∗),

pushw[a1 . . . am] = [wa2 . . . am]
top1[a1 . . . am] = a1

We may define the abbreviation pop1 = pushε. When n > 1, we have,

pushw[γ1 . . . γm] = [pushw(γ1)γ2 . . . γm]
pushl[γ1 . . . γm] = [pushl(γ1)γ2 . . . γm] if 2 ≤ l < n
pushn[γ1 . . . γm] = [γ1γ1γ2 . . . γm]

popl[γ1 . . . γm] = [popl(γ1)γ2 . . . γm] if 1 ≤ l < n
popn[γ1 . . . γm] = [γ2 . . . γm] if m > 1
topl[γ1 . . . γm] = topl(γ1) if 1 ≤ l < n
topn[γ1 . . . γm] = γ1

Note that we assume without loss of generality Σ∩N = ∅, where N is the set of natural numbers.
Furthermore, observe that when m = 1, popn is undefined. We define On = { pushw | w ∈
Σ∗ } ∪ { pushl, popl | 1 < l ≤ n }. The definition of higher-order PDSs follows,

Definition 2.2 An order-n PDS is a tuple (P,D,Σ) where P is a finite set of control states p,
D ⊆ P × Σ ×On × P is a finite set of commands d, and Σ is a finite alphabet.

A configuration of a higher-order PDS is a pair 〈p, γ〉 where p ∈ P and γ is an n-store. We
have a transition 〈p, γ〉 →֒ 〈p′, γ′〉 iff we have (p, a, o, p′) ∈ D, top1(γ) = a and γ′ = o(γ).

We define
∗
→֒ to be the transitive closure of →֒. For a set of configurations CInit we define

Pre∗(CInit) as the set of configurations 〈p, γ〉 such that, for some configuration 〈p′, γ′〉 ∈ CInit,

we have 〈p, γ〉
∗
→֒ 〈p′, γ′〉.

We may generalise this definition to the case of Alternating higher-order PDSs.

Definition 2.3 An order-n APDS is a tuple (P,D,Σ) where P is a finite set of control states p,
D ⊆ P × Σ × 2On×P is a finite set of commands d, and Σ is a finite alphabet.

6

〈
p1, γ

〉
〈
p2, o2(γ)

〉

〈
p3, o3(γ)

〉

〈
p4, o4(o2(γ))

〉

〈
p5, o5(o3(γ))

〉

Figure 1: The configuration graph (excerpt) of an example higher-order APDS.

A configuration of a higher-order APDS is a pair 〈p, γ〉 where p ∈ P and γ is an n-store. We
have a transition 〈p, γ〉 →֒ C iff we have (p, a,OP) ∈ D, top1(γ) = a, and

C = { 〈p′, γ′〉 | (o, p′) ∈ OP ∧ γ′ = o(γ) } ∪ { 〈p,▽〉 | if (o, p′) ∈ OP and o(γ) is not defined }

The transition relation generalises to sets of configurations via the following rule:

〈p, γ〉 →֒ C

C ′ ∪ 〈p, γ〉 →֒ C ′ ∪ C
〈p, γ〉 /∈ C ′

We define
∗
→֒ to be the transitive closure of →֒. For a set of configurations CInit we define

Pre∗(CInit) as the set of configurations 〈p, γ〉 such that we have 〈p, γ〉
∗
→֒ C and C ⊆ CInit.

Example 2.1 We present an example to illustrate the definition of Pre∗(CInit) for higher-order
APDSs. Figure 1 shows an excerpt of the configuration graph of a higher-order APDS with the
commands,

(p1, , {(o2, p
2), (o3, p

3)})
(p2, , {(o4, p

4)})
(p3, , {(o5, p

5)})

We consider a number of different values of CInit.

1. Let CInit = {〈p2, o2(γ)〉}. In this case Pre∗(CInit) = CInit. The configuration 〈p1, γ〉 is not
in Pre∗(CInit) since the configuration 〈p3, o3(γ)〉 cannot be in Pre∗(CInit).

2. Let CInit = {〈p2, o2(γ)〉, 〈p3, o3(γ)〉}. In this case Pre∗(CInit) = CInit ∪ {〈p1, γ〉}. This is
because the transition from 〈p1, γ〉 reaches a set that is a subset of CInit.

3. Let CInit = {〈p4, o4(o2(γ))〉}. In this case Pre∗(CInit) = CInit ∪ {〈p2, o2(γ)}. The con-
figuration 〈p2, o2(γ)〉 is in the set because its transition moves to a set which is a subset of
CInit. The pair 〈p1, γ〉 is not in the set because, although 〈p2, o2(γ)〉 is in Pre∗(CInit), the
configuration 〈p3, o3(γ)〉 is not.

4. Let CInit = {〈p4, o4(o2(γ))〉, 〈p3, o3(γ)〉}. In this case Pre∗(CInit) is the set CInit∪{〈p2, o2(γ)〉, 〈p1, γ〉}.
We have 〈p2, o2(γ)〉 ∈ Pre∗(CInit) as before. Furthermore, we have the following run from
〈p1, γ〉,

〈p1, γ〉 →֒ {〈p2, o2(γ)〉, 〈p3, o3(γ)〉} →֒ {〈p4, o4(o2(γ))〉, 〈p3, o3(γ)〉}

Hence, 〈p1, γ〉 ∈ Pre∗(CInit).

7

Finally, suppose the higher-order APDS also has a command of the form,

(p5, , {(pushl, p
4)})

And it is the case that (only) pushl(o5(o3(γ))) is undefined. If CInit = {〈p5,▽〉}, then Pre∗(CInit) =
CInit ∪ {〈p5, o5(o3(γ))〉, 〈p3, o3(γ)〉}.

Observe that since no transitions are possible from an “undefined” configuration 〈p,▽〉 we can
reduce the reachability problem for higher-order PDSs to the reachability problem over higher-
order APDSs in a straightforward manner.

In the sequel, to ease the presentation, we assume n > 1. The case n = 1 was investigated by
Bouajjani et al. [2].

2.3 n-Store Multi-Automata

To represent sets of configurations symbolically we will use n-store multi-automata. These are
alternating automata whose transitions are labelled by (n − 1)-store automata, which are also
alternating. A set of configurations is regular iff it can be represented using an n-store multi-
automaton. This notion of regularity coincides with the definition of Bouajjani and Meyer (see
Appendix A). In Appendix B we give algorithms for enumerating runs of n-store automata, testing
membership and performing boolean operations on the automata.

Definition 2.4

1. A 1-store automaton is a tuple (Q,Σ,∆, q0,Qf) where Q is a finite set of states, Σ is a
finite alphabet, q0 is the initial state and Qf ⊆ Q is a set of final states. It is the case that
∆ ⊆ Q× Σ × 2Q is a finite transition relation.

2. Let B
Σ
n−1 be the (infinite) set of all (n− 1)-store automata over the alphabet Σ. An n-store

automaton over the alphabet Σ is a tuple (Q,Σ,∆, q0,Qf) where Q is a finite set of states,
q0 /∈ Qf is the initial state, Qf ⊆ Q is a set of final states, and ∆ ⊆ Q × B

Σ
n−1 × 2Q is a

finite transition relation. Furthermore, let B
Σ
0 = Σ.

3. An n-store multi-automaton over the alphabet Σ is a tuple

(Q,Σ,∆, {q1, . . . , qz},Qf)

where Q is a finite set of states, Σ is a finite alphabet, qi for i ∈ {1, . . . , z} are pairwise
distinct initial states with qi /∈ Qf and qi ∈ Q; Qf ⊆ Q is a set of final states, and,

∆ ⊆ (Q× B
Σ
n−1 × 2Q) ∪ ({q1, . . . , qz} × {▽} × {qε

f})

is a finite transition relation where qε
f ∈ Qf has no outgoing transitions.

To indicate a transition (q,B, {q1, . . . , qm}) ∈ ∆ we write,

q
B
−→ {q1, . . . , qm}

A transition of the form qj ▽

−→ {qε
f} indicates that the undefined configuration 〈pj ,▽〉 is accepted.

Runs of the automata from a state q take the form,

q
eB0−→ {q1

1 , . . . , q1
m1

}
eB1−→ . . .

eBm−→ {qm+1
1 , . . . , qm+1

ml
}

where transitions between configurations {qx
1 , . . . , qx

mx
}

eBx−→ {qx+1
1 , . . . , qx+1

mx+1
} are such that we

have qx
y

By
−→ Qy for all y ∈ {1, . . . ,mx} and

⋃
y∈{1,...,mx}

Qy = {qx+1
1 , . . . , qx+1

mx+1
} and additionally

8

⋃
y∈{1,...,mx}

{By} = B̃x. Observe that B̃0 is necessarily a singleton set. A run over a word

γ1 . . . γm, denoted q
γ1...γm
−−−−−→ Q, exists whenever,

q
eB0−→ . . .

eBm−→ Q

and for all 0 ≤ i ≤ m.γi ∈ L(B̃i), where γ ∈ L(B̃) iff γ ∈ L(B) (defined below) for all B ∈ B̃. If
a run occurs in an automaton forming part of a sequence of automata A0, A1, . . ., we may write
−→i to indicate which automaton Ai the run belongs to.

We define L(a) = a for all a ∈ Σ = B
Σ
0 . An n-store [γ1 . . . γm] is accepted by an n-store

automaton A (that is [γ1 . . . γm] ∈ L(A)) iff we have a run q0
γ1...γm
−−−−−→ Q in A with Q ⊆ Qf . For a

given n-store multi-automaton A = (Q,Σ,∆, {q1, . . . , qz},Qf) we define,

L(Aqj

) = { [γ1 . . . γm] | qj γ1...γm
−−−−−→ Q ∧ Q ⊆ Qf }

∪ { ▽ | qj ▽

−→ {qε
f} }

and
L(A) = { 〈pj , γ〉 | j ∈ {1, . . . , z} ∧ γ ∈ L(Aqj

) }

Finally, we define the automata Ba
l and Xa

l for all 1 ≤ l ≤ n and a ∈ Σ and the notation
qθ. The l-store automaton Ba

l accepts any l-store γ such that top1(γ) = a. The (n − 1)-store
automaton Xa

l accepts all (n− 1)-stacks such that top1(γ) = a and topl+1(γ) = [[w′]] for some w′.
That is, popl(γ) is undefined. If θ represents a store automaton, the state qθ refers to the initial
state of the automaton represented by θ.

3 The Order-Two Case

Before introducing the full algorithm, we give an example and a description of the algorithm for
the order-2 case. This will provide an introduction to the important features of the solution whilst
reducing the notational complexity.

Theorem 3.1 Given an 2-store multi-automaton A0 accepting the set of configurations CInit of
an order-2 APDS, we can construct in 2-EXPTIME (in the size of A0) an 2-store multi-automaton
A∗ accepting the set Pre∗(CInit). Thus, Pre∗(CInit) is regular.

Fix an order-2 APDS. We begin by showing how to generate an infinite sequence of automata
A0, A1, . . ., where A0 is such that L(A0) = CInit. This sequence is increasing in the sense
that L(Ai) ⊆ L(Ai+1) for all i, and sound and complete with respect to Pre∗(CInit); that is⋃

i≥0 L(Ai) = Pre∗(CInit). To conclude the algorithm, we construct a single automaton A∗ such
that L(A∗) =

⋃
i≥0 L(Ai).

We assume without loss of generality that all initial states in A0 have no incoming transitions
and there exists in A0 a state q∗f from which all valid 2-stores are accepted and a state qε

f ∈ Qf

which has no outgoing transitions.

3.1 Example

We give an intuitive explanation of the algorithm by means of an example. Fix the following
two-state order-two PDS:

d1 = (p1, a, push2, p
1)

d2 = (p1, a, pushε, p
1)

d3 = (p2, a, pushw, p1)
d4 = (p2, a, pop2, p

1)

And a 2-store multi-automaton A0 shown in Figure 2 with some B1, B2, B3 and B4. We proceed
via a number of iterations, generating the automata A0, A1, We construct Ai+1 from Ai to
reflect an additional inverse application of the commands d1, . . . , d4.

9

q1

qf

q2

B1

B2

B3
B4

Figure 2: The initial 2-store multi-automaton

q1

qf

q2

B1

B2

B3
B4

G̃1
(q1,qf)

G̃1
(q1,◦)

G̃1
(q2,◦)

G̃1
(q2,q1)

Figure 3: The automaton A1

During the construction of A1, rather than manipulating the order-1 store automata labelling
the edges of A0 directly, we introduce new transitions (at most one between each pair of states

q1 and q2) and label these edges with the set G̃1
(q1,q2)

. This set is a recipe for the construction of

an order-1 store automaton that will ultimately label the edge. The set G̃1 is the set of all sets
G̃1

(q1,q2)
introduced. After the first stage of the algorithm, the resulting A1 is given in Figure 3

where the contents of
G̃1 =

{
G̃1

(q1,◦), G̃
1
(q1,qf), G̃

1
(q2,◦), G̃

1
(q2,q1)

}

are given in Table 1. The columns indicate which command introduced each element to the set.
To process the command d1 we need to add to the set of configurations accepted by A1 all con-

figurations of the form 〈p1, [γ1 . . . γm]〉 with top1(γ1) = a for each configuration 〈p1, [γ1γ1 . . . γm]〉
accepted by A0. This is because push2[γ1 . . . γm] = [γ1γ1 . . . γm]. Hence we add the transition

from q1 to qf . The contents of G̃1
(q1,qf) indicate that this edge must accept the product of Ba

1 , B1

and B3.
The commands d2 and d3 update the top2 stack of any configuration accepted from q1 or

q2 respectively. In both cases this updated stack must be accepted from q1 in A0. Hence, the
contents of G̃1

(q1,◦) and G̃1
(q2,◦) specify that the automaton B1 must be manipulated to produce

the automaton that will label these new transitions. Finally, since pop2[γ1 . . . γm] = [γ2 . . . γm],

10

d1 d2 d3 d4

G̃1
(q1,◦) {(a, pushε, B1)}

G̃1
(q1,qf) {Ba

1 , B1, B3}

G̃1
(q2,◦) {(a, pushw, B1)}

G̃1
(q2,q1) {Ba

1}

Table 1: The contents of the sets in G̃1.

q1

qf

q2

B1

B2

B3
B4

G̃2
(q1,qf)

G̃2
(q1,◦)

G̃2
(q2,◦)

G̃2
(q2,q1)

G̃2
(q2,qf)

Figure 4: The automaton A2.

d4 requires an additional top2 stack with a as its top1 element to be added to any stack accepted
from q1. Thus, we introduce the transition from q2 to q1.

To construct A2 from A1 we repeat the above procedure, taking into account the additional
transitions in A1. Observe that we do not add additional transitions between pairs of states that
already have a transition labelled by a set. Instead, each labelling set may contain several element
sets. The resulting A2 is given in Figure 4 where the contents of

G̃2 =
{

G̃2
(q1,◦), G̃

2
(q1,qf), G̃

2
(q2,◦), G̃

2
(q2,q1), G̃

2
(q2,qf)

}

are given in Table 2.
If we were to repeat this procedure to construct A3 we would notice that a kind of fixed point

has been reached. In particular, the transition structure of A3 will match that of A2 and each
G̃3

(q,q′) will match G̃2
(q,q′) in everything but the indices of the labels G̃1

(,) appearing in the element

sets. We may write G̃3
(q,q′) = G̃2

(q,q′)[2/1] where the notation [2/1] indicates a substitution of the
element indices.

So far we have just constructed sets to label the transitions of A1 and A2. To complete the
construction of A1 we need to construct the automata G1

(q,q′) represented by the labels G̃1
(q,q′) for

11

d1 d2 d3 d4

G̃2
(q1,◦) {(a, pushε, B1)}

{(a, pushε, G̃
1
(q1,◦))}

G̃2
(q1,qf) {Ba

1 , B1, B3} {(a, pushε, G̃
1
(q1,qf))}

{Ba
1 , G̃1

(q1,qf), B4}

{Ba
1 , G̃1

(q1,◦), B3}

G̃2
(q2,◦) {(a, pushw, B1)}

{(a, pushw, G̃1
(q1,◦))}

G̃2
(q2,q1) {Ba

1}

G̃2
(q2,qf) {(a, pushw, G̃1

(q1,qf))}

Table 2: The contents of the sets in G̃2.

the appropriate q, q′. Because each of these new automata will be constructed from B1, . . . , B4, B
a
1 ,

we build them simultaneously, constructing a single (1-store multi-)automaton G1 with an initial

state g1
(q,q′) for each G̃1

(q,q′). The automaton G1 is constructed through the addition of states and
transitions to the disjoint union of B1, . . . , B4, B

a
1 . Creating the automaton A2 is analogous and

G2 is built through the addition of states and transitions to G1.
The automaton G1 is given in Figure 5. We do not display this automaton in full since the

number of alternating transitions entails a diagram too complicated to be illuminating. Instead
we will give the basic structure of the automaton with many transitions omitted. In particular
we show a transition derived from {Ba

1 , B1, B3} (from state g1
(q1,qf)), a transition derived from

{(a, pushε, B1)} (from state g1
(q1,◦)) and a transition derived from {Ba

1} (from state g1
(q2,q1)).

Notably, we have omitted any transitions derived from the pushw command. This is simply
for convenience since we do not wish to further explicate B1, B2, B3 or B4. From this automaton
we derive G1

(q1,◦), G
1
(q1,qf), G

1
(q2,◦) and G1

(q2,q1) by setting the initial state to g1
(q1,◦), g

1
(q1,qf), g

1
(q2,◦)

and g1
(q2,q1) respectively.

The automaton G2 is shown in Figure 6. Again, due to the illegibility of a complete dia-
gram, we omit many of the transitions. The new transition from g2

(q1,qf) is derived from the set

{Ba
1 , B3, G̃

1
(q1,◦)}. One of the transitions from g2

(q1,◦) and the only transition from g2
(q2,q1) are inher-

ited from their corresponding states in the previous automaton. This inheritance ensures that we
do not lose information from the previous iteration. The uppermost transition from g2

(q1,◦) derives

from {(a, pushε, G̃
1
(q1,◦))}. From this automaton we derive G1

(q1,◦), G
1
(q1,qf), G

1
(q2,◦) and G1

(q2,q1).

We have now constructed the automata A1 and A2. We could then repeat this procedure to
generate A3, A4, . . ., resulting in an infinite sequence of automata that is sound and complete with
respect to Pre∗(L(A0)).

To construct A∗ such that L(A∗) =
⋃

i≥0 L(Ai) we observe that since a fixed point was reached

at A2, the update to each Gi to create Gi+1 will use similar recipes and hence become repetitive.
This will lead to an infinite chain with an unvarying pattern of edges. This chain can be collapsed
as shown in Figure 7.

In particular, we are no longer required to add new states to G2 to construct Gi for i > 2.
Instead, we fix the update instructions G̃2

(q,q′)[2/1] for all q, q′ and manipulate G2 as we manipulated

12

g1
(q1,◦) qB1

g1
(q2,◦) qB2

g1
(q1,qf) qB3

g1
(q2,q1) qB4

qBa
1

a

a

a

a

a

a

Figure 5: A selective view of G1.

g2
(q1,◦) g1

(q1,◦) qB1

g2
(q2,◦) g1

(q2,◦) qB2

g2
(q1,qf) g1

(q1,qf) qB3

g2
(q2,q1) g1

(q2,q1) qB4

g2
(q2,qf) qBa

1

a

a

a

a

a

a

a

a

a

a

Figure 6: A selective view of G2.

· · · · · · “=”

Figure 7: Collapsing a repetitive chain of new states.

13

g2
(q1,◦) g1

(q1,◦) qB1

g2
(q2,◦) g1

(q2,◦) qB2

g2
(q1,qf) g1

(q1,qf) qB3

g2
(q2,q1) g1

(q2,q1) qB4

g2
(q2,qf) qBa

1

a

a

a

a

a

a

a

a

a

a

a

Figure 8: A selective view of Ĝ∗.

the order-2 structure of A0 to create A1 and A2. We write Ĝi to distinguish these automata from
the automata Gi generated without fixing the state-set.

Because Σ and the state-set are finite (and remain unchanged), this procedure will reach
another fixed point Ĝ∗ when the transition relation is saturated and Ĝi = Ĝi+1. The automaton
A∗ has the transition structure that became fixed at A2 labelled with automata derived from Ĝ∗.
This automaton will be sound and complete with respect to Pre∗(L(A0)).

An abbreviated diagram of Ĝ∗ is given in Figure 8. We have hidden, for clarity, the transition
derived from {Ba

l , B3, G̃
1
(q1,◦)} in Figure 6. Instead, we show the transition introduced for the set

{Ba
1 , B3, G̃

1
(q1,◦)}[2/1] = {Ba

1 , B3, G̃
2
(q1,◦)} during the construction of Ĝ∗. We have also added the

self-loop added by {(a, pushε, G
1
(q1,◦))}[2/1] = {(a, pushε, G

2
(q1,◦))} that enabled the introduction

of this transition.

3.2 Preliminaries

We now discuss the algorithm more formally. We begin by describing the transitions labelled by
Gi

(q1,Q2)
before discussing the construction of the sequence A0, A1, . . . and the automaton A∗.

To aid in the construction of an automaton representing Pre∗(CInit) we introduce a new kind
of transition to the 2-store automata. These new transitions are introduced during the processing
of the APDS commands. They are labelled with place-holders that will eventually be converted
into 1-store automata.

Between any state q1 and set of states Q2 we add at most one transition. We associate
this transition with an identifier G̃(q1,Q2). To describe our algorithm we will define sequences
of automata, indexed by i. We superscript the identifier to indicate to which automaton in the
sequence it belongs. The identifier G̃i

(q1,Q2)
is associated with a set that acts as a recipe for

updating the 1-store automaton described by G̃i−1
(q1,Q2)

or creating a new automaton if G̃i−1
(q1,Q2)

does not exist. Ultimately, the constructed 1-store automaton will label the new transition. In
the sequel, we will confuse the notion of an identifier and its associated set. The intended usage
should be clear from the context.

The sets are in a kind of disjunctive normal form. A set {S1, . . . , Sm} represents an automaton

14

that accepts the union of the languages accepted by the automata described by S1, . . . , Sm. Each
set S ∈ {S1, . . . , Sm} corresponds to a possible effect of a command d at order-1 of the automaton.
The automaton described by S = {α1, . . . , αm} accepts the intersection of languages described by
its elements αt (t ∈ {1, . . . ,m}).

An element that is an automaton B refers directly to the automaton B. Similarly, an identifier
G̃i

(q1,Q2)
refers to its corresponding automaton. Finally, an element of the form (a, pushw, θ) refers

to an automaton capturing the effect of applying the inverse of the pushw command to the stacks
accepted by the automaton represented by θ; moreover, the top1 character of the stacks accepted
by the new automaton will be a. It is a consequence of the construction that for any S added
during the algorithm, if (a, pushw, θ) ∈ S and (a′, pushw′ , θ′) ∈ S then a = a′.

Formally, to each G̃i
(q1,Q2)

we attach a subset of

2B ∪ G̃i−1 ∪ (Σ ×O1 × (B ∪ G̃i−1))

where B is the set of all 1-store automata occurring in A0 and all automata of the form Ba
1 .

Further, we denote the set of all identifiers G̃i
(q,Q) in Ai as G̃i. The sets B and O1 are finite by

definition. The size of the set G̃i for any i is finitely bound by the (fixed) state-set of Ai.

We build the automata for all G̃i
(q1,Q2)

∈ G̃i simultaneously. That is, we create a single

automaton Gi associated with the set G̃i. This automaton has a state gi
(q1,Q2)

for each G̃i
(q1,Q2)

∈

G̃i. The automaton Gi
(q1,Q2)

labelling the transition q1 −→i Q2 is the automaton Gi with gi
(q1,Q2)

as its initial state.
The automaton Gi is built inductively. We set G0 to be the disjoint union of all automata in

B. We define Gi+1 = TeGi+1(Gi) where TeGj (Gi) is given in Definition 3.1. In Section 3.4 it will be
seen that j is not always (i + 1).

Definition 3.1 Given an automaton Gi = (Qi,Σ,∆i, ,Qf) and a set of identifiers (with associ-

ated sets) G̃j
1, we define,

Gi+1 = TeGj (G
i) = (Qi+1,Σ,∆i+1, ,Qf)

where Qi+1 = Qi ∪ { gj
(q1,Q2)

| G̃j
(q1,Q2)

∈ G̃j }, ∆i+1 = ∆inherited ∪ ∆new ∪ ∆i, and,

∆inherited = { gj
(q1,Q2)

a
−→ Q | (gj−1

(q1,Q2)

a
−→ Q) ∈ ∆i }

∆new =
{

gj
(q1,Q2)

b
−→ Q | G̃j

(q1,Q2)
∈ G̃j and b ∈ Σ and (1)

}

where (1) requires {α1, . . . , αr} ∈ G̃j
(q1,Q2)

, Q = Q1 ∪ · · · ∪Qr and for each t ∈ {1, . . . , r} we have,

• If αt = θ, then (qθ b
−→ Qt) ∈ ∆i.

• If αt = (a, pushw, θ), then b = a and qθ w
−→ Qt is a run of Gi.

There are two key parts to Definition 3.1. During the first stage we add a new initial state
for each automaton forming a part of Gi+1. By adding new initial states, rather than using the
previous set of initial states, we guarantee that no unwanted cycles are introduced, which may
lead to the erroneous acceptance of certain stores. We ensure that each 1-store accepted by Gi is
accepted by Gi+1 — and the set of accepted stores is increasing — by inheriting transitions from
the previous set of initial states.

During the second stage we add transitions between the set of new initial states and the
state-set of Gi to capture the effect of a backwards application of the APDS commands to L(Ai).

There are two different forms for the elements αt ∈ {α1, . . . , αr}. If αt refers directly to an
automaton, then we require that the new store is also accepted by the automaton referred to by
αt. We simply inherit the initial transitions of that automaton in a similar manner to the first
stage of TeGj (Gi). If αt is of the form (a, pushw, θ), then it corresponds to the effects of a command
(p, a, {. . . , (pushw, p′), . . .}). The new store must have the character a as its top1 character, and

15

the store resulting from the application of the operation pushw must be accepted by the automaton
represented by θ. That is, the new state must accept all stores of the form aw′ when the store
ww′ is accepted by θ.

3.3 Constructing the Sequence A0, A1, . . .

For a given order-2 APDS with commands D we define Ai+1 = TD(Ai) where the operation TD

follows. We assume A0 has a state qε
f with no outgoing transitions and a state q∗f from which all

stores are accepted.

Definition 3.2 Given an automaton Ai = (Q,Σ,∆i, {q1, . . . , qz},Qf) and a set of commands D,
we define,

Ai+1 = TD(Ai) = (Q,Σ,∆i+1, {q1, . . . , qz},Qf)

where ∆i+1 is given below.

We begin by defining the set of labels G̃i+1. This set contains labels on transitions present in
Ai, and labels on transitions derived from D. That is,

G̃i+1 =

{
G̃i+1

(qj ,Q) | (qj
eGi

(qj,Q)
−−−−−→ Q) ∈ ∆i and j ∈ {1, . . . , z}

}
∪

{
G̃i+1

(qj ,Q) | (2)
}

The contents of the associated sets G̃i+1
(q,Q) ∈ G̃i+1 are defined G̃i+1

(qj ,Q) = { S | (2) } where (2)

requires (pj , a, {(o1, p
k1), . . . , (om, pkm)}) ∈ D, Q = Q1 ∪ · · · ∪Qm, S = S1 ∪ · · · ∪ Sm and for each

t ∈ {1, . . . ,m} we have,

• If ot = push2, then St = {Ba
1} ∪ θ̃1 ∪ θ̃2 and there exists a path qkt

eθ1−→i Q′
eθ2−→i Qt in Ai.

• If ot = pop2, then St = {Ba
1} and Qt = {qkt}. Or, if qj ▽

−→i {q
ε
f} exists in Ai, we may have

St = {Ba
1} and Qt = {qε

f}.

• If ot = pushw then St = {(a, pushw, θ)} and there exists a transition qkt
θ

−→i Qt in Ai.

Finally, we give the transition relation ∆i+1.

∆i+1 =

{
q

B
−→ Q | (q

B
−→ Q) ∈ ∆i

and B ∈ B

}
∪

{
q

eGi+1
(q,Q)

−−−−→ Q | G̃i+1
(q,Q) ∈ G̃i+1

}

We can construct an automaton whose transitions are 1-store automata by replacing each set
G̃i+1

(q,Q) with the automaton Gi+1
(q,Q) which is Gi+1 with initial state gi+1

(q,Q), where Gi+1 = TeGi+1(Gi).

Note that Gi is assumed by induction. In the base case, G0 is the disjoint union of all automata
in B.

The above construction is similar to Definition 3.1. However, because we do not change the initial
states of the automaton, we do not have to perform the inheritance step. Furthermore the set of
commands D specify how the automata should be updated, rather than a set G̃i. A command
(pj , a, {(o1, p

k1), . . . , (om, pkm)}) takes the place of a set {α1, . . . , αm}.
The contents of St and Qt depend on the operation ot. If ot is of a lower order than 2 (that is,

a pushw command) then ot(γw) = ot(γ)w for any store γw. Hence we inherit the first transition
from the initial state of the automaton represented θ, but pass the required constraint (using
St = {(a, ot, B)}) to the lower orders of the automaton.

Otherwise ot is a pop2 or push2 operation. If is a push2 command, then push2(γw′) = γγw′,
and hence we use St to ensure that the top store γ of γw′ is accepted by the first two transitions
from the initial state of the automaton represented by θ and we use Qt to ensure that the tails of
the stores match.

16

When ot is a pop2 operation and the new store is simply the old store with an additional 2-store
on top (that is pop2(γw′) = w′), Qt is the initial state of the automaton represented by θ and St

contains the automaton Ba
1 . This ensures that the top1 character of the new store is a. We also

need to consider the undefined store ▽. This affects the processing of pop2 operations since their
result is not always defined. Hence, when considering which new stores may be accepted by Ai+1,
we check whether the required undefined configuration is accepted by Ai. This is witnessed by
the presence of a ▽ transition from pj . If the result may be undefined, we accept all stores that
do not have an image under the pop2 operation. That is, all stores of the form [γ].

By repeated applications of TD we construct the sequence A0, A1, . . . which is sound and
complete with respect to Pre∗(CInit).

Property 3.1 For any configuration 〈pj , γ〉 it is the case that γ ∈ L(Aqj

i) for some i iff 〈pj , γ〉 ∈
Pre∗(CInit).

3.4 Constructing the Automaton A∗

We need to construct a finite representation of the sequence A0, A1, . . . in a finite amount of time.
To do this we will construct an automaton A∗ such that L(A∗) =

⋃
i≥0 L(Ai). We begin by

introducing some notation and a notion of subset modulo i for the sets G̃i
(q1,Q2)

.

Definition 3.3

1. Given θ ∈ B ∪ G̃i for some i, let

θ[j/i] =

{
θ if θ ∈ B

Gj
(q1,Q2)

if θ = Gi
(q1,Q2)

∈ G̃i

2. For a set S we define S[j/i] such that,

(a) We have θ ∈ S iff we have θ[j/i] ∈ S[j/i], and

(b) We have (a, o, θ) ∈ S iff we have (a, o, θ[j/i]) ∈ S[j/i].

3. We extend the notation [j/i] to nested sets of sets structures in a point-wise fashion.

Definition 3.4

1. We write G̃i
(q1,Q2)

. G̃j
(q1,Q2)

iff for each S ∈ G̃i
(q1,Q2)

we have S[j − 1/i − 1] ∈ G̃j
(q1,Q2)

.

2. If G̃i
(q1,Q2)

. G̃j
(q1,Q2)

and G̃j
(q1,Q2)

. G̃i
(q1,Q2)

, then we write G̃i
(q1,Q2)

≃ G̃j
(q1,Q2)

.

3. Furthermore, we extend the notation to sets. That is, G̃i . G̃j iff for all G̃i
(q1,Q2)

∈ G̃i we

have G̃j
(q1,Q2)

∈ G̃j and G̃i
(q1,Q2)

. G̃j
(q1,Q2)

.

We now show that a fixed point is reached at order-2. That we reach a fixed point is important,
since, when G̃i ≃ G̃i+1 there are two key consequences. Firstly, for all q1 and Q2, we have
G̃i

(q1,Q2)
∈ G̃i iff we also have G̃i+1

(q1,Q2)
∈ G̃i+1. This means that, if we ignore the automata

labelling the edges of Ai and Ai+1, the two automata have the same transition structure. The

second consequence follows from the first: we have G̃i
(q1,Q2)

≃ G̃i+1
(q1,Q2)

for all q1 and Q2. That is,

the automata labelling the edges of Ai and Ai+1 will be updated in the same manner. It is this
repetition that allows us to fix the state-set at order-1, and thus reach a final fixed point.

Property 3.2 There exists i1 > 0 such that G̃i ≃ G̃i1 for all i ≥ i1.

17

Proof.(Sketch) Since the order-1 state-set in Ai remains constant and we add at most one tran-
sition between any state q1 and set of states Q2, there is some i1 where no more transitions are
added at order-2. That G̃i ≃ G̃i1 for all i ≥ i1 follows since the contents of G̃i

(q1,Q2)
and G̃i1

(q1,Q2)

are derived from the same transition structure. 2

Once a fixed point has been reached at order-2, we can fix the state-set at order-1.

Lemma 3.1 Suppose we have constructed a sequence of automata G0,G1, . . . with the associated
sets G̃0, G̃1, Further, suppose there exists an i1 such that for all i ≥ i1 we have G̃i ≃ G̃i1 . We
can define a sequence of automata Ĝi1 , Ĝi1+1, . . . such that the state-set in Ĝi remains constant
and there exists i0 such that Ĝi0 characterises the sequence — that is, the following are equivalent
for all w,

1. The run gi1
(q,Q′)

w
−→i Q1 with Q1 ⊆ Qf exists in Ĝi for some i.

2. The run gi1
(q,Q′)

w
−→i0 Q2 with Q2 ⊆ Qf exists in Ĝi0 .

3. The run gi′

(q,Q′)

w
−→i′ Q3 with Q3 ⊆ Qf exists in Gi′ for some i′.

Proof. Follows from the definition of Ĝi+1 = TeGi1 [i1/i1−1](Ĝ
i
1), Lemma B.9, Lemma B.10 and

Lemma B.11. 2

We use Ĝi+1 = TeGi1 [i1/i1−1](Ĝ
i) to construct the sequence Ĝi1 , Ĝi1+1, . . . (with Ĝi1 = Gi1).

Intuitively, since the transitions from the states introduced to define Gi for i ≥ i1 are derived
from similar sets, we can compress the subsequent repetition into a single set of new states. The
substitution G̃i1 [i1/i1 − 1] makes the sets in G̃i1 self-referential. This generates the loops shown in
Figure 7. Since the state-set of this new sequence does not change and the alphabet Σ is finite,
the transition structure will become saturated.

We define Ĝ∗ = Ĝi0 letting g∗(q1,Q2)
= gi1

(q1,Q2)
for each gi1

(q1,Q2)
. Finally, we show that we can

construct the automaton A∗.

Property 3.3 There exists an automaton A∗ which is sound and complete with respect to A0, A1, . . .
and hence computes the set Pre∗(CInit).

Proof. By Property 3.2 there is some i1 with G̃i ≃ G̃i1 for all i ≥ i1. By Lemma 3.1, we have
Ĝ∗ = Ĝi0 . We then define A∗ from Ai1 with each transition q −→∗ Q′ in A∗ labelled with the
appropriate B ∈ B or automaton G∗

(q,Q′) from Ĝ∗ = Ĝi0 . 2

Thus, we have the following algorithm for constructing A∗:

1. Given A0, iterate Ai+1 = TD(Ai) until the fixed point Ai1 is reached.

2. Iterate Ĝi+1 = TeG
i1
l

[i1/i1−1]
(Ĝi) to generate the fixed point Ĝ∗ from Gi1 .

3. Construct A∗ by labelling the transitions of Ai1 with automata derived from Ĝ∗.

4 The General Case

We now generalise the order-2 algorithm to APDSs of all orders.

Theorem 4.1 Given an n-store multi-automaton A accepting the set of configurations CInit of an
order-n APDS, we can construct in n-EXPTIME (in the size of A0) an n-store multi-automaton
A∗ accepting the set Pre∗(CInit). Thus, Pre∗(CInit) is regular.

18

In the order-2 case, we added transitions to the 2-store multi-automaton A0 depending on
the commands D of the given APDS. The (order-1 store-)automata labelling the transitions were
updated through the addition of new initial states until the transition structure at order-2 reached
a fixed point. We were then able to stop adding new states at order-1, adding only new transitions
until a second fixed point was reached. At this point the algorithm terminated.

In the order-n case, new states are added to the automata labelling the order-n edges until the
order-n transition structure reaches a fixed point. We are then able to stop adding new states to
the order-(n−1) automata, although we continue to add new states to the automata labelling the
transitions at order-(n− 1). Since the order-(n− 1) state-set is fixed, the order-(n− 1) transition
structure will reach a second fixed point. At this stage we are no longer required to add new states
to order-(n − 2) of the automaton, and so on. In this way we have a cascade of fixed points from
order-n of the automaton down to order-1, at which point the algorithm terminates.

4.1 Preliminaries

We generalise the definition of Gi
(q1,Q2)

∈ G̃i to any order l of the store-automata. That is, to each

G̃i
(q1,Q2)

at order-l we attach a subset of

2Bl−1 ∪ G̃i−1
l−1 ∪ (Σ ×Ol × (Bl−1 ∪ G̃i−1

l−1))

where Bl−1 is the union of the set of all (l − 1)-store automata occurring in A0 and in automata
of the form Ba

l′ or Xa
l′ for some l′ (defined in Section 2.3). Further, we denote the set of all

order-(l − 1) identifiers G̃i
(q1,Q2)

in Ai as G̃i
l−1. The sets Bl−1 and Ol are finite by definition. If

the state-set at order-l is fixed, there is a finite bound on the size of the set G̃i
l−1 for any i.

Similarly, we generalise the definition of the operation TeGj

l

. When l = 1, the definition is

identical to Definition 3.1. When l > 1, the definition is similar to the definition of TD in the
order-2 case, except we do not have to consider the undefined store ▽ which only occurs at order-n
of an n-store multi-automaton.

Definition 4.1 Given an automaton Gi
l = (Qi,Σ,∆i, ,Qf) and a set of identifiers G̃j

l , we define,

Gi+1
l = TeGj

l

(Gi
l) = (Qi+1,Σ,∆i+1, ,Qf)

where Qi+1 = Qi ∪ { gj
(q1,Q2)

| Gj
(q1,Q2)

∈ G̃j
l } and ∆i+1 depends on l:

Case l = 1. ∆i+1 = ∆inherited ∪ ∆derived ∪ ∆i and,

∆inherited = { gj
(q1,Q2)

a
−→ Q | (gj−1

(q1,Q2)

a
−→ Q) ∈ ∆i }

∆derived =

{
gj
(q1,Q2)

b
−→ Q |

{α1, . . . , αr} ∈ Gj
(q1,Q2)

∈ G̃j
l and

b ∈ Σ and Q = Q1 ∪ · · · ∪ Qr and (1)

}

where (1) requires, for each t ∈ {1, . . . , r} we have,

• If αt = θ, then (qθ b
−→ Qt) ∈ ∆i.

• If αt = (a, pushw, θ), then b = a and qθ w
−→ Qt is a run of Gi

1.

Case l > 1. We begin by defining the set of labels G̃i+1
l−1 . This set contains labels on transitions

from Gi
l , labels on transitions from the new states gj

(q1,Q2)
inherited from gj−1

(q1,Q2)
and labels on

transitions derived from G̃j
l . That is,

G̃i+1
l−1 =

{
G̃i+1

(q,Q) | (q
eGi

(q,Q)
−−−−→ Q) ∈ ∆i

}
∪

{
G̃i+1

(q,Q) | q = gj
(q1,Q2)

and (gj−1
(q1,Q2)

B
−→ Q) ∈ ∆i

}
∪{

G̃i+1
(q,Q) | q = gj

(q1,Q2)
and G̃j

(q1,Q2)
∈ G̃j

l and (2)
}

19

The contents of the associated sets G̃i+1
(q,Q) ∈ G̃i+1

l−1 are defined as follows,

G̃i+1
(q,Q) = ∅ if q 6= gj

(q1,Q2)

G̃i+1

(gj

(q1,Q2)
,Q)

= { S | (2) } ∪
{

{B} | (gj−1
(q1,Q2)

B
−→ Q) ∈ ∆i

}

where (2) requires {α1, . . . , αr} ∈ G̃j
(q1,Q2)

, Q = Q1 ∪ · · · ∪ Qr, S = S1 ∪ · · · ∪ Sr and for each

t ∈ {1, . . . , r} we have,

• If αt = θ, then (qθ B
−→ Qt) ∈ ∆i and St = {B}.

• If αt = (a, pushl, θ), then qθ
eB1−→ Q1

eB2−→ Qt is a path in Gi
l and St = {Ba

l−1} ∪ B̃1 ∪ B̃2.

• If αt = (a, popl, θ), then Qt = {qθ} and St = {Ba
l−1}.

• If θ = (a, o, θ) when ℓ(o) < l, then qθ B
−→ Qt ∈ ∆i and St = {(a, o,B)}

Finally, we give the transition relation ∆i+1.

∆i+1 =

{
q

B
−→ Q | (q

B
−→ Q) ∈ ∆i and B ∈ Bl−1

}
∪{

q
eGi+1

(q,Q)
−−−−→ Q | G̃i+1

(q,Q) ∈ G̃i+1
l−1

}

We can construct an automaton whose transitions are (l−1)-store automata by replacing each set

G̃i+1
(q,Q) with the automaton Gi+1

(q,Q) which is Gi+1
l−1 with initial state gi+1

(q,Q), where Gi+1
l−1 = TeGi+1

l−1
(Gi

l−1).

Note that Gi+1
l−1 = TeGi+1

l−1
(Gi

l−1) is a recursive call and Gi
l−1 is assumed by induction.

4.2 Further Examples

We have given an outline of a fully worked example at order-two. However, there are many
situations that this example does not illuminate. In this section we give a series of short examples
showing the introduction of transitions to Gi

l from elements in G̃i
(q,Q′) not covered in the previous

case.

4.2.1 Case {(a, pushabcd, G̃
i−1
(q1,Q1)

)} ∈ G̃i
(q,Q) ∈ G̃i

1

Suppose Figure 9 represents a sub-automaton of Gi−1
1 . There is one run from the state gi−1

(q1,Q1)

over the word abcd. In particular we have,

gi−1
(q1,Q1)

abcd
−−−→i−1 {q3, q4}

Therefore we add the transition,
gi
(q,Q)

a
−→i {q3, q4}

to Gi
1.

4.2.2 Case {(a, popl, G̃
i−1
(q1,Q1)

)} ∈ G̃i
(q,Q) ∈ G̃i

l

Figure 10 shows the relevant subsection of Gi
l after the popl has been processed. Let G = gi−1

(q1,Q1)
.

We have {Ba
l−1} in G̃i

(gi
(q,Q)

,G)
.

20

q3

gi−1
(q1,Q1)

q4
a

b

c

c

d

b c d

Figure 9: An example for pushabcd.

gi
(q,Q) gi−1

(q1,Q1)

G̃i
(gi

(q,Q)
,G)

Figure 10: An example for popl.

q2

gi−1
(q1,Q1)

q3

B1

B2

B3

Figure 11: An example for pushl.

21

q2

gi−1
(q1,Q1)

q3

B1

Figure 12: An example for ℓ(o) < l.

4.2.3 Case {(a, pushl, G̃
i−1
(q1,Q1)

)} ∈ G̃i
(q,Q) ∈ G̃i

l

Suppose Figure 11 shows a sub-automaton of Gi−1
l , where B1, B2, B3 ∈ Bl−1 ∪ G̃i−1

l−1 . There is one
possible value for Q′′ when enumerating over runs of the form,

{gi−1
(q1,Q1)

}
eB1−→i−1 Q′ eB2−→i−1 Q′′

In particular Q′′ = {q2, q3}. We have B̃1 = {B1} and B̃2 = {B2, B3}. Consequently, we ensure
that the transition,

gi
(q,Q) {q2, q3}

G̃i
(gi

(q,Q)
,{q2,q3})

exists, and that {Ba
l−1, B1, B2, B3} ∈ G̃i

(gi
(q,Q)

,{q2,q3})
.

4.2.4 Case {(a, o,Gi−1
(q1,Q1)

)} ∈ G̃i
(q,Q) ∈ G̃i

l and ℓ(o) < l

Suppose Figure 12 shows a sub-automaton of Gi−1
l , where B1 ∈ Bl−1 ∪G̃i−1

l−1 . There is one possible
value for Q′ when enumerating over runs of the form,

{gi−1
(q1,Q1)

}
eB1−→i−1 Q′

In particular Q′ = {q2, q3}. Consequently we ensure that the transition,

gi
(q,Q) {q2, q3}

G̃i
(gi

(q,Q)
,{q2,q3})

exists, and that {(a, o,B1)} ∈ G̃i
(gi

(q,Q)
,{q2,q3})

.

4.2.5 Case {(a, pushl, G̃
i−1
(q1,Q1)

), G̃i−1
(q2,Q2)

} ∈ G̃i
(q,Q) ∈ G̃i

l

Suppose Figure 13 shows a sub-automaton of Gi−1
l , where B1, B2, B3, B4 ∈ Bl−1 ∪ G̃i−1

l−1 . There
is one possible value for S = S1 ∪ S2 and Q′ = Q′

1 ∪ Q′
2. That is S1 = {Ba

l−1, B1, B2, B3} and
Q′

1 = {q3, q4} (as in the previous pushl example); and S2 = {B4} and Q′
2 = {q5, q6}.

Therefore, we ensure that the transition,

gi
(q,Q) Q′

G̃i
(gi

(q,Q)
,Q′)

exists, and that S ∈ G̃i
(gi

(q,Q)
,Q′)

.

22

q3

gi−1
(q1,Q1)

q4

gi−1
(q2,Q2)

q5

q6

B4

B1

B2

B3

Figure 13: An example for a two-element S.

4.3 Constructing A0, A1, . . .

For a given higher-order APDS with commands D we define Ai+1 = TD(Ai) where the operation
TD is as follows:

Definition 4.2 Given an automaton Ai = (Q,Σ,∆i, {q1, . . . , qz},Qf) and a set of commands D,
we define,

Ai+1 = TD(Ai) = (Q,Σ,∆i+1, {q1, . . . , qz},Qf)

where ∆i+1 is given below.

We begin by defining the set of labels G̃i+1
n−1. This set contains labels on transitions present in

Ai, and labels on transitions derived from D. That is,

G̃i+1
n−1 =

{
G̃i+1

(qj ,Q) | (qj
eGi

(qj,Q)
−−−−−→ Q) ∈ ∆i and j ∈ {1, . . . , z}

}
∪

{
G̃i+1

(qj ,Q) | (2)
}

The contents of the sets G̃i+1
(q,Q) ∈ G̃i+1

n−1 are defined G̃i+1
(qj ,Q) = { S | (2) } where (2) requires

(pj , a, {(o1, p
k1), . . . , (om, pkm)}) ∈ D, Q = Q1 ∪ · · · ∪ Qm, S = S1 ∪ · · · ∪ Sm and for each

t ∈ {1, . . . ,m} we have,

• If ot = pushn, then St = {Ba
n−1} ∪ θ̃1 ∪ θ̃2 and there exists a path,

qkt
eθ1−→i Q′ eθ2−→i Qt

in Ai.

• If ot = popn, then St = {Ba
n−1} and Qt = {qkt}. Or, if qj ▽

−→i {qε
f} exists in Ai, we may

have St = {Ba
n−1} and Qt = {qε

f}.

• If ot = pushw or ot = pushl for l < n, then St = {(a, o, θ)} and there exists a transition

qkt
θ

−→i Qt in Ai.

• If ot = popl for l < n, then St = {(a, o, θ)} and there exists a transition qkt
θ

−→i Qt in Ai.

Or, if qj ▽

−→i {qε
f} exists in Ai, we may have St = {Xa

l } and Qt = {q∗f}.

Finally, we give the transition relation ∆i+1.

∆i+1 =

{
q

B
−→ Q | (q

B
−→ Q) ∈ ∆i

and B ∈ B

}
∪

{
q

eGi+1
(q,Q)

−−−−→ Q | G̃i+1
(q,Q) ∈ G̃i+1

n−1

}

23

We can construct an automaton whose transitions are (n − 1)-store automata by replacing each

set G̃i+1
(q,Q) with the automaton Gi+1

(q,Q) which is Gi+1
n−1 with initial state gi+1

(q,Q), where Gi+1
n−1 =

TeGi+1
n−1

(Gi
n−1). Note that Gi

n−1 is assumed by induction.

Our construction is sound and complete. The proofs for this result are given in Appendix B.4.

Property 4.1 For any configuration 〈pj , γ〉 it is the case that γ ∈ L(Aqj

i) for some i iff 〈pj , γ〉 ∈
Pre∗(CInit).

Proof. The property follows from Property B.3 and Property B.4. 2

4.4 Constructing A∗

We have shown how to construct a sequence of automata A0, A1, . . . which is sound and complete
with respect to Pre∗(L(A0)). In this section we show how to compute an automaton A∗ that is
a finite representation of this sequence. That is, L(A∗) = Pre∗(L(A0)). We begin by defining .,

generalising the notion of subset modulo i for the sets G̃i
(q,Q′).

Definition 4.3

1. Given θ ∈ Bl ∪ G̃i
l for some i and l, let

θ[j/i] =

{
θ if θ ∈ Bl

Gj
(q1,Q2)

if θ = Gi
(q1,Q2)

∈ G̃i
l

2. For a set S we define S[j/i] such that,

(a) We have θ ∈ S iff we have θ[j/i] ∈ S[j/i], and

(b) We have (a, o, θ) ∈ S iff we have (a, o, θ[j/i]) ∈ S[j/i].

3. We extend the notation [j/i] to nested sets of sets structures in a point-wise fashion.

Definition 4.4

1. We write G̃i
(q,Q′) . G̃j

(q,Q′) iff for each S ∈ G̃i
(q,Q′) we have S[j − 1/i − 1] ∈ G̃j

(q,Q′).

2. If G̃i
(q,Q′) . G̃j

(q,Q′) and G̃j
(q,Q′) . G̃i

(q,Q′), then we write G̃i
(q,Q′) ≃ G̃j

(q,Q′).

3. Furthermore, we extend the notation to sets. That is, G̃i
l . G̃j

l iff for all G̃i
(q1,Q2)

∈ G̃i
l we

have G̃j
(q1,Q2)

∈ G̃j
l and G̃i

(q,Q′) . G̃j
(q,Q′).

A fixed point is reached as in the order-2 case: eventually, no more transitions are added at
order-n of the automaton, allowing us to fix the state set at order-(n − 1). This begins a cascade
of fixed points which ends at order-1, resulting in termination.

Property 4.2 There exists in−1 > 0 such that G̃i
n−1 ≃ G̃

in−1

n−1 for all i ≥ in−1.

Proof.(Sketch) Since the order-n state-set in Ai remains constant and we add at most one tran-
sition between any state q and set of states Q, there is some in−1 where no more transitions are

added at order-n. That G̃i
n−1 ≃ G̃

in−1

n−1 for all i ≥ in−1 follows since the contents of any G̃i
(q,Q′) and

G̃
in−1

(q,Q′) are derived from the same transition structure. 2

Once a fixed point has been reached at order-(l + 1), we can fix the state-set at order-l.

24

Lemma 4.1 Suppose we have constructed a sequence of automata G0
l ,G1

l , . . . and associated sets

G̃0
l , G̃1

l , Further, suppose there exists an il such that for all i ≥ il we have G̃i
l ≃ G̃il

l . We

can define a sequence of automata Ĝil

l , Ĝil+1
l , . . . such that the state-set in Ĝi

l remains constant
(although the automata labelling the transitions may gain states when l > 1). The following are
equivalent for all w,

1. The run gil

(q,Q′)

w
−→i Q with Q ⊆ Qf exists in Ĝi

l for some i.

2. The run gi′

(q,Q′)

w
−→i′ Q′′ with Q′′ ⊆ Qf exists in Gi′

l for some i′.

Again, we use Ĝi+1 = TeG
il
l

[il/i1−l]
(Ĝi

l) to construct the sequence Ĝil

l , Ĝil+1
l , . . . with Ĝil

l = Gil

l .

Soundness and completeness are shown in Appendix B.5. Once the state-set has been fixed at
order-l, we will eventually reach another fixed point. In this way the fixed points cascade.

Property 4.3 For a sequence of automata G0
l ,G1

l , . . . such that the state-set at order-l of Gi
l

remains constant there exists il−1 > 0 such that G̃i
l−1 ≃ G̃

il−1

l−1 for all i ≥ il−1.

Proof.(Sketch) Since the order-l state-set in G̃i
l remains constant and we add at most one tran-

sition between any state q and set of states Q, there is some il−1 where no more transitions are

added at order-l. That G̃i
l−1 ≃ G̃

il−1

l−1 for all i ≥ il−1 follows since the contents of any G̃i
(q,Q′) and

G̃
il−1

(q,Q′) are derived from the same transition structure. 2

When the state-set has been fixed at order-1, the finiteness of Σ dictates that only a finite
number of transitions can be added before saturation is reached. At this point any updates to
the automata at order-1 will not change the set of accepted 1-stores. Termination at order-1
implies termination at order-2, and so on down to order-n. That is, for any l, we are able to
define an automaton G∗

l which finitely represents the infinite sequence G0
l ,G1

l , . . . used to construct
A0, A1,

Lemma 4.2 Suppose we have constructed a sequence of automata G0
l ,G1

l , . . . and associated sets

G̃0
l , G̃1

l , Further, suppose there exists an il such that for all i ≥ il we have G̃i
l ≃ G̃il

l . We can
define an automaton G∗

l such that the following are equivalent for all w,

1. The run g∗(q,Q′)

w
−→∗ Q with Q ⊆ Qf exists in G∗

l .

2. The run gi
(q,Q′)

w
−→i Q′′ with Q′′ ⊆ Qf exists in Gi

l for some i.

Proof. The complete proof is given in Appendix B.5.3. We show here how to construct G∗
l .

We proceed by induction over l. In the base case l = 1 and the result follows because the
alphabet is finite: there is a finite bound on the number of new transitions that can be added. Let
Gi0 denote this saturation point. We define G∗

1 = Gi0
1 letting g∗(q,Q) = gi1

(q,Q) for each gi1
(q,Q).

When l > 1 we generate the sequence Ĝil

l , Ĝil+1
l , . . . by Lemma 4.1. Since the state-set remains

constant, it follows from Property 4.3 that there is some il−1 with G̃i
l−1 ≃ G̃

il−1

l−1 for all i ≥ il−1.

By induction, we have G∗
l−1. We then define G∗

l from Ĝ
il−1

l with g∗(q,Q′) = gil

(q,Q′) for all q,Q′

and each transition q −→∗ Q′ in G∗
l labelled with the appropriate B ∈ Bn−1 or automaton G∗

(q,Q′)

from G∗
l−1. 2

Finally, we have the following algorithm for constructing A∗:

25

1. Given A0, iterate Ai+1 = TD(Ai) until the fixed point Ain−1
is reached.

2. For l = n − 1 down to l = 1: iterate Gi+1
l = TeG

il
l

[il/il−1]
(Gi

l) to generate the fixed point

G
il−1

l from Gil

l .

3. For l = 1 to l = n − 1: construct G∗
l as in Lemma 4.2.

4. Construct A∗ as in Property 4.4.

Property 4.4 There exists an automaton A∗ which is sound and complete with respect to A0, A1, . . .
and hence computes the set Pre∗(CInit).

Proof. By Property 4.2 there is some in−1 with G̃i
n−1 ≃ G̃

in−1

n−1 for all i ≥ in−1. By Lemma 4.2,
we have G∗

n−1. We then define A∗ from Ain−1
with each transition q −→∗ Q′ in A∗ labelled with

the automaton G∗
(q,Q′) from G∗

n−1. 2

4.5 Complexity

We claim our algorithm runs in n-EXPTIME. We define,

exp1(m) = 2m and expl(m) = 2expl−1(m)

Furthermore, let B =
⋃

1≤l<n Bl.

The algorithm requires the construction of an automaton G∗
l from Gil

l for 1 ≤ l ≤ n−1 and fixed
point il. Because the construction of G∗

l follows the same pattern as the construction of Gi+1
l from

Gi
l but with at least as many states, it follows that it dominates the complexity of the algorithm.

We calculate the complexity inductively, beginning at order-one with a fixed state-set. Ultimately,
the induction reaches order-n, where the state-set is fixed from the start of the algorithm.

Let |Q| be the number of states in Gil

l . When l = 1 we can add at most O(|Q| × 2|Q| × |Σ|)

transitions to Gi1
1 to define G∗

1 , where Q is the state-set of Gi1
1 . This means we need at most

O(2|Q|) iterations before a fixed point is reached. Each iteration requires the processing of up to

O(|Q|) sets G̃(q1,Q2) (one for each state gi1
(q1,Q2)

). To process each set we need to process up to

O(2|Q|+|B|) sets S. This step in turn requires the analysis of O(|Q| + |B|) elements. The most
expensive operation is to enumerate all runs over a word for a push command. To enumerate
all runs of the form Q1

w
−→ Q2 for some w (from a pushw command) we require time O(2|Q|)

(Proposition B.1). Therefore, to construct G∗
1 from Gi1 takes O(|Q| × (|B| + |Q|) × 2|B|+3×|Q|).

That is, O(exp1(|Q|) × 2|B|).
When l > 1 and the state-set Q of Gil

l is frozen, we add at most O(|Q| × 2|Q|) transitions to

Gil

l during the construction of G∗
l . This means we need at most O(2|Q|) iterations before a fixed

point is reached. Each iteration requires the processing of up to O(|Q|) sets G̃(q1,Q2) (one for each

state gi1
(q1,Q2)

). To process each set we need to process up to O(2|Q|+|B|) sets S. This step in turn

requires the analysis of O(|Q| + |B|) elements. The most expensive operation is to enumerate all

runs of two transitions for a push command. To enumerate all runs of the form Q1

fB1−→ Q2

fB2−→ Q3

requires time O(2(|∆|+|Q|)) (by Proposition B.2) Since |∆| is O(2|Q|), the run enumeration requires
time O(exp2(|Q|)).

Since the contents of the sets G̃i
(q,Q′) ∈ G̃i

l−1 are derived from the transition structure, we will
reach a fixed point one step after we have reached a point where no more transitions are added.
During this step we will add O(2|Q|) states to Gil

l−1 to construct G
il−1

l−1 (since there are O(2|Q|) new

transitions added in O(2|Q|) steps). By induction, the construction of Gi+1
l−1 from Gi

l−1 performed

at the end of each iteration takes O(exp(l−1)(2
|Q|) × 2|B|) time.

Hence, to reach a fixed point we require time O(2|Q| × ((|Q| + |B|) × 2|Q|+|B| × exp2(|Q|) +
(expl(|Q|) × 2|B|))). That is O(expl(|Q|) × 2|B|). By induction we can construct G∗

l−1 in time

O(exp(l−1)(2
|Q|) × 2|B|). Hence, we can construct G∗

l in time O(expl(|Q|) × 2|B|).

26

Finally, at order-n we can add at most O(2|Q|) new transitions before a fixed point is reached.
Hence we must perform O(2|Q|) iterations. Each iteration requires us to process O(2|Q|) commands
(since |Q| is larger than the number of control states in the higher-order APDS). In processing
each command we must process O(|Q|) pairs of the form (o, p). The most expensive of which

requires run enumeration that takes O(exp2(|Q|)) time. Hence we construct G
in−1

n−1 with O(2|Q|)

states in O(2|Q| × (2|Q| × |Q| × exp2(|Q|) + (exp(n−1)(2
|Q|) × 2|B|))) time. Thus, G∗

n−1 and hence

A∗ can be constructed in time O(exp(n−1)(2
|Q|)×2|B|), that is O(expn(|Q|)×2|B|). The algorithm

runs in n-EXPTIME.

5 Applications

In this section we discuss some of the applications of our algorithm to decision problems over
higher-order PDSs.

5.1 Model Checking Linear-Time Temporal Logics

Bouajjani et al. use their backwards reachability algorithm to provide a model-checking algorithm
for linear-time temporal logics over the configuration graphs of pushdown systems [2]. In this
section we show that this work permits a simple generalisation to higher-order PDSs.

Let Prop be a finite set of atomic propositions and (P,D,Σ) be a higher-order PDS with a
labelling function Λ : P → 2Prop which assigns to each control state a set of propositions deemed
to be true at that state. Given formula φ of an ω-regular logic such as LTL or µTL, we calculate
the set of configurations C of (P,D,Σ) such that every run from each c ∈ C satisfies φ.

It is well known that any formula of an ω-regular logic has a Büchi automaton representa-
tion [31, 18, 30] etc.. We form the product of the higher-order PDS and the Büchi automaton
corresponding to the negation of φ. This gives us a higher-order Büchi PDS; that is, a higher-order
PDS with a set F of accepting control states. Thus, model-checking reduces to the non-emptiness
problem for higher-order Büchi PDSs. Specifically, we compute the set of configurations from
which there is an infinite run visiting configurations with control states in F infinitely often. Note
that C is the complement of this set.

This problem can be reduced further to a number of applications of the reachability problem.
We present a generalisation of the reduction of Bouajjani et al.. Let [1a]1 denote the order-1
stack consisting of a single character a and [la]l for l > 1 denote the stack consisting of a single
order-(l − 1) stack [(l−1)a](l−1).

Proposition 5.1 Let c be a configuration of an order-n Büchi PDS BP . It is the case that
BP has an accepting run from c iff there exist distinct configurations 〈pj , [na]n〉 and 〈pj , γ2〉 with
top1(γ2) = a and a configuration 〈pf , γ1〉 such that pf ∈ F and,

1. c
∗
→֒ 〈pj , γ3〉 for some γ3 with top1(γ3) = a, and

2. 〈pj , [na]n〉
∗
→֒ 〈pf , γ1〉

∗
→֒ 〈pj , γ2〉

Proof. See Appendix C. 2

We reformulate these conditions as follows, where CΣ
n is the set of all order-n stacks over the

alphabet Σ. We remind the reader that Ba
n is the n-store automaton accepting all n-stores γ such

that top1(γ) = a.

1. c ∈ Pre∗({pj} × L(Ba
n)),

2. 〈pj , [na]n〉 ∈ Pre∗((F × CΣ
n) ∩ Pre+({pj} × L(Ba

n)))

We can compute the set of pairs 〈pj , [na]n〉 satisfying (2) in n-EXPTIME by calculating Pre∗({pj}×
L(Ba

n)) over the following higher-order PDS:

27

Definition 5.1 Given an order-n Büchi PDS BP = (P,D,Σ,F) we define BP ′ = (P×{0, 1},D′,Σ)
where,

D′ = { ((p, 0), b, o, (p′, 0)) | p ∈ P ∩ F ∧ (p, b, o, p′) ∈ D } ∪
{ ((p, 0), b, o, (p′, 1)) | p ∈ F ∧ (p, b, o, p′) ∈ D } ∪
{ ((p, 1), b, o, (p′, 1)) | (p, b, o, p′) ∈ D }

Lemma 5.1 There exists a run 〈(p, 0), [na]n〉
∗
→֒ 〈(p, 1), w′〉 with w′ ∈ L(Ba

n) in BP ′ iff 〈p, [na]n〉
satisfies (2).

Proof. See Appendix C.2. Since BP ′ is twice as large as BP , Pre∗({pj} × L(Ba
n)) for BP ′ can

be calculated in n-EXPTIME. This gives the set of configurations satisfying (2). 2

To construct an n-store automaton accepting all configurations from which there is an accepting
run, we calculate the configurations 〈pj , [na]n〉 satisfying the second condition. Since there are
only finitely many pj ∈ P and a ∈ Σ we can perform a simple enumeration. We then construct an
n-store automaton A corresponding to the n-store automata accepting configurations satisfying
(2) and compute Pre∗(L(A)).

Theorem 5.1 Given an order-n Büchi PDS BP = (P,D,Σ,F), we can calculate in n-EXPTIME
the set of configurations C such that from all c ∈ C there is an accepting run of BP .

Proof. Let exp0(x) = x and expn(x) = 2expn−1(x). We appeal to Lemma 5.1 for each pj and a
(of which there are polynomially many) to construct an n-store automaton O(expn(2 × |P|)) in
size which accepts 〈pj , [na]n〉 iff it satisfies (2). Membership can be checked in polynomial time
(Proposition B.3).

It is straightforward to construct an automaton A polynomial in size which accepts 〈p,w〉 iff
〈p, [ntop1(w)]n〉 satisfies (2). We can construct Pre∗(L(A)) in n-EXPTIME. Thus, the algorithm
requires n-EXPTIME. 2

Corollary 5.1 Given an order-n PDS (P,D,Σ) with a labelling function Λ : P → 2Prop and a
formula φ of an ω-regular logic, we can calculate in (n + 2)-EXPTIME the set of configurations
C of (P,D,Σ) such that every run from each c ∈ C satisfies φ.

Proof. The construction of BP is exponential in size. Hence, we construct the n-store multi-
automaton A that accepts the set of configurations from which there is a run satisfying the negation
of φ as described above in time O(expn(2|φ|)). To calculate C we complement A as described in
Appendix B.3. This may include an exponential blow-up in the transition relation of A, hence we
have (n + 2)-EXPTIME. 2

Observe that since we can test c ∈ C by checking c /∈ L(A) where A is defined as above, we
may avoid the complementation step, giving us an (n + 1)-EXPTIME algorithm.

5.2 Reachability Games

Our algorithm may be used to compute the winning region for a player in a two-player reachability
game over higher-order PDSs. This generalises a result due to Cachat [25]. We call our players
Eloise and Abelard.

Definition 5.2 Given an order-n PDS (P,D,Σ), an order-n Pushdown Reachability Game (PRG)
(P,D,Σ,R) over the order-n PDS is given by a partition P = PA⊎PE and a set R of configurations
considered winning for Eloise.

We write 〈p, γ〉 ∈ CE iff p ∈ PE and 〈p, γ〉 ∈ CA iff p ∈ PA. From a configuration 〈p, γ〉 play
proceeds as follows:

28

• If 〈p, γ〉 ∈ CA, Abelard chooses a move (p, a, o, p′) ∈ D with top1(γ) = a and o(γ) defined.
Play moves to the configuration 〈p′, o(γ)〉.

• If 〈p, γ〉 ∈ CE , Eloise chooses a move (p, a, o, p′) ∈ D with top1(γ) = a and o(γ) defined. Play
moves to the configuration 〈p′, o(γ)〉.

Eloise wins the game iff play reaches a configuration 〈p, γ〉 where 〈p, γ〉 ∈ R or p ∈ PA and Abelard
is unable to choose a move. Abelard wins otherwise.

The winning region for a given player is the set of all configurations from which that player
can force a win. The winning region for Eloise can be characterised using an attractor AttrE(R)
defined as follows,

Attr0
E(R) = R

Attri+1
E (R) = Attri

E(R) ∪ { c ∈ CE | ∃c′.c →֒ c′ ∧ c′ ∈ Attri
E(R) }

∪ { c ∈ CA | ∀c′.c →֒ c′ ⇒ c′ ∈ Attri
E(R) }

AttrE(R) =
⋃

i≥0 Attri
E(R)

Conversely, the winning region for Abelard is AttrE(R). Intuitively, from a position in Attri
E(R),

Eloise’s winning strategy is to simply choose a move such that the next configuration is in
Attri−1

E (R). Abelard’s strategy is to avoid Eloise’s winning region.
We can use backwards-reachability for order-n APDSs to calculate AttrE(R), and hence the

winning regions of both Abelard and Eloise. To simplify the reduction, we make a totality as-
sumption. That is, we assume a bottom-of-the-stack symbol ⊥ that is never popped nor pushed,
and for all a ∈ Σ ∪ {⊥} and control states p ∈ P, there exists a command (p, a, o, p′) ∈ D.
This can be ensured by adding sink states pE

lose and pA
lose from which Eloise and Abelard lose the

game. In particular, for every p ∈ P and a ∈ Σ ∪ {⊥} we have (p, a, pusha, px
lose) where x = E

if p ∈ PE or x = A otherwise. Furthermore, the only commands available from px
lose are of the

form (px
lose, a, pusha, px

lose) for x ∈ {A,E}. To ensure that pA
lose is losing for Abelard, we set

〈pA
lose, γ〉 ∈ R for all γ. Conversely, 〈pE

lose, γ〉 /∈ R for all γ.

Definition 5.3 Given an order-n PRG (P,D,Σ,R) we define an order-n APDS (P,D′,Σ) where,

D′ = { (p, a, {(o, p′)}) | (p, a, o, p′) ∈ D ∧ p ∈ PE }
∪ { (p, a, { (o, p′) | (p, a, o, p′) ∈ D }) | p ∈ PA }

Furthermore, let Rstuck be the set of configurations 〈p,▽〉 such that p ∈ PA. The set Rstuck is
regular and represents the configurations reached if Abelard performs an move with an undefined
next stack.

Let C▽

A be the set of order-n configurations with an undefined stack and a control state be-
longing to Abelard.

Theorem 5.2 Given an order-n PRG, where R is a regular set of configurations, and an order-n
APDS as defined above, AttrE(R) is regular and equivalent to Pre∗(R ∪ Rstuck) \ C▽

A. Hence,
computing the winning regions in the order-n PRG is n-EXPTIME.

5.3 Model-Checking Branching-Time Temporal Logics

Generalising a further result of Bouajjani et al. [2], we show that backwards-reachability for higher-
order APDSs may be used to perform model-checking for the alternation-free (propositional) µ-
calculus over higher-order PDSs. Common logics such as CTL are sub-logics of the alternation-free
µ-calculus.

29

5.3.1 Preliminaries

Given a set of atomic propositions Prop and a finite set of variables χ, the propositional µ-calculus
is defined by the following grammar,

φ := π ∈ Prop | X ∈ χ | ¬φ | φ1 ∪ φ2 | ⋄ φ | µX.φ

with the condition that, for a formula µX.φ, X must occur under an even-number of negations.
This ensures that the logic is monotonic. As well as the usual abbreviations for ⇒ and ∧, we may
also use, 2φ = ¬ ⋄ ¬φ, νX.φ(X) = ¬µX.¬φ(¬X) and σ for either µ or ν. A σ-formula is of the
form σX.φ.

A variable X is bound in φ if it occurs as part of a sub-formula σX.φ′(X). We call an unbound
variable (free) and write φ(X) to indicate that X is free in φ. A closed formula has no variables
occurring free, otherwise the formula is open.

Formulae in positive normal form are defined by the following syntax,

φ := π ∈ Prop | ¬π | X ∈ χ | φ1 ∪ φ2 | φ1 ∩ φ2 | ⋄ φ | 2φ | µX.φ | νX.φ

We can translate any formula into positive normal form by “pushing in” the negations using the
abbreviations defined above.

A σ-sub-formula of σX.φ(X) is proper iff it does not contain any occurrence of X. We are now
ready to define the alternation-free µ-calculus:

Definition 5.4 The alternation-free µ-calculus is the set of formulae in positive normal form such
that for every σ-sub-formula ψ of φ we have,

• If ψ is µ-formula, then all ν-sub-formulae of ψ are proper, and

• If ψ is a ν-formula, then all µ-sub-formulae of ψ are proper.

The closure cl(φ) of a formula φ is the smallest set such that,

• If ψ1 ∧ ψ2 ∈ cl(φ) or ψ ∨ ψ ∈ cl(φ), then ψ1 ∈ cl(φ) and ψ2 ∈ cl(φ), and

• If ⋄ψ ∈ cl(φ) or 2ψ ∈ cl(φ), then ψ ∈ cl(φ), and

• If σX.ψ(X) ∈ cl(φ), then ψ(σX.ψ(X)) ∈ cl(φ).

The closure of any formula is a finite set whose size is bounded by the length of the formula.
Finally, we give the semantics of the µ-calculus over higher-order PDSs. Given a formula φ, an

order-n PDS (P,D,Σ), a labelling function Λ : P → 2Prop, and a valuation function V assigning a
set of configurations to each variable X ∈ χ, the set of configurations JφKV satisfying φ is defined,

JπKV = Λ−1(π) × CΣ
n

JXKV = V(X)
J¬ψKV = (P × CΣ

n) \ JψKV
Jψ1 ∨ ψ2KV = Jψ1KV ∪ Jψ2KV

J⋄ψKV = Pre(JψKV)
JµX.ψKV =

⋂
{ C ⊆ P × CΣ

n | JψKV[X 7→C] ⊆ C }

where V[X 7→ C] is the valuation mapping all variables Y 6= X to V(Y) and X to C.

5.3.2 Model-Checking the Alternation-Free µ-Calculus

Given an order-n PDS (P,D,Σ) with a labelling function Λ : P → 2Prop, a formula φ of the
alternation-free µ-calculus, and a valuation V we show that we can generalise the construction of
Bouajjani et al. to produce an n-store multi-automata Aφ accepting the set JφKV .

Initially, we only consider formulae whose σ-sub-formulae are µ-formulae. We construct a
product of the higher-order PDS and the usual “game” interpretation of φ [23, 24] as follows:
observing that the commands of the form (, a, pusha,) do not alter the contents of the stack, we

construct the order-n PRG A = (P(P,φ),Dφ
P ,Σ,R) where P

(P,φ)
A , P

(P,φ)
E and Dφ

P are the smallest
sets such that for every (p, ψ) ∈ P × cl(φ) and a ∈ Σ,

30

• If ψ = ψ1 ∨ψ2, then (p, ψ) ∈ P
(P,φ)
E and ((p, ψ), a, pusha, (p, ψ1)), ((p, ψ), a, pusha, (p, ψ2)) ∈

Dφ
P ,

• If ψ = ψ1 ∧ψ2, then (p, ψ) ∈ P
(P,φ)
A and ((p, ψ), a, pusha, (p, ψ1)), ((p, ψ), a, pusha, (p, ψ2)) ∈

Dφ
P ,

• If ψ = µX.ψ′(X), then (p, ψ) ∈ P
(P,φ)
A and ((p, ψ), a, pusha, (p, ψ′(ψ))) ∈ Dφ

P ,

• If ψ = ⋄ψ′ and (p, a, o, p′) ∈ D, then (p, ψ) ∈ P
(P,φ)
E and ((p, ψ), a, o, (p′, ψ′)) ∈ Dφ

P ,

• If ψ = 2ψ′, then (p, ψ) ∈ P
(P,φ)
A and for every (p, a, o, p′) ∈ D we have ((p, ψ), a, o, (p′, ψ′)) ∈

Dφ
P .

Finally, we define the set of configurations R that indicate that the formula φ is satisfied by
(P,D,Σ), Λ and V. The set R contains all configurations of the form,

• 〈(p, π), γ〉 where π ∈ Λ(p),

• 〈(p,¬π), γ〉 where π /∈ Λ(p),

• 〈(p,X), γ〉, where X is free in φ and 〈p,w〉 ∈ V(X).

If V(X) is regular for all X free in φ, then R is also regular.
Commands of the form (, a, pusha,) are designed to deconstruct sub-formulae into literals

that can be evaluated immediately. These commands require that the top order-one stack is not
empty — otherwise play would be unable to proceed. Correctness of the construction requires
the top order-one stack to contain at least one stack symbol. This condition may be ensured with
a special “bottom of the stack” symbol ⊥∈ Σ. This symbol marks the bottom of all order-one
stacks and is never pushed or popped, except in the case of a command (,⊥, push⊥,). The use
of such a symbol is common throughout the literature [13, 28, 25] etc..

Proposition 5.1 Given the order-n PRG A = (P(P,φ),Dφ
P ,Σ,R) constructed from the order-

n PDS (P,D,Σ), a labelling function Λ, a valuation V and a formula of the alternation-free
µ-calculus φ such that all σ-sub-formulae of φ are µ-sub-formulae, we have 〈p, γ〉 ∈ JφKV iff
〈(p, φ), γ〉 ∈ AttrE(R).

Proof. The result follows from the fundamental theorem of the propositional µ-calculus [23, 15].
If 〈(p, φ), γ〉 ∈ AttrE(R), then there is a winning strategy for Eloise in A. In the absence of ν-sub-
formulae, this winning strategy defines a well-founded choice function and hence a well-founded
pre-model for (P,D,Σ), Λ, V and φ with initial state 〈p, γ〉. Thus, by the fundamental theorem,
〈p, γ〉 satisfies φ.

In the opposite direction, if 〈p, γ〉 satisfies φ, then — by the fundamental theorem — there is
a well-founded pre-model with choice function f . Since there are no νX.ψ sub-formula in φ, all
paths in the pre-model are finite and all leaves are of a form accepted by R. Hence, a winning
strategy for Eloise is defined by f and we have 〈(p, φ), γ〉 ∈ AttrE(R). 2

In the dual case — when all σ-sub-formulae of φ are ν-sub-formulae — we observe that the
negation φ̄ of φ has only µ-sub-formulae. We construct AttrE(R) for φ̄ and complement the
resulting n-store multi-automaton (see Section B.3) to construct the set of configurations satisfying
φ.

We are now ready to give a recursive algorithm for model-checking with the alternation-free
µ-calculus. We write Φ = {φi}

m
i=1 to denote a set of sub-formulae such that no φi is a sub-formula

of another. Furthermore, we write φ[U/Φ] where U = {Ui}
m
i=1 is a set of fresh variables to denote

the simultaneous substitution in φ of φi with Ui for all i ∈ {1, . . . ,m}. The following proposition
is taken directly from [2]:

31

Proposition 5.2 Let φ be a µ-formula (ν-formula) of the alternation-free µ-calculus, and let
Φ = {φi}

n
i=1 be the family of maximal ν-sub-formulae (µ-sub-formulae) of φ with respect to the

sub-formula relation. Then,
JφKV = Jφ[U/Φ]KV′

where U = {Ui}n
i=1 is a suitable family of fresh variables, and V ′ is the valuation which extends V

by assigning to each Ui the set JφiKV .

Since, given a µ-formula (ν-formula) φ, the formula φ[U/Φ] has only µ-sub-formulae (ν-sub-
formulae) we can calculate JφiKV for all φi ∈ Φ, using the above propositions to calculate an
automaton recognising JφKV .

Theorem 5.3 Given an order-n PDS (P,D,Σ), a labelling function Λ, a valuation function V
and a formula φ of the alternation-free µ-calculus, we can construct an n-store multi-automaton
A such that L(A) = JφKV .

5.3.3 Complexity

A formula φ can be described as a tree structure with φ at the root. Each node in the tree is a
µ-sub-formula or a ν-sub-formula ψ of φ. The children of the node are all maximal ν-sub-formulae
or µ-sub-formulae of ψ respectively. There are at most nφ nodes in the tree, where nφ is the length
of φ. Let nR be the number of states in the n-store automaton recognising R. The size of this
automata is linear in the size of the automata specifying V for each variable X.

The n-store multi-automaton recognising JψKV for a leaf node ψ has O(expn(nR)) states.
Together with a possible complementation step (which does not increase the state-set) we require
O(expn+1(nP · nφ)) time and B may be of size O(expn+1(nV)).

Similarly, the n-store multi-automaton recognising JψKV′ for an internal node ψ with children
φ1, . . . , φm has O(expn(Σm

i=1ni + nR) × 2bi) states, where ni is the size of the automaton recog-
nising JφiKVi

for i ∈ {1, . . . ,m} and bi is the size of B for that automaton. Due to the final
complementation step, |B| may be of size O(expn+1(Σ

m
i=1ni + nR)), which is also the total time

required.
Subsequently, the automaton A recognising JφKV′ has O(expnφ·n(nR)) states and can be con-

structed in O(exp(nφ·n)+1(nR)) time. Since we may test c ∈ C for any configuration c and set of

configurations C by checking c /∈ C, we may avoid the final complementation step to give us an
O(expnφ·n(nR)) time algorithm.

5.4 Non-emptiness of Higher-Order Pushdown Automata

We show that the n-EXPTIME complexity of the algorithm is optimal. In fact, the backwards-
reachability problem for order-n PDSs is n-EXPTIME-complete. This result is widely regarded
to follow from the work of Engelfriet [10]. However, because Engelfriet considers a broad range of
automata, it is not immediately clear that his work can be applied directly to our own. We provide
another proof of the result which uses a clearly stated theorem of Engelfriet: the non-emptiness
problem for (non-deterministic) order-n pushdown automata is (n− 1)-EXPTIME-complete [10]2

Walukiewicz and Cachat have provided another proof of this property [26]. Initially this proof
was not published due to Engelfriet’s result. The following proof was constructed before their
paper was made available. The proof strategy is due to Olivier Serre.

We show that the reachability problem for order-n APDS is n-EXPTIME-hard via a polynomial
reduction from the non-emptiness problem over non-alternating order-(n+1) pushdown automata.
Let ⊥∈ Σ be a dedicated “bottom of the stack” symbol that is neither popped from nor pushed
onto the stack. We define ⊥1= [⊥] and ⊥n= [⊥n−1]. In this case, the initial configuration of the
automaton is of the form 〈p0,⊥n〉 for some p0.

2Completeness follows from Theorem 2.6, which states that 2N(multi)-P k = (k − 1)-EXPTIME, and Theorem
7.11, which can be instantiated to show that one-way non-deterministic order-k pushdown automata are log-space
complete in 2N(multi)-P k.

32

We define the order-n PRG PG which can be used to determine whether the order-(n + 1)
pushdown automaton P is non-empty. Note that the construction is polynomial in size. Also,
observe that commands of the form (p, a, pusha, p′) leave the stack contents unchanged.

Definition 5.5 Given an order-(n + 1) pushdown automaton P = (P,D,Σ,Γ, p0,Pf) we define
the order-n PRG PG = (P ′,D′,Σ,R) where,

P ′ = P ′
E ∪ P ′

A

P ′
E = P × (P ∪ {⊗}) ∪ {ff}

P ′
A = P × (P ∪ {⊗}) × (P ∪ {⊗}) ∪ {tt}

with tt, ff,⊗ /∈ P. Furthermore,

R = (Pf × {⊗} × CΣ
n)

Finally,

D′ = { ((p, pr), a, o, (p′, pr)) | (p, , a, o, p′) ∈ D ∧ o ∈ On } ∪
{ ((p, pr), a, pusha, tt) | (p, , a, popn+1, pr) ∈ D } ∪
{ ((p, pr), a, pusha, ff) | (p, , a, popn+1, p

′) ∈ D ∧ p 6= pr } ∪
{ ((p, pr), a, pusha, (p′, p′r, pr)) | (p, , a, pushn+1, p

′) ∈ D ∧ p′r ∈ (P ∪ {⊗}) } ∪
{ ((p′, p′r, pr), a, pusha, (p′, p′r)) | p′ ∈ P ∧ p′r, pr ∈ (P ∪ {⊗}) ∧ a ∈ Σ } ∪
{ ((p′, p′r, pr), a, pusha, (p′r, pr)) | p′, p′r ∈ P ∧ pr ∈ (P ∪ {⊗}) ∧ a ∈ Σ }

Property 5.1 L(P) 6= ∅ iff 〈(p0,⊗),⊥n〉 ∈ AttrE(R).

Proof. From Property C.1 and Property C.2 in Appendix C.4. 2

Intuitively, PG is defined to directly simulate any order-n moves of the pushdown automaton.
When a pushn+1 move is to be played, Eloise is required to give a control state pr which she
claims play will be returned to when the top store added by the pushn+1 command is removed. If
the top store will never be removed, she is able to play pr = ⊗. Abelard then has a choice: either
he can accept this assertion and let play continue from pr with the current store contents, or he
can challenge it. If he challenges Eloise’s claim, play moves to the control state specified by the
pushn+1 command. From this configuration, Eloise is required to move play to the state pr as the
current top store is popn+1-ed. If she succeeds, she wins the game, otherwise the play is a victory
for Abelard.

Corollary 5.2 The backwards reachability problem for order-n APDSs is n-EXPTIME-hard.

Proof. The non-emptiness problem for an order-(n + 1) pushdown automata is n-EXPTIME-
hard [10]. By Definition 5.5 and Property 5.1 there is a polynomial reduction of this problem
to computing the Eloise’s winning region in an order-n pushdown game. By Theorem 5.2 there
is a further polynomial reduction of this problem to backwards reachability over an order-n al-
ternating pushdown system. Hence, the backwards reachability problem for order-n APDSs is
n-EXPTIME-hard. 2

6 Conclusion

Given an automaton representation of a regular set of higher-order APDS configurations CInit,
we have shown that the set Pre∗(CInit) is regular and computable via automata-theoretic meth-
ods. This builds upon previous work on pushdown systems [2] and higher-order context-free
processes [1]. The main innovation of this generalisation is the careful management of a complex
automaton construction. This allows us to identify a sequence of cascading fixed points, resulting
in a terminating algorithm.

33

Our result has many applications. We have shown that it can be used to provide a solution to
the model-checking problem for linear-time temporal logics and the alternation-free µ-calculus. In
particular we compute the set of configurations of a higher-order PDS satisfying a given constraint.
We also show that the winning regions can be computed for a reachability game played over an
higher-order PDS.

There are several possible extensions to this work. We plan to investigate the applications
of this work to higher-order pushdown games with more general winning conditions. In his PhD
thesis, Cachat adapts the reachability algorithm of Bouajjani et al. [2] to calculate the winning
regions in Büchi games over pushdown processes [25]. It is likely that our work will permit similar
extensions. We also intend to generalise this work to higher-order collapsible pushdown automata,
which can be used to study higher-order recursion schemes [29, 17]. This may provide the first
steps into the study of the global model-checking problem over these structures. Finally, an
alternative definition of higher-order pushdown systems defines the higher-order pop operation as
the inverse of the push operation. That is, a stack may only be popped if it matches the stack
below. The results of Carayol [4] show that the set Pre∗(CInit) over these structures is regular,
using Carayol’s notion of regularity. However, the complexity of computing this set is unknown.
We may attempt to adapt our algorithm to this setting, proving the required complexity bounds.

Acknowledgments

We thank Olivier Serre and Arnaud Carayol for helpful discussions. We also thank the anonymous
referees for their invaluable remarks.

References

[1] A. Bouajjani and A. Meyer. Symbolic Reachability Analysis of Higher-Order Context-Free
Processes. In Proc. 24rd Conf. on Found. of Software Technology and Theoretical Computer
Science (FSTTCS’04), volume 3328 of Lecture Notes in Computer Science, Madras, India,
December 2004. Springer Pub.

[2] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Ap-
plication to model-checking. In International Conference on Concurrency Theory, pages
135–150, 1997.

[3] A. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with the unboundedness and
regular conditions. In FSTTCS’03, volume 2914 of lncs, pages 88–99. Springer-Verlag, 2003.

[4] A. Carayol. Regular sets of higher-order pushdown stacks. In MFCS, pages 168–179, 2005.

[5] A. Carayol and S. Wöhrle. The caucal hierarchy of infinite graphs in terms of logic and
higher-order pushdown automata. In FSTTCS, pages 112–123, 2003.

[6] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–133,
1981.

[7] C. Löding, P. Madhusudan, and O. Serre. Visibly pushdown games. In Proceedings of
FSTTCS’04, volume 3328 of LNCS, pages 408–420. Springer-Verlag, 2004.

[8] D. Caucal. On infinite terms having a decidable monadic theory. In Proc. MFCS’02, pages
165–176, 2002. LNCS 2420.

[9] D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata, and second-order
logic. Theor. Comput. Sci., 37:51–75, 1985.

34

[10] J. Engelfriet. Iterated pushdown automata and complexity classes. In STOC ’83: Proceedings
of the fifteenth annual ACM symposium on Theory of computing, pages 365–373, New York,
NY, USA, 1983. ACM Press.

[11] H. Gimbert. Parity and exploration games on infinite graphs. In Proceedings of CSL’04,
volume 3210 of LNCS, pages 56–70. Springer-Verlag, 2004.

[12] M. Hague and A. Widjaja To. The complexity of model checking (collapsible) higher-order
pushdown systems. In FSTTCS, pages 228–239, 2010.

[13] I. Walukiewicz. Pushdown processes: Games and model checking. In Rajeev Alur and Thomas
A. Henzinger, editors, Proceedings of the Eighth International Conference on Computer Aided
Verification CAV, volume 1102, pages 62–74, New Brunswick, NJ, USA, / 1996. Springer
Verlag.

[14] J. A. Brzozowski and E. L. Leiss. On equations for regular languages, finite automata, and
sequential networks. Theor. Comput. Sci., 10:19–35, 1980.

[15] J. Bradfield and C. Stirling. Modal logics and mu-calculi: an introduction, 2001.

[16] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a restriction at level 2 for string
languages. In FoSSaCS, pages 490–504, 2005.

[17] M. Hague, A. S. Murawski, O. Serre, and C.-H. L. Ong. Collapsible pushdown automata and
recursion schemes, 2006. Preprint, 13 pages.

[18] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Banff Higher Order
Workshop, pages 238–266, 1995.

[19] A. N. Maslov. Multilevel stack automata. Problems of Information Transmission, 15:1170–
1174, 1976.

[20] O. Serre. Note on winning positions on pushdown games with ω-regular conditions. Infor-
mation Processing Letters, 85:285–291, 2003.

[21] O. Serre. Games with winning conditions of high Borel complexity. In Proceedings of
ICALP’04, volume 3142 of LNCS, pages 1150–1162. Springer-Verlag, 2004.

[22] C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. In LICS
’06: Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science, pages
81–90, Washington, DC, USA, 2006. IEEE Computer Society.

[23] R. S. Streett and E. A. Emerson. An automata theoretic decision procedure for the proposi-
tional mu-calculus. Inf. Comput., 81(3):249–264, 1989.

[24] C. Stirling. Bisimulation, modal logic and model checking games. Logic Journal of the IGPL,
7(1):103–124, 1999.

[25] T. Cachat. Games on Pushdown Graphs and Extensions. PhD thesis, RWTH Aachen, 2003.

[26] T. Cachat and I. Walukiewicz. The complexity of games on higher order pushdown automata,
2007.

[27] T. Cachat, J. Duparc, and W. Thomas. Solving pushdown games with a Σ3 winning condition.
In Proceedings of the 11th Annual Conference of the European Association for Computer
Science Logic (CSL’02), volume 2471 of LNCS, pages 322–336. Springer-Verlag, 2002.

[28] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy. In FoSSaCS
’02: Proceedings of the 5th International Conference on Foundations of Software Science and
Computation Structures, pages 205–222, London, UK, 2002. Springer-Verlag.

35

[29] T. Knapik, D. Niwinski, P. Urzyczyn, and I. Walukiewicz. Unsafe grammars and panic
automata. In ICALP, pages 1450–1461, 2005.

[30] M. Y. Vardi. A temporal fixpoint calculus. In POPL ’88: Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 250–259, New
York, NY, USA, 1988. ACM Press.

[31] W. Thomas. Automata on infinite objects. Handbook of theoretical computer science (vol.
B): formal models and semantics, pages 133–191, 1990.

36

A Notions of Regularity

We show that our notion of a regular set of n-stores coincides with the definition of Bouajjani and
Meyer [1]. Bouajjani and Meyer show that a set of n-stores is regular iff it is accepted by a level
n nested store automata.

Because we are considering n-stores rather than configurations, we assume that there is only
one control state, and hence, an n-store multi-automaton has only a single initial state. We also
disregard the undefined store ▽, since it is not strictly a store. Observe that we are left with
n-store automata.

In the absence of alternation, the set of n-store automata is definitionally equivalent to the set
of level n nested store automata in the sense of Bouajjani and Meyer. Hence, it is the case that
every level n nested store automaton is also an n-store automaton.

We need to prove that every n-store automaton has an equivalent level n nested store automata.
We present the following definition:

Definition A.1 Given an n-store automaton A = (Q,Σ,∆, q0,Qf) we define a level n nested

store automaton Â = (2Q,Σ, ∆̂, {q0}, 2
Qf), where, if n = 1,

∆̂ = { ({q1, . . . , qm}, a,Q′) | ∀i ∈ {1, . . . ,m}. (∃(qi, a,Qi) ∈ ∆) ∧ Q′ = Q1 ∪ . . . ∪ Qm }

and if n > 1,

∆̂ =

{
({q1, . . . , qm}, B̂, Q′) |

∀i ∈ {1, . . . ,m}. (∃(qi, Bi, Qi) ∈ ∆)∧
Q′ = Q1 ∪ . . . ∪ Qm ∧ B = B1 ∩ . . . ∩ Bm

}

where B̂ is defined recursively and the construction of B1 ∩ · · · ∩ Bm is given in section B.3.

Property A.1 For any w, the run {q1, . . . , qm}
w

−→ Q′ exists in the n-store automaton A iff the

run {q1, . . . , qm}
w

−→ Q′ exists in Â.

Proof. The proof is by induction over n and then by a further induction over the length of w.
Suppose n = 1. When w = ε the proof is immediate. When w = aw′ we have in one direction,

{q1, . . . , qm}
a

−→ Q1
w′

−→ Q′

in A, and by induction over the length of the run, Q1
w′

−→ Q′ in Â. By definition of the runs of A we
have qi

a
−→ Qi

1 for each i ∈ {1, . . . ,m} with Q′ = Q1
1∪ . . .∪Qm

1 . Hence, by definition of Â we have

the transition {q1, . . . , qm}
a

−→ Q1
1 ∪ . . . ∪ Qm

1 = Q1. Hence we have the run {q1, . . . , qm}
w

−→ Q1

in Â as required.
In the other direction we have a run of the form

{q1, . . . , qm}
a

−→ Q1
w′

−→ Q′

in Â, and by induction over the length of the run, Q1
w′

−→ Q′ in A. By definition of the transition
relation of Â we have qi

a
−→ Qi

1 in A for each i ∈ {1, . . . ,m} with Q′ = Q1
1 ∪ . . . ∪ Qm

1 . Hence,

we have the transition {q1, . . . , qm}
a

−→ Q1
1 ∪ . . . ∪ Qm

1 = Q1 in A. Thus, we have the run

{q1, . . . , qm}
w

−→ Q1 in A as required.
When n > 1, when w = ε the proof is immediate. When w = γw′ we have in one direction,

{q1, . . . , qm}
γ

−→ Q1
w′

−→ Q′

in A, and by induction over the length of the run, Q1
w′

−→ Q′ in Â. By definition of the runs of A

we have qi
Bi−→ Qi

1 with γ ∈ L(Bi) for each i ∈ {1, . . . ,m} with Q′ = Q1
1∪ . . .∪Qm

1 . Consequently,
we have γ ∈ L(B) where B = B1 ∩ . . . ∩ Bm. By induction over n we have γ ∈ L(B̂). Hence, by

37

definition of Â we have the transition {q1, . . . , qm}
γ

−→ Q1
1 ∪ . . . ∪ Qm

1 = Q1. Hence we have the

run {q1, . . . , qm}
w

−→ Q1 in Â as required.
In the other direction we have a run of the form

{q1, . . . , qm}
γ

−→ Q1
w′

−→ Q′

in Â. In particular, we have {q1, . . . , qm}
B̂
−→ Q1 in Â with γ ∈ L(B̂). By induction over the

length of the run, Q1
w′

−→ Q′ in A. By definition of the transition relation of Â we have qi
Bi−→ Qi

1

for each i ∈ {1, . . . ,m} with B = B1 ∩ . . . ∩ Bm and Q′ = Q1
1 ∪ . . . ∪ Qm

1 . By induction over n we

have γ ∈ L(B) and hence γ ∈ L(Bi) for all i ∈ {1, . . . ,m}. Whence we have qi
γ

−→ Qi
1 in A for

all i ∈ {1, . . . ,m}. Thus, we have the transition {q1, . . . , qm}
γ

−→ Q1
1 ∪ . . . ∪ Qm

1 = Q1 in A and

the run {q1, . . . , qm}
w

−→ Q1 as required. 2

Corollary A.1 A set of n-stores is definable by an n-store automaton iff it is definable by a level
n nested store automaton.

B Algorithms over n-Store (Multi-)Automata

In this section we describe several algorithms over n-store automata and n-store multi-automata.
Observe that an n-store automaton is a special case of an n-store multi-automaton.

B.1 Enumerating Runs

Proposition B.1 Given a 1-store (multi-)automaton A = (Q,Σ,∆, ,Qf), a set of states Q and

word w, the set of all Q′ reachable via a run Q
w

−→ Q′ can be calculated in time O(2|Q|).

Proof. We define the following procedure, which given a set of sets of states Q1 computes the set
of sets Q′ with Q ∈ Q1 and Q

a
−→ Q′.

Expand(Q1)

let Qnext = ∅
for each {q1, . . . , qm} ∈ Q1

let ok = (∃(q1, a,) ∈ ∆)
let Q = ∆(q1, a)
for i = 2 to m

ok = ok ∧ (∃(qi, a,) ∈ ∆)
Q = { Q′ ∪ Q′′ | Q′ ∈ Q ∧ (qi, a,Q′′) ∈ ∆ }

if ok then Qnext = Qnext ∪ Q

return Qnext

The outer loop repeats O(2|Q|) times and the inner loop O(|Q|). Since the number of Q′ ∈ Q is
O(2|Q|) and the number of (qi, a,Q′′) ∈ ∆ is also O(2|Q|), construction of Q takes time O(2|Q|).
Hence the procedure takes time O(2|Q| × |Q| × 2|Q|), that is O(2|Q|).

Expand is correct since Q ∈ Qnext at the end of the procedure iff we have {q1, . . . , qm} ∈ Q1

and some (qi, a,Qi
next) ∈ ∆ for each i ∈ {1, . . . ,m} with Qnext = Q1

next ∪ . . . ∪ Qm
next.

Over a word w = a1 . . . am we define the following procedure,

ExpandWord(a1 . . . am, Q)

let Q1 = {Q}
for i = 1 to m

38

Q1 = Expand(ai, Q1)

return Q1

This procedure requires m runs of Expand and consequently runs in time O(2|Q|).
We prove the correctness of ExpandWord by induction over the length of the word. When

w = a1 correctness follows from the correctness of Expand. In the inductive case w = a1 . . . am.
We have all runs of the form Q

a1−→ Q1 as before, and all runs over a2 . . . am from all Q1 by
induction. We have all runs of the form Q

w
−→ Q′ therefrom. 2

Proposition B.2 Given an l-store (multi-)automaton A = (Q,Σ,∆, ,Qf) with l > 1, and a set

of states Q, the set of all Q′ reachable via a run Q
eB1−→ Q′

eB2−→ Q′′ can be calculated in time
O(2|∆|+|Q|).

Proof. We define the following procedure, which given a set of states Q1 computes the set of sets

Q′ and set of (l − 1)-store automata B̃ with Q ∈ Q1 and Q
eB

−→ Q′.

Expand(Q1)

let Qnext = ∅
for each {q1, . . . , qm} ∈ Q1

for each set {(q1, B1, Q
1
next), . . . , (qm, Bm, Qm

next)} ⊆ ∆

Qnext = Qnext ∪ {({B1, . . . , Bm}, Q1
next ∪ . . . ∪ Qm

next)}

return Qnext

The outer loop repeats at most O(2|Q|) times. At most O(2|∆|) sets need to be enumerated
during the inner loop. Hence, Expand runs in time O(2|∆|+|Q|). The correctness of Expand is
immediate.

To complete the algorithm, we define the following procedure,

ExpandETimes(e,Q)

let Q1 = Expand({Q})
for h = 1 to e

for each (B̃1, . . . , B̃h, Q′) ∈ Q1

Q1 = Q1 ∪ ({(B̃1, . . . , B̃h)}×Expand({Q′}))

return Q1 ∩ ((Bl)
e × 2Q)

This procedure requires O(e× (e×2|∆|)×2|Q|) iterations of the loop. Each iteration requires time
O(2|∆|+|Q|) and consequently the procedure runs in time O(2|∆|+|Q|).

By the correctness of Expand we have (B̃,Q′) ∈ Q1 iff we have the path Q
eB

−→ Q′ in A. After

execution of the loop we have, by correctness of Expand, (B̃1, . . . , B̃e, Q
′) ∈ Q1 iff we have the

following path in A: Q
eB1−→ . . .

eBe−→ Q′. 2

B.2 Membership

Proposition B.3 Given an n-store (multi-)automaton A = (Q,Σ,∆,, Qf) and an n-store w we
can determine whether there is an accepting run over w in A from a given state q ∈ Q in time
O(|w||∆||Q|).

Proof. When w = ▽ we can check membership immediately. Otherwise the algorithm is recursive.
In the base case, when n = 1 and w = a1 . . . am, we present the following well-known algorithm,

39

let Q = Qf

for i = m downto 1

Q = { q′ | (q′, ai, Q
′) ∈ ∆ ∧ Q′ ⊆ Q }

return (q ∈ Q)

This algorithm requires time O(m|∆||Q|). We prove that this algorithm is correct at order-1 by
induction over m. When m = 1, we have q ∈ Q at the end of the algorithm iff there exists a
transition (q, a1, Q

′) ∈ ∆ where Q′ ⊆ Qf . When w = a1a2 . . . am we have q ∈ Q at the end of
the algorithm iff there exists a transition (q, a1, Q

′) where, by induction if q′ ∈ Q′ then the word
a2 . . . am is accepted from q′. Hence, we have q ∈ Q iff there is an accepting run over w from q.

When n > 1 we generalise the algorithm given above. Let w = γ1 . . . γm,

let Q = Qf

for i = m downto 1

Q = { q′ | (q′, B,Q′) ∈ ∆ ∧ γ ∈ L(B) ∧ Q′ ⊆ Q }

return (q ∈ Q)

The outer loop of the program repeats m times, there are |∆| transitions to be checked. By
considering all labelling automata as a single automaton with an initial state for each (as in the
backwards reachability construction), we make a single recursive call (for each γ in w), obtaining
all states accepting γ. Checking γ ∈ L(B) then requires checking whether the appropriate initial
state is in the result of the recursive call. We have |w| = |γ1| + · · · + |γm|, hence the algorithm
requires O(|γ1||∆1||Q| + · · · + |γm||∆1||Q|) = O(|w||∆1||Q|) time for the pre-computation, then
O(m|∆2||Q|) time for the body of the algorithm, where ∆ = ∆1 ∪ ∆2 is the partition of ∆ into
the order-n and lower-order parts. Hence, we require O(|w||∆||Q|) time.

We prove that this algorithm is correct at order n > 1 by induction over m. When m = 1, we
have q ∈ Q at the end of the algorithm iff there exists a transition (q,B,Q′) ∈ ∆ with γ ∈ L(B)
and Q′ ⊆ Qf . When w = γ1γ2 . . . γm we have q ∈ Q at the end of the algorithm iff there exists
a transition (q,B,Q′) where γ ∈ L(B) and, by induction, if q′ ∈ Q′ then the word a2 . . . am is
accepted from q′. Hence, we have q ∈ Q iff there is an accepting run over w from q. 2

B.3 Boolean Operations

We define the boolean operations on n-store multi-automata.

Definition B.1 Given two n-store multi-automata A1 = (Q1,Σ,∆1, {q1
1 , . . . , qz

1},Q
1
f) and A2 =

(Q2,Σ,∆2, {q1
2 , . . . , qz

2},Q
2
f), we define,

A1 ∪ A2 = (Q1 ∪Q2 ∪ {q1, . . . , qz},Σ,∆∪, {q1, . . . , qz},Q∪
f)

where qi /∈ Q1 ∪Q2 for i ∈ {1, . . . , z} and

∆∪ = ∆1 ∪ ∆2

∪ { (qi, B,Q) | (qi
1, B,Q) ∈ ∆1 ∧ 1 ≤ i ≤ z }

∪ { (qi, B,Q) | (qi
2, B,Q) ∈ ∆2 ∧ 1 ≤ i ≤ z }

Q∪
f = Q1

f ∪Q2
f

∪ { qi | qi
j ∈ Qj

f ∧ 1 ≤ j ≤ 2 ∧ 1 ≤ i ≤ z }

We define,
A1 ∩ A2 = (Q1 ∪Q2 ∪ {q1, . . . , qz},Σ,∆∩, {q1, . . . , qz},Q∩

f)

40

where qi /∈ Q1 ∪Q2 for i ∈ {1, . . . , z} and at order-1 we have,

∆∩ = ∆1 ∪ ∆2 ∪ { (qi, a,Q1 ∪ Q2) | (qi
1, a,Q1) ∈ ∆1 ∧ (qi

2, a,Q2) ∈ ∆2 ∧ 1 ≤ i ≤ z }

Q∩
f = Q1

f ∪Q2
f

∪ { qi | qi
1 ∈ Q1

f ∧ qi
2 ∈ Q2

f ∧ 1 ≤ i ≤ z }

Otherwise we have,

∆∩ = ∆1 ∪ ∆2

∪ { (qi, B1 ∩ B2, Q1 ∪ Q2) | (qi
1, B1, Q1) ∈ ∆1 ∧ (qi

2, B2, Q2) ∈ ∆2 ∧ 1 ≤ i ≤ z }
∪ { (qi,▽, {qε

f}) | (qi
1,▽, {qε

f}) ∈ ∆1 ∧ (qi
2,▽, {qε

f}) ∈ ∆2 ∧ 1 ≤ i ≤ z }

Q∩
f = Q1

f ∪Q2
f

Where B1 ∩ B2 is defined recursively.

Property B.1 Given two n-store multi-automata A1 and A2, we have L(A1)∩L(A2) = L(A1∩A2)
and L(A1) ∪ L(A2) = L(A1 ∪ A2).

Proof. To prove the property for A1 ∪ A2 in the case of an empty stack ε we have for all
i ∈ {1, . . . , z} that qi ∈ Q∪

f iff we have qi
j ∈ Qj

f for j = 1 or j = 2. Otherwise, we observe that we
have for any i ∈ {1, . . . , z} an accepting run in A1 ∪ A2 of a store γw,

qi γ
−→ Q

w
−→ Qf

with Qf ⊆ Qf iff we have a run,

qi
j

γ
−→ Q

w
−→ Qf

in Ai for j = 1 or j = 2.
For A1 ∩A2 we proceed by induction over n. When n = 1, in the case of the empty stack ε we

have for any i ∈ {1, . . . , z} that qi ∈ Q∩
f iff qi

j ∈ Qj
f for j = 1 and j = 2. Otherwise, we have an

accepting run of A1 ∩ A2 over the word aw,

qi a
−→ Q1 ∪ Q2

w
−→ Q1

f ∪ Q2
f

with Q1
f ∪ Q2

f ⊆ Qf iff we have the accepting runs,

qi
j

a
−→ Qj

w
−→ Qj

f

in Aj for j = 1 and j = 2.
When n > 1, we have an accepting run of A1 ∩ A2 over the word γw,

q0
γ

−→ Q1 ∪ Q2
w

−→ Q1
f ∪ Q2

f

with Q1
f ∪ Q2

f ⊆ Qf iff (via the induction hypothesis) we have the accepting runs,

qi γ
−→ Qi

w
−→ Qi

f

in Ai for i = 1 and i = 2. 2

We now show how to complement n-store multi-automata. We begin by defining an operation
on sets of sets.

Definition B.2 Given a set of sets {Q1, . . . , Qm} we define,

invert({Q1, . . . , Qm}) = { {q1, . . . , qm} | qi ∈ Qi ∧ 1 ≤ i ≤ m }

41

Definition B.3 Given an n-store multi-automaton A = (Q,Σ,∆, {q1, . . . , qz},Qf), we define Ā
as follows.

• When n = 1 we assume A is total (this is a standard assumption that can easily be satisfied
through the addition of a sink state). We define Ā = (Q,Σ,∆′, {q1, . . . , qz},Q \ Qf) where
∆′ is the smallest set such that for each q ∈ Q and a ∈ Σ we have,

1. The transitions from q in ∆ over a are (q, a,Q1), . . . , (q, a,Qm), and

2. Qa = invert
(⋃

1∈{1,...,m}{Qi}
)
, and

3. ∆′(q, a) = Qa.

Since Qa may be polynomial in size, the construction runs in polynomial time when n = 1.

• When n > 1 we define Ā = (Q ∪ {q∗f , qε
f},Σ,∆′, {q1, . . . , qz}, (Q ∪ {q∗f , qε

f}) \ Qf) where
q∗f , qε

f /∈ Q, all n-stores are accepted from q∗f and qε
f has no outgoing transitions.

Furthermore ∆′ is the smallest set such that for each q ∈ Q we have,

1. The non-▽ transitions from q in ∆ are (q,B1, Q1), . . . , (q,Bm, Qm) (we assume m ≥ 1),
and

2. For all B̃ ∈ 2B1,...,Bm we have,

Q eB =

{
{q∗f} if B̃ = ∅

invert
(⋃

Bi∈ eB{Qi}
)

otherwise

B eB =
⋂

Bi∈ eB Bi ∩
⋂

Bi /∈ eB B̄i

Note we have B̄i recursively; and

3. ∆′(q,B eB) = Q eB , and

4. For all j ∈ {1, . . . , z} we have (qj ,▽, {qε
f}) ∈ ∆′ iff there is no ▽ transition from qj in

A.

Overall, when n > 1 there may be an exponential blow up in the number of transitions
and the construction of each B eB may take exponential time. The construction is therefore
exponential.

We now show that the above definition is correct.

Property B.2 Given an n-store multi-automaton A, we have L(Āqj

) = L(Aqj) for all qj ∈
{q1, . . . , qz}.

Proof. We propose the following induction hypothesis: an accepting run q
w

−→ Q exists in Ā
iff there is no accepting run q

w
−→ Q′ in A. We proceed first by induction over n and then by

induction over the length of the run.
When n = 1, and the length of the run is zero, the induction hypothesis follows since Qf ∩ (Q\

Qf) = ∅. When the length of the run is larger than zero, we begin by showing the if direction.
Assume we have an accepting run,

q
a

−→ Q1 w
−→ Q

in Ā for some a and w. Suppose for contradiction we have a run,

q
a

−→ Q2 w
−→ Q′

in A with Q′ ⊂ Qf . Then, by induction over the length of the run, there are no accepting runs
over w in Ā from any state in Q2. In ∆ we have the transition (q, a,Q2). By definition there is

42

some q′ ∈ Q2 with q′ ∈ Q1 and consequently the accepting run Q1 w
−→ Q cannot exist in Ā. We

have a contradiction.
In the only-if direction, assume there is no run,

q
a

−→ Q1 w
−→ Q′

with Q′ ⊆ Qf in A. For all transitions of the form q
a

−→ Q1 (guaranteed to exist since A is total)

there is no accepting run Q1 w
−→ Q′. Hence, there is some q′ ∈ Q1 with no accepting run over w,

and by induction over the length of the run, there is an accepting run from q′ over w in Ā.
Let {(q, a,Q⊤

1), . . . , (q, a,Q⊤
e)} be the set of all transitions in ∆ from q over a. For each

i ∈ {1, . . . , e}, let q⊤i ∈ Q⊤
i be the state from which there is no accepting run over w in A and

hence an accepting run over w in Ā. By definition of ∆′ the transition q
a

−→ {q⊤1 , . . . , q⊤e } exists
in Ā. Hence we have the accepting run,

q
a

−→ {q⊤1 , . . . , q⊤e }
w

−→ Q′

in Ā as required.
We now consider the inductive case n > 1. If q = q∗f or qε

f the result is immediate. Similarly,
when the length of the run is zero, then the property follows since Qf ∩ (Q ∪ {q0}) \ Qf = ∅.
Furthermore, since we have an (accepting) ▽-transition from qj for all j ∈ {1, . . . , z} in A iff we
have an (accepting) ▽-transition from qj in Ā the result is also straightforward in this case.

Otherwise, in the if direction, assume we have an accepting run,

q
γ

−→ Q1 w
−→ Q

in Ā for some γ and w. Suppose for contradiction we have a run,

q
γ

−→ Q2 w
−→ Q′

in A with Q′ ⊂ Qf . Then, by induction over the length of the run, there are no accepting runs
over w in Ā from any state in Q2. In ∆ we have the transition (q,B,Q2) with γ ∈ L(B), hence
B must appear positively on the transition in ∆′ from q to Q1 (else B̄ appears, and by induction
over n, γ /∈ L(B̄)). By definition there is some q′ ∈ Q2 with q′ ∈ Q1 and consequently the run

Q1 w
−→ Q cannot exist in Ā. We have a contradiction.
In the only-if direction, assume there is no run,

q
γ

−→ Q1 w
−→ Q′

with Q′ ⊆ Qf in A. There are two cases.

• If there are no transitions q
γ

−→ Q1 in A then for all q
B
−→ Q1 we have γ ∈ B̄ by induction

over n. Hence, in Ā we have a run,

q
γ

−→ q∗f
w

−→ Q∗

which is an accepting run as required.

• If there are transitions of the form q
γ

−→ Q1 in A then for each of these runs there is no
accepting run Q1 w

−→ Q′. Hence, there is some q′ ∈ Q1 with no accepting run over w, and
by induction over the length of the run, there is an accepting run from q′ over w in Ā.

Let {(q,Bt
1, Q

t
1), . . . , (q,B

t
e, Q

t
e), (q,B

f
1 , Qf), . . . , (q,Bf

h , Qf
h)} be the set of all transitions in

∆ from q such that γ ∈ Bt
i for all i ∈ {1, . . . , e} and γ /∈ Bf

i for all i ∈ {1, . . . , h} (and

consequently γ ∈ B̄f
i). For each i ∈ {1, . . . , e} let qt

i ∈ Qt
i be the state from which Ā has no

accepting run over w in A and hence has an accepting run over w in Ā. By definition of ∆′

the transition q
B
−→ {qt

1, . . . , q
t
e} with B = Bt

1 ∩ . . . ∩ Bt
e ∩ B̄f

1 ∩ . . . ∩ B̄f
h exists in Ā. Hence

we have the accepting run,

q
γ

−→ {qt
1, . . . , q

t
e}

w
−→ Q′

in Ā as required.

43

We have shown that Ā has an accepting run from any state iff there is no accepting run from that
state in A as required. 2

B.4 Soundness and Completeness for A0, A1, . . .

In this section we show that the sequence A0, A1, . . . is sound and complete with respect to
Pre∗(CInit), where CInit = L(A0).

B.4.1 Preliminaries

We begin by proving some useful properties of the automaton construction. These properties
assert that the automata constructed from the sets in G̃i

l are well-behaved. Once this has been
established, we need only consider order-n of the automata A0, A1, . . . to show soundness and
completeness. Note that since no gi

(q1,Q2)
is accepting, any store accepted by some Gi

(q1,Q2)
has a

top1 element.
In order to reason about a particular transition, we need to know its origin. Hence we intro-

duce the notion of an inherited and a derived transition. The remaining lemmata fall into four
categories:

1. Lemma B.3 shows that inherited runs are sound.

2. Lemma B.2 shows the completeness of inherited runs.

3. Lemma B.1, Lemma B.4 and Lemma B.5 show that derived runs are sound.

4. Lemma B.6 shows the completeness of derived runs.

Definition B.4 A non-empty run gi
(q1,Q2)

w
−→i Q of Gi

l or qj w
−→i Q of Ai can be characterised

by its initial transition gi
(q1,Q2)

γ
−→i Q′ where w = γw′. There are several cases,

• l = 1.

Then we have gi
(q1,Q2)

a
−→i Q′. If the transition was inherited from gi−1

(q1,Q2)
then we say that

the run is an inherited run. Otherwise the transition was introduced by some S ∈ G̃i
(q1,Q2)

.
We say that the run was derived from S.

• l > 1.

Then we have gi
(q1,Q2)

eG
−→ Q′ with γ ∈ L(G). There are three cases depending on the

accepting run of G and the source of the transition from gi
(q1,Q2)

,

– If the accepting run of G is an inherited run, then the run gi
(q1,Q2)

w
−→i Q is also

inherited.

– If the accepting run of G is derived from some S′ ∈ G̃ and S′ was added to G̃ when
inheriting transitions from gi−1

(q1,Q2)
, then the run gi

(q1,Q2)

w
−→i Q is inherited.

– If the accepting run of G is derived from some S′ ∈ G̃ and S′ was added to G̃ by
some S ∈ G̃i

(q1,Q2)
or — if l = n − 1 — by TD and the command d, then the run

gi
(q1,Q2)

w
−→i Q is derived from S or d respectively.

The first lemma states that runs derived from a set S which is the conjunction of several
automata behaves correctly:

Lemma B.1 The run gi+1
(q1,Q2)

w
−→i+1 Q derived from S = {θ1, . . . , θm} ⊆ Bl ∪ G̃i

l exists in Gi+1
l

iff the run,
{qθ1 , . . . , qθm}

w
−→i Q

exists in Gi
l .

44

Proof. We prove the lemma by induction over l. Observe that a derived run cannot be empty.
When l = 1, we have w = aw′ for some character a and word w′ and,

gi+1
(q1,Q2)

a
−→i+1 Q′

1 ∪ · · · ∪ Q′
m

w′

−→i Q

derived from S exists iff the run qθt
a

−→i Q′
t exists in Gi

1 for all t ∈ {1, . . . ,m} and the run,

{qθ1 , . . . , qθm}
a

−→i Q′
1 ∪ · · · ∪ Q′

m
w′

−→i Q

exists in Gi
1 as required.

When l > 1, we have w = γw′. The transition gi+1
(q1,Q2)

eG
−→i+1 Q′ derived from S and the run

Q′ w′

−→i Q exist in Gi+1
l where γ ∈ L(G) iff Q′ = Q′

1 ∪ · · · ∪ Q′
m and the transition qθt

Bt−→i Qt

exists in Gi
l for all t ∈ {1, . . . ,m}. We have {B1, . . . , Bm} = S′ ∈ G̃i+1

(gi+1
(q1,Q2)

,Q′)
∈ G̃i

l−1 and the

accepting run of G is derived from S′ iff we have γ ∈ L(Bt) for all t ∈ {1, . . . ,m} (by induction)
and the run,

{qθ1 , . . . , qθm}
γ

−→i+1 Q′ w′

−→i Q

in Gi
l as required. 2

The language accepted by the sequence A0, A1, . . . or any sequence G0
l ,G1

l , . . . is increasing. In

particular, if q
w

−→i Q exists in Ai, then q
w

−→i+1 Q exists in Ai+1.

Lemma B.2

1. If gi
(q1,Q2)

w
−→i Q is a run of Gi

(q1,Q2)
for some i and, then gi+1

(q1,Q2)

w
−→i+1 Q is a run of

Gi+1
(q1,Q2)

.

2. For all transitions q
γ

−→i Q′ in Ai for some i, we have the transition q
γ

−→i+1 Q′ in Ai+1.

3. For all runs q
w

−→i Q′ of Ai for some i, we have the run q
w

−→i+1 Q′ in Ai+1.

Proof. To prove (2) we observe that there are two cases. In the first case, the transition from q
to Q′ is labelled by an automaton B ∈ Bl or ▽. Because this transition will remain unchanged by
TD, the lemma follows immediately. In the second case, the transition is labelled by Gi

(q,Q′) and

the property follows directly from (1) and the run gi
(q,Q′)

wγ
−→i Q with Q ⊆ Qf for [wγ] = γ. Since

gi
(q,Q′) is not an accepting state, it is the case that wγ 6= ε.

We note that (3) can be shown by repeated applications of (2).
Finally, we show (1). The automaton Gi

(q1,Q2)
has the run,

gi
(q1,Q2)

γ
−→i Q1 w′

−→i Q

where w = γw′.
In case G̃i

(q1,Q2)
∈ G̃i

l and l = 1, by definition the automaton Gi+1
(q1,Q2)

has the transition

gi+1
(q1,Q2)

a
−→i Q2 for every transition gi

(q1,Q2)

a
−→i Q2. Hence, as required, we have the run,

gi+1
(q1,Q2)

a
−→i+1 Q1 w′

−→i Q

When G̃i
(q1,Q2)

∈ G̃i
l and l > 1, by definition the automaton Gi+1

(q1,Q2)
has the transition

gi+1
(q1,Q2)

eG
−→i Q2 with {B} ∈ G̃ for every transition gi

(q1,Q2)

B
−→i Q2. Since we have γ ∈ L(B) (for

45

some B) and qB is of the form gi
(q,Q′) (and hence not an accepting state) we have γ 6= [ε] and

γ ∈ L(G) by Lemma B.1 and {B} ∈ G̃. Hence we have the run,

gi+1
(q1,Q2)

γ
−→i+1 Q1 w′

−→i Q

as required. 2

We now show that inheritance does not introduce spurious runs:

Lemma B.3 If a run gi+1
(q1,Q2)

w
−→i+1 Q in Gi+1

l is inherited, then the run gi
(q1,Q2)

w
−→i Q exists

in Gi
l .

Proof. We proceed by induction over l. Observe that an inherited run cannot be empty.
When l = 1 we have w = aw′ and,

gi+1
(q1,Q2)

a
−→i+1 Q′ w′

−→i Q

Since the run is an inherited run, we have gi
(q1,Q2)

a
−→i Q′ in Gi

1 and hence,

gi
(q1,Q2)

a
−→i Q′ w′

−→i Q

in Gi
1 as required.

When l > 1 we have w = γw′ and gi+1
(q1,Q2)

eGi+1
(...)

−−−→i+1 Q′ with Q′ w′

−→i Q in Gi+1
l and γ ∈ L(Gi+1

(...)).

There are two cases depending on the accepting run of Gi+1
(...).

If the accepting run of Gi+1
(...) is inherited, then we have γ ∈ L(Gi

(...)) by induction on l and

hence the transition gi
(q1,Q2)

γ
−→i Q′ in Gi

l . Therefore, as required, we have the run,

gi
(q1,Q2)

γ
−→i Q′ w′

−→i Q

If the accepting run of Gi+1
(...) is derived from some S introduced to G̃i+1

(...) when inheriting tran-

sitions from gi
(q1,Q2)

, then S = {B} for some B and we have gi
(q1,Q2)

B
−→i Q′ in Gi

l . Furthermore,

by Lemma B.1 we have γ ∈ L(B) and the run,

gi
(q1,Q2)

γ
−→i Q′ w′

−→i Q

as required. 2

The next two lemmata assert that derived runs are justified.

Lemma B.4 Suppose the run gi+1
(q1,Q2)

w
−→i+1 Q derived from S exists in Gi+1

l and θ1 ∈ S. We

have qθ1
w

−→i Q′ in Gi
l , where Q′ ⊆ Q.

Proof. The proof is by induction over l. Observe that, since the run is derived, we have w 6= ε.
In the base case l = 1. Let w = aw′. We have the following run in Gi+1

l ,

gi+1
(q1,Q2)

a
−→i+1 Q1 w′

−→i Q

and by definition, since the run is derived from S and θ1 ∈ S, we have qθ1
a

−→i Q2 in Gi
l where

Q2 ⊆ Q1, and hence,

qθ1
a

−→i Q2 w′

−→i Q′

46

with Q′ ⊆ Q as required.
When l > 1, let w = γw′. We have the run,

gi+1
(q1,Q2)

γ
−→i+1 Q1 w′

−→i Q

in Gi+1
l . In particular, we have gi+1

(q1,Q2)

eG
−→i+1 Q1 with an accepting run of G over γ that is

derived from S′ ∈ G̃ which was introduced by S. By definition, since θ1 ∈ S, we have qθ1
θ

−→i Q2

with Q2 ⊆ Q1 and θ ∈ S′. By induction, we have γ ∈ L(θ) and hence the run,

qθ1
γ

−→i Q2 w′

−→i Q′

with Q′ ⊆ Q as required. 2

Lemma B.5 Suppose the run gi+1
(q1,Q2)

w
−→i+1 Q derived from S exists in Gi+1

l and (a, o, θ1) ∈ S.

Let [w′] = o([w]), we have qθ1
w′

−→i Q′ in Gi
l , where Q′ ⊆ Q.

Proof. The proof is by induction over l. Since the run is derived, we have w 6= ε.
In the base case l = 1. We have w = aw′′. There is only one value of o,

• o = pushwp
. Then [w′] = o([w]) = [wpw

′′]. We have the following run in Gi+1
l ,

gi+1
(q1,Q2)

a
−→i+1 Q1 w′′

−→i Q

and by definition, since the run is derived from S and (a, o, θ1) ∈ S, we have qθ1
wp
−→i Q2 in

Gi
l where Q2 ⊆ Q1, and hence,

qθ1
wp
−→i Q2 w′′

−→i Q′

with Q′
f ⊆ Q as required.

When l > 1, let w = γw′′ and we have the run,

gi+1
(q1,Q2)

γ
−→i+1 Q1 w′′

−→i Q

in Gi+1
l . In particular gi+1

(q1,Q2)

eG
−→i+1 Q1 and there is an accepting run of G over γ derived from

some S′ ∈ G̃. There are now three cases depending on o,

• o = pushl. By definition, since (a, pushl, θ1) ∈ S we have in Gi
l the run

qθ1
eθ1−→i Q2 eθ2−→i Q3

with Q3 ⊆ Q1 and {Ba
l }∪ θ̃1∪ θ̃2 ⊆ S′. Hence, by Lemma B.4, we have γ ∈ L({Ba

l }∪ θ̃1∪ θ̃2),
and hence [w′] = o([w]) = [γγw′′] and we have the following run of Gi

l ,

qθ1
γ

−→i Q2 γ
−→i Q3 w′′

−→i Q′

with Q′ ⊆ Q as required.

• o = popl. Since (a, popl, θ1) ∈ S, we have qθ1 ∈ Q1 and Ba
l ∈ S′. Furthermore w′′ is non-

empty since qθ1 /∈ Qf by definition of n-store automata. By Lemma B.4 γ ∈ L(Ba
l). Hence

[w′] = o([w]) = [w′′] and we have qθ1
w′′

−→i Q′ with Q′ ⊆ Q as required.

47

• ℓ(o) < l. By definition, [w′] = o([w]) = [o(γ)w′′]. Since (a, o, θ1) ∈ S we have qθ1
θ

−→i Q2

with Q2 ⊆ Q1 and (a, o, θ) ∈ S′. By induction over l we have o(γ) ∈ L(θ) and hence,

qθ1
o(γ)
−→i Q2 w′′

−→i Q′

with Q′ ⊆ Q as required.

This completes the proof of the lemma. 2

Finally, we show that the derived runs completely represent their source.

Lemma B.6 Let S = {α1, . . . , αm} ∈ G̃i+1
(q,Q). Given some γ with top1(γ) = a such that for each

e ∈ {1, . . . ,m} we have,

• If αe = θe then γe = γ and γe ∈ L(θe)

• If αe = (b, oe, θe) then a = b, oe(γ) = γe and γe ∈ L(θe)

we have γ ∈ L(Gi+1
(q,Q)).

Proof. We have G̃i+1
(q,Q) ∈ G̃i+1

l for some l. The proof is by induction over l.

When l = 1 let γ = [aw]. We have αe = θe or αe = (a, pushwe
, θe). We have,

• When αe = θe, the run,
qθe

a
−→i Qe

w
−→i Qe

f

with Qe
f ⊆ Qf in Gi

l . Furthermore, γe = γ.

• When αe = (a, pushwe
, θe), the run,

qθe
we−→i Qe

w
−→i Qe

f

with Qe
f ⊆ Qf in Gi

l . Furthermore, we have γe = [wew].

Hence, since S ∈ G̃i+1
(q,Q), we have from the definition of Gi+1

(q,Q) the run,

gi+1
(q,Q)

a
−→i+1 Q1 ∪ · · · ∪ Qm

w
−→i Q1

f ∪ · · · ∪ Qm
f

with Q1
f ∪ · · · ∪ Qm

f ⊆ Qf . Hence γ ∈ L(Gi+1
(q,Q)) as required.

When l > 1 let γ = [γ′w]. We have S′ = S′
1 ∪ · · · ∪ S′

m and Q′ = Q1 ∪ · · · ∪ Qm where,

• When αe = θe, γ = γe and we have the transition qθe
θ′

e−→i Qe in Gi
l with γ′ ∈ L(θ′e) and the

run Qe
w

−→i Qe
f with Qf ⊆ Qf . Furthermore S′

e = {θ′e}.

• When αe = (a, pushl, θe), γe = [γ′γ′w]. Additionally, we have the transitions,

qθe
θ1

e−→i Q′
eθ2

e−→i Qe

in Gi
l where γ′ ∈ L({Ba

l−1, θ
1
e}∪θ̃2

e). Furthermore, we have the run Qe
w

−→i Qe
f with Qe

f ⊆ Qf

and S′
e = {Ba

l−1, θ
1
e} ∪ θ̃2

e .

• When αe = (a, popl, θe), γe = [w] and we have the run,

qθe
w

−→i Qe
f

with Qe
f ⊆ Qf , S′

e = {Ba
l−1}, γ′ ∈ L(Ba

l−1) and Qe = {qθe}.

48

• αe = (a, oe, θe) with ℓ(oe) < l, we have γe = [oe(γ
′)w], and the transition qθe

θ′
e−→i Qe and

run Qe
w

−→i Qe
f with Qe

f ⊆ Qf in Gi
l . Additionally, oe(γ

′) ∈ L(θ′e) and S′
e = {(a, oe, θ

′
e)}.

Hence, by definition of Gi+1
(q,Q), we have the transition,

gi+1
(q,Q)

eG
−→i+1 Q1 ∪ · · · ∪ Qm

with S′ ∈ G̃ and by induction over l, γ′ ∈ L(G). Hence we have the run,

gi+1
(q,Q)

γ′

−→i+1 Q1 ∪ · · · ∪ Qm
w

−→i Q1
f ∪ · · · ∪ Qm

f

with Q1
f ∪ · · · ∪ Qm

f ⊆ Qf in Gi+1
(q,Q). That is, γ ∈ L(Gi+1

(q,Q)) as required. 2

B.4.2 Soundness

We show that for any configuration 〈pj , γ〉 such that γ ∈ L(Aqj

i), for some i, we have 〈pj , γ〉
∗
→֒ C

with C ⊆ CInit. Let I = {q1, . . . , qz}. The following lemma describes the relationship between
added transitions and the evolution of the order-n PDS. The restrictions on w′ are technical
requirements in the case of popn operations. They may be justified by observing that only the
empty store is accepted from the state qε

f , and that, since initial states are never accepting, the
empty store cannot be accepted from an initial state.

Lemma B.7 For a given run qj w
−→i Q of Ai there exists, for any w′ satisfying the conditions

below, some C such that 〈pj , [ww′]〉
∗
→֒ C, where C contains configurations of the form 〈pk, w′′w′〉

with qk w′′

−→0 Q′ or 〈pj ,▽〉 with qj ▽

−→0 Q′. Furthermore, the union of all such Q′ is Q. We
require w′ 6= ▽ and,

1. If qε
f ∈ Q then w′ = ε,

2. If qk ∈ Q for some qk then w′ 6= ε.

Proof. The proof proceeds by induction on i. In the base case i = 0 and the property holds
trivially. We now consider the case for i + 1. Since TD does not add any ▽-transitions, we can
assume w 6= ▽.

We perform a further induction over the length of the run. In the base case we have w = γ (the

case w = ε is immediate with C = {〈pj , [w′]〉}) and consider the single transition qj γ
−→i+1 Q. We

assume that the transition is not inherited, else the property holds by Lemma B.3 and induction
over i. If the transition is not inherited, then the run is derived from some d and we have
γ ∈ L(Gi+1

(qj ,Q)) and the accepting run of Gi+1
(qj ,Q) is derived from some S ∈ G̃i+1

(qj ,Q) introduced by

during the processing of d.
Let d = (pj , a, {(o1, p

k1), . . . , (om, pkm)}). We have 〈pj , [γw′]〉 →֒ C ′ where,

C ′ = { 〈pkt , γ′〉 | t ∈ {1, . . . ,m} ∧ γ′ = ot([γw′]) }
∪ { 〈pj ,▽〉 | if ot([γw′]) with t ∈ {1, . . . ,m} is not defined }

We can decompose the new transition as per the definition of TD. That is Q = Q′
1 ∪ · · · ∪Q′

m.
There are several cases:

• ot = pushn.

By definition of TD, we have the run,

qkt
eθ1−→i Q′ eθ2−→i Q′

t

49

with {Ba
n−1} ∪ θ̃1 ∪ θ̃2 ⊆ S. By Lemma B.4 we have γ ∈ L({Ba

n−1} ∪ θ̃1 ∪ θ̃2). Hence we
have,

qkt
γ

−→i Q′ γ
−→i Q′

t

We have pushn[γw′] = [γγw′] and 〈pkt , [γγw′]〉 ∈ C ′. Via induction over i we have the set

Ct with 〈pkt , ot[γw′]〉
∗
→֒ Ct which satisfies the lemma.

• ot = popn.

We have Ba
n−1 ∈ S. We have, by Lemma B.4, γ ∈ L(Ba

n−1).

If Qt = {qkt} we have popn[γw′] = [w′] since w′ is non-empty and Ct = {〈pkt , [w′]〉}. Note

qkt
ε

−→0 {qkt}.

If Qt = {qε
f} then w′ = ε and popn[γw′] is undefined. By definition of TD we have qj ▽

−→0

{qε
f}. Let Ct = {〈pj ,▽〉}.

• ℓ(ot) < n and if ot = popl then Xa
ℓ(ot)

/∈ S.

By definition, we have qkt
θ

−→i Qt in Ai with (a, ot, θ) ∈ S. Therefore, by Lemma B.5, we

have ot[γ] ∈ L(θ) and the run qkt
ot[γ]
−−−→i Qt in Ai.

Furthermore, we have 〈pkt , ot[γw′]〉 ∈ C ′ and via induction over i we have a set Ct with

〈pkt , ot[γw′]〉
∗
→֒ Ct which satisfies the lemma.

• ℓ(ot) < n, ot = popl and Xa
ℓ(ot)

∈ S.

Since Xa
l ∈ S by Lemma B.4 we have γ ∈ L(Xa

l). Hence ot[γw′] is undefined and we have

〈pj ,▽〉 ∈ C ′. Because Xa
l ∈ S, by definition we have qj ▽

−→i {qε
f}. Since ▽ transitions are

never added, it must be the case that qj ▽

−→0 {qε
f}. Let Ct = {〈pj ,▽〉}.

Hence, we have 〈pj , [ww′]〉 →֒ C ′ ∗
→֒ C1 ∪ · · · ∪ Cm = C where C satisfies the lemma.

This completes the proof of the single transition case. Let w = γ1 . . . γm and (for any Q) let
Q = QI ∪ Q\I where QI contains all initial states in Q and Q\I = Q \ QI . We have the run,

qj γ1
−→i+1 Q1

γ2
−→i+1 . . .

γm
−→i+1 Qm

For each qk ∈ QI
1 we have a run,

qk γ2
−→i+1 Qk

2
γ3
−→i+1 . . .

γm
−→i+1 Qk

m

and by induction on the length of the run we have Ck such that 〈pk, [γ2 . . . γmw′]〉
∗
→֒ Ck and Ck

satisfies the lemma. Furthermore, since we only add new transitions to initial states, we have,

Q
\I
1

γ2
−→0 . . .

γm
−→0 Q′

m

and Qm = Q′
m ∪

⋃
qk∈QI

1
Qk

m.

From qj γ1
−→i+1 Q1 we have C1 with 〈pj , [γ1 . . . γmw′]〉

∗
→֒ C1 satisfying the lemma for a single

transition. Let CI
1 be the set of all 〈pk, γ2 . . . γmw′〉 ∈ C1 and C ′

1 = C1 \CI
1 . For each qk ∈ QI

1 we
have 〈pk, [γ2 . . . γmw′]〉 ∈ C1 since there are no transitions to initial states in A0 (and hence we must

have qk ε
−→0 {qk} to satisfy the conditions of the lemma for C1). From 〈pk, [γ2 . . . γmw′]〉

∗
→֒ Ck

and since we have Q
\I
1

γ2...γm
−−−−−→0 Q′

m, it is the case that the set C = C ′
1 ∪

⋃
qk∈QI

1
Ck which has

〈pj , [γ1 . . . γmw′]〉
∗
→֒ C1

∗
→֒ C and satisfies the lemma as required. 2

Property B.3 (Soundness) For any configuration 〈pj , γ〉 such that γ ∈ L(Aqj

i) for some i, we

have 〈pj , γ〉
∗
→֒ C such that C ⊆ CInit. That is, 〈pj , γ〉 ∈ Pre∗(CInit).

50

Proof. Let γ = [wγ]. Since γ ∈ L(Aqj

i) we have a run qj wγ
−→i Qf with Qf ⊆ Qf . Since Qf con-

tains no initial states, we apply Lemma B.7 with w′ = ε. Therefore, we have 〈pj , γ〉
∗
→֒ C ⊆ L(Aqk

0).
Since A0 is defined to represent CInit, soundness follows. 2

B.4.3 Completeness

Property B.4 (Completeness) For all 〈pj , γ〉 ∈ Pre∗(CInit) there is some i such that γ ∈

L(Aqj

i).

Proof. We take 〈pj , γ〉 ∈ Pre∗(CInit) and reason by induction over the length of the shortest

path 〈pj , γ〉
∗
→֒ C with C ⊆ CInit.

In the base case the path length is zero and we have 〈pj , γ〉 ∈ CInit and hence γ ∈ L(Aqj

0). For

the inductive step we have 〈pj , γ〉 →֒ C1
∗
→֒ C2 with C2 ⊆ CInit and some i such that C1 ⊆ L(Ai)

by induction. We show γ ∈ L(Aqj

i+1) by analysis of the higher-order APDS command d used in
the transition 〈pj , γ〉 →֒ C1.

Let d = (pj , a, {(o1, p
k1), . . . , (om, pkm)}). We have

C1 = { 〈pkt , γ′〉 | t ∈ {1, . . . ,m} ∧ γ′ = ot(γ) }
∪ { 〈pj ,▽〉 | if ot(γ) with t ∈ {1, . . . ,m} is not defined }

By induction we have for each e ∈ {1, . . . ,m} that qke
woe(γ)
−−−−→i Qe

f with Qe
f ⊆ Qf in Ai if

oe(γ) = [woe(γ)] is defined. Otherwise we have qj ▽

−→i {q
ε
f} in Ai.

Let γ = [γ′w]. We have S′ = S′
1∪· · ·∪S′

m and Q′ = Q1∪· · ·∪Qm where, for each e ∈ {1, . . . ,m},

• When oe = pushn, oe(γ) = [γ′γ′w]. Additionally, we have the transitions,

qke
θ1

e−→i Q′
eθ2

e−→i Qe

in Ai where γ′ ∈ L({Ba
n−1, θ

1
e} ∪ θ̃2

e). Furthermore, we have the run Qe
w

−→i Qe
f with

Qe
f ⊆ Qf and S′

e = {Ba
n−1, θ

1
e} ∪ θ̃2

e .

• When oe = popn. If oe(γ) = [w], we have the run,

qke
w

−→i Qe
f

in Ai with Qe
f ⊆ Qf , S′

e = {Ba
n−1}, γ′ ∈ L(Ba

n−1) and Qe = {qke}.

If oe(γ) is undefined we have w = ε and the run,

qj ▽

−→i {q
ε
f}

if Ai. Hence we have S′
e = {Ba

n−1}, γ′ ∈ L(Ba
n−1) and Qe = Qe

f = {qε
f}.

• When ℓ(oe) < n, and we have oe(γ) = [oe(γ
′)w], we have the transition qke

θ′
e−→i Qe and run

Qe
w

−→i Qe
f with Qe

f ⊆ Qf in Ai. Additionally, oe(γ
′) ∈ L(θ′e) and S′

e = {(a, oe, θ
′
e)}.

If oe(γ) is not defined we have γ = [γ′w], oe = popl for some l < n and the run,

qj ▽

−→i {q
ε
f}

in Ai. Hence we have S′
e = {Xa

l }, γ′ ∈ L(Xa
l) and Qe = {q∗f} with q∗f

w
−→i Qe

f and Qe
f ⊆ Qf .

51

Hence, by definition of Ai+1, we have the transition,

qj eG
−→i+1 Q1 ∪ · · · ∪ Qm

with S′ ∈ G̃ and by Lemma B.6 γ′ ∈ L(G). Hence we have the run,

qj γ′

−→i+1 Q1 ∪ · · · ∪ Qm
w

−→i Q1
f ∪ · · · ∪ Qm

f

with Q1
f ∪ · · · ∪ Qm

f ⊆ Qf in Ai+1. That is, γ ∈ L(Aqj

i+1) as required. 2

B.5 Proofs for A∗

In this section we provide proofs of Lemma 4.1 and Lemma 4.2. The proof of the first lemma is
somewhat involved, hence we deal with the order-1 and the order-l for l > 1 cases individually.
The main idea in both proofs is that the loops in Ĝi

l can simulate, correctly, the prefix of any run

in Gi′

l and vice-versa. That is, a run in Ĝi
l begins by traversing it’s initial loops before progressing

to its accepting states. If we unroll this looping we will construct a run of Gi′

l for a sufficiently

large i′. In the other direction, the prefix of a run in Gi′

l can be simulated by the initial looping

behaviour of Ĝi
l .

We begin by proving a small lemma that will ease the remaining proofs.

Lemma B.8 Given g
iy

(qy,Qy)

w
−→iy

Qy for all y ∈ {1, . . . , h} for some h, let imax be the maximum

iy. We have {gimax

(q1,Q1)
, . . . , gimax

(qh,Qh)}
w

−→
⋃

y∈{1,...,h} Qy.

Proof. By Lemma B.2 we have gimax

(qy,Qy)

w
−→imax

Qy for each y ∈ {1, . . . , h}. Hence we have the

run as required. 2

B.5.1 Proof of Lemma 4.1 for l = 1

There are three parts to the proof. We first prove that a fixed point i0 is reached. We then prove
Lemma 4.1 in both directions.

Lemma B.9 There exists some i0 such that Ĝi
1 = Ĝi0

1 for all i > i0. Furthermore, we have the

run gi1
(q,Q′)

w
−→i Qf with Qf ⊆ Qf for some i iff we have gi1

(q,Q′)

w
−→i0 Qf in Ĝi0

1 .

Proof. This is a simple consequence of the finiteness of Σ and that TeG
i1
1 [i1/i1−1]

only adds transi-

tions and never states. The automaton will eventually become saturated and no new transitions
will be added. 2

Lemma B.10 For all w, if gi
(q,Q′)

w
−→i Q1 with Q1 ⊆ Qf is a run in Gi

1 for some i, then we have

gi1
(q,Q′)

w
−→i0 Q2 with Q2 ⊆ Qf in Ĝi0

1 .

Proof. We prove the following property. For any path gi
(q,Q′)

w
−→i {q1, . . . , qh} in Gi

1, we have a

path gi1
(q,Q′)

w
−→i0 {q!

1, . . . , q
!
h} in Ĝi0

1 with,

q!
y =

{
gi1
(q′,Q′′) if qy = gi′

(q′,Q′′) and i′ ≥ i1
qy otherwise

for all y ∈ {1, . . . , h}. Since q!
f = qf for all qf ∈ Qf , the lemma follows. When Q = {q1, . . . , qh}

we write Q! to denote the set {q!
1, . . . , q

!
h}.

52

There are two cases. When i ≤ i1, then using that we have only added transitions to Gi1
1 to

define Ĝi0
1 and that q!

y = qy for all y, we have gi1
(q,Q′)

w′

−→i0 {q!
1, . . . , q

!
h} in Ĝi0

1 .

We now consider the case i > i1. We begin by proving that for a single transition,

gi
(q,Q′)

b
−→i {q1, . . . , qh}

in Gi
1 with b ∈ Σ, we have the following transition in Gi0

(q,Q′),

gi1
(q,Q′)

b
−→i0 {q!

1, . . . , q
!
h}

We consider the source S = {α1, . . . , αm} ∈ G̃i
(q,Q′) of the transition from gi

(q,Q′). Since G̃i
(q,Q′) ≃

G̃i1
(q,Q′) we have S[i1/i−1] ∈ G̃i1

(q,Q′)[i1/i1−1]. Furthermore, we have {q1, . . . , qh} = Q1∪· · ·∪Qm.

For e ∈ {1, . . . ,m} there are two cases,

• If αe = θ, then let g = qθ. We have g
b

−→i−1 Qe exists in Gi−1
1 . By induction over i we have

g! b
−→i0 Q!

e in Ĝi0
1 .

• αe = (a, pushwp
, θ). Then b = a. Let g = qθ. By definition of TeGi1 [i1/i1−1], we have the path

g
wp
−→i−1 Qe in Gi

1. By induction on i we have the path g! wp
−→i0 Q!

e in Ĝi0
1 .

We have Q!
1 ∪ · · · ∪Q!

m = {q!
1, . . . , q

!
h}. Since G̃i

(q,Q′) ≃ G̃i1
(q,Q′) and S[i1/i− 1] ∈ G̃i1

(q,Q′)[i1/i1 − 1],

by definition of Ĝi0
1 , we have,

gi1
(q,Q′)

b
−→i0 {q!

1, . . . , q
!
h}

in Ĝi0
1 as required.
We now prove the result for a run of more than one step by induction over the length of the

run. In the base case we have a run of a single transition. The result in this case has already been
shown. In the inductive case we have a run of the form,

gi
(q,Q′)

a0−→i {q
1
1 , . . . , q1

h1
}

a1−→i . . .
am−→i {q

m
1 , . . . , qm

hm
}

in Gi
1. For each y ∈ {1, . . . , h1} we have a run q1

y
a1...am−−−−−→i Qy such that

⋃
y∈{1,...,h1}

Qy =

{qm
1 , . . . , qm

hm
}. By induction over the length of the run we have q!1

y
a1...am−−−−−→i0 Q!

y for each y.

Hence, since we have gi1
(q,Q′)

a0−→i0 {q!1
1 , . . . , q!1

h1
} from the above proof for one transition, we have

a run of the form,

gi1
(q,Q′)

a0−→i0 {q!1
1 , . . . , q!1

h1
}

a1−→i0 . . .
am−→i0 {q!m

1 , . . . , q!m
hm

}

in Ĝi0
1 as required. 2

Lemma B.11 For all w, if we have gi1
(q,Q′)

w
−→i Qf with Qf ⊆ Qf in Ĝi

1 for some i, then there

is some i′ such that the run gi′

(q,Q′)

w
−→i′ Qf exists in Gi′

1 .

Proof.
We take a run of Ĝi

(q,Q′),

gi1
(q,Q′)

w
−→i {q1, . . . , qh}

We show that for all i1 ≥ i1, there is some i2 > i1 such that,

gi2

(q,Q′)
w

−→i2 {q?
1, . . . , q

?
h}

53

in Gi2

(q,Q′) where, for y ∈ {1, . . . , h},

q?
y =

{
gi1

(q′,Q′′) if q1 = gi1
(q′,Q′′)

qy otherwise

Since q?
f = qf for all qf ∈ Qf , the lemma follows. For a set Q = {q1, . . . , qh} we write Q? =

{q?
1, . . . , q

?
h}.

The proof proceeds by induction over i. In the base case i ≤ i1 and the property holds by
Lemma B.2 and since Ĝi1

1 = Gi1
1 and there are no incoming transitions to any gi1

(q′,Q′′) in Gi1
1 .

In the inductive case, we begin by showing for a single transition,

gi1
(q,Q′)

b
−→i {q1, . . . , qh}

in Ĝi
(q,Q′) with b ∈ Σ, we have, for all i1 ≥ i1, there is some i2 > i1 such that,

gi2

(q,Q′)
b

−→i2 {q?
1, . . . , q

?
h}

in Gi2

(q,Q′). We analyse the S ∈ G̃i1
(q,Q′)[i1/i1 − 1] that spawned the transition from gi1

(q,Q′) (we

assume the transition is new, else the property holds by induction). Let S = {α1, . . . , αm}. We
have {q1, . . . , qh} = Q1 ∪ · · · ∪ Qm. For each e ∈ {1, . . . ,m}, there are several cases,

• αe = θ.

Let ge = qθ. By definition of Ĝi
1 we have the transition ge

b
−→i−1 Qe in Ĝi−1

1 .

If θ = G̃i1
(q′,Q′′) then by induction we have i2e > i1 such that g

i2e
(q′,Q′′)

b
−→i2e

Q?
e in G

i2e
1 .

Otherwise ge is initial in some B ∈ B1 and the transition ge
b

−→i−1 Qe also exists in G0
1 and

is the same as ge
b

−→0 Q?
e. Let we = b.

• αe = (a, pushwp
, θ). Then b = a.

Let ge = qθ. By definition of Ĝi
1 we have the run ge

wp
−→i−1 Qe in Ĝi−1

1 .

If θ = G̃i1
(q′,Q′′) then by induction we have i2e > i1 such that g

i2e
(q′,Q′′)

wp
−→i2e

Q?
e in Gi2e .

Otherwise ge is initial in some B ∈ B1 and the transition ge
wp
−→i−1 Qe also exists in G0

1 and

is the same as ge
wp
−→0 Q?

e. Let we = wp.

Let imax be the maximum i2e. If ge = gi1
(q′,Q′′), we have, by Lemma B.2, gimax

(q′,Q′′)

we−→imax
Q?

e.

Also, by Lemma B.2 we have ge
we−→imax

Q?
e when ge is not of the form gi1

(q′,Q′′). Since we have

G̃imax+1
(q,Q′) ≃ G̃i1

(q,Q′) we have S[imax/i1 − 1] ∈ G̃imax+1
(q,Q′) and since Q?

1 ∪ · · · ∪ Q?
m = {q?

1, . . . , q
?
h} we

have,

gimax+1
(q,Q′)

b
−→imax+1 {q?

1, . . . , q
?
h}

in Gimax+1
(q,Q′) . Let i2 = imax + 1 and we are done in the case of a single transition.

We now expand the result to a complete run by induction over the length of the run. That is,
we take a run of Ĝi

(q,Q′),

gi1
(q,Q′)

w
−→i {q1, . . . , qh}

and show that for all i1 ≥ i1 there is some i2 > i1 such that,

gi2

(q,Q′)
w

−→i2 {q?
1, . . . , q

?
h}

in Gi2

(q,Q′).

54

The base case has already been shown. We now consider the run,

gi1
(q,Q′)

a0−→i {q
1
1 , . . . , q1

h1
}

a1−→i . . .
am−→i {q

m
1 , . . . , qm

hm
}

We have q1
y

a1...am−−−−−→i Qy for each y ∈ {1, . . . , h1} and
⋃

y∈{1,...,h1}
Qy = {qm

1 , . . . , qm
hm

}. Then for

all y ∈ {1, . . . , h1} via induction and Lemma B.8 we have for all i1 > i1 an imax with

{q?1
1 , . . . , q?1

h1
}

a1...am−−−−−→imax
{q?m

1 , . . . , q?m
hm

}

We then use the result for a single transition to obtain the result for the complete run. That is,
we have for imax an i2 > imax such that,

gi2

(q,Q′)
a0−→i2 {q?1

1 , . . . , q?1
h1
}

a1...am−−−−−→i2 {q?m
1 , . . . , q?m

hm
}

exists in Gi2

1 as required. 2

We are now ready to prove the desired property.

Corollary B.1 Suppose we have constructed a sequence of automata G0
1 ,G1

1 , . . . and associated

sets G̃0
1 , G̃1

1 , Further, suppose there exists an i1 such that for all i ≥ i1 we have G̃i
1 ≃ G̃i1

1 . We

can define a sequence of automata Ĝi1
1 , Ĝi1+1

1 , . . . such that the state-set in Ĝi
1 remains constant

and there exists i0 such that Ĝi0
1 characterises the sequence — that is, the following are equivalent

for all w,

1. The run gi1
(q,Q′)

w
−→i Q1 with Q1 ⊆ Qf exists in Ĝi

1 for some i.

2. The run gi1
(q,Q′)

w
−→i0 Q2 with Q2 ⊆ Qf exists in Ĝi0

1 .

3. The run gi′

(q,Q′)

w
−→i′ Q3 with Q3 ⊆ Qf exists in Gi′

1 for some i′.

Proof. Follows from the definition of Ĝi+1
1 = TeG

i1
1 [i1/i1−1]

(Ĝi
1), Lemma B.9, Lemma B.10 and

Lemma B.11. 2

B.5.2 Proof of Lemma 4.1 for l > 1

In this section we prove Lemma 4.1 for the case when l > 1. The structure of the proof is similar
to the previous section.

Lemma B.12 For all w, if gi
(q,Q′)

w
−→i Qf with Qf ⊆ Qf is a run in Gi

l for some i, then we have

gil

(q,Q′)

w
−→i′ Qf in Ĝi′

l for some i′.

Proof. We prove the following property. For any path gi
(q,Q′)

w
−→i′ {q1, . . . , qh} we can construct

a path gil

(q,Q′)

w
−→i′ {q!

1, . . . , q
!
h} with,

q!
y =

{
gil

(q′,Q′′) if qy = gi′′

(q′,Q′′) and i′′ ≥ i1
qy otherwise

Since q!
f = qf for all qf ∈ Qf , the lemma follows. When Q = {q1, . . . , qh} we write Q! to denote

the set {q!
1, . . . , q

!
h}.

There are two cases. When i ≤ il, using Lemma B.2, that Gil

l = Ĝil

l and that q!
y = qy for all y,

we have gil

(q,Q′)

w′

−→il
{q!

1, . . . , q
!
h} in Ĝil

l .

55

We now consider the case i > il. We begin by proving that for a single transition,

gi
(q,Q′)

γ
−→i {q1, . . . , qh}

in Gi
l , we have the following transition in Ĝi′

(q,Q′) for some i′,

gil

(q,Q′)

γ
−→i′ {q

!
1, . . . , q

!
h}

We consider the S = {α1, . . . , αm} ∈ G̃i
(q,Q′) from which the transition from gi

(q,Q′) was derived (if

it was inherited, then the property holds by induction over i). We have {q1, . . . , qh} = Q1∪· · ·∪Qm.
For each e ∈ {1, . . . ,m} there are several cases,

• αe = θ.

Let ge = qθ. We have ge
θ′

−→i−1 Qe in Gi−1
l with θ′ ∈ S′ ∈ G̃i

(gi
(q,Q′)

,{q1,...,qh})
and the

accepting run of γ derived from S′. By Lemma B.4 we have γ ∈ L(θ′). Hence, we have

ge
γ

−→i−1 Qe in Gi−1
l . By induction over i, we have g!

e
γ

−→i′e
Q!

e in Ĝ
i′e
(q,Q′) for some i′e.

Furthermore, let we = γ.

• αe = (a, pushl, θ).

Let ge = qθ. We have the path

ge
θ1−→i−1 Q

eθ2−→i−1 Qe

in Gi−1
l with {Ba

l−1, θ1} ∪ θ̃2 ⊆ S′ ∈ G̃i
(gi

(q,Q′)
,{q1,...,qh})

and the accepting run of γ is derived

from S′. By Lemma B.4 we have γ ∈ L({Ba
l−1, θ1} ∪ θ̃2). Hence, we have the run,

ge
γ

−→i−1 Q
γ

−→i−1 Qe

By induction over i, we have,

g!
e

γγ
−→i′e

Q!
e

for some i′e. Furthermore, let we = γγ.

• αe = (a, popl, θ).

Let ge = qθ. We have Qe = {ge}.

Additionally, we have Ba
l−1 ∈ S′ ∈ G̃i

(gi
(q,Q′)

,{q1,...,qh})
and the accepting run of γ derived

from S′. By Lemma B.4 we have γ ∈ L(Ba
l−1). Furthermore, let we = ε.

• θ = (a, o, θ) where ℓ(d) < l.

Let ge = qθx . We have ge
θ′

−→i−1 Qe in Gi−1
l with (a, o, θ′) ∈ S′ ∈ G̃i

(gi
(q,Q′)

,{q1,...,qh})
and

the accepting run of γ derived from S′. By Lemma B.5 we have o(γ) ∈ L(θ′). Hence, we

have ge
o(γ)
−→i−1 Qe in Gi−1

l . By induction over i, we have g!
e

o(γ)
−→i′e Q!

e in Ĝ
i′e
(q,Q′) for some i′e.

Furthermore, let we = o(γ).

Let imax be the maximum i′e. By Lemma B.2 we have g!
e

we−→imax
Q!

e for all e. Since S[imax/i−1] ∈

G̃imax+1
(q,Q′) and Q!

1 ∪ · · · ∪ Q!
m = {q!

1, . . . , q
!
h} we have via Lemma B.6,

gi1
(q,Q′)

γ
−→imax+1 {q!

1, . . . , q
!
h}

in Ĝimax+1
(q,Q′) as required.

56

We now prove the result for a run of more than one step by induction over the length of the
run. In the base case we have a run of a single transition. The result in this case has already been
shown.

In the inductive case we have a run of the form,

gi
(q,Q′)

γ0
−→i {q

1
1 , . . . , q1

h1
}

γ1
−→i . . .

γm
−→i {q

m
1 , . . . , qm

hm
}

For each y ∈ {1, . . . , h1} we have a run q1
y

γ1...γm
−−−−−→i Qy such that

⋃
y∈{1,...,h1}

Qy = {qm
1 , . . . , qm

hm
}.

By induction on the length of the run we have q!1
y

γ1...γm
−−−−−→i′ Q!

y for each y for some i′. Let imax

be the maximum i′. We also have gi1
(q,Q′)

γ0
−→i′ {q

!1
1 , . . . , q!1

h1
} for some i′ from the above proof for

one transition. We have, via Lemma B.8, a run of the form,

gi1
(q,Q′)

γ0
−→imax

{q!1
1 , . . . , q!1

h1
}

γ1
−→imax

. . .
γm
−→imax

{q!m
1 , . . . , q!m

hm
}

in Ĝimax

l as required. 2

Lemma B.13 For all w, if we have gil

(q,Q′)

w
−→i Qf with Qf ⊆ Qf in Ĝi

l for some i, then there is

some i′ such that the run gi′

(q,Q′)

w
−→i′ Qf exists in Gi′

l .

Proof.
We take a run of Ĝi

(q,Q′),

gil

(q,Q′)

w
−→i {q1, . . . , qh}

We show that for all i1 ≥ il, there is some i2 > i1 such that,

gi2

(q,Q′)
w

−→i2 {q?
1, . . . , q

?
h}

in Gi2

(q,Q′) where, for y ∈ {1, . . . , h},

q?
y =

{
gi1

(q′,Q′′) if q1 = gil

(q′,Q′′)

qy otherwise

Since q?
f = qf for all qf ∈ Qf , the lemma follows. Given a set Q = {q1, . . . , qm}, we write Q? to

denote the set {q?
1, . . . , q

?
m}.

The proof proceeds by induction over i. In the base case i ≤ il and the property holds by
Lemma B.2 and since Ĝil

1 = Gil

1 and there are no incoming transitions to any gil

(q′,Q′′) in Gil

1 .

In the inductive case, we begin by showing for a single transition,

gil

(q,Q′)

γ
−→i {q1, . . . , qh}

in Ĝi
(q,Q′) we have, for all i1 ≥ il, there is some i2 > i1 such that,

gi2

(q,Q′)

γ
−→i2 {q?

1, . . . , q
?
h}

in Gi2

(q,Q′). We analyse the S ∈ G̃il

(q,Q′)[il/il −1] from which the transition from gil

(q,Q′) was derived

(we assume the transition is not inherited, else the property holds by induction).
Let S = {α1, . . . , αm}. We have {q1, . . . , qh} = Q1 ∪ · · · ∪ Qm. For each e ∈ {1, . . . ,m} there

are several cases,

57

• αe = θ.

Let ge = qθ. We have ge
θ′

−→i−1 Qe in Ĝi−1
l with θ′ ∈ S′ ∈ G̃i

(g
il
(q,Q′)

,{q1,...,qh})
and the

accepting run of γ derived from S′. By Lemma B.4 we have γ ∈ L(θ′). Hence, we have

ge
γ

−→i−1 Qe in Ĝi−1
l .

If θ = G̃il

(q′,Q′′), by induction over i, we have i2e > i1 such that g
i2e
(q′,Q′′)

γ
−→i2e

Q?
e in G

i2e
(q,Q′).

Otherwise ge is initial in some B ∈ Bl and the transition ge
γ

−→i−1 Qe also exists in G0
l and

is the same as ge
γ

−→0 Q?
e. Let we = γ.

• αe = (a, pushl, θ).

Let ge = qθ. We have the path

ge
θ1−→i−1 Q

eθ2−→i−1 Qe

in Ĝi−1
l with {Ba

l−1, θ1} ∪ θ̃2 ⊆ S′ ∈ G̃i

(g
il
(q,Q′)

,{q1,...,qh})
and the accepting run of γ is derived

from S′. By Lemma B.4 we have γ ∈ L({Ba
l−1, θ1} ∪ θ̃2). Hence, we have the run,

ge
γ

−→i−1 Q
γ

−→i−1 Qe

If θ = G̃il

(q′,Q′′), by induction over i, we have i2e > i1 such that,

g
i2e
(q′,Q′′)

γγ
−→i2e

Q?
e

Otherwise ge is initial in some B ∈ Bl and the transition ge
γγ
−→i−1 Qe also exists in G0

l and

is the same as ge
γγ
−→0 Q?

e. Let we = γγ.

• αe = (a, popl, θ).

Let ge = qθ. We have Qe = {ge}. Additionally, we have Ba
l−1 ∈ S′ ∈ G̃i

(g
il
(q,Q′)

,{q1,...,qh})
and

the accepting run of γ derived from S′. By Lemma B.4 we have γ ∈ L(Ba
l−1). Furthermore,

let we = ε.

• θ = (a, o, θ) where ℓ(d) < l.

Let ge = qθ. We have ge
θ′

−→i−1 Qe in Ĝi−1
l with (a, o, θ′) ∈ S′ ∈ G̃i

(g
il
(q,Q′)

,{q1,...,qh})
and the

accepting run of γ derived from S′. By Lemma B.5 we have o(γ) ∈ L(θ′). Hence, we have

ge
o(γ)
−→i−1 Qe in Ĝi−1

l .

When θ = G̃il

(q′,Q′′), we have by induction over i some i2e > i1 such that g
i2e
(q′,Q′′)

o(γ)
−→i2e

Q?
e in

Ĝ
i2e
(q,Q′). Otherwise ge is initial in some B ∈ Bl and the transition ge

o(γ)
−→i−1 Qe also exists

in G0
l and is the same as ge

o(γ)
−→0 Q?

e. Let we = o(γ).

Let imax be the maximum i2e. If ge = gil

(q′,Q′′), we have, by Lemma B.2, gimax

(q′,Q′′)

we−→imax
Q?

e.

Also, by Lemma B.2 we have ge
we−→imax

Q?
e when ge is not of the form gil

(q′,Q′′). Since we have

G̃imax+1
(q,Q′) ≃ G̃il

(q,Q′) we have S[imax/il] ∈ G̃imax+1
(q,Q′) and since Q?

1 ∪ · · · ∪ Q?
m = {q?

1, . . . , q
?
h} we have

via Lemma B.6,

gimax+1
(q,Q′)

γ
−→imax+1 {q?

1, . . . , q
?
h}

in Gimax+1
(q,Q′) . Let i2 = imax + 1 and we are done in the case of a single transition.

58

We now expand the result to a complete run by induction over the length of the run. That is,
we take a run of Ĝi

(q,Q′),

gil

(q,Q′)

w
−→i {q1, . . . , qh}

and show that for all i1 ≥ il there is some i2 > i1 such that,

gi2

(q,Q′)
w

−→i2 {q?
1, . . . , q

?
h}

in Gi2

(q,Q′).
The base case has already been shown. We now consider the run,

gil

(q,Q′)

γ0
−→i {q

1
1 , . . . , q1

h1
}

γ1
−→i . . .

γm
−→i {q

m
1 , . . . , qm

hm
}

We have q1
y

γ1...γm
−−−−−→i Qy for each y ∈ {1, . . . , h1} and

⋃
y∈{1,...,h1}

Qy = {qm
1 , . . . , qm

hm
}. Then for

all y ∈ {1, . . . , h1} we have via induction and Lemma B.8 we have for all i1 > il an imax with

{q?1
1 , . . . , q?1

h1
}

γ1...γm
−−−−−→imax

{q?m
1 , . . . , q?m

hm
}

We then use the result for a single transition to obtain the result for the complete run. That
is, we have for imax an i2 > imax such that,

gi2

(q,Q′)

γ0
−→i2 {q?1

1 , . . . , q?1
h1
}

a1...am−−−−−→i2 {q?m
1 , . . . , q?m

hm
}

as required. 2

Corollary B.2 Suppose we have constructed a sequence of automata G0
l ,G1

l , . . . and associated

sets G̃0
l , G̃1

l , Further, suppose there exists an il such that for all i ≥ il we have G̃i
l ≃ G̃il

l . We

can define a sequence of automata Ĝil

l , Ĝi1+1, . . . such that the state-set in Ĝi
l remains constant

(although the automata labelling the transitions may gain states). The following are equivalent for
all w,

1. The run gil

(q,Q′)

w
−→i Q1 with Q1 ⊆ Qf exists in Ĝi

l for some i.

2. The run gi′

(q,Q′)

w
−→i′ Q2 with Q2 ⊆ Qf exists in Gi

l for some i′.

Proof. From Lemma B.12 and Lemma B.13. 2

B.5.3 Proof of Lemma 4.2

Finally, we show that the constructed automaton G∗
l is correct.

Lemma 4.2 1 Suppose we have constructed a sequence of automata G0
l ,G1

l , . . . and associated sets

G̃0
l , G̃1

l , Further, suppose there exists an il such that for all i ≥ il we have G̃i
l ≃ G̃il

l . We can
define an automaton G∗

l such that the following are equivalent for all w,

1. The run g∗(q,Q′)

w
−→∗ Q with Q ⊆ Qf exists in G∗

l .

2. The run gi
(q,Q′)

w
−→i Q′′ with Q′′ ⊆ Qf exists in Gi

l for some i.

Proof. We proceed by induction over l. In the base case l = 1 and the result follows from
Corollary B.1. That is, G∗

1 = Gi0
1 letting g∗(q,Q) = gi1

(q,Q) for each gi1
(q,Q). The equivalence of (1) and

(2) is immediate.

59

When l > 1 we generate the sequence Ĝil

l , Ĝil+1
l , . . . by Corollary B.2. Since the state-set

remains constant, it follows from Property 4.3 that there is some il−1 with G̃i
l−1 ≃ G̃

il−1

l−1 for all
i ≥ il−1.

By induction, we have G∗
l−1. We then define G∗

l from Ĝ
il−1

l with g∗(q,Q′) = gil

(q,Q′) for all q,Q′

and each transition q −→∗ Q′ in G∗
l labelled with the automaton G∗

(q,Q′) from G∗
l−1.

We show (1) and (2) are equivalent. By Lemma 4.1 (2) is equivalent to a run gil

(q,Q′)

w
−→i′ Q1

with Q1 ⊆ Qf in Ĝi′

l for some i′.
We proceed by induction over the length of w. Note that gil

(q,Q′) = g∗(q,Q′). We prove that if

w 6= ε a run gi
(q,Q′)

w
−→∗ Q exists in G∗

l iff a run gi
(q,Q′)

w
−→i′ Q exists in Ĝi′

l for some i′. It is

necessarily the case that i ≤ il. The Lemma follows because a state of the form gi
(q′,Q′′) is never

accepting and therefore w 6= ε.
In the base case, let w = γ. Let g = gi

(q,Q′). To prove (1) implies (2) we assume the transition

g
G∗

(g,Q)
−−−−→∗ Q in G∗

l with γ ∈ G∗
(g,Q). By induction over l we have γ ∈ Ĝi′

(g,Q) for some i′. Hence,

we have g
γ

−→i′ Q in Ĝi′

l as required.

To show (2) implies (1) we assume the transition g
Ĝi′

(g,Q1)

−−−−−→i′ Q1 in Ĝi′

l for some i′ with

γ ∈ Ĝi′

(g,Q1)
. By induction over l we have γ ∈ G∗

(g,Q1)
. Hence, we have g

γ
−→∗ Q1 in G∗

l as
required. This completes the proof of the base case.

For the induction, let w = γw′ and w′ 6= ε. To show (2) follows from (1) assume we have a

transition g
G∗

(g,Q)
−−−−→∗ Q = {q1, . . . , qm} with γ ∈ G∗

(g,Q) in G∗
l and the run,

{q1, . . . , qm}
w′

−→∗ Qf

in G∗
l . As before, we have g

γ
−→i′ Q in Ĝi′

l for some i′. For all e ∈ {1, . . . ,m}, we have a run

qe
w′

−→∗ Qe
f with Qf = Q1

f ∪ · · · ∪ Qm
f . If qe is of the form gj

(q′,Q′′) for some j, then by induction

we have gj
(q′,Q′′)

w′

−→i′ Qe
f in Ĝi′

l for some i′ by induction over the length of the word. Otherwise

the run over w′ uses only states and transitions left unchanged by the algorithm. Hence we have

qe
w′

−→il
Qe

f in Ĝil

l . As required, by Lemma B.8 we have in Ĝimax

l for some imax,

g
γ

−→imax
{q1, . . . , qm}

w′

−→imax
Q1

f ∪ · · · ∪ Qm
f

To show (1) follows from (2) assume we have a transition g
Ĝi′

(g,Q)
−−−−→i′ Q = {q1, . . . , qm} with

γ ∈ Ĝi′

(g,Q) in Ĝi′

l and the run,

{q1, . . . , qm}
w′

−→i′ Qf

in Gi′

l for some i′. As in the base case, we have g
γ

−→∗ Q in G∗
l . For all e ∈ {1, . . . ,m}, we have

a run qe
w′

−→i′ Qe
f with Qf = Q1

f ∪ · · · ∪ Qm
f . If qe is of the form gj

(q′,Q′′) for some j, then by

induction we have gj
(q′,Q′′)

w′

−→∗ Qe
f in G∗

l by induction over the length of the word. Otherwise the

run over w′ uses only states and transitions left unchanged by the algorithm. Hence, since G∗
l is

derived from Ĝ
il−1

l , we have qe
w′

−→∗ Qe
f in G0

l . Subsequently, we have,

g
γ

−→∗ {q1, . . . , qm}
w′

−→∗ Q1
f ∪ · · · ∪ Qm

f

in G∗
l as required. 2

60

C Applications: Proofs and Definitions

C.1 Proof of Proposition 5.1

Proof. ⇒: Every higher-order stack may be flattened into a well bracketed string, as per Defi-
nition 2.1. Given a suffix of an n-store w, let comp(w) be a number of symbols “[” added to the
beginning of w to form an n-store proper.

Given an accepting run of BP ρ = c0c1 . . ., there exists a sequence of suffixes w1, w2, . . . such
that there exists an increasing sequence of natural numbers i1, i2, . . . and for all j > 0 and i ≥ ij
ci has a stack with the suffix wj . Additionally cij

has the n-store comp(wj) and wi is a suffix
of wj for all i ≤ j (it may be the case that wi = wj). Take the sequence ci1ci2 Due to the
finiteness of P and Σ there must be p, a with an infinite number of cij

with control state p and a
stack whose top1 element is a. Furthermore, since ρ is accepting, we must have distinct cia

and cib

with p as their control states and a as the top1 element, with a cf whose control state is pf ∈ F ,

c0
∗
→֒ cia

∗
→֒ cf

∗
→֒ cib

We have (1) from c0
∗
→֒ cia

. By definition of ci1 , ci2 . . . we have cia
= 〈p, comp(wia

)〉 and all
configurations between cia

and cib
have the suffix wia

. This implies,

〈p, [na]n〉
∗
→֒ 〈pf , u〉

∗
→֒ 〈p, v〉

with top1(v) = a. Hence, (2) holds as required.

⇐: From (1) we have c
∗
→֒ 〈p, γ1〉 with top1(γ1) = a. From (2) we can construct a path,

〈p, γ2〉
∗
→֒ 〈pf , γ3〉

∗
→֒ 〈p, γ4〉

with pf ∈ F and top1(γ4) = a for any γ2 with top1(γ2) = a. Thus, through infinite applications
of (2), we can construct an accepting run of BP . 2

C.2 Proof of Lemma 5.1

Proof. We begin by showing that if 〈p, [na]n〉 satisfies (2), then a run 〈(p, 0), [na]n〉
∗
→֒ 〈(p, 1), γ〉

with γ ∈ L(Ba
n) exists in BP . The run over BP satisfying (2) can be split into two parts,

〈p, [na]n〉
∗
→֒ 〈pf , γf 〉

∗
→֒ 〈p, γ〉

with γ ∈ L(Ba
n) and pf is the first accepting state seen in the run. We consider each part separately.

• Suppose we have a run,
〈p0, γ0〉 →֒ . . . →֒ 〈pm, γm〉

such that pm is the only accepting control state in the run. This run is derived from a
sequence of commands d1, . . . , dm. Let di = (pi−1, ai, oi, pi) for all i ∈ {1, . . . ,m}. We show
the run,

〈(p0, 0), γ0〉 →֒ . . . →֒ 〈(pm, 0), γm〉

exists in BP ′ by induction over m. In the base case m = 0 and the result is trivial. Suppose
we have,

〈(p1, 0), γ1〉 →֒ . . . →֒ 〈(pm, 0), γm〉

by the induction hypothesis. Since d1 = (p0, a1, o1, p1) and p0 /∈ F , we have ((p0, 0), a1, o1, (p1, 0))
in D′. Hence we have the run,

〈(p0, 0), γ0〉 →֒ . . . →֒ 〈(pm, 0), γm〉

as required.

61

• We have 〈pf , γf 〉 ∈ (F×CΣ
n)∩Pre+({p}×L(Ba

n))), we show there exists the run 〈(pf , 0), γf 〉
∗
→֒

〈(p, 1), γ〉 in BP’ with γ ∈ L(Ba
n).

We have the run 〈pf , γf 〉
∗
→֒ 〈p, γ〉 in BP with γ ∈ L(Ba

n). This run is of the form,

〈p0, γ0〉 →֒ 〈p1, γ1〉 →֒ . . . →֒ 〈pm, γm〉

with m ≥ 1, p0 = pf , γ0 = γf , pm = p and γm = γ. The run is the consequence
of a sequence of commands d1, . . . , dm. Let di = (pi−1, ai, oi, pi). Since p0 ∈ F we
have ((p0, 0), a1, o1, (p1, 1)) in D′ by definition. Furthermore, for i ∈ {2, . . . ,m} we have
((pi−1, 1), ai, oi, (pi, 1)) in D′. We have the run

〈(p0, 0), γ0〉 →֒ 〈(p1, 1), γ1〉 →֒ . . . →֒ 〈(pm, 1), γm〉

in BP’ therefrom.

The proof of this direction follows immediately.

We now consider the proof in the opposite direction. Suppose we have 〈(p, 0), [na]n〉
∗
→֒

〈(p, 1), γ〉 with γ ∈ L(Ba
n). From the definition of D′ it follows that the run is of the form,

〈(p, 0), [na]n〉 →֒ . . . →֒ 〈(pf , 0), γf 〉 →֒ 〈(p′, 1), γ′〉 →֒ . . . →֒ 〈(p, 1), γ〉

where the second element of each control state/flag pair changes only in the position shown.
Furthermore, pf is the first occurrence of an accepting control state in BP . This run is the result
of a sequence of commands d1, . . . , dm where m ≥ 1. From a simple projection on the first element
of each control state/flag pair, we immediately derive a sequence commands d′1, . . . , d

′
m in D and

the following run of BP ,

〈p, [na]n〉 →֒ . . . →֒ 〈pf , γf 〉 →֒ 〈p′, γ′〉 →֒ . . . →֒ 〈p, γ〉

Since 〈pf , γf 〉 and 〈p′, γ′〉 must be distinct, the existence of this run implies 〈p, [na]n〉 satisfies (2).
Since BP ′ is twice as large as BP , Pre∗({pj} × L(Ba

n)) can be calculated in n-EXPTIME. 2

C.3 Proof of AttrE(R) = Pre∗(R′) \ C▽

A

Proof. Let R′ = R ∪Rstuck. Since the size of an n-store multi-automaton recognising Rstuck is
linear, the complexity follows from the complexity of computing Pre∗(R′).

We show AttrE(R) = Pre∗(R′) \ C▽

A. We begin by proving AttrE(R) ⊇ Pre∗(R′) \ C▽

A.
Take a configuration 〈p, γ〉 ∈ Pre∗(R′) \ C▽

A. We show 〈p, γ〉 ∈ AttrE(R) by induction over the

shortest path 〈p, γ〉
∗
→֒ C of the order-n APDS with C ⊆ R′.

For the base case, we have 〈p, γ〉 ∈ R′ \ C▽

A. Hence, 〈p, γ〉 ∈ AttrE(R) since R ⊆ AttrE(R).
Now, suppose we have 〈p, γ〉 →֒ C via the command d = (p, a,OP) in the higher-order APDS

with C ∈ Pre∗(R) \ C▽

A and by induction C ⊆ Attri
E(R) for some i. There are two cases,

• If p ∈ PA then for each (o, p′) ∈ OP and hence each move (p, a, o, p′) in the higher-order
PDS we have a corresponding 〈p′, γ′〉 ∈ C. We have either 〈p′, γ′〉 ∈ Pre∗(R′) \ C▽

A or we
have 〈p′, γ′〉 = 〈p,▽〉.

If we have 〈p′, γ′〉 ∈ Pre∗(R′) \ C▽

A then 〈p′, γ′〉 ∈ Attri
E(R) for some i by induction.

If we have 〈p′, γ′〉 = 〈p,▽〉 then o(γ) is undefined. Hence (p, a, o, p′) is not a valid move for
Abelard.

Hence we have 〈p, γ〉 ∈ CA and ∀c′.〈p, γ〉 →֒ c′ ⇒ c′ ∈ Attri
E(R) which implies 〈p, γ〉 ∈

Attri+1
E (R) ⊆ AttrE(R).

• If p ∈ PE then C = {〈p′, o(γ)〉} and (p, a, o, p′) ∈ D. Thus, we have ∃c′.〈p, γ〉 →֒ c′ ∧ c′ ∈
Attri

E(R) and 〈p, γ〉 ∈ CE . Therefore 〈p, γ〉 ∈ Attri+1
E (R) ⊆ AttrE(R).

62

Thus, we have AttrE(R) ⊇ Pre∗(R′) \ C▽

A as required.
To show AttrE(R) ⊆ Pre∗(R′) \ C▽

A we use induction over i in AttrE(R) =
⋃

i≤0 Attri
E(R).

When i = 0 we have Attr0
E(R) = R ⊆ R′ \ C▽

A ⊆ Pre∗(R′) \ C▽

A. For i > 1 there are two cases for
all c such that c /∈ Attri−1

E (R) and c ∈ Attri
E(R),

• c ∈ { c ∈ CE | ∃c′.c →֒ c′ ∧ c′ ∈ Attri−1
E (R) }.

Hence there is some command d = (p, a, o, p′) in the higher-order PDS and command
(p, a, {(o, p′)}) in the higher-order APDS. By induction c′ ∈ Pre∗(R′) \ C▽

A and c = 〈p, γ〉
and c′ = 〈p′, o(γ)〉. Hence c ∈ Pre∗(R′) \ C▽

A.

• c ∈ { c ∈ CA | ∀c′.c →֒ c′ ⇒ c′ ∈ Attri−1
E (R) }.

Let c = 〈p, γ〉. We have d = (p, a,OP) in the higher-order APDS such that for all moves
(p, a, o, p′) we have (o, p′) ∈ OP . If o(γ) is defined, we have 〈p, γ〉 →֒ 〈p′, o(γ)〉 and 〈p′, o(γ)〉 ∈
Pre∗(R′) by induction. If o(γ) is undefined, then since we have 〈p,▽〉 ∈ R′ we have 〈p,▽〉 ∈
Pre∗(R′).

Thus, we have 〈p, γ〉 →֒ C via an application of the command d such that C ⊆ Pre∗(R′).
Hence 〈p, γ〉 ∈ Pre∗(R′) and since γ 6= ▽, we have 〈p, γ〉 ∈ Pre∗(R′) \ C▽

A as required.

Thus, we have AttrE(R) = Pre∗(R′) \ C▽

A. 2

C.4 Non-emptiness of Order-(n + 1) Pushdown Automata

Property C.1 If L(P) 6= ∅ then 〈(p0,⊗),⊥n〉 ∈ AttrE(R).

Proof. Assume there exists w = α1 . . . αm ∈ L(P). Since w ∈ L(P) there exists a run,

〈p0, γ0〉
α1
→֒ . . .

αm
→֒ 〈pm, γm〉

with γ0 =⊥n+1, pm ∈ Pf and the corresponding sequence of commands d1, . . . , dm such that for
each 1 ≤ i ≤ m we have di = (pi−1, αi, ai, oi, pi) with topi(γi−1) = ai and γi = oi(γi−1).

We show by induction over the number of order-(n + 1) commands in the sequence d1, . . . , dm

that Eloise has a winning strategy in the game PG. In particular we show that if there exists a
run,

〈p0, γ0〉
α1
→֒ . . .

αm
→֒ 〈pm, γm〉

for arbitrary p0 and γ0 — with the further condition that if oi = popn+1 for some i, then there
exists i′ < i with oi′ = pushn+1 — then from a configuration 〈(p0, pr), topn+1(γ0)〉 of PG Eloise
has a strategy to reach the configuration 〈(pm, pr), topn+1(γm)〉 or win the game. For convenience
we define the abbreviation γn = topn+1(γ) for all γ.

In the base case, no order-(n+1) commands appear in the sequence d1, . . . , dm. That is oi ∈ On

for all 1 ≤ i ≤ m. Therefore, from the configuration 〈(p0, pr), γ
n
0 〉 Eloise can play the sequence of

moves d′1, . . . , d
′
m where d′i = ((pi−1, pr), ai, oi, (pi, pr)) and reach the configuration 〈(pm, pr), γ

n
m〉.

In the inductive case we have oi = pushn+1 for some i such that for all i′ < i, oi′ ∈ On. By
induction Eloise can force play into the configuration 〈(pi−1, pr), γ

n
i−1〉 or win the game. In the

former case there are two further cases to consider. Note that γn
i−1 = γn

i .

• There is no i′ ≥ i such that γi−1 = γi′ . That is, the top stack added by the push command
is never removed. In this case Eloise moves play to the configuration 〈(pi,⊗, pr), γ

n
i 〉 via the

command d′i = ((pi−1, pr), a, pusha, (pi,⊗, pr)) where a = top1(γi−1). From this configura-
tion Abelard may only move play to the configuration 〈(pi,⊗), γn

i 〉. By induction, Eloise has
a strategy as required from this configuration.

• There is some i′ ≥ i such that γi−1 = γi′ . Take the least such i′. We have oi′ =
popn+1. Eloise moves play to the configuration 〈(pi, pi′ , pr), γ

n
i 〉 via the command d′i =

((pi−1, pr), a, pusha, (pi, pi′ , pr)) where a = top1(γi−1). There are two further subcases:

63

– Abelard moves play to the configuration 〈(pi, pi′), γ
n
i 〉. By induction, Eloise can either

win from this configuration, or force play to the configuration 〈(pi′−1, pi′), γ
n
i′−1〉. In

the latter case, since oi′ = popn+1, Eloise moves play to 〈tt, γn
i′−1〉 and wins the game.

– Abelard moves play to the configuration 〈(pi′ , pr), γ
n
i 〉 = 〈(pi′ , pr), γ

n
i′〉. By induc-

tion Eloise can either win from this configuration or force play to the configuration
〈(pm, pr), γ

n
m〉 as required.

Since any run from 〈p0,⊥n+1〉 must perform a pushn+1 before a popn+1 can occur, it is the
case that from 〈(p0,⊗),⊥n+1〉 Eloise can either win the game or force play to the configuration
〈(pm,⊗), γn

m〉. Since pm ∈ Pf , this is a victory for Eloise. 2

Property C.2 If 〈(p0,⊗),⊥n〉 ∈ AttrE(R) then L(P) 6= ∅.

Proof. Assume that Eloise has a winning strategy from the configuration 〈(p0,⊗),⊥n〉 in the
game PG. We begin by proving that there is some bound k on the length of any play of PG

played according to Eloise’s strategy. We then show that a word w can be constructed such that
w ∈ L(P).

To show there is some bound k on the length of any play of PG we observe that if 〈(p0,⊗),⊥n

〉 ∈ AttrE(R) then 〈(p0,⊗),⊥n〉 ∈ Attri
E(R) for some i. We proceed by induction over i. We show

for any c ∈ Attri
E(R), there is a bound on the length of any play according to Eloise’s winning

strategy.
When i = 0 then c ∈ R and k = 0. For i + 1 then in both cases c ∈ P ′

E or c ∈ P ′
A play moves

to a configuration c′ ∈ Attri
E(R). By induction there is some bound k on the length of any play

according to Eloise’s strategy from c′. Hence, we have a bound k + 1 on the length of any play
from c. Thus we have a bound on the length of any play from 〈(p0,⊗),⊥n〉 as required.

We now show that there exists a word w such that w ∈ L(P). We proceed by induction over k.
In particular, we prove the following result: if Eloise has a winning strategy from a configuration
〈(p, pr), γ〉, then there exists some w ∈ Γ∗ with, for all γ′ such that topn+1(γ

′) = γ and — if

pr 6= ⊗ — popn+1(γ
′) is defined, a run of P of the form 〈p, γ′〉

w
→֒ 〈p′, γ′′〉 where either p′ = pr,

γ′′ = popn+1(γ
′) or p′ ∈ Pf and pr = ⊗.

In the base case k = 0. That is p ∈ Pf and pr = ⊗. The property holds trivially. For k + 1
there are several cases depending on Eloise’s next move d.

• d = ((p, pr), a, o, (p′, pr)) and o ∈ On.

By definition of D′, there exists some command (p, α, a, o, p′) ∈ D. Hence, the transition

〈p, γ′〉
α
→֒ 〈p′, o(γ′)〉 exists in P .

After Eloise moves, play continues from the configuration 〈(p′, pr), o(γ)〉 and topn+1(o(γ
′)) =

o(γ). By induction over k there exists w′ ∈ Γ∗ such that P has the run 〈p′, o(γ′)〉
w′

→֒ 〈p′′, γ′′〉

satisfying the induction hypothesis. Hence, the run 〈p, γ′〉
αw′

−֒−→ 〈p′′, γ′′〉 exists in P and
satisfies the induction hypothesis.

• d = ((p, pr), a, pusha, tt).

By definition of D′, there exists some command (p, α, a, popn+1, pr) ∈ D. Hence, because

pr ∈ P and thus pr 6= ⊗, the transition 〈p, γ′〉
α
→֒ 〈pr, γ

′′〉 exists in P where topn+1(γ
′) = γ

and γ′′ = popn+1(γ
′).

• d = ((p, pr), a, pusha, ff).

In this case, play moves to the position 〈ff, γ〉, which is a loss for Eloise. Since Eloise’s
strategy is winning, this case cannot occur.

• d = ((p, pr), a, pusha, (p′, p′r, pr)).

64

By definition of D′, there exists some command (p, α, a, pushn+1, p
′) ∈ D. Hence, the transi-

tion 〈p, γ′〉
α
→֒ 〈p′, pushn+1(γ

′)〉 exists in P . Note that topn+1(γ
′) = topn+1(pushn+1(γ

′)) =
γ.

Play moves to the configuration 〈(p′, p′r, pr), γ〉. Eloise’s strategy must accommodate both
of Abelard’s possible replies. In the case where Abelard moves play to the configuration
〈(p′, pr), γ〉, since Eloise’s strategy is winning we have by induction w′ ∈ Γ′ such that

〈p′, pushn+1(γ
′)〉

w′

→֒ 〈p′′, γ′′〉 exists and satisfies the induction hypothesis.

If p′′ ∈ Pf and pr = ⊗, then we have the run 〈p, γ′〉
αw′

−֒−→ 〈p′′, γ′′〉 and the induction
hypothesis is satisfied.

Otherwise we have a run 〈p, γ′〉
αw′

−֒−→ 〈pr, γ
′〉. In the case where Abelard moves play to the

configuration 〈(p′r, pr), γ〉, we have by induction a run 〈pr, γ
′〉

w′′

→֒ 〈p′′′, γ′′′〉 for some w′′ which

satisfies the induction hypothesis. We consequently have a run 〈p, γ′〉
αw′w′′

−֒−−−→ 〈p′′′, γ′′′〉 as
required.

Thus, since Eloise has a winning strategy from the configuration 〈(p0,⊗),⊥n〉, we have a run

〈p0,⊥n+1〉
w
→֒ 〈p, γ〉 for some w, p and γ. Since ⊗ /∈ P, we must have p ∈ Pf . Thus, L(P) 6= ∅ as

required. 2

65

