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Abstract

Ground Tree Rewrite Systems with State are known to have an undecidable control
state reachability problem. Taking inspiration from the recent introduction of scope-
bounded multi-stack pushdown systems, we define Senescent Ground Tree Rewrite Sys-
tems. These are a restriction of ground tree rewrite systems with state such that nodes
of the tree may no longer be rewritten after having witnessed an a priori fixed number of
control state changes. As well as generalising scope-bounded multi-stack pushdown sys-
tems, we show — via reductions to and from reset Petri-nets — that these systems have an
Ackermann-complete control state reachability problem. However, reachability of a regular
set of trees remains undecidable.
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1 Introduction

The study of reachability problems for infinite state systems, such as Turing machines, has
often used strings to represent system states. In seminal work, Büchi showed the decidability
of reachability for pushdown systems [36]. A state (or configuration) of a pushdown system is
represented by a control state (from a finite set) and a stack over a given finite alphabet. In this
case, a stack can be considered a word and one stack is obtained from another by replacing a
prefix w of the stack with another word w′. In fact, the reachability problem is in P-time [9, 18].

Pushdown systems allow the control-flow of first-order programs to be accurately mod-
elled [22] and have been well-studied in the automata-theoretic approach to software model
checking (E.g. [9, 18, 16, 37]). Many scalable model checkers for pushdown systems have been
implemented, and these tools (e.g. Bebop [7] and Moped [42]) are an essential back-end com-
ponent of celebrated model checkers such as SLAM [6].

A natural and well-studied generalisation of these ideas is to use a tree representation of
system states. This approach was first considered by Brainerd, who, generalising Büchi’s result,
showed decidability of reachability for Ground Tree Rewrite Systems1 (GTRS) [11]. In these
systems, each transition replaces a complete subtree of the state with another. Thus, these
systems generalise pushdown systems and allow the analysis of tree manipulating programs. As
in the pushdown case, reachability is solvable in P-time [28].

Unfortunately, these tree generalisations of pushdown automata do not allow a control state
in their configurations. Instead, the pushdown system’s control state must be encoded as the
leaf of the tree. This is for good reason: when a control state external to the tree is permitted,
reachability is immediately undecidable. This is because one can easily simulate a two-stack
pushdown system with a tree that contains a branch for each stack. It is well known that a two-
stack pushdown system can simulate a Turing machine, and thus reachability is undecidable.

However, due to the increasing importance of concurrent systems — where each thread
requires its own stack — there has been renewed interest in identifying classes of multi-stack
pushdown systems for which reachability becomes decidable. A seminal notion in this regard
is that of context-bounding. This underapproximates a concurrent system by bounding the
number of context switches that may occur [38]. It is based on the observation that most
real-world bugs require only a small number of thread interactions [35]. By considering only
context-bounded runs of a multi-stack pushdown system, the reachability problem becomes
NP-complete.

1Also known as Ground Term Rewrite Systems
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In recent work [43], Lin (formerly known as To) observed that a GTRS modelling a context-
bounded multi-stack pushdown system has an underlying control state graph that is 1-weak.
A 1-weak automaton is an automaton whose control state graph contains no cycles except
for self-loops [30]. Intuitively, the control state is only used to manage context-switches, and
hence a 1-weak control state graph suffices. Moreover, the reachability problem for GTRS with
control states is decidable with such a control state graph [43]. Indeed, the problem remains
NP-complete [27].

As well as the notion of context-bounding there are many more relaxed restrictions on multi-
stack pushdown behaviours for which reachability also remains decidable. Of particular interest
is scope-bounding [24]. In this setting, we fix a bound k and insist that an item may only be
removed from the stack if it was pushed at most k context switches earlier. Thus, an arbitrary
number of context switches may occur, and the underlying control state graph is no longer
1-weak. In this case, by relaxing the restriction on the control state behaviours, the complexity
of reachability is increased from NP to PSPACE.

In this work we study how to generalise scope-bounding to GTRS with control states. We
obtain a model of computation reminiscent of a tree growing in nature: it begins with a green
shoot, which may grow and change. As this shoot ages, it becomes hardened and forms the
trunk of the tree. From this trunk, new green shoots grow, and — via leaves that may fall and
grow again — remain changeable. If a shoot lives long enough, it hardens and forms a new
(fixed) branch of the tree.

Thus, we define senescent ground tree rewrite systems. The passage of time is marked by
changes to the control state. If a node remains unchanged for a fixed number k of changes, it
becomes unchangeable – that is, part of a hardened branch of the tree.

These systems naturally generalise scope-bounded pushdown systems while also allowing
for additional features such as dynamic thread creation. To our knowledge, they also provide
the most precise under-approximation of GTRS with control states currently known to have
a decidable control state reachability problem, and thus may be used in the analysis of tree-
manipulating programs.

We show, via inter-reductions with reset Petri-nets, that the control state reachability prob-
lem for senescent GTRS is Ackermann-complete while the reachability of a regular set of trees is
undecidable. This increase in modelling power is in sharp contrast to the analogous restrictions
for pushdown systems, where the increase is much more modest. That is, from The Faithful
Gardner [17]:

To be poor and be without trees, is to be the most starved human being in the world.
To be poor and have trees, is to be completely rich in ways that money can never
buy.

2 Related Work

Abdulla et al. [1] define a regular model checking algorithm for tree automatic structures.
That is, the transition relation is given by a regular tree transducer. They give a reachability
algorithm that is complete when there is a fixed bound k such that, during any run of the
system, a node is changed at most k times. This has flavours of the systems we define here.
However, in our model, a node may be changed an arbitrary number of times. In fact, we
impose a limit on the extent to which a node may remain unchanged. It is not clear how the
two models compare, and such a comparison is an interesting avenue of future work.

Atig et al. [5] consider a model of multi-stack pushdown systems with dynamic thread
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creation. Decidability of the reachability problem is obtained by allowing each thread to be
active at most k times during a run. As we show in Section 5.1, we can consider each thread
to be a branch of the tree, and context switches correspond to control state changes. However,
while in Atig et al.’s model a thread may be active for any k context switches (as long as
it’s inactive for the others), in our model a thread will begin to suffer restrictions after the
k next context switches (though may be active for an arbitrary number). Perhaps counter-
intuitively, our restriction actually increases expressivity: Atig et al. show inter-reducibility
between reachability in their model and Petri-net coverability, while in our model the more
severe restriction allows us to inter-reduce with coverability of reset Petri-nets.

The scope-bounded restriction has recently been relaxed for multi-stack pushdown systems
by La Torre and Napoli [25]. In their setting, a character that is popped from a particular stack
may must have been pushed within k active contexts of that stack. In particular, this allows
for an unbounded number of context switches to occur between a push and a pop, as long as
the stack involved is only active in up to k of those contexts. However, it is unclear what such
a relaxation would mean in the context of senescent GTRS.

GTRS have been extensively studied as generators of graphs (e.g. [28]) and are known
to have decidable verification problems for repeated reachability [28], first-order logic [15],
confluence [14], &c. However, LTL and CTL model checking are undecidable [10, 20, 28]. They
also have intimate connections (e.g. [28, 20]) with the Process Rewrite Systems Hierarchy [31].

There are several differing restrictions to multi-stack pushdown systems with decidable
verification problems. Amongst these are phase-bounded [44] and ordered [12] (corrected in [4])
pushdown systems. There are also generic frameworks — that bound the tree- [29] or split-
width [13] of the interactions between communication and storage — that give decidability for
all communication architectures that can be defined within them.

3 Preliminaries

We write N to denote the set of natural numbers and N+ to denote the set of strictly positive
natural numbers. Given a word language L ⊆ Σ∗ for some alphabet Σ and a word w ∈ Σ∗, let
w · L = {ww′ | w′ ∈ L}. For a given set S, let |S| denote the cardinality of the set.

In the cases when the dimension is clear, we will write 0⃗ to denote the tuple (0, . . . , 0) and
i⃗ to denote the tuple (n1, . . . , nm) where all nj = 0 for all j ̸= i and ni = 1.

We will denote by Fω both the Ackermann function and the class of problems solvable in
Fω-time. Following Schmitz and Schnoebelen [39], we have the class Fω of problems computable
in Ackermannian time. This class is closed under primitive-recursive reductions.

3.1 Trees and Automata

3.1.1 Regular Automata and Parikh Images

A regular automaton is a tuple A = (Q,Γ,∆, q0,F) where Q is a finite set of states, Γ is a finite
output alphabet, ∆ ⊆ Q× Γ×Q is a transition relation, q0 ∈ Q is an initial state and F ⊆ Q
is a set of final states.

We write q
a−→ q′ to denote a transition (q, a, q′) ∈ ∆. A run from q1 ∈ Q over a word

w = a1 . . . ah is a sequence
q1

a1−→ · · · ah−→ qh+1 .

A run is accepting whenever qh+1 ∈ F . The language L(A) of A is the set of words w ∈ Γ∗

such that there is an accepting run of A over w from q0.
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For a word w ∈ Γ∗ for some alphabet Γ, we define |w|γ to be the number of occur-
rences of γ in w. Given a fixed linear ordering γ1, . . . , γm over Γ = {γ1, . . . , γm} and a

word w ∈ Γ∗, we define Parikh(w) =
(
|w|γ1

, . . . , |w|γm

)
. Given a language L ⊆ Γ∗, we

define Parikh(L) = {Parikh(w) | w ∈ L}. Finally, given a regular automaton A, we define
Parikh(A) = Parikh(L(A)).

3.1.2 Trees

A ranked alphabet is a finite set of characters Σ together with a rank function rank : Σ 7→ N. A
tree domain D ⊂ N∗

+ is a nonempty finite subset of N∗
+ that is both prefix-closed and younger-

sibling-closed. That is, if ni ∈ D, then we also have n ∈ D and, for all 1 ≤ j ≤ i, nj ∈ D
(respectively). A tree over a ranked alphabet Σ is a pair T = (D,λ) where D is a tree domain
and λ : D 7→ Σ such that for all n ∈ D, if λ(n) = a and rank(a) = m then n has exactly m
children (i.e. nm ∈ D and n(m+ 1) /∈ D). Let Trees(Σ) denote the set of trees over Σ.

Given a node n and trees T1, . . . , Tm, we will often write n(T1, . . . , Tm) to denote the tree
with root node n and left-to-right child sub-trees T1, . . . , Tm. When n is labelled a, we may
also write a(T1, . . . , Tm) to denote the same tree. We will often simply write a to denote the
tree with a single node labelled a. Finally, let E denote the empty tree.

3.1.3 Context Trees

A context tree over the alphabet Σ with context variables x1, . . . , xm is a tree C = (D,λ) over
Σ ⊎ {x1, . . . , xm} such that for each 1 ≤ i ≤ m we have rank(xi) = 0 and there exists a unique
context node ni such that λ(ni) = xi. We will denote such a tree C[x1, . . . , xm].

Given trees Ti = (Di, λi) for each 1 ≤ i ≤ m, we denote by C[T1, . . . , Tm] the tree T ′

obtained by filling each variable xi with the tree Ti. That is, T ′ = (D′, λ′) where D′ =
D ∪ n1 ·D1 ∪ · · · ∪ nm ·Dm and

λ′(n) =

{
λ(n) n ∈ D ∧ ∀i.n ̸= ni

λi(n
′) n = nin

′ .

3.1.4 Tree Automata

A bottom-up nondeterministic tree automaton (NTA) over a ranked alphabet Σ is a tuple
T = (Q,∆,F) where Q is a finite set of states, F ⊆ Q is a set of final (accepting) states,

and ∆ is a finite set of rules of the form (q1, . . . , qm)
a−→ q where q1, . . . , qm, q ∈ Q, a ∈ Σ

and rank(a) = m. A run of T on a tree T = (D,λ) is a mapping ρ : D 7→ Q such that for

all n ∈ D labelled λ(n) = a with rank(a) = m we have (ρ(n1), . . . , ρ(nm))
a−→ ρ(n). It is

accepting if ρ(ε) ∈ F . The language defined by a tree automaton T over alphabet Σ is a set
L(T ) ⊆ Trees(Σ) over which there exists an accepting run of T . A set of trees L is regular iff
there is a tree automaton T such that L(T ) = L.

For any tree T , let TT be a tree automaton accepting only the tree T .

3.2 Reset Petri-Nets

We give a simplified presentation of reset Petri-nets as counter machines with increment, decre-
ment and reset operations. This can easily been seen to be equivalent to the standard defini-
tion [3].
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Given a set X = {x1, . . . , xm} of counter variables, we define the set OpX of counter
operations to be {incr(x), decr(x), res(x) | x ∈ X }.

Definition 3.1 (Reset Petri Nets). A reset Petri net is a tuple N = (Q, X,∆) where Q is a
finite set of control states, X is a finite set of counter variables, and ∆ ⊆ Q × 2OpX × Q is a
transition relation.

A configuration of a reset Petri net is a pair (q, π) where q ∈ Q is a control state and
π : X → N is a marking assigning values to counter variables. We write p −→̃

o
p′ to denote a

rule (p, õ, p′) ∈ ∆ and omit the set notation when the set of counter operations is a singleton.
There is a transition (p, π) −→ (p′, π′) whenever we have p −→̃

o
p′ ∈ ∆ and there are markings

π1, π2 such that

• we have

π1(x) =

{
π(x)− 1 if decr(x) ∈ õ and π1(x) > 0

π(x) if decr(x) /∈ õ

and

• we have

π2(x) =

{
0 if res(x) ∈ õ

π1(x) if res(x) /∈ õ

and

• we have

π′(x) =

{
π2(x) + 1 if incr(x) ∈ õ

π2(x) if incr(x) /∈ õ

Note, in particular, operations are applied in the order decr(x), res(x), incr(x), and if x is 0,
attempting to apply decr(x) will cause the Petri net to become stuck. We write (q, π) −→∗

(q′, π′) whenever there is a run (q, π) −→ · · · −→ (q′, π′) of N .

Given two markings π and π′, we say π covers π′, written π′ ≤ π whenever, for all x we
have π′(x) ≤ π(x).

Definition 3.2 (Coverability Problem). Given a reset Petri-net N , and configurations (q, π)
and (q′, π′) the coverability problem is to decide whether there exists a run (q, π) −→∗ (q′, π′′)
of N such that π′ ≤ π′′.

The coverability problem for reset Petri nets is decidable via the Karp-Miller algorithm [23]
whose complexity is bounded by Fω [32]. In fact, the coverability problem for reset Petri nets is
Fω-complete [40, 41]. In contrast, the reachability problem (defined below) is undecidable [3].

Definition 3.3 (Reachability Problem). Given a reset Petri-net N , and configurations (q, π)
and (q′, π′) the reachability problem is to decide whether there exists a run (q, π) −→∗ (q′, π′)
of N .

In the following, we will write π0 for the marking assigning zero to all counters.
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3.3 Ground Tree Rewrite Systems with State

In this work, we will actually consider a generalisation of GTRS where regular automata appear
in the rewrite rules. In this way, a single rewrite rule may correspond to an infinite number of
rewrite rules containing concrete trees on their left- and right-hand sides. Such an extension
is frequently considered (e.g. [14, 28, 27]). It can be noted that our lower bound results only
use tree automata that accept a singleton set of trees, and thus we do not increase our lower
bounds due to this generalisation.

3.3.1 Basic Model

A Ground Tree Rewrite System with State maintains a tree over a given alphabet Σ and a
control state from a finite set. Each transition may update the control state and rewrite a part
of the tree. Rewriting a tree involves matching a sub-tree of the current tree and replacing it
with a new tree. Note, that since we are considering ranked trees, a sub-tree cannot be erased
by a rewrite rule, since this would make the tree inconsistent w.r.t the ranks of the tree labels.

Definition 3.4 (Ground Tree Rewrite System with State). A ground tree rewrite system with
state (sGTRS) is a tuple G = (P,Σ,R) where P is a finite set of control states, Σ is a finite
ranked alphabet, and R is a finite set of rules of the form (p1, T1) −→ (p2, T2) where p1, p2 ∈ P
and T1, T2 are NTAs over Σ such that E /∈ L(T1) ∪ L(T2).

A configuration of a sGTRS is a pair (p, T ) ∈ P×Trees(Σ). We have a transition (p1, T1) →
(p2, T2) whenever there is a rule (p1, T1) −→ (p2, T2) ∈ R such that T1 = C[T ′

1] for some context
C and tree T ′

1 ∈ L(T1) and T2 = C[T ′
2] for some tree T ′

2 ∈ L(T2).
A run of an sGTRS is a sequence (p1, T1) → · · · → (ph, Th) such that for all 1 ≤ i < h we

have (pi, Ti) → (pi+1, Ti+1) is a transition of G. We write (p, T ) →∗ (p′, T ′) whenever there is
a run from (p, T ) to (p′, T ′).

We are interested in both the control state reachability problem and the regular reachability
problem.

Definition 3.5 (Control State Reachability Problem). Given an sGTRS G, an initial config-
uration (psrc, Tsrc) of G and a target control state psnk, the control state reachability problem
asks whether there is a run (psrc, Tsrc) →∗ (psnk, T ) of G for some tree T .

Definition 3.6 (Regular Reachability Problem). Given an sGTRS G, an initial configuration
(psrc, Tsrc) of G, a target control state psnk, and tree automaton T , the regular reachability
problem is to decide whether there exists a run (psrc, Tsrc) →∗ (psnk, T ) for some T ∈ L(T ).

3.3.2 Output Symbols

We may also consider sGTRSs with output symbols.

Definition 3.7 (Ground Tree Rewrite System with State and Outputs). A ground tree rewrite
system with state and outputs is a tuple G = (P,Σ,Γ,R) where P is a finite set of control
states, Σ is a finite ranked alphabet, Γ is a finite alphabet of output symbols, and R is a finite

set of rules of the form (p1, T1)
γ−→ (p2, T2) where p1, p2 ∈ P, γ ∈ Γ, and T1, T2 are NTAs over

Σ such that E /∈ L(T1) ∪ L(T2).

As before, a configuration of an sGTRS is a pair (p, T ) ∈ P×Trees(Σ). We have a transition

(p1, T1)
γ−→ (p2, T2) whenever there is a rule (p1, T1)

γ−→ (p2, T2) ∈ R such that T1 = C[T ′
1] for

some context C and tree T ′
1 ∈ L(T1) and T2 = C[T ′

2] for some tree T ′
2 ∈ L(T2). A run over
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γ1 . . . γh−1 is a sequence (p1, T1)
γ1−→ · · · γh−1−−−→ (ph, Th) such that for all 1 ≤ i < h we have

(pi, Ti)
γi−→ (pi+1, Ti+1) is a transition of G. We write (p, T )

γ1...γh−−−−→ (p′, T ′) whenever there is
a run from (p, T ) to (p′, T ′) over the sequence of output symbols γ1 . . . γh. Let ε denote the
empty output symbol.

3.3.3 Weakly Extended Ground Tree Rewrite Systems

The control state and regular reachability problems for sGTRS are known to be undecid-
able [10, 20]. The problems become NP-complete for weakly-synchronised sGTRS [27], where
the underlying control state graph (where there is an edge between p1 and p2 whenever there
is a transition (p1, T1) −→ (p2, T2)) may only have cycles of length 1 (i.e. self-loops).

More formally, we define the underlying control graph of a sGTRS G = (P,Σ,Γ,R) as a

tuple (P,∆) where ∆ =
{
(p, p′)

∣∣∣ (p, T )
γ−→ (p′, T ′) ∈ R

}
. Note, the underlying control graph

of a sGTRS without output symbols can be defined by simply omitting Γ and γ.

Definition 3.8 (Weakly Extended GTRS [27]). An sGTRS (with or without output symbols)
is weakly extended if its underlying control graph (P,∆) is such that all paths

(p1, p2) (p2, p3) . . . (ph−2, ph−1) (ph−1, ph) ∈ ∆∗

with p1 = ph satisfy pi = p1 for all 1 ≤ i ≤ h.

A key result of Lin is that the Parikh image of a weakly extended sGTRS with output sym-
bols can be represented by an existential Presburger formula that is constructible in polynomial
time. We use this result to obtain regular automata representing the possible outputs of weakly
extended sGTRSs, which will be used later in our decidability proofs. In the following lemma,
fix an arbitrary linear ordering over the output alphabet of G.

Lemma 3.1 (Parikh Image of Weakly Extended sGTRS). Given a weakly extended sGTRS
G with outputs Γ, control states p1 and p2 and tree automata T1 and T2, we can construct a
regular automaton A with outputs Γ such that we have some trees T1 ∈ L(T1) and T2 ∈ L(T2)
and a run

(p1, T1)
γ1...γh−−−−→ (p2, T2)

with Parikh(γ1 . . . γh) = v⃗ iff v⃗ ∈ Parikh(A). Moreover, the size of A is at most triply
exponential in the size of G.

Proof. Directly from Lemma 2 in Lin 2012 [27] we can construct in polynomial time an exis-
tential Presburger formula φ with |Γ| free variables such that we have some trees T1 ∈ L(T1)
and T2 ∈ L(T2) and a run

(p1, T1)
γ1...γh−−−−→ (p2, T2)

with Parikh(γ1 . . . γh) = v⃗ iff v⃗ satisfies φ. We know from Ginsburg and Spanier [19] that
the set of satisfying assignments to an existential Presburger formula can be described by a
semilinear set (and vice-versa). That is, there exists some m and for all 1 ≤ i ≤ m there are
vectors of natural numbers u⃗i and u⃗1

i , . . . , u⃗
ni
i such that for all v⃗, v⃗ satisfies φ iff there exists

some 1 ≤ i ≤ m and constants µ1, . . . , µni ∈ N such that v⃗ = u⃗i + µ1 · u⃗1
i + · · · + µni · u⃗

ni
i .

In fact, via algorithms of Pottier [34], it is possible to obtain vectors such that the size of the
values appearing in u⃗i and u⃗1

i , . . . , u⃗
ni
i are at most doubly exponential in the size of φ (via an

exponential translation of φ into DNF, then applying Pottier to gain a bound exponential in
the size of the DNF — see Haase [21] or Piskac [33]). Since φ is polynomial in the size of G,
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we know that that each vector u⃗i or u⃗j
i has elements at most doubly exponential in size, and

since there are at most a triply exponential number of such sets of vectors, we know that m is
at most triply exponential in the size of G.

It is straightforward to build, from a semilinear set, a regular automaton A such that
Parikh(A) is equivalent to the set: for each i we have a branch in A first outputting the
appropriate number of characters to describe u⃗i, and then passing through a succession of
loops each outputting characters describing some u⃗j

i . Such an automaton will be at most triply
exponential in the size of G.

4 Senescent Ground Tree Rewrite Systems with State

In this paper we generalise weakly-synchronised sGTRS to define senescent ground tree rewrite
systems by incorporating ideas from scope-bounded multi-stack pushdown systems [24], where
stack characters may only be accessed if they were created less than a fixed number of context
switches previously.

Intuitively, during each transition of a run that changes the control state, the nodes in the
tree “age” by one timestep. When the nodes reach a certain (fixed) age, they become fossilised
and may no longer be changed by any future transitions.

4.1 Model Definition

Given a run (p1, T1) → · · · → (ph, Th) of an sGTRS, let C1, . . . , Ch−1 be the sequence of tree
contexts used in the transitions from which the run was constructed. That is, for all 1 ≤ i < h,
we have Ti = Ci[T

out
i ] and Ti+1 = Ci

[
T in
i+1

]
where (pi, Ti) −→ (pi+1, T ′

i ) was the rewrite rule
used in the transition and T out

i ∈ L(Ti), T in
i+1 ∈ L(T ′

i ) were the trees that were used in the tree
update.

For a given position (pi, Ti) in the run and a given node n in the domain of Ti, the birthdate
of the node is the largest 1 ≤ j ≤ i such that n is in the domain of Cj

[
T in
j

]
and n is in

the domain of Cj [x] only if its label is x. The age of a node is the cardinality of the set
{i′ | j ≤ i′ < i ∧ pi′ ̸= pi′+1 }. That is, the age is the number of times the control state changed
between the jth and the ith configurations in the run. This is illustrated in Figure 1.

Figure 1 shows two transitions of a senescent GTRS. A configuration is written as its control
state (p or p′) with the tree appearing below. The label of each node appears in the centre of
the node, while the ages of each node appears to the right. The parts of the tree rewritten by
the transition appear inside the dotted lines. Figure 1a shows a transition where the control
state is changed. This change causes the nodes that are not rewritten to increase their age by
1. The rewritten nodes are given the age 0. Figure 1b shows a transition that does not change
the control state. Notice that, in this case, the nodes that are not rewritten maintain the same
age.

A lifespan restricted run with a lifespan of k is a run such that each transition (pi, Ci[T
out
i ]) →(

pi+1, Ci

[
T in
i+1

])
has the property that all nodes n in the domain of Ci[T

out
i ] but only in the

domain of Ci[x] if the label is x have an age of at most k. For example, the transitions in
Figure 1 require a lifespan ≥ 1 since the oldest node that is rewritten by the transitions has
age 1.

Definition 4.1 (Senescent Ground Tree Rewrite Systems). A senescent ground tree rewrite
system with lifespan k is an sGTRS G = (P,Σ,R) where runs are lifespan restricted with a
lifespan of k.

9
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p

a 2

b 1 c 1

d 0

p′

a 3

b 2 a 0

b 0 c 0

(a) A transition changing the control state.

p

a 2

b 1 c 1

d 0

p

a 2

b 1 a 0

b 0 c 0

(b) A transition that does not change the control state.

Figure 1: Transitions of a senescent GTRS.

We will study the control state reachability problem and the regular reachability problem
for senescent GTRS. We will show in Theorem 6.1 that the control state reachability problem
is Fω-complete, and in Theorem 5.3 that the regular reachability is undecidable.

Definition 4.2 (Control State Reachability Problem). Given a senescent GTRS G with lifespan
k, initial configuration (psrc, Tsrc), and target control state psnk, the control state reachability
problem is to decide whether there exists a lifespan restricted run

(psrc, Tsrc) → · · · → (psnk, T )

for some T .

Definition 4.3 (Regular Reachability Problem). Given a senescent GTRS G with lifespan k,
initial configuration (psrc, Tsrc), target control state psnk, and tree automaton T , the regular
reachability problem is to decide whether there exists a lifespan restricted run

(psrc, Tsrc) → · · · → (psnk, T )

for some T ∈ L(T ).

One might expect that decidability of control state reachability would imply decidability of
regular reachability: one could simply encode the tree automaton into the senescent GTRS.
However, it is not possible to enforce conditions on the final tree (e.g. that all leaf nodes
are labelled by initial states of the tree automaton) when only the final control state can be
specified.
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shared int nextID = 0 ;

c r i t i c a l int getID ( ) {
return nextID++;

}

void run ( int myID, int s i b l i n g ID ) {
switch ∗ {

case :
int id1 = getID ( ) ;
int id2 = getID ( ) ;
spawn ( id1 , run ( id1 , id2 ) ) ;
spawn ( id2 , run ( id2 , id1 ) ) :
break ;

case :
i f ( s i b l i n g ID >= 0)

sendMessage ( s i b l i n g ID ) ;
case :

i f ( s i b l i n g ID >= 0)
rece iveMessage ( s i b l i n g ID ) ;

}
}

void main ( ) {
int id = getID ( ) ;
spawn ( id , run ( id , −1));

}

Figure 2: A simple program with thread creation.

4.2 Example

4.2.1 A Simple Concurrent Program

We present a simple example of how a senescent GTRS may be used to model a simple concur-
rent system. Consider the toy program in Figure 2. This simple (outline) program has dynamic
thread creation.

Beginning from the main function, the program creates a thread using a spawn function
that takes as an argument the ID to assign to the new thread, and the function to run in the
new thread. IDs are obtained using a getID function. This function is declared “critical” to
ensure that no two threads execute the function simultaneously. It uses a shared variable to
ensure that a fresh ID is returned after each call.

The run function describes the behaviour of each process. It takes as an argument its own
ID and the ID of another process with which it may communicate. The switch statement
represents a non-deterministic choice between each of the cases: the process creates two new
child processes who may communicate with each other; or the process communicates with its
sibling.

In order to ensure reliable communication, a relevant property may be that each thread has
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a unique ID. With a standard C-like semantics, the program in Figure 2 does not satisfy this
property: when the value of nextID surpasses the maximum value that can be stored in an int,
it will loop back around to 0. Thus, two processes may share the same ID. This is a bug in the
program.

4.2.2 Modelling the Program as a Senescent GTRS

We may model the above program as a senescent GTRS. For simplicity, we will inline all
function calls (we show in Section 5.1 how to model threads with stacks, and hence function
calls). We will also abstract away the sendMessage and receiveMessage functions into silent
actions (since we are only interested in whether two threads share the same ID).

We define the senescent GTRS G = (P,Σ,R). Let m be the maximum value of an int. The
set of control states will be

P = {0, . . . ,m} ∪
{(i, (i1, j1)) | 0 ≤ i, i1 ≤ m ∧ −1 ≤ j1 ≤ m} ∪
{has(0), . . . , has(m)} ∪
{pE} .

The control states in {0, . . . ,m} will track the value of the nextID variable. States of the form
(i, (i1, j1)) indicate that nextID is i and a new thread with ID i1 and sibling ID j1 should be
started. Control states of the form has(i) will be used to detect whether two threads exist with
the same ID. The final control state pE indicates that an ID error has been detected.

The alphabet will be the set

Σ = {(i1, j1) | −1 ≤ i1, j1 ≤ m} ∪
{(i1, j1, i2, j2)1 , (i1, j1, i2, j2)2 | 0 ≤ i1, i2, j1 ≤ m ∧ −1 ≤ j2 ≤ m} ∪
{∗, •,%} .

The senescent GTRS will maintain a tree with a single leaf node per thread. Each leaf corre-
sponding to a thread will be of the form (i1, j1) indicating the values of myID and siblingID
respectively. The labels (i1, j1, i2, j2)1 and (i1, j1, i2, j2)2 will be used respectively for the first
and second calls to spawn: i2 and j2 will store the values returned by getID before the spawn
actions are called.

Note, if we wanted to model function calls using a pushdown system, we would use a branch
representing the call stack rather than simple leaves (as in Section 5.1).

The label • will label internal nodes of the tree, while ∗ will label a unique leaf node from
which the tree may be expanded to accommodate new threads. Finally, % indicates a sleeping
thread.

The rules R of G will be of several kinds: internal thread actions, spawn actions, and error
detection actions.

• The internal actions (including the abstracted send and receive actions) will simply be
rules of the form

(
p, T(i1,j1)

)
−→

(
p, T(i1,j1)

)
for all p ∈ P and −1 ≤ i1, j1,≤ m. Note that

applying these rules does not change the structure of given configuration, but it does reset
the age of each leaf node to zero, preventing the node from fossilising. Likewise, we can
also have rules (p, Ta) −→ (p, Ta) for each p ∈ P and each a ∈ Σ \ {•}.

• The spawn actions will be modelled in several steps.

– First we get the value of id1 by
(
i, T(i1,j1)

)
−→

(
i′, T(i1,j1,i,−1)1

)
where i′ = (i +

1) mod m.
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– Next we get the value of id2 using
(
i, T(i1,j1,i2,−1)1

)
−→

(
i′, T(i1,j1,i2,i)1

)
(where i′ =

(i+ 1) mod m).

– We then perform the first spawn action using two rules. First we use(
i, T(i1,j1,i2,j2)1

)
−→

(
(i, (i2, j2)), T(i1,j1,i2,j2)2

)
to spawn the first thread, and then(

i, T(i1,j1,i2,j2)2
)
−→

(
(i, (j2, i2)), T(i1,j1)

)
to spawn the second.

Note that each spawn request changes the control state to (i, (i1, j1)). The actual
creation of each new thread is via rules of the form

((i, (i1, j1)), T∗) −→
(
i, T•((i1,j1),∗)

)
.

• Finally, we will detect multiple IDs via two sets of rules. In the first a thread can question
whether any other thread has the same ID. That is, we have

(
i, T(i1,j1)

)
−→

(
has(i1), T%)

.
That is, the node requests if any thread has the same ID, and then goes to sleep (so
that it does not answer its own request). The request can be answered with a rule(
has(i), T(i,j1)

)
−→

(
pE , T(i,j1)

)
, taking the GTRS to control state pE , indicating that an

error has occurred.

The above defined system will always have a run to pE from the initial configuration(
1, T•((0,−1,,)∗)

)
which represents the system state of the initial spawn action. This holds even

with a lifespan of 1: the first process simply performs spawn actions until the nextID reaches
m and wraps around to 0; then by starting another two new processes and moving to has(0)
the error can be detected.

5 Modelling Power of Senescent GTRSs

We show in this section that senescent GTRSs at least capture scope-bounded multi-stack
pushdown systems. Essentially just by encoding each stack as a different branch of the tree. We
also show that we can encode coverability and reachability of a reset Petri net. The former can
be reduced to control state reachability, whereas the latter is reducible to regular reachability.
Thus, regular reachability is undecidable.

5.1 Scope-Bounded Pushdown Systems

A senescent GTRS may quite naturally model a scope-bounded multi-stack pushdown system.
Scope-bounded multi-pushdown systems were first introduced by La Torre and Napoli [24],
where they were shown to have a PSPACE-complete control state reachability problem. This is
in contrast to the control state reachability problem for senescent GTRS which we will show to
be Fω-complete. Hence, senescent GTRS represent a significant increase in modelling power.
We first define multi-stack and scope-bounded pushdown systems, before comparing them with
senescent GTRS.

13



Senescent Ground Tree Rewrite Systems M. Hague

5.1.1 Model Definition

A multi-stack pushdown system consists of, at any one moment, a control state and a fixed
number z of stacks over an alphabet Σ. Runs of a scope-bounded multi-stack pushdown system
are organised into rounds, where each round consists of z phases and during the ith phase, stack
operations may only occur on the ith stack. This can be thought of as several threads running
on a round robin scheduler. The scope-bound k is a restriction on which characters may be
removed from a stack. That is, a character may only be removed if it was pushed within the
previous k rounds.

Definition 5.1 (Multi-Stack Pushdown Systems). A multi-stack pushdown system is a tuple
P = (P,Σ,R1, . . . ,Rz) where P is a finite set of control states, Σ is a finite set of stack

characters, and for each 1 ≤ i ≤ z we have Ri = Rpush
i ∪ Rint

i ∪ Rpop
i is a set of rules where

Rpush
i ⊆ P × P × Σ is a set of push rules, Rint

i ⊆ P × P is a set of internal rules, and
Rpop

i ⊆ P × Σ× P is a set of pop rules.

A configuration of a multi-stack pushdown system is a tuple (p, w1, . . . , wz) where p ∈ P
and for all 1 ≤ i ≤ z we have w1 ∈ Σ∗. We have a transition on stack i, written

(p, w1, . . . , wz) −→i (p
′, w1, . . . , wi−1, w

′
i, wi+1, . . . , wz)

whenever we have

1. a rule (p, p′, a) ∈ Rpush
i and w′

i = awi, or

2. a rule (p, p′) ∈ Rint
i and w′

i = wi, or

3. a rule (p, a, p′) ∈ Rpop
i and aw′

i = wi.

We write −→∗
i for the transitive closure of −→i and −→ for the union of all −→i. Take a run

σ0 −→ · · · −→ σh

of a multi-stack pushdown system and suppose that the ith configuration σi is the configuration
(pi, w1, . . . , wj−1, awj , wj+1, . . . , wz). We say that a was pushed at configuration σi′ whenever
i′ ≤ i is the largest index such that we have

σi′−1 =
(
pi′−1, w

′
1, . . . , w

′
j−1, wj , w

′
j+1, . . . , w

′
z

)
−→j(

pi′ , w
′
1, . . . , w

′
j−1, awj , w

′
j+1, . . . , w

′
z

)
= σi′ .

Note that, by convention, a was pushed at configuration σ0 if no such i′ exists.
A round σ0 −→R σz of a multi-stack pushdown system is a sequence

σ0 −→∗
1 σ1 −→∗

2 · · · −→∗
z σz

where each σi is a configuration.
Finally, a k-scope-bounded run of a multi-stack pushdown system is a sequence of rounds

σ1 −→R · · · −→R σh

for some h such that for all j and all pop transitions

(p, w1, . . . , wi−1, awi, wi+1, . . . , wz) −→i (p
′, w1, . . . , wi−1, wi, wi+1, . . . , wz)

occurring during the round σj −→R σj+1 we have that a was pushed during the round σj′ −→R

σj′+1 where (j − k) ≤ j′ ≤ j.
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Definition 5.2 (Scope-bounded Multi-Stack Pushdown System). We define a k-scope-bounded
multi-stack pushdown system to be a multi-stack pushdown system together with a scope-bound
k.

We thus define the control state reachability problem for scope-bounded multi-stack push-
down systems.

Definition 5.3 (Control State Reachability). Given a scope-bounded multi-stack pushdown sys-
tem P with scope-bound k and z stacks, control states psrc and psnk, and initial stack character
⊥, the control state reachability problem is to decide whether there exists a k-scope-bounded
run

(psrc,⊥, . . . ,⊥) −→ · · · −→ (psnk, w1, . . . , wz)

for some stacks w1, . . . , wz.

5.1.2 Reduction to Senescent GTRS

We show that the control state reachability problem for scope-bounded multi-stack pushdown
systems can be simply reduced to the control state reachability problem for senescent GTRS.
The reduction is a straightforward extension of the standard method for encoding a pushdown
system with an sGTRS with a single control state, which was generalised to context-bounded
multi-stack pushdown systems by Lin [27].

Without loss of generality, we will assume a stack symbol ⊥ that is the bottom-of-stack
symbol. It is neither pushed onto, nor popped from the stack. It will also be the initial stack
character in the control state reachability problem.

Furthermore, by abuse of notation, for a stack w = a1 . . . am we write w(T ) for the tree
am(· · · a1(T )).

A single-stack pushdown system can be modelled as follows. A configuration (p, w) is en-
coded as a tree containing a single path. Consider the tree w(p). Since the rules of the pushdown
system only depend on and change the control state and the top of the stack, they can be en-
coded as tree rewriting operations. For example, the push rule (p, p′, a) can be modelled by
matching the subtree p and replacing it with a(p′).

To extend this to multi-stack pushdown systems with z stacks, we maintain a tree whose
root is a node with z children, where each child encodes a stack. However, in this case, the
control state must be stored in the control state of the sGTRS since the tree rewriting rules
can only rewrite sub-trees.

Fortunately, the structure of a scope-bounded run allows us to choose an encoding that is
more economical with the use of the senescent GTRS’s control state. We will use the pushdown
system’s control state as a kind of “token” to indicate which stack is currently active in the
round. That is, it will appear as a leaf of the branch containing the currently active stack.
To move to the next stack (i.e. use −→i+1 instead of −→i) the control state of the senescent
GTRS will be used to transfer the pushdown system’s control state to the next branch. Thus,
a k-scope-bounded multi-stack pushdown system will be modelled by a senescent GTRS with
a lifespan of k · z. This is natural since a round of a scope bounded pushdown system contains
z communications, and hence k rounds contain k · z communications.

Definition 5.4 (GP). Given a k-scope-bounded multi-stack pushdown system P as the tuple
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(P,Σ,R1, . . . ,Rz) we define the senescent GTRS GP = (PS ,ΣS ,RS) with lifespan k · z where

PS = (P × {1, . . . , z}) ∪ {psrc, psnk}

ΣS = Σ ∪ P ∪ {•,21, . . . ,2z}

RS = Rsrc/snk ∪RPDS ∪RSwitch

and Rsrc/snk is the set

{(psrc, T2z ) −→ ((psrc, 1), T2z ) , ((psnk, 1), Tpsnk
) −→ (psnk, Tpsnk

)}

and RPDS is the set((p, i), Tp1) −→
(
(p, i), Ta(p2)

) ∣∣∣∣∣∣
1 ≤ i ≤ z ∧
p ∈ P ∧

(p1, p2, a) ∈ Ri

 ∪((p, i), Tp1) −→ ((p, i), Tp2)

∣∣∣∣∣∣
1 ≤ i ≤ z ∧
p ∈ P ∧

(p1, p2) ∈ Rint
i

 ∪(
(p, i), Ta(p1)

)
−→ ((p, i), Tp2)

∣∣∣∣∣∣
1 ≤ i ≤ z ∧
p ∈ P ∧

(p1, a, p2) ∈ Rpop
i


and finally RSwitch is the set

{((p, i), Tp′) −→ ((p′, (i mod z) + 1), T2i) | 1 ≤ i ≤ z } ∪
{((p, i), T2i) −→ ((p, i), Tp) | 1 ≤ i ≤ z } .

Theorem 5.1 (Scope-Bounded to Senescent GTRS). The control state reachability problem
for scope-bounded multi-stack pushdown systems can be reduced to the control state reachability
problem for senescent GTRS.

Proof. Given a k-scope-bounded multi-stack pushdown system P = (P,Σ,R1, . . . ,Rz) we ob-
tain the senescent GTRS GP with lifespan k · z as in Definition 5.4 (GP). It is almost direct to
obtain from a run

(psrc,⊥, . . . ,⊥) −→ · · · −→ (psnk, w1, . . . , wz)

of P a run
(psrc, •(⊥(21), . . . ,⊥(2z))) −→ · · · −→ (psnk, •(T1, . . . , Tz))

of GP and vice versa for some w1, . . . , wz and T1, . . . , Tz.
To go from P to GP we divide the run into rounds and the rounds into sub-runs

(p, w1, . . . , wi−1, wi, wi+1, . . . , wz) −→∗
i (p′, w1, . . . , wi−1, w

′
i, wi+1, . . . , wz) .

We can obtain by straightforward induction (using rules from RPDS and the fact we never
remove ⊥ from a stack) a run

((p, i), •(w1(21), . . . , wi−1(2i−1), wi(p), wi+1(2i+1), . . . , wz(2z)))
→∗

((p, i), •(w1(21), . . . , wi−1(2i−1), w
′
i(p

′), wi+1(2i+1), . . . , wz(2z)))

16



Senescent Ground Tree Rewrite Systems M. Hague

of GP. Note that this holds true even for empty runs. Then by topping and tailing with
transitions from RSwitch we obtain.

((p, i), •(w1(21), . . . , wi−1(2i−1), wi(2i), wi+1(2i+1), . . . , wz(2z)))
→∗

((p′, i′), •(w1(21), . . . , wi−1(2i−1), w
′
i(2i), wi+1(2i+1), . . . , wz(2z)))

where i′ = (i mod z) + 1.
Thus, combining these runs, from a round

(p, w1, . . . , wz) −→∗
1 · · · −→∗

z (p′, w′
1, . . . , w

′
z)

of P we obtain a run

((p, 1), •(w1(21), . . . , wz(2z))) →∗ ((p′, 1), •(w′
1(21), . . . , w

′
z(2z)))

of GP.
To complete the direction, we must now combine rounds of the run of P into a run of GP.

To do this, we simply concatenate the runs obtained for each round. We have to be careful
that in doing so we respect the lifespan k · z of GP. Indeed, this is a simple consequence of
the scope-bound of P: since we never remove a character that was pushed k rounds earlier, we
know that the top character must have been pushed at most k rounds earlier, and thus there
are fewer than k · z control state changes of GP since the birth date of the corresponding node
in the tree (note also that the leaf node is rewritten every z control state changes, and hence
does not become fossilised). We thus obtain an almost complete run of GP: all that remains is
to append and concatenate transitions from Rsrc/snk, resulting in a run of the required form.

In the opposite direction one need only observe that all runs of GP must be of the form
constructed during the proof of the direction above. Hence, applying the above reasoning in
reverse obtains a run of P as required.

5.2 Reset Petri-Nets

We show that the coverability and reachability problems for reset Petri-nets can be reduced to
the control state and regular reachability problems for senescent GTRS respectively. The idea
is that the control state of the reset Petri-net can be directly encoded by the control state of
the senescent GTRS. To keep track of the marking for each counter x, we maintain a tree with
π(x) leaf nodes labelled x. Decrementing a counter is then a case of rewriting a leaf node x
to an “inactive” label %, while incrementing the counter requires adding a new leaf node. To
avoid leaf nodes becoming fossilised, we allow all leaf nodes to rewrite to themselves in (almost)
every control state. We can then reset a counter by forcing the GTRS to change control states
k times without allowing the counter to refresh; thus, all x nodes become fossilised and the
counter is effectively set to zero.

5.2.1 Coverability

We will begin with coverability. Without loss of generality, we assume that we aim to cover the
zero marking. Moreover, we assume that in each rule q −→̃

o
q′ we have at most a single counter

operation in õ. In the following definition, we use ∗ to label an open node which may spawn
new counter-labelled nodes, • to label internal nodes of the tree, and % to label counter nodes
that have been disactivated by a decrement operation.
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Definition 5.5 (GN ). Given a reset Petri-net N = (Q, X,∆) we define the senescent GTRS
GN = (P,Σ,R) with lifespan 1 where

P =Q∪
{
×x

q | x ∈ X ∧ q ∈ Q
}

Σ =X ∪ {∗, •,%}
R =

{
(p, Tx) −→ (p, Tx)

∣∣ x ∈ X ∧ p ∈ P ∧ ∀q ∈ Q.p ̸= ×x
q

}
∪

{(p, T∗) −→ (p, T∗) | p ∈ P } ∪{
(q, T∗) −→

(
q′, T•(x,∗)

) ∣∣∣∣ q −−−−−−→
{incr(x)}

q′ ∈ ∆

}
∪{

(q, Tx) −→
(
q′, T%) ∣∣∣∣ q −−−−−−→

{decr(x)}
q′ ∈ ∆

}
∪{

(q, T∗) −→
(
×x

q′ , T∗
)
,(

×x
q′ , T∗

)
−→ (q′, T∗)

∣∣∣∣ q −−−−−→
{res(x)}

q′ ∈ ∆

}
∪{

(q, T∗) −→ (q′, T∗)
∣∣∣∣ q −→

∅
q′ ∈ ∆

}

Theorem 5.2 (Coverability to Control State Reachability). The coverability problem for reset
Petri-nets can be reduced to the control state reachability problem for senescent GTRS.

Proof. Given a reset Petri-net N = (Q, X,∆) we obtain the senescent GTRS GN = (P,Σ,R)
with lifespan 1 from Definition 5.5 (GN ). We show there exists a run

(q1, π1) −→ · · · −→ (qh, πh)

of N where π1 = π0 iff there is a run

(q1, T1) →∗ (q2, T2) →∗ · · · →∗ (qh, Th)

of GN where T1 = ∗. This implies our theorem.
First consider the direction from N to GN . We induct from i = 1 to i = h. We maintain the

induction invariant that Ti has exactly πi(x) leaf nodes of age 0 labelled by x for each counter
x ∈ X. Furthermore, there is exactly one leaf node labelled ∗, and this node has age 1. In the
base case the invariant is immediate.

Now assume the invariant for i. Consider the transition

(qi, πi) −→̃
o

(qi+1, πi+1)

of the run of N . We show the existence of a run

(qi, Ti) →∗ (qi+1, Ti+1)

satisfying the invariant. We perform a case split on õ. In the following, when we say “refresh
the leaf nodes” we mean that we execute for each counter x and for each leaf node (with age
< 2) labelled by x a rule (qi+1, Tx) −→ (qi+1, Tx) to set the age of each leaf node back to 0, and
finally we fire (qi+1, T∗) −→ (qi+1, T∗) to set the age of the node labelled ∗ to 0.

1. When õ = ∅ we can fire the rule (qi, T∗) −→ (qi+1, T∗) and since πi = πi+1 we simply
refresh the leaf nodes to obtain the induction invariant.
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2. When õ = {incr(x)} we fire the rule (qi, T∗) −→
(
qi+1, T•(x,∗)

)
to obtain Ti+1 with the

correct number of leaf nodes concordant with πi+1 and then refresh the leaf nodes to
obtain the invariant.

3. When õ = {decr(x)} we know from the invariant that since πi(x) > 0 that there is a leaf
labelled x of age 0. We fire the rule (qi, Tx) −→

(
qi+1, T%)

to obtain Ti+1 with the correct
number of leaf nodes concordant with πi+1 and then refresh the leaf nodes to obtain the
invariant.

4. When õ = {res(x)} we fire the rule (qi, T∗) −→
(
×x

qi+1
, T∗

)
and then refresh all leaf nodes

except those labelled x, which cannot be reset. Thus all leaf nodes have age 0 except

those labelled x which have age 1. Then we fire
(
×x

qi+1
, T∗

)
−→ (qi+1, T∗). Note that all

leaf nodes labelled x now have age 2 and are fossilised. Then we refresh all leaf nodes
(that are young enough) to obtain Ti+1 concordant with πi+1 and obtain the invariant.

Thus, by induction, we obtain a run as required.
In the other direction, we take a run

(q1, T1) →∗ · · · →∗ (qh, Th)

where T1 = ∗ and for all configurations between (qi, Ti) and (qi+1, Ti+1) (if there are any) there
is some x such that such that the control state of the configurations is of the form ×x

qi+1
. That

all runs are of this form follows easily from the definition of GN . We build a run

(q1, π1) −→ · · · −→ (qh, πh)

of N where π1 = π0. For technical convenience we assume that N can perform “no-op”
transitions that change neither the control state nor the marking. One can simply remove these
transitions from the final run to obtain a run of N .

We induct from i = 1 to i = h. We maintain the induction invariant π(x) is greater than or
equal to the number of leaf nodes of age ≤ 1 labelled by x for each counter x ∈ X. In the base
case the invariant is immediate.

Now consider the first transition on the run

(qi, Ti) →∗ (qi+1, Ti+1) .

There are several cases depending on the rule used by the transition.

1. When the rule is (qi, Tx) −→ (qi+1, Tx) or (qi, T∗) −→ (qi+1, T∗) we have qi = qi+1. Since
this transition can only set the age of some leaf node of age ≤ 1 to 0 we extend the run
of N with a no-op transition which maintains the invariant.

2. When the rule is (qi, T∗) −→
(
qi+1, T•(x,∗)

)
we have a rule qi −−−−−−→

{incr(x)}
qi+1 by definition.

We extend the run of N by firing this rule to obtain πi+1. For all x′ ̸= x we know that
the number of leaf nodes labelled x′ of age ≤ 1 can only be reduced, and hence πi+1(x

′)
remains larger or equal. For x the number of leaf nodes may increase by at most 1, but
since we fired incr(x) the invariant is maintained.

3. When the rule is (qi, Tx) −→
(
qi+1, T%)

we have a rule qi −−−−−−→
{decr(x)}

qi+1 by definition. We

extend the run of N by firing this rule to obtain πi+1. This is possible since we know
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there is at least one leaf node of age ≤ 1 labelled x and hence πi(x) > 0 by induction.
Then for all x′ ̸= x we know that the number of leaf nodes labelled x′ of age ≤ 1 can only
be reduced, and hence πi+1(x

′) remains larger or equal. For x the number of leaf nodes
decreases by at least 1, and hence the invariant is maintained.

4. When the rule is (qi, T∗) −→
(
×x

qi+1
, T∗

)
we know by definition that the transition reaching

(qi+1, Ti+1) is via the rule
(
×x

qi+1
, T∗

)
−→ (qi+1, T∗) and all transitions in between are of

the form
(
×x

qi+1
, Tx′

)
−→

(
×x

qi+1
, Tx′

)
where x′ ̸= x or

(
×x

qi+1
, T∗

)
−→

(
×x

qi+1
, T∗

)
. Hence

the number of leaf nodes of age ≤ 1 in Ti+1 will be zero with the label x and less than or
equal to the number in Ti when the label is some other x′. Thus, by firing the transition
qi −−−−−→

{res(x)}
qi+1 to obtain (qi+1, πi+1) we maintain the invariant.

5. When the rule is (qi, T∗) −→ (qi+1, T∗) the number of leaf nodes with any label of age
≤ 1 can only decrease. By definition we have a rule qi −→

∅
qi+1 which we fire to obtain

(qi+1, πi+1) and maintain the invariant.

Thus we are done.

5.2.2 Reachability

Finally, using a slight extension of the reduction used for coverability, we can show that the
reachability problem reduces to the regular reachability problem for GTRS.

The proof is by a minor extension of the coverability reduction. Naively, since the reduction
uses leaf nodes to store the value of the counters, we could simply test reachability with respect
to a tree automaton T that accepts trees where the number of leaf nodes labelled by each
counter matches the target marking of the counter. However, this does not work since the reset
actions are encoded by forcing leaf nodes to become fossilised. Hence, the number of leaf nodes
labelled by a counter will not match the actual marking of the counter.

To overcome this problem we make two modifications to the encoding. First, when a counter
is being reset, we give all leaves labelled by that counter the opportunity to rewrite themselves
to %. Furthermore, when we have reached the target control state, we have the possibility to
make a non-deterministic guess that the target marking has also been reached. At this point
we let all active leaf nodes labelled by a counter x to rewrite themselves to be labelled by
x. We then define the target tree automaton T to accept trees where the number of leaves
labelled x matches the target marking value of the counter, and, moreover, there are no leaves
labelled by a counter x. The second condition ensures that no node labelled x allowed itself to
become fossilised while labelled x (in particular, during a reset, all nodes rewrote themselves to%). Similarly, after guessing that the target configuration had been reached, all nodes labelled
x rewrote themselves to x, thus ensuring that the tree accurately represents the true counter
values.

Definition 5.6 (G′
N ). Given a reset Petri-net N = (Q, X,∆), let GN = (P,Σ,R) be the
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senescent GTRS from Definition 5.5 (GN ). We define G′
N = (P ′,Σ′,R′) with lifespan 1 where

P ′ = P ∪ {p′snk}
Σ′ = Σ ∪ {x | x ∈ X }
R′ = R ∪

{(psnk, T∗) −→ (p′snk, T∗)} ∪
{(p′snk, Tx) −→ (p′snk, Tx) | x ∈ X } ∪{(

×x
q , Tx

)
−→

(
×x

q , T%)
| x ∈ X ∧ q ∈ P

}
Theorem 5.3 (Reachability to Regular Reachability). The reachability problem for reset Petri-
nets can be reduced to the regular reachability problem for senescent GTRS and is thus unde-
cidable.

Proof. Given a reset Petri-net N = (Q, X,∆) we obtain the senescent GTRS G′
N = (P,Σ,R)

with lifespan 1 from Definition 5.6 (G′
N ). Let psrc be the initial control state, and (without

loss of generality) let π0 be the initial marking. Then, let psnk be the target control state and
π be the target marking.

First, define T to be the tree automaton accepting all trees of the following form:

1. all internal nodes are labelled •, and

2. there is one leaf node labelled ∗, and

3. for each x ∈ X there are exactly π(x) leaf nodes labelled x, and

4. all other leaf nodes are labelled %.

It is straightforward to construct such a T .
We first show that the existence of a run

(psrc, π0) −→∗ (psnk, π)

of N implies there is a run

(psrc, T1) →∗ (p′snk, T2)

of GN where T1 = ∗ and T2 ∈ L(T ).
We can use almost the same proof as the same direction in the proof of Theorem 5.2 (Cov-

erability to Control State Reachability), with a minor modification to the induction hypothesis.
That is, instead of maintaining for each x that there are exactly πi(x) leaf nodes of age 0 labelled
by x, we maintain the stronger property that there are exactly πi(x) leaf nodes labelled by x.
To do so, we need only update the handling of the reset transition. That is, when handling
res(x) we fire, for each leaf node labelled x, the rule

(
×x

q , Tx
)
−→

(
×x

q , T%)
. Thus, there are no

leaf nodes labelled x.
We therefore obtain a run to (psnk, T ) such that T has all internal nodes labelled by •, one

node labelled by ∗, exactly π(x) leaf nodes labelled x for each x, and all other leaf nodes labelled%. To complete the direction, we fire the rule (psnk, T∗) −→ (p′snk, T∗) followed by (p′snk, Tx) −→
(p′snk, Tx) for each leaf node labelled by some x. Whence, we reach the configuration (p′snk, T2)
with T2 ∈ L(T ) as required.

The other direction is also similar to the coverability case. We take a run

(q1, T1) →∗ · · · →∗ (qh, Th) −→ (p′snk, Th) →∗ (p′snk, T )
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where q1 = psrc, T1 = ∗, qh = psnk, T ∈ L(T ), and for all configurations between (qi, Ti)
and (qi+1, Ti+1) (if there are any) there is some x such that such that the control state of the
configurations is of the form ×x

qi+1
. We then build a run

(q1, π1) −→ · · · −→ (qh, πh)

of N where π1 = π0. Again, we assume that N can perform “no-op” transitions. We induct
from i = 1 to i = h. We maintain the induction invariant π(x) equal to the number of leaf
nodes labelled by x for each counter x ∈ X. In the base case the invariant is immediate.

Now consider the first transition on the run

(qi, Ti) →∗ (qi+1, Ti+1) .

There are several cases depending on the rule used by the transition. In all cases, it is key to
observe that no leaf node labelled by x can become fossilised in the run of G′

N : if such a leaf
were to become fossilised it would still be present in T and thus we could not have T ∈ L(T ).

1. When the rule is (qi, Tx) −→ (qi+1, Tx) or (qi, T∗) −→ (qi+1, T∗) we have qi = qi+1. Since
this transition can only set the age of some leaf node of age ≤ 1 to 0 we extend the run
of N with a no-op transition which maintains the invariant.

2. When the rule is (qi, T∗) −→
(
qi+1, T•(x,∗)

)
we have a rule qi −−−−−−→

{incr(x)}
qi+1 by definition.

We extend the run of N by firing this rule to obtain πi+1 satisfying the invariant.

3. When the rule is (qi, Tx) −→
(
qi+1, T%)

we have a rule qi −−−−−−→
{decr(x)}

qi+1 by definition. We

extend the run of N by firing this rule to obtain πi+1. This is possible since we know
there is at least one leaf node x which cannot be fossilised (as remarked above) and hence
πi(x) > 0 by induction.

4. When the rule is (qi, T∗) −→
(
×x

qi+1
, T∗

)
we know by definition that the transition reaching

(qi+1, Ti+1) is via the rule
(
×x

qi+1
, T∗

)
−→ (qi+1, T∗) and all transitions in between are

of the form
(
×x

qi+1
, Tx′

)
−→

(
×x

qi+1
, Tx′

)
where x′ ̸= x,

(
×x

qi+1
, T∗

)
−→

(
×x

qi+1
, T∗

)
, or(

×x
qi+1

, Tx
)
−→

(
×x

qi+1
, T%

)
. Indeed, we know that a rule of the first form must be fired

for all leaf nodes labelled by some x′ ̸= x, and a rule of the third form must be fired for
each leaf labelled x. If this were not the case then some leaf labelled by a counter would
become fossilised, preventing T from being accepted by T . Hence, the number of leaf
nodes labelled x is zero and the number labelled by some other counter x′ is the same as
in Ti. Thus, we have the invariant.

5. When the rule is (qi, T∗) −→ (qi+1, T∗) then by definition we have a rule qi −→
∅

qi+1 which

we fire to obtain (qi+1, πi+1) and maintain the invariant.

Note that the rules (psnk, T∗) −→ (p′snk, T∗) and (p′snk, Tx) −→ (p′snk, Tx) can only be fired during
the final stage of the run reaching (p′snk, T ). Moreover, observe that in the final phase, in order
for T to be accepted, all leaf nodes labelled x must have been rewritten to x and hence their
number must match π. Thus, in Th the number of leaf nodes labelled by x must have matched
π. Thus, upon reaching (ph, πh) we have a run of the Petri-net as required.
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6 Reachability Analysis of Senescent GTRSs

For the following section, fix a senescent GTRS G = (P,Σ,R) with lifespan k. Furthermore,
fix an ordering r1, . . . , rℓ on the rules in R. Thus, we will use each rule r ∈ R as an index (that
is, we use r instead of i when r = ri). Notice that ℓ denotes the number of rules in G.

Without loss of generality, we assume that all tree automata appearing in the rules R of G
accept at least one tree (rules not satisfying this condition can be discarded since they cannot
be applied).

We show, using ideas from [26], that the control state reachability problem for senescent
GTRSs is decidable and is Fω-complete.

Theorem 6.1 (Ackermann-Completeness of Reachability). It is the case that the control state
reachability problem for senescent GTRS is Fω-complete.

Proof. Fω-hardness follows from Theorem 5.2 (Coverability to Control State Reachability) and
the Fω-hardness of the coverability problem for reset Petri-nets [40, 41].

The upper bound is obtained in the following sections. In outline, given a senescent GTRS
G we obtain from Definition 6.4 a reset Petri-net NG triply-exponential in the size of G. From
Lemma 6.1 we know that we can decide the control state reachability problem for G via a
coverability problem over NG. Since Fω is closed under all primitive-recursive reductions, we
have our upper bound as required.

6.1 Independent Sub-Tree Interfaces

Our algorithm will non-deterministically construct a representation of a run of G witnessing
the reachability property. A key idea is that, during the guessed run, certain sub-trees may
operate independently of one another.

That is, suppose we have a tree consisting of a root node n with a left sub-tree T1 and a
right sub-tree T2. If it is the case that, during the run, the complete tree rooted at n is never
matched by the LHS of a rewrite rule, then we may say that T1 and T2 develop independently:
any rewrite rule applied during the run either matches a sub-tree of T1 or a sub-tree of T2, but
never depends on both the contents of T1 and T2. Thus, the interaction between T1 and T2 is
only via the changes to the control state.

When a rewrite rule r is applied to the tree, rewriting a sub-tree T1 to T2, there are two
possibilities: either T2 develops independently of the rest of the tree for the remainder of the
run, or T2 appears as a strict sub-tree of a later rewrite rule application. In the former case, a
new independent sub-tree has been generated, while, in the later, no new independent tree has
been created. When T2 is independent we say that an independent sub-tree has been generated
via rule r.

Adapting the thread interfaces introduced by La Torre and Parlato in their analysis of
scope-bounded multi-stack pushdown systems [26], we define a notion of independent sub-tree
interfaces, which we will refer to simply as interfaces.

Definition 6.1 (Independent Sub-Tree Interfaces). For a senescent GTRS with lifespan k and
rewrite rule-set {r1, . . . , rℓ}, an independent sub-tree interface α is defined to be a sequence
(p1, b1, η⃗1) . . . (pm, bm, η⃗m) of triples in P × {0, 1} × Nℓ with m ≤ k.

An interface α describes the external effect of the evolution of a sub-tree over up to k control
state changes. A sequence α = (p1, b1, η⃗1) , . . . , (pm, bm, η⃗m) describes the sequence of control
state changes p1, . . . , pm witnessed by the sub-tree before it becomes fossilised (or ceases to
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change for the remainder of the run). The component bi indicates whether the subtree effected
the control state change (via the application of a rewrite rule modifying both the tree and the
control state) or whether the control state change is supposed to have been made by an external
independent sub-tree.

The final component η⃗i = (ηr1i , . . . , ηrℓi ) indicates how many new independent sub-trees are
generated during the lifespan of the sub-tree. That is, during the run described by α, we have
ηri independent sub-trees generated using rule r after the control state has been changed to
pi but before the change to control state pi+1 takes place. Note if a rule both changes the
control state and generates a new independent sub-tree, the sub-tree is considered to have been
generated after the control state has changed.

6.2 Examples of Independent Sub-Tree Interfaces

In the following, by abuse of notation, let (p1, T1) −→ (p2, T2) for given control states p1, p2 and
trees T1, T2 denote a rule (p1, T1) −→ (p2, T2) where L(T1) = {T1} and L(T2) = {T2}. Also,
recall 0⃗ denotes the tuple (0, . . . , 0) and i⃗ denotes the tuple where all components are 0 except
the ith, which is 1.

Consider a senescent GTRS with rules {r1, . . . , r5} where

r1 = (p1, T0) −→ (p2, n(T1, T2))

r2 = (p2, T1) −→
(
p2, T

1
1

)
r3 = (p2, T2) −→

(
p3, T

1
2

)
r4 =

(
p3, T

1
2

)
−→

(
p4, T

2
2

)
r5 =

(
p4, T

1
1

)
−→

(
p5, T

2
1

)
.

Now consider the run formed from r1, . . . , r5 in sequence,

(p1, T0) → (p2, n(T1, T2)) →
(
p2, n

(
T 1
1 , T2

))
→

(
p3, n

(
T 1
1 , T

1
2

))
→

(
p4, n

(
T 1
1 , T

2
2

))
→

(
p5, n

(
T 2
1 , T

2
2

))
.

Below we present several alternative decompositions of the above run into interfaces. In the
first decomposition, we take a lifespan of 5. In this case, we may simply have the decomposition(

p1, 0, 0⃗
)
,

(
p2, 1, 0⃗

)
,

(
p3, 1, 0⃗

)
,

(
p4, 1, 0⃗

)
,

(
p5, 1, 0⃗

)
indicating that no new independent sub-trees are considered to have been generated, and thus,
all control state changes are effected by the evolution of the original tree. Note that b1 = 0
since the control state was initially p1.

However, the above run can also be decomposed if the lifespan is set to 4. One such de-
composition can be obtained by considering the application of the rule r1 to generate n(T1, T2),
where n(T1, T2) is a new independent sub-tree. Using

a
to denote an independent sub-tree that

has been generated, we can decompose the run into two runs

(p1, T0) →
(
p2,

i)
and the run of the generated independent sub-tree

(p2, n(T1, T2)) →
(
p2, n

(
T 1
1 , T2

))
→

(
p3, n

(
T 1
1 , T

1
2

))
→

(
p4, n

(
T 1
1 , T

2
2

))
→

(
p5, n

(
T 2
1 , T

2
2

))
.
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These two runs give rise to two independent sub-tree interfaces that can be combined to repre-
sent the original run.(

p1, 0, 0⃗
)
,

(
p2, 1, 1⃗

)(
p2, 0, 0⃗

)
,

(
p3, 1, 0⃗

)
,

(
p4, 1, 0⃗

)
,

(
p5, 1, 0⃗

)
The upper interface comes from the first part of the decomposed run, and the lower inter-
face represents the second part. Note, the lifespan of 4 is respected and 1⃗ indicates that an
independent sub-tree has been generated as the RHS of r1.

Finally, we observe that the evolution of T 1
1 and T 1

2 are independent. Hence, we could be
more eager in our generation of independent sub-trees. That is, we can decompose the original
run into the following runs.

(p1, T0) →
(
p2,

i)
and

(p2, n(T1, T2)) →
(
p2, n

(i
, T2

))
→

(
p3, n

(i
,
i))

where the evolution of T 1
1 is given by(

p2, T
1
1

)
→

(
p3, T

1
1

)
→

(
p4, T

1
1

)
→

(
p5, T

2
1

)
and the evolution of T 1

2 by (
p3, T

1
2

)
→

(
p4, T

2
2

)
→

(
p5, T

2
2

)
.

Note, the control state change to p5 was effected by the evolution of T 1
1 and the change to p4

by the evolution of T 1
2 . The respective interfaces for the above runs, aligned to suggest how

they combine, are(
p1, 0, 0⃗

)
,

(
p2, 1, 1⃗

)(
p2, 0, 2⃗

)
,

(
p3, 1, 4⃗

)(
p2, 0, 0⃗

)
,

(
p3, 0, 0⃗

)
,

(
p4, 0, 0⃗

)
,

(
p5, 1, 0⃗

)(
p3, 0, 0⃗

)
,

(
p4, 1, 0⃗

)
,

(
p5, 0, 0⃗

)
.

Each column represents a single control state change. It is important that in each column there
is exactly one independent sub-tree for which bi = 1. That is, each control state change is
performed by exactly one independent sub-tree.

6.3 Representing Interfaces

In this section we show that interfaces α can be generated as the Parikh image of regular
automata.

For each rule r ∈ R and sequence (p1, b1) , . . . , (pm, bm) with m ≤ k we will build a regular
automaton A over the alphabet

ΓI = {(r, i) | r ∈ R ∧ 1 ≤ i ≤ m} .

By abuse of notation, for a run over a word w ∈ Γ∗
I , we define

Parikh(w) = (η⃗1, . . . , η⃗m)
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where for all 1 ≤ i ≤ m we have η⃗i = (ηr1i , . . . , ηrℓ) and ηri = |w|(r,i). This generalises to

Parikh(A) in the natural way.
In particular, we build A such that, if (η⃗1, . . . , η⃗m) is an element of Parikh(A) then there

is an independent sub-tree interface

(p1, b1, η⃗1) , . . . , (pm, bm, η⃗m)

beginning with a tree T ∈ L(T1) where r = (p, T ) −→ (p1, T1).
We obtain the above regular automaton as follows. First, fromG, r and (p1, b1) , . . . , (pm, bm)

we build a weakly extended sGTRS GI that simulates a run of G from a subtree appearing on
the RHS of r, passing precisely the control states p1, . . . , pm and only effecting a control state
change with a rule in G if bi = 1 (else GI guesses the control state change). The output of
this sGTRS gives us information on the independent sub-trees created during the run. Then,
using Lemma 3.1 (Parikh Image of Weakly Extended sGTRS) we obtain a regular automaton
as required.

Definition 6.2 (GI). Given a senescent GTRS G = (P,Σ,R) with lifespan k, an r ∈ R
and sequence (p1, b1) , . . . , (pm, bm) with m ≤ k we construct a weakly extended sGTRS GI =
(PI ,ΣI ,ΓI ,RI) where, letting T be the tree automaton on the RHS of r,

PI = {(p1, b1, 1) , . . . , (pm, bm,m)}

ΣI =Σ ⊎
{i

,3}
ΓI = {(r, i) | r ∈ R ∧ 1 ≤ i ≤ m}

and RI is the set{
((p1, b1, 1), T3) ε−→ ((p1, b1, 1), T )

}
∪{

((pi, bi, i), T1)
ε−→ ((pi, bi, i), T2)

∣∣∣∣ 1 ≤ i ≤ m ∧
(pi, T1) −→ (pi, T2) ∈ R

}
∪{

((pi, bi, i), T1)
ε−→ ((pi+1, 1, i+ 1), T2)

∣∣∣∣ 1 ≤ i < m ∧ bi+1 = 1 ∧
(pi, T1) −→ (pi+1, T2) ∈ R

}
∪{

((pi, bi, i), Ta)
ε−→ ((pi+1, 0, i+ 1), Ta)

∣∣∣∣ 1 ≤ i < m ∧ bi+1 = 0 ∧
a ∈ ΣI ∧ a has arity 0

}
∪{

((pi, bi, i), T1)
(r,i)−−−→

(
(pi, bi, i), Ta) ∣∣∣∣ 1 ≤ i ≤ m ∧

r = (pi, T1) −→ (pi, T2) ∈ R

}
∪((pi, bi, i), T1)

(r,i+1)−−−−→
(
(pi+1, 1, i+ 1), Ta) ∣∣∣∣∣∣

1 ≤ i < m ∧ bi+1 = 1 ∧
r = (pi, T1) −→ (pi+1, T2)

∧ r ∈ R


and both

a
and 3 have arity 0.

In the above definition, we use 3 to be the starting label of GI , and the first set of rules
contains only the rule generating a (independent sub-)tree that could have been created by
rule r. The second set of rules simply simulates the rules of G that do not change the control
state. The next two sets of rules take care of the cases where either the control state change is
effected by the independent sub-tree under consideration (bi = 1), or whether the control state
change is effected by another (independent) part of the tree (bi = 0). The final two sets of rules
take care of the generation of new independent sub-trees. That is, when applying a rule of G,
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instead of the new tree appearing in the current tree, a place-holder tree (accepted by Ta) is
created. Note, since

a
is a new label, the place-holder sub-tree cannot be rewritten during the

remainder a run of GI .
UsingGI we are able to build a regular representation of the independent sub-trees generated

during a run matching a given interface.

Definition 6.3 (AI). Given a senescent GTRS G = (P,Σ,R) with lifespan k, an r ∈ R and
sequence (p1, b1) , . . . , (pm, bm) with m ≤ k we construct GI as above, and then via Lemma 3.1
(Parikh Image of Weakly Extended sGTRS) a regular automaton AI such that there is a run

((p1, b1, 1), T1)
w−→ ((pm, bm,m), T2)

where T1 ∈ L(T3) and T2 is any tree iff Parikh(w) ∈ Parikh(AI).

6.4 Reduction to Reset Petri-Nets

6.4.1 Interface Summaries

We reduce the control state reachability problem for senescent GTRSs to the coverability prob-
lem for reset Petri nets. To do so, we construct a reset Petri net whose control states hold a
sequence (p1, b1) . . . (pm, bm) where m ≤ k. It will also have a set of counters

XG = {xr
i | 1 ≤ i ≤ m} .

We will refer to this sequence as an interface summary. Such a summary will summarise the
combination of a number of interfaces. Each pi indicates that the ith next control state is pi
(with p1 being the current control state), and bi will indicate whether an independent sub-tree
has already been generated to account for the control state change. The value of each counter
xr
i indicates how many independent sub-trees are generated using rule r between the ith and

(i+ 1)th control state by the combination of the thread interfaces in the summary.
There are two operations we perform on the interface summary: addition and resolution.

Addition Addition refers to the addition of a thread interface to a given summary. Suppose
we have a summary ((p1, b1) , . . . , (pm, bm), π) where π gives the valuation of the counters. Now
suppose we want to add to the summary the effect of the evolution of an independent sub-tree
with interface

(p′1, b
′
1, η⃗1) . . . (p

′
m′ , b′m′ , η⃗m′) .

We first require the two sequences (p1, b1) . . . (pm, bm) and (p′1, b
′
1) . . . (p

′
m′ , b′m′) to be compatible.

There are two conditions for this.

1. They must agree on their control states. That is, for all 1 ≤ i ≤ min(m,m′) we have
pi = p′i.

2. At most one independent sub-tree can effect a control state change. That is, for all
1 ≤ i ≤ min(m,m′) we do not have bi = b′i = 1.

We first define the addition only over the states and bits, that is, we define

(p1, b1) , . . . , (pm, bm) ++ (p′1, b
′
1) . . . (p

′
m′ , b′m′)

when the two are compatible to be,

27



Senescent Ground Tree Rewrite Systems M. Hague

1. when m ≤ m′,
(p1, b

′′
1) . . . (pm, b′′m)

(
p′m+1, b

′
m+1

)
. . . (p′m′ , b′m′)

2. and when m > m′,

(p1, b
′′
1) . . . (pm′ , b′′m′) (pm′+1, bm′+1) . . . (pm, bm)

where in both cases b′′i = 1 if bi = 1 or b′i = 1, and otherwise b′′i = 0.
Then, the addition,

(β, π) ++ (p′1, b
′
1, η⃗1) . . . (p

′
m′ , b′m′ , η⃗m′)

when the two are compatible is (β′, π′) where

β′ = β ++ (p′1, b
′
1) . . . (p

′
m′ , bm′)

and for all r and i

π′(xr
i ) =

{
π(xr

i ) + ηri i ≤ m′

π(xr
i ) i > m′

That is, we add the sub-trees generated to the appropriate counters of the Petri net.

Resolution Addition of thread interfaces to the summary handles the evolution of new inde-
pendent sub-trees generated on the run between the current control state p1 and the next p2.
Once all such trees have been accounted for, we can perform resolution. That is, we remove
the completed first round from the summary. Note that this can only be done if b2 = 1, that is,
some independent sub-tree has taken responsibility for the change to the next control state p2.

We thus define

Res(((p1, b1) , (p2, b2) , . . . , (pm, bm), π)) = ((p2, b2) , . . . , (pm, bm), π′)

when b2 = 1 and where
π′(xr

i ) = π
(
xr
i+1

)
for all 1 ≤ i < m, and

π′(xr
m) = 0 .

6.4.2 Reduction to Coverability

We define a reset Petri-net that has a positive solution to the coverability problem iff the control
state reachability problem for the given senescent GTRS G is also positive.

For technical convenience, we assume r1 = (psrc, T1) −→ (psrc, T2) where T1 accepts no trees
and T2 accepts only the initial tree Tsrc. The assumption of such a rule does not allow more
runs of G since T1 matches no trees.

Initial Configuration The Petri-net begins in a configuration

((psrc, 1), πsrc)

where

πsrc(x
r
i ) =

{
1 if i = 1 and r = r1

0 otherwise .

This means that the Petri net is simulating a configuration of the senescent GTRS where the
control state is psrc and the only independent sub-tree that can be generated is Tsrc.
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Addition of New Interfaces The Petri net can then begin simulating execution as follows.
It will non-deterministically guess the independent sub-tree interface of the initial tree during a
satisfying run of the reachability problem. It will do this by subtracting 1 from the variable xr1

1

then guessing a sequence (p1, b1) . . . (pm, bm). Since there are only a finite number of possibilities
for such a sequence, the guess can be made in the control state. To fully guess an interface,
however, the Petri net must also guess the values of η⃗i for each 1 ≤ i ≤ m. To do this it will
simulate (in its control state) the automaton A generated by Definition 6.3 (AI), but, instead
of outputting a symbol (r, i), it will increment the counter xr

i .
In the manner described above, the Petri net can update its control state and counter values

to perform an addition

((p1, b1) , . . . , (pm, bm), π) ++ (p′1, b
′
1, η⃗1) . . . (p

′
m′ , b′m′ , η⃗m′)

for the interface summary it is currently storing in its control state and counters, and a guessed
new interface generated from some available independent sub-tree.

Resolving The Current Interface Summary Given a configuration

((p1, b1) , . . . , (pm, bm), π)

the Petri net can non-deterministically decide whether to add another interface to the summary,
or whether (if b2 = 1) to perform a resolution step.

To perform resolution the Petri net first updates the control state to obtain the sequence
(p2, b2) , . . . , (pm, bm) (that is, deletes the first tuple), and then updates its marking to

π′(xr
i ) = π

(
xr
i+1

)
for all 1 ≤ i < m, and

π′(xr
m) = 0 .

It does this incrementally from i = 1 to i = m. For each given i it first uses reset transitions to
zero each counter xr

i . Then, when i < m, it performs a loop for each counter, decrementing xr
i+1

and incrementing xr
i . It repeats this loop a non-deterministic number of times before moving

to the next counter.
Note that this is not a faithful implementation of the resolution operation since the Petri

net cannot ensure that it transfers xr
i+1 to xr

i in its entirety, merely that xr
i ≤ xr

i+1. However,
“forgetting” the existence of independent sub-trees merely restricts the number of runs and
does not add new behaviours. Hence such an inaccuracy is benign (since it is still possible to
transfer all sub-trees). The reset operation is used to ensure that no leakage occurs between
each i.

Formal Definition We give the formal definition of the reset Petri net NG that simulates G
with respect to the control state reachability problem. For each β = (p1, b1) . . . (pm, bm) with

1 ≤ m ≤ k and rule r ∈ R, let Ar
β =

(
Qr

β ,ΓI ,∆
r
β , q

r
β ,
{
fr
β

})
be the regular automaton obtained

via Definition 6.3 (AI) and without loss of generality assume Ar
β has the unique initial state qrβ

and final state fr
β . We assume for all r and β that Ar

β have disjoint state sets.

Definition 6.4 (NG). Given the senescent GTRS G (with notation and assumptions as de-
scribed in this section), we define the reset Petri net NG = (QG, XG,∆G) where XG is defined
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above and

S = {(p1, b1) . . . (pm, bm) ∈ (P × {0, 1})m | 1 ≤ m ≤ k }

QG =S ∪
{
(β, q) ∈ S ×Qr

β′ | β′ ∈ S ∧ r ∈ R
}
∪
{�β

i | β ∈ S ∧ 1 ≤ i ≤ k
}

∆G =∆Add ∪∆Res

where

∆Add =

{
β −−−−−→

decr(xr
1)

(
β1, q

r
β2

)
| r ∈ R ∧ β, β1, β2 ∈ S ∧ β1 = β ++ β2

}
∪{

(β, q) −−−−−→
incr(xr

i )
(β, q′)

∣∣∣∣ β ∈ S ∧ ∃r′, β′ s.t. q
(r,i)−−−→ q′ ∈ ∆r′

β′

}
∪{(

β, fr
β′

)
−→
∅

β | r ∈ R ∧ β′ ∈ S
}

and

∆Res =

β −→̃
o

�β′

1

∣∣∣∣∣∣∣∣
β, β′ ∈ S ∧

β′ = (p2, b2) . . . (pm, bm) ∧
β = (p1, b1)β

′ ∧ b2 = 1 ∧
õ = {res(xr

1) | r ∈ R}

 ∪

{
�β

i −−−−−−−−−−−−−−−→
{decr(xr

i+1),incr(xr
i )}

�β
i | β ∈ S ∧ 1 ≤ i < k

}
∪{

�β
i −→̃

o
�β

i+1

∣∣ β ∈ S ∧ 1 ≤ i < k ∧ õ =
{
res

(
xr
i+1

)
| r ∈ R

}}
∪{

�β
k −→

∅
β | β ∈ S

}
Note that the size of NG is dominated by the size of the regular automata Ar

β . Thus, the
size of NG is triply exponential in the size of G.

6.5 Correctness of Reduction

We prove that the control state reachability problem for G has a positive solution iff the
coverability problem for NG, initial configuration ((psrc, 1), πsrc), and target configuration
((psnk, 1), π0) is also positive.

We prove each direction in the sections that follow.

Lemma 6.1 (Correctness of Reduction). For a given senescent GTRS G with lifespan k, control
states psrc and psnk, and tree Tsrc, there is a lifespan restricted run

(psrc, Tsrc) → · · · → (psnk, T )

for some T of G iff there is a run

((psrc, 1), πsrc) −→∗ ((psnk, 1), π)

of NG for some π0 ≤ π.
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Proof. From Lemma 6.2 and Lemma 6.3 below.

In the following, let the marking π − r be the marking

(π − r)
(
xr′

j

)
=

π
(
xr′

j

)
r′ ̸= r ∨ j > 1

π
(
xr′

j

)
− 1 r′ = r ∧ j = 1 .

6.5.1 From Senescent GTRS to Reset Petri Nets

Lemma 6.2. For a given senescent GTRS G with lifespan k, control states psrc and psnk, and
tree Tsrc, there is a lifespan restricted run

(psrc, Tsrc) → · · · → (psnk, T )

for some T of G only if there is a run

((psrc, 1), πsrc) −→∗ ((psnk, 1), π)

of NG for some π0 ≤ π.

Proof. The proof proceeds in two steps. We begin with a run

(p1, T1) → · · · → (ph, Th)

of G. First we deconstruct this run into independent sub-trees, coupled with their interfaces.
From this deconstruction, we then build a run of NG.

The deconstruction is a sequence

(p1, id1, run1, int1) . . . (ph, idh, runh, inth)

where for all 1 ≤ i ≤ h we have that idi assigns to each node of Ti a natural number indicating
the ID of the independent sub-tree the node currently belongs to, runi maps each ID (natural
number) to a run of some GI (where the appropriate r, p1, b1, . . . , pm, bm are defined on-the-fly)
which is the evolution of the independent sub-tree in the run up to i, and finally inti maps each
ID to an independent sub-tree interface also representing the run up to i.

We build this sequence by induction (simultaneously arguing its existence). We begin with
id1 mapping each node in T1 to 1, then

run1(1) = ((p1, 0, 1), T1)

int1(1) =
(
p1, 0, 0⃗

)
.

Now, inductively take (pi, idi, runi, inti) and consider the transition

(pi, C[T ]) → (pi+1, C[T ′])

where Ti = C[T ] and Ti+1 = C[T ′] and the transition is via rule r ∈ R.

Let np be the parent of T in Ti, should it exist (it does not exist if T = C[T ]). There are
now two cases.
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1. There is some j > i such that in the transition(
pj , C

′[T 1
])

→
(
pj+1, C

′[T 2
])

of the run, the node np appears in T 1.

In this case, T ′ cannot form a new independent sub-tree since it appears as part of the
run over the sub-tree including np.

We define, for each n in Ti+1,

idi+1(n) =

{
idi(n) n is in C

idi(np) n is in T ′ .

There are now two further cases, depending on whether the control state is changed by
the transition.

(a) When pi = pi+1 we define, for each j in the image of idi+1,

runi+1(j) =

{
runi(j) j ̸= idi(np)

ρ j = idi(np)

inti+1(j) = inti(j)

where we define ρ as follows. We know runi(idi(np)) is a run to some configuration
((pi, b, i

′), C ′[T ]) where there is some C ′′ such that Ti = C ′′[C ′[T ]]. We define

ρ = runi(idi(np))
ε−→ ((pi+1, b, i

′), C ′[T ′])

which can be seen to be a transition of GI due to r ∈ R.

Note, in all other cases we keep the same run as in runi. Since pi = pi+1 we maintain
(for all independent sub-trees that have not expired their lifespan) that runi tracks
the run up to i.

(b) When pi ̸= pi+1 we define runi+1(j) for each j in the image of idi+1. There are two
cases.

When j ̸= idi(np) we know runi(j) is a run to some configuration ((p, b, i′), T ′′). If
i′ = k then the nodes in T ′′ can no longer be rewritten after the control state change
(they are fossilised). Hence, we define runi+1(j) = runi(j). When i′ < k, we define

runi+1(j) = runi(j)
ε−→ ((pi+1, 0, i

′ + 1), T ′′) .

Such a transition is always possible by the definition of GI .

When j = idi(np) we know runi(j) is a run to some configuration ((pi, b, i
′), C ′[T ])

where there is some C ′′ such that Ti = C ′′[C ′[T ]]. We define

ρ = runi(j)
ε−→ ((pi+1, 1, i

′ + 1), C ′[T ′])

which can be seen to be a transition of GI due to r ∈ R.

Finally, all j we define inti(j) when inti(j) has k tuples, and otherwise,

inti+1(j) =

inti(j)
(
pi+1, 1, 0⃗

)
j = idi(np)

inti(j)
(
pi+1, 0, 0⃗

)
j ̸= idi(np) .
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2. Either T = C[T ], or there is no j > i such that in the transition(
pj , C

′[T 1
])

→
(
pj+1, C

′[T 2
])

of the run, the node np appears in T 1.

In this case, T ′ can form a new independent sub-tree since its parent node is not read
during the remainder of the run.

Let j∗ be a natural number not in the image of idi. We define, for each n in Ti+1,

idi+1(n) =

{
idi(n) n is in C

j∗ n is in T ′ .

There are now two further cases, depending on whether the control state is changed by
the transition. In the following, recall e⃗ is the vector that is zero in all components except
the eth, which is 1.

(a) When pi = pi+1 we define, for each j in the image of idi+1,

runi+1(j) =


runi(j) j ̸= idi(np) ∧ j ̸= j∗

ρ j = idi(np)

((pi+1, 0, 1), T
′) j = j∗

inti+1(j) =


inti(j) j ̸= idi(np) ∧ j ̸= j∗

α j = idi(np)(
pi+1, 0, 0⃗

)
j = j∗

where we define ρ and α as follows.

First, for ρ, we know runi(idi(np)) is a run to some configuration ((pi, b, i
′), C ′[T ])

where there is some C ′′ such that Ti = C ′′[C ′[T ]]. We define

ρ = runi(idi(np))
(r,i′)
−−−→

(
(pi+1, b, i

′), C ′
[i])

which can be seen to be a transition of GI due to r ∈ R.

Note, in all other cases we keep the same run as in runi. Since pi = pi+1 we maintain
(for all independent sub-trees that have not expired their lifespan) that runi tracks
the run up to i.

Next, we define α. Let inti(np) = α′ (pi, b, η⃗) for some α′, b and η⃗. We define

α = α′ (pi, b, η⃗ + e⃗)

when r = re.

(b) When pi ̸= pi+1 we define runi+1(j) for each j in the image of idi+1. There are
three cases.

When j = j∗, we have runi+1(j) = (pi+1, T
′).

When j = idi(np) we know runi(j) is a run to some configuration ((pi, b, i
′), C ′[T ])

where there is some C ′′ such that Ti = C ′′[C ′[T ]]. We define

ρ = runi(j)
(r,i+1)−−−−→

(
(pi+1, 1, i

′ + 1), C ′
[i])
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which can be seen to be a transition of GI due to r ∈ R.

When j ̸= idi(np) and j ̸= j∗ we know runi(j) is a run to some configuration
((p, b, i′), T ′′). If i′ = k then the nodes in T ′′ can no longer be rewritten after the
control state change (they are fossilised). Hence, we define runi+1(j) = runi(j).
When i′ < k, we define

runi+1(j) = runi(j)
ε−→ ((pi+1, 0, i

′ + 1), T ′′) .

Such a transition is always possible by the definition of GI .

Finally, we define for all j that inti(j) when inti(j) has k tuples, and otherwise,
when r = re,

inti+1(j) =


(
pi+1, 0, 0⃗

)
j = j∗

inti(j) (pi+1, 1, e⃗) j = idi(np)

inti(j)
(
pi+1, 0, 0⃗

)
j ̸= idi(np) ∧ j ̸= j∗ .

We have now defined our deconstruction

(p1, id1, run1, int1) . . . (ph, idh, runh, inth)

from which we will construct a run

((psrc, 1), πsrc) −→ (β1, π1) −→ · · · −→ (βh′ , πh′)

of NG, where βh′ = (psnk, 1) and π0 ≤ πh′ as required.
Note that the independent sub-tree interfaces in the decomposition of the run are given by

inth. We will now iterate over the run of G from i = 1 to i = h, building the required run of
NG as we go. First, let ρ1 be the run

((psrc, 1), πsrc) −→∗ (β, π)

where, recalling that the ID 1 denotes the independent sub-tree corresponding to the evolution
of Tsrc and the independent sub-trees it generates, we have

(β, π) = ((psrc, 1), π0) ++ inth(1) .

It remains to prove that such a run exists. For this, take the GI defined by the initial rule
r1 (assumed in Section 6.4.2), and the sequence β′ = (p1, b1) . . . (pm, bm) where inth(1) =
(p1, b1, η⃗1) . . . (pm, bm, η⃗m). Note that in this case β differs from β′ only in the value of b1 (it is
0 in β′ and 1 in β). Further, observe that by construction runh(1) gives a run of GI outputting
w such that Parikh(w) = (η⃗1, . . . , η⃗m). From this we obtain a run of the accompanying regular
automaton AI with the same Parikh image and thus a run

((psrc, 1), πsrc) −−−−−−→
decr(xr1

1 )

((
β, qr1β′

)
, π0

)
−→∗

((
β, fr1

β′

)
, π

)
−→ (β, π)

of NG as required.
Now, inductively assume a run ρi. Let (β, π) be the final configuration of ρi. We extend ρi

to build ρi+1 by considering the transition

(pi, Ti) → (pi+1, Ti+1)

of the run of G. As in the above deconstruction, there are two cases to consider.
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1. When the transition does not generate a new independent sub-tree, there are two further
cases depending on whether a control state change occurs.

(a) When pi = pi+1 we simply define ρi+1 = ρi.

(b) When pi ̸= pi+1 we perform a resolution step. That is, we define ρi+1 to be a run

ρi −→∗ (β′, π′)

where, recalling ρi ends with the configuration (β, π), we have (β′, π′) = Res((β, π)).
That such a run

ρi −→
(�β′

1 , π
)
−→∗

(�β′

k , π′
)
−→ (β′, π′)

of NG exists follows in a straightforward manner from the transitions in ∆Res. Note
that to start the resolution, we require b2 = 1. This will always be the case because
exactly one independent sub-tree is responsible for firing r and its interface was added
when the sub-tree was generated. Similarly, the compatibility conditions come from
the construction of runh from a valid run.

2. When a new independent sub-tree is generated, we again have two cases depending on
whether the control state changes. Let j∗ be the ID of the new sub-tree.

(a) When pi = pi+1 we proceed in the same manner as we defined ρ1. That is, take
the GI defined by the rule r responsible for the transition, and the sequence βI =
(p1, b1) . . . (pm, bm) where inth(j∗) = (p1, b1, η⃗1) . . . (pm, bm, η⃗m). Again, observe that
by construction runh(j∗) gives a run of GI outputting w such that Parikh(w) =
(η⃗1, . . . , η⃗m). From this we obtain a run of the accompanying regular automaton AI

with the same Parikh image and thus a run

(β, π) −−−−−→
decr(xr

1)

((
β′, qr1βI

)
, π − r

)
−→∗

((
β′, fr1

βI

)
, π′

)
−→ (β′, π′)

of NG where
(β′, π′) = (β, π − r) ++ inth(j∗) .

That π− r exists follows from the fact that by construction of ρi we have that π(x
r
1)

contains the number of independent sub-trees generated by r between the change
to pi and the change to the next control state. Hence, since we only decrement xr

1

when such a sub-tree is generated, we do not fall below 0.

(b) When pi ̸= pi+1 we peform a resolution, a subtraction and an addition in the same
way as the previous cases. That is, we build a run

ρi −→
(�β1

1 , π
)
−→∗

(�β1

k , π1
)
−→

(
β1, π1

)
−→

((
β2, qr1βI

)
, π1 − r

)
−→∗

((
β2, fr1

βI

)
, π2

)
−→

(
β2, π2

)
where

(
β1, π1

)
= Res((β, π)) and(

β2, π2
)
=

(
β1, π1 − r

)
++ inth(j∗) .

The existence of such a run follows by the same arguments presented above.
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Thus, we construct ρh to some configuration (β, π) where, necessarily, π0 ≤ π and β = (pm, 1)
where by assumption pm = psnk. This follows since β was built by additions of interfaces that
did not pass beyond pm to some pm+1, and the resolution steps occured at the points where
the control state changed. The second component of the tuple is 1 since by construction some
sub-tree interface was responsible for every control state change. Thus, we are done.

6.5.2 From Reset Petri Nets to Senescent GTRS

Lemma 6.3. For a given senescent GTRS G with lifespan k, control states psrc and psnk, and
tree Tsrc, there is a lifespan restricted run

(psrc, Tsrc) → · · · → (psnk, T )

for some T of G if there is a run

((psrc, 1), πsrc) −→∗ ((psnk, 1), π)

of NG for some π0 ≤ π.

Proof. Take a run

(β1, π1) −→∗ (β2, π2) −→∗ · · · −→∗ (βh, πh)

of NG where (β1, π1) , . . . , (βh, πh) are all configurations with a control state in S that occur on
the run.

By induction from i = 1 to i = h we build a run of G witnessing the control state reachability
property. We assume by induction that for βi = (p1, b1) . . . (pm, bm) that for all m < j ≤ k and

r′ ∈ R, we have πi

(
xr′

j

)
= 0. Moreover, we have contexts C1, . . . , Cm that are intuitively the

trees corresponding to the runs of G built so far (where Ci is paired with the run over control
state pi), but where the independent sub-trees (represented by

a
from the runs of the GI used

to build the run) are context variables. Since the runs were built to leave these independent sub-
trees uninspected, they can be replaced by any tree matching the rule which generated them.
More precisely, we have contexts C1, . . . , Cm such that for all sequences T⃗1, . . . , T⃗m where for
all 1 ≤ j ≤ m we have

T⃗j = T⃗r1,j , . . . , T⃗rℓ,j

and for all r

T⃗r,j = T 1
r,j , . . . , T

π(xr
j)

r,j ∈ L(T )
π(xr

j)

where T is the tree automaton on the RHS of r, we have a run ρi of G reaching a configuration(
p1, C1

[
T⃗1

])
.

and for all 1 < j ≤ m, if bj = 1, we have a run(
pj−1, Cj−1

[
T⃗1, . . . , T⃗j−1

])
→∗

(
pj , Cj

[
T⃗1, . . . , T⃗j

])
of G and if bj = 0, we have a run(

pj , Cj−1

[
T⃗1, . . . , T⃗j−1

])
→∗

(
pj , Cj

[
T⃗1, . . . , T⃗j

])
.
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That is, we have a run to
(
pm, Cm

[
T⃗1, . . . , T⃗m

])
which may have single transition gaps where

control state changes occur (in which case bj = 0).
In the base case we have β1 = (psrc, 1) and π1 = πsrc and the induction hypothesis is

satisfied by

ρ1 = (psrc, C1[T1])

where C1 is the context containing only a root node labelled by a variable and T1 is necessarily
Tsrc.

Now we consider the inductive step. Take the run of NG

(βi, πi) −→∗ (βi+1, πi+1)

and fix βi = (p1, b1) . . . (pm, bm) and C1, . . . , Cm by induction. There are two cases: either the
run uses transition in ∆Add or ∆Res.

1. If the run uses ∆Add rules then we have a run of the form

(βi, πi) −−−−−→
decr(xr

1)

((
βi+1, q

r
β

)
, πi − r

)
−→∗ ((βi+1, f

r
β

)
, πi+1

)
−→ (βi+1, πi+1)

where βi+1 = βi ++ β. Moreover, for the GI defined from r and β = (p′1, b
′
1) . . . (p

′
m′ , b′m′),

we have a run with the Parikh image (η⃗1, . . . , η⃗m′) from (p′1, T ) where T is accepted by
the RHS of r and the run has the interface

(p′1, b
′
1, η⃗1) . . . (p

′
m′ , b′m′ , η⃗m′)

such that

(βi+1, πi+1) = (βi, πi − r) ++ (p′1, b
′
1, η⃗1) . . . (p

′
m′ , b′m′ , η⃗m′) .

From the run over GI , by creating context variable nodes when (r′, j) characters are

output, we obtain contexts C ′
1, . . . , C

′
m′ such that for all T⃗ ′

1, . . . , T⃗
′
m′ where for all 1 ≤ j ≤

m we have

T⃗ ′
j = T⃗ ′

r1,j , . . . , T⃗
′
rℓ,j

and for all r′

T⃗ ′
r′,j = Y 1

r′,j , . . . , Y
ηr′
j

r′,j ∈ L(T ′)
ηr′
j

where T ′ is the tree automaton on the RHS of r′, we have a run

(p′1, T ) →∗
(
p′1, C

′
1

[
T⃗ ′
1

])
and for all 1 < j ≤ m, if b′j = 1, we have a run(

p′j−1, C
′
j−1

[
T⃗ ′
1, . . . , T⃗

′
j−1

])
→∗

(
p′j , C

′
j

[
T⃗ ′
1, . . . , T⃗

′
j

])
of G and if b′j = 0, we have a run(

p′j , C
′
j−1

[
T⃗ ′
1, . . . , T⃗

′
j−1

])
→∗

(
p′j , C

′
j

[
T⃗ ′
1, . . . , T⃗

′
j

])
.
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Using C1, . . . , Cm and C ′
1, . . . , C

′
m′ we can establish the induction hypothesis for (i+ 1).

We write
Cj

[
. . . , T 1

r,1, . . .
]

to single out T 1
r,1 in Cj

[
T⃗1, . . . , T⃗j

]
. Note that since the induction hypothesis holds for

all T 1
r,1 we can select it to match T accepted by the RHS of r used in the definition of

C ′
1, . . . C

′
m′ above. Although there are some details we take care of below, the essential

idea is to obtain new contexts, satisfying the induction hypothesis, by inserting C ′
j in

place of T 1
r,1 in Cj .

There are two (similar) cases, depending on whether m ≤ m′. In both cases we have that
the first mmin = min(m,m′) tuples of βi+1 are

(p1, b
′′
1) . . .

(
pmmin , b

′′
mmin

)
,

where b′′j = 1 iff either b1 = 1 or b′1 = 1. Note, since βi and β are compatible, there
is agreement on the control states. Let x be the context variable corresponding to the

position of T 1
r,1 in each Cj

[
T⃗1, . . . , T⃗j

]
(using the same x in each context). We write

Cj [. . . , x, . . .] to isolate this variable, leaving all other variables untouched. To satisfy
the induction for all 1 ≤ j ≤ mmin we take the context Cj

[
. . . , C ′

j , . . .
]
(with a suitable

variable ordering to make the comparison with πi+1).

Then, we first build ρi+1 by concatenating to ρi the run(
p1, C1

[
. . . , T 1

r,1, . . .
])

→∗
(
p1, C1

[
. . . , C ′

1

[
T⃗ ′
1

]
, . . .

])
by simply appending the run to C ′

1 above to ρi.

Next, for all 1 < j ≤ mmin, if b
′′
j = 1, we can, if bj = 1 (implying b′j = 0), build(

pj−1, Cj−1

[
. . . , C ′

j−1

[
T⃗ ′
1, . . . , T⃗

′
j−1

]
, . . .

])
→∗(

pj , Cj

[
. . . , C ′

j−1

[
T⃗ ′
1, . . . , T⃗

′
j−1

]
, . . .

])
→∗(

pj , Cj

[
. . . , C ′

j

[
T⃗ ′
1, . . . , T⃗

′
j

]
, . . .

])
and if bj = 0 (implying b′j = 1), build(

pj−1, Cj−1

[
. . . , C ′

j−1

[
T⃗ ′
1, . . . , T⃗

′
j−1

]
, . . .

])
→∗(

pj , Cj−1

[
. . . , C ′

j

[
T⃗ ′
1, . . . , T⃗

′
j

]
, . . .

])
→∗(

pj , Cj

[
. . . , C ′

j

[
T⃗ ′
1, . . . , T⃗

′
j

]
, . . .

])
.

The remaining case is when b′′j = b′j = bj = 0 and we build(
pj , Cj−1

[
. . . , C ′

j−1

[
T⃗ ′
1, . . . , T⃗

′
j−1

]
, . . .

])
→∗(

pj , Cj−1

[
. . . , C ′

j

[
T⃗ ′
1, . . . , T⃗

′
j

]
, . . .

])
→∗(

pj , Cj

[
. . . , C ′

j

[
T⃗ ′
1, . . . , T⃗

′
j

]
, . . .

])
.

The remainder of the cases are below.
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(a) When m ≤ m′. . . we have

βi+1 = (p1, b
′′
1) . . . (pm, b′′m)

(
p′m+1, b

′
m+1

)
. . . (p′m′ , b′m′)

and it remains to define contexts for (m+1) ≤ j ≤ m′, which we set for each j to be

Cm

[
. . . , C ′

j , . . .
]

with the runs, when b′j = 1,(
p′j−1, Cm

[
. . . , C ′

j−1

[
T⃗ ′
1, . . . , T⃗

′
j−1

]
, . . .

])
→∗(

p′j , Cm

[
. . . , C ′

j

[
T⃗ ′
1, . . . , T⃗

′
j

]
, . . .

])
and if bj = 0, we have a run(

p′j , Cm

[
. . . , C ′

j−1

[
T⃗ ′
1, . . . , T⃗

′
j−1

]
, . . .

])
→∗(

p′j , Cm

[
. . . , C ′

j

[
T⃗ ′
1, . . . , T⃗

′
j

]
, . . .

])
.

(b) When m > m′ we have

βi+1 = (p1, b
′′
1) . . . (pm′ , b′′m′) (pm′+1, bm′+1) . . . (pm, b′m)

and it remains to define contexts for (m′ + 1) ≤ j ≤ m′, which we set for each j to
be

Cj [. . . , Cm′ , . . .]

with the runs, when bj = 1,(
pj−1, Cj−1

[
. . . , C ′

m′

[
T⃗ ′
1, . . . , T⃗

′
m′

]
, . . .

])
→∗(

p′j , Cj

[
. . . , C ′

m′

[
T⃗ ′
1, . . . , T⃗

′
m′

]
, . . .

])
and if bj = 0, we have a run(

p′j , Cj−1

[
. . . , C ′

m′

[
T⃗ ′
1, . . . , T⃗

′
m′

]
, . . .

])
→∗(

p′j , Cj

[
. . . , C ′

m′

[
T⃗ ′
1, . . . , T⃗

′
m′

]
, . . .

])
.

To check that the above defined contexts have the right number of variables to be in
accordance with πi+1 one only need observe that we replaced the tree T 1

r,1 with the new
context (matching πi − r), then inserted the new contexts (C ′

j) corresponding to the
addition of (η⃗1, . . . , η⃗m′) new trees, matching

(βi+1, πi+1) = (βi, πi − r) ++ (p′1, b
′
1, η⃗1) . . . (p

′
m′ , b′m′ , η⃗m′) .

2. If the run uses ∆Res then we have a run

(βi, πi) −→
(�βi+1

1 , πi

)
−→∗

(�βi+1

k , πi+1

)
−→ (βi+1, πi+1)
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where βi = (p1, b1) (p2, b2) . . . (pm, bm) and βi+1 = (p2, b2) . . . (pm, bm) and b2 = 1. Fur-
thermore, for all r ∈ R it is the case that for all 1 ≤ j < m we have πi+1

(
xr
j

)
≤ πi

(
xr
j+1

)
and for all m ≤ j ≤ k we have πi+1

(
xr
j

)
= 0.

We obtain C ′
2, . . . , C

′
m to satisfy the induction from the C1, . . . , Cm we have by the in-

duction hypothesis. For each rule r, we can fix a tree Tr that is accepted by the RHS of
r (we made this benign assumption at the beginning of the section). Thus, intuitively,
since C ′

j has fewer holes than Cj we can simply plug each Cj with the Tr to obtain C ′
j .

Thus we define for all 2 ≤ j ≤ m the context C ′
j such that for all T⃗ ′

2, . . . , T⃗
′
m with for all

2 ≤ j′ ≤ m

T⃗ ′
j′ = T⃗ ′

r1,j′ , . . . , T⃗
′
rℓ,j′

and for all r

T⃗ ′
r,j′ = Y 1

r,j′ , . . . , Y
πi+1(xr

j′−1)
r,j′ ∈ L(T )

πi+1(xr
j′−1)

where T is the tree automaton on the RHS of r we have

C ′
j

[
T⃗ ′
2, . . . , T⃗

′
m

]
= Cj

[
T⃗1, . . . , T⃗m

]
where T⃗1, . . . , T⃗m is given by

T⃗1 = T⃗r1,1, . . . , T⃗rℓ,1

and for all r

T⃗r,1 = Tr, . . . , Tr ∈ L(T )
πi(x

r
1)

and for all 2 ≤ j′ ≤ m

T⃗j′ = T⃗r1,j′ , . . . , T⃗rℓ,j′

and for all r

T⃗r,j′ = Y 1
r,j′ , . . . , Y

πi(xr
j′)

r,j′ , Tr, . . . , Tr ∈ L(T )
πi(xr

j′)

where T is the tree automaton on the RHS of r.

To check that C ′
2, . . . , C

′
m satisfy the induction hypothesis we first construct ρi+1 com-

bining ρi with (since b2 = 1) (
p1, C1

[
T⃗1

])
→∗

(
p2, C

′
2

[
T⃗ ′
2

])
observing that the trees in T⃗1 are out of the scope of the quantification and thus fixed.
The existence of partial runs for all 1 < j ≤ m follows directly from the definition of
C ′

2, . . . , C
′
m and the induction hypothesis (substituting Tr where appropriate as above).

Thus we are able to maintain the induction hypothesis. When we consider (βh, πh) we thus get
from ρh and βh = (psnk, 1) a run

(psrc, Tsrc) →∗
(
psnk, C1

[
T⃗1

])
for some C1 and any appropriate sequence T⃗1 (of which one necessarily exists by assumption).
This witnesses the reachability property as required.
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7 Conclusion

We have introduced a sub-class of ground tree rewrite systems with state that has a decidable
reachability problem. Our sub-class, senescent ground tree rewrite systems, takes scope-bounded
pushdown systems as inspiration. In this setting, a node of the tree “ages” whenever the control
state changes. A node that reaches a fixed age without being rewritten becomes fossilised and
thus may no longer be changed. This model generalises weakly extended ground tree rewrite
systems by allowing an arbitrary number of control state changes.

We showed that the control state reachability problem is inter-reducible to coverability of re-
set Petri-nets, and is thus Fω-complete. This is a surprising increase in complexity compared to
scope-bounded multi-pushdown systems for which the analogous problem is PSPACE-complete.

Thus, we obtain a natural model that captures a rich class of behaviours while maintaining
decidability of reachability properties. Moreover, since extending the control state reachability
problem to the regular reachability problem results in undecidability, we know we are close to
the limits of decidability.

For future work, we would like to investigate the encoding of additional classes of multi-stack
pushdown systems (e.g. ordered, phased-bounded, and relaxed notions of scope-bounding, as
well as with added features such as dynamic thread creation) into senescent GTRS. This may
lead to further generalisations of our model.

It has been shown by tools such as FAST [8] and TREX [2] that high (even undecidable)
complexities do not preclude the construction of successful model checkers. Hence, we would
like to study practical verification algorithms for our model and their implementation, which
may use the aforementioned tools as components.

Acknowledgements We are grateful for helpful and informative discussions with Anthony
Lin, Sylvain Schmitz, Christoph Haase, and Arnaud Carayol. This work was supported by the
Engineering and Physical Sciences Research Council [EP/K009907/1].
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