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Abstract

The domination number, domn(.A4,n), of a heuristic A for the Asymmetric TSP is the
maximum integer d = d(n) such that, for every instance Z of the Asymmetric TSP on
n cities, A produces a tour T which is not worse than at least d tours in Z including T
itself. Two upper bounds on the domination number are proved.

1 Introduction

The Asymmetric Traveling Salesman Problem (ATSP) is stated as follows. Given a weighted
complete digraph (K, w), find a Hamilton cycle (called a tour) in K} of minimum cost. Here
the weight function w is a mapping from A(K}), the set of arcs in K}, to the set of reals.
The weight of an arc xy of K is w(x,y). The weight w(D) of a subdigraph D of K is the
sum of the weights of arcs in D.

It is well known that most combinatorial optimization problems including the ATSP are
NP-hard. Due to the lack of polynomial time algorithms to solve NP-hard problems to
optimality, researchers and practitioners often use various heuristics such as local search and
genetic algorithms that usually provide good solutions for instances that arise in practice.
Very often heuristics do not have any theoretical guarantee for the optimization problem
under consideration, i.e., for some instances of the problem the value of heuristic solution is
arbitrary far from the optimum. Hence, normally various heuristics for the same problem
are compared in computational experiments. The outcomes of computational experiments
heavily rely on the authors choice of families of instances and, thus, are non-objective.

With this state of affairs in mind, Glover and Punnen [3] suggested a new approach for
evaluation of heuristics that compares heuristics according to their so-called domination ratio.
We define this notion only for the ATSP since its extension to other problems is obvious.
The domination number, domn(A,n), of a heuristic A for the ATSP is the maximum integer
d = d(n) such that, for every instance Z of the ATSP on n cities, A produces a tour T
which is not worse than at least d tours in Z including 7" itself. The ratio domr(A,n) =
domn(A,n)/(n — 1)!, i.e., the domination number divided by the total number of tours, is
the domination ratio of A.

It is known the nearest neighbor algorithm for the ATSP is of domination number 1 (first
proved in [7]). This means that for every n > 2, there is an instance of ATSP on n vertices,
for which the nearest neighbor algorithm finds the unique worst possible tour. Since the
number of distinct tours in an n-vertex complete digraph is (n — 1)!, we see that the nearest
neighbor algorithm is of domination ratio 1/(n — 1)!. There are many ATSP algorithms of



domination number at least (n — 2)! [§], i.e., in the worst case they guarantee that their tour
is at least as good as (n — 2)! — 1 other tours.

Clearly, the domination ratio is well defined for every heuristic and, for the same opti-
mization problem, a heuristic with higher domination ratio may be considered a better choice
than a heuristic with lower domination ratio. Ben-Arieh et al. [1] compared two heuristics for
the generalized ATSP. The heuristics performed equally well in computational experiments,
but it was proved that one of them has a significantly larger domination number. For the
Symmetric TSP, Punnen, Margot and Kabadi [9] showed that after a polynomial number of
iterations the domination number of the best improvement 2-Opt that uses small neighbor-
hoods significantly exceeds that of the best improvement local search based on neighborhoods
of much larger cardinality. Punnen, Margot and Kabadi [9] and other papers have led Gutin
and Yeo [6] to the conclusion that the cardinality of the neighborhood used by a local search
is not the right measure of the effectiveness of the local search. Domination ratio, along with
some other parameters such as the diameter of the neighborhood digraph (see Gutin, Yeo
and Zverovitch [8]), provide a much better measure.

Already Glover and Punnen [3] were interested in the possible range of the domination
number of polynomial time ATSP heuristics. There are several papers devoted to lower
bounds on the maximum domination number of such heuristics, for references see [8]. In this
note we concentrate on upper bounds.

In [5], upper bounds were obtained for the cardinality of polynomial time searchable
ATSP neighborhoods. In this note we show that minor changes in the proofs of [5] lead
us to stronger and more general results on the maximum possible domination number of
ATSP heuristics when the running time is restricted. We also prove a result, Theorem 2.4,
that gives an absolute upper bound of the domination number of polynomial time ATSP
heuristics. Theorem 2.4 improves Theorem 20 in [9]. Our proof is a modification of the proof
of Theorem 20 in [9)].

2 Upper Bounds

It is realistic to assume that any ATSP algorithm spends at least one unit of time on every
arc of the complete digraph K that it considers. We use this assumption in the rest of this
section.

Theorem 2.1 Let A be an ATSP heuristic that runs in time at most t(n). Then the domi-
nation number of A does not exceed maxi <<, (t(n)/n')" .

Proof: Let D = (K},w) be an instance of ATSP and let H be the tour that A returns,
when its input is D. Let DOM(H) denote all tours in D which are not lighter than H
including H itself. We assume that D is a worst instance for A, namely domn(A4,n) =
|DOM (H)|. Since A is arbitrary, to prove this theorem, it suffices to show that |[DOM (H)| <
max <p/<n (t(n) /n')".

Let E denote the set of arcs in D, which A actually examines; observe that |E| < t(n) by
the assumption above. Let A(H) be the set of arcs in H. Let F' be the set of arcs in H that
are not examined by A, and let G denote the set of arcs in D — A(H) that are not examined
by A.

We first prove that every arc in F' must belong to each tour of DOM (H). Assume that
there is a tour H' € DOM (H) that avoids an arc a € F. If we assign to a a very large weight,
H’ becomes lighter than H, a contradiction.



Similarly, we prove that no arc in G can belong to a tour in DOM (H). Assume that
a € G and a is in a tour H' € DOM (H). By making a very light (possibly negative), we can
ensure that w(H') < w(H), a contradiction.

Now let D’ be the digraph obtained by contracting the arcs in F' and deleting the arcs in
G, and let n/ be the number of vertices in D’. Note that every tour in DOM (H) corresponds
to a tour in D’ and, thus, the number of tours in D’ is an upper bound on |[DOM (H)|. In a
tour of D', there are at most d* (i) possibilities for the successor of a vertex i, where d* (i) is
the out-degree of i in D’. Hence we obtain that

]DOM(H)‘ < ﬁd+(i) < (;id+(i)>n, S (t(n)>n |

where we applied the arithmetic-geometric mean inequality. o

Corollary 2.2 Let A be an ATSP heuristic that runs in time at most t(n). Then the dom-
ination number of A does not exceed max{e™/¢ (t(n)/n)"}, where e is the basis of natural
logarithms.

Proof: Let U(n) = maxj<,<,(t(n)/n’)". By differentiating f(n’) = (t(n)/n’)" with respect
to n’ we can readily obtain that f(n’) increases for 1 < n’ < t(n)/e, and decreases for
t(n)/e < n’ < n. Thus, if n < t(n)/e, then f(n') increases for every value of n’ < n and
U(n) = f(n) = (t(n)/n)™. On the other hand, if n > ¢(n)/e then the maximum of f(n') is
for n’ = t(n)/e and, hence, U(n) = et(™/e, ©

The next assertion follows directly from the proof of Corollary 2.2.

Corollary 2.3 Let A be an ATSP heuristic that runs in time at most t(n). For t(n) > en,
the domination number of A does not exceed (t(n)/n)".

Note that the restriction ¢(n) > en is important since otherwise the bound of Corollary
2.3 can be invalid. Indeed, if t(n) is a constant, then for n large enough the upper bound
becomes smaller than 1, which is not correct since the domination number is always at least
1.

It is proved in [4] that there are O(n)-time ATSP algorithms of domination number 20",
It follows from the last corollary that this result cannot be improved.

Theorem 2.4 Unless P=NP, there is no polynomial time ATSP algorithm of domination
number at least (n — 1)! — [n —n®]! for any constant o < 1.

Proof: Assume that there is a polynomial time algorithm H with domination number at
least (n —1)! — [n —n®]! for some constant v < 1. Choose an integer s > 1 such that 1 < a.

Consider a weighted complete digraph (X', w). We may assume that all weights are non-
negative as otherwise we may add a large number to each weight. Choose any pair of distinct
vertices v and v in K. Consider another complete digraph D on n® —n vertices, in which all
weights are 0 and which is vertex disjoint from K. Add all possible arcs between K and D
such that the weights of all arcs coming into u and going out of v are 0 and the weights of all
other arcs are M, where M is larger than n times the maximum weight in (K, w). Let the



resulting weighted complete digraph be denoted by Ks and note that we have now obtained
an instance (Ks,w’) of ATSP.

Apply H to (K}s,w’) (observe that H is polynomial in n for (K;.,w’)). Notice that
there are exactly (n® — n)! Hamilton cycles in (K., w') of weight L, where L is the weight
of a lightest Hamilton (u,v)-path in K. Each of the (n® — n)! Hamilton cycles is obviously
optimal. Observe that the domination number of H on K} is at least (n®—1)!— [n®—(n®)* |l

However, for sufficiently large n, we have
(=1 =n =N >m" =) =n°—n)+1

as n*® > n+1 for n large enough. Thus, a Hamilton cycle produced by H is always among the
optimal solutions (for n large enough). This means that we can obtain a lightest Hamilton
(u,v)-path in K in polynomial time, which is impossible since the lightest Hamilton (u, v)-
path problem is a well-known NP-hard problem. We have arrived at a contradiction. o
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