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Abstract

L. Volkmann, Discrete Math. 245 (2002) 19-53 posed the following question. Let
4 ≤ m ≤ n. Are there strong n-partite tournaments, which are not themselves tour-
naments, with exactly n − m + 1 cycles of length m? We answer this question in
affirmative. We raise the following problem. Given m ∈ {3, 4, . . . , n}, find a charac-
terization of strong n-partite tournaments having exactly n −m + 1 cycles of length
m.
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1 Introduction

We use terminology and notation of [1]; all necessary notation and a large part of termi-
nology used in this paper are provided in the next section.

A very informative paper [11] of L. Volkmann is the latest survey on cycles in an
important class of digraphs, multipartite tournaments. Cycles in multipartite tournaments
were earlier overviewed in [2, 6, 8]. Along with description of a large number of results
on cycles in multipartite tournaments, L. Volkmann [11] poses several open problems. In
this paper, we solve one of them.

Problem 1.1 (Problem 2.27 in [11]) Let 4 ≤ m ≤ n. Are there strong n-partite tour-
naments, which are not themselves tournaments, with exactly n −m + 1 cycles of length
m?

This problem is a natural question due to the following reasons:

(i) According to Theorem 2.24 in [11], every strong n-partite tournament, n ≥ 3, has
at least n−m + 1 cycles of length m for 3 ≤ m ≤ n;
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(ii) By reversing the arcs of the unique Hamilton path of the transitive tournament on
n vertices, we obtain a strong tournament with exactly n −m + 1 cycles of length m for
every 3 ≤ m ≤ n (see [9]);

(iii) For every odd n ≥ 3, there exists a strong n-partite tournament with n− 2 cycles
of length 3 (see [5] or Theorem 2.26 in [11]).

One may wish to strengthen Problem 1.1 as follows.

Problem 1.2 Let 3 ≤ m ≤ n and n ≥ 4. Are there strong n-partite tournaments, which
are not themselves tournaments, with exactly n−m + 1 cycles of length m for two values
of m?

In Section 3, we solve Problem 1.1 in affirmative. We do it by exhibiting a simple
family of multipartite tournaments. We also show that such multipartite tournaments
cannot have m-cycles with a pair of vertices from the same partite set. This result might
well be of interest for solving the following open problem: Given m ∈ {3, 4, . . . , n}, find a
characterization of strong n-partite tournaments having exactly n−m+1 cycles of length
m. In Section 4 we show that Problem 1.2 has a negative answer for m ∈ {n− 1, n}.

2 Terminology, notation and known results

A digraph obtained from an undirected graph G by replacing every edge of G with a
directed edge (arc) with the same end-vertices is called an orientation of G. An oriented
graph is an orientation of some undirected graph. A tournament is an orientation of a
complete graph, and an n-partite tournament is an orientation of a complete n-partite
graph. Partite sets of complete graphs become partite sets of n-partite tournaments.

The terms cycles and paths mean simple directed cycles and paths. A cycle of length k
is a k-cycle. A digraph D is strongly connected (or strong) if for every ordered pair x, y of
vertices in D there exist paths from x to y. For a set X of vertices of a digraph D, D〈X〉
denotes the subdigraph of D induced by X.

For sets T, S of vertices of a digraph D = (V,A), T→S means that for every vertex
t ∈ T and for every vertex s ∈ S, we have ts ∈ A, and T⇒S means that for no pair
s ∈ S, t ∈ T , we have st ∈ A. While for oriented graphs T→S implies T⇒S, this is not
always true for general digraphs. If u→v (i.e., uv ∈ A), we say that u dominates v and v
is dominated by u.

The following three results on cycles in strong n-partite tournaments are of interest
for this paper.

Theorem 2.1 [7] Every partite set of a strong n-partite tournament, n ≥ 3, contains a
vertex which lies on an m-cycle for each m ∈ {3, 4, . . . , n}.
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Theorem 2.2 [5] Every vertex in a strong n-partite tournament, n ≥ 3, belongs to a cycle
that contains vertices from exactly q partite sets for each q ∈ {3, 4, . . . , n}.

Theorem 2.3 [11] Every strong n-partite tournament, n ≥ 3, has at least n − m + 1
cycles of length m for 3 ≤ m ≤ n.

3 Results related to Problem 1.1

The following theorem solves Problem 1.1 in affirmative.

Proposition 3.1 Let D be an n-partite tournament and let 4 ≤ m ≤ n. Let V1, V2, . . . , Vn

be partite sets of D and let vi ∈ Vi, i = 1, 2, . . . , n. If D satisfies the following conditions,
then it has exactly n−m + 1 cycles of length m.

1) |Vi| = 1 for every i 6= n−m + 2.

2) C = v1v2 . . . vnv1 is an n-cycle.

3) For every s ∈ {1, 2, . . . , n− 2} and r ∈ {s + 2, s + 3, . . . , n}, we have vr → vs.

4) vn → (Vn−m+2 − {vn−m+2})⇒{v1, v2, . . . , vn−1}.

Proof: By the conditions 2 and 3, the only path from vertex vs to vr, r > s in
D〈V (C)〉 is vsvs+1 . . . vr, which has r + 1− s vertices. Therefore, D〈V (C)〉 has n−m + 1
cycles of length m. It is remain to show that there is no m-cycle C ′ that contains a vertex
x ∈ Vn−m+2−{vn−m+2}. Assume that C ′ = xx1x2 . . . xm−1x is an m-cycle through x. By
the conditions 1 and 4 the only vertex that dominates a vertex in Vn−m+2 − {vn−m+2} is
vn. Therefore all the vertices in V (C ′)− {x} are in V (C). Also xm−1 = vn.

Let x1 = vk. By the conditions 2 and 3 the only path in D〈V (C)〉 from vk to vn is
vkvk+1 . . . vn, which has n+1−k vertices. So we have n+1−k = m−1, i.e., k = n−m+2.
But we have x → x1 = vn−m+2. This is a contradiction because vn−m+2 and x are in the
same partite set. From the above we conclude that D has exactly n − m + 1 cycles of
length m. 2

It would be interesting to solve the following natural problem.

Problem 3.2 Let m ∈ {3, 4, . . . , n}. Find a characterization of strong n-partite tourna-
ments having exactly n−m + 1 cycles of length m.

This problem seems to be especially interesting for the case of Hamilton cycles, i.e.,
m = n. Tournaments with a unique Hamilton cycle were first characterized by Douglas
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[3]. Douglas’s characterization is not simple even though the number of such tournaments
on n vertices equals exactly the (2n− 6)th Fibonacci number [4, 10].

The following theorem might well be of interest for solving Problem 3.2.

Theorem 3.3 Let m ∈ {3, 4, . . . , n} and let D be a strong n-partite tournament that has
an m-cycle C containing vertices from less than m partite sets. Then D has more than
n−m + 1 cycles of length m.

Proof: If m = n, then by Theorem 2.1, there is another m-cycle that contains vertices
from the partite set that does not have intersection with V (C).

We prove the theorem by induction on ` = n − m + 1 ≥ 1. The above argument
provides the basis of our induction (` = 1). Now assume that ` ≥ 2. Let V ′ be a maximal
set such that V (C) ⊆ V ′, V ′ does not contains vertices from all partite sets, and D〈V ′〉
is strong. If D〈V ′〉 contains vertices from n− 1 partite sets then by induction hypothesis
D〈V ′〉 has more than ` − 1 = n −m cycles of length m. By Theorem 2.1 the remaining
partite set has a vertex that is contained in an m-cycle. These imply that D has more
than n−m + 1 cycles of length m. In particular, this argument extends the basis of our
induction to ` = 2.

Now we may assume that ` ≥ 3 and V ′ contains vertices from q ≤ n − 2 partite sets.
Let t1 be a vertex in V (D)− V ′. Without loss of generality, assume that V ′⇒t1. Since D
is strong there is a path from t1 to a vertex x ∈ V ′. Let P = t1t2 . . . trx be such a path
and assume that P is of minimum length. Therefore, we have V ′⇒{t2, t3, . . . , tr−1}. If
tr−1 and tr are in partite sets that have intersection with V ′, then we can add tr−1 and
tr to V ′, a contradiction. Therefore one of them is in a partite set that does not have
intersection with V ′. If q ≤ n− 3 we can still add tr−1 and tr to V ′, a contradiction.

Therefore the remaining case is q = n− 2, and tr−1 and tr are in two different partite
sets that do not have intersection with V ′. By our assumption we have tr → V ′→tr−1→tr.
Now consider C. We can find two distinct m-cycles that contain tr−1 and tr, and some
vertices from C. By induction hypothesis, D〈V ′〉 has more than `−2 = n−m−1 distinct
m-cycles. These imply that D has more than n−m + 1 cycles of length m. 2

Corollary 3.4 Let D be a strong n-partite tournament and let D have exactly n−m + 1
cycles of length m for some m ∈ {3, 4, . . . , n}. Then every m-cycle of D has no pair of
vertices from the same partite set.

4 Results related to Problem 1.2

In this section we show that Problem 1.2 has a negative answer for m ∈ {n − 1, n}.
We denote, by UCn, the set of all strong n-partite tournaments, n ≥ 4, which are not
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themselves tournaments, with exactly one cycle of length n.

Lemma 4.1 If D ∈ UCn, n ≥ 4, and C is its unique n-cycle, then there is a vertex
y ∈ D − V (C) such that D〈V (C) ∪ {y}〉 is strong.

Proof: Let D ∈ UCn and let C be its unique n-cycle. By Corollary 3.4, C contains
a vertex from every partite set of D. Let V1, V2, . . . , Vn be partite sets of D and let
C = v1v2 . . . vnv1, vi ∈ Vi, i = 1, 2, . . . , n.

Assume that there is no vertex y ∈ D−V (C) for which D〈V (C)∪{y}〉 is strong. Then
the following two sets S and T are non-empty: S (T ) is the set of vertices in D − V (C)
that do not dominate (are not dominated by) any vertex in C. Since D is strong and
V (C) ∪ S ∪ T = V (D), there exist vertices u ∈ S and w ∈ T such that u → w. Assume
that u ∈ Vi, w ∈ Vj (i 6= j). If i 6= j − 2, then uwvj+1vj+2 . . . vj−2u is an n-cycle of D
distinct from C, which is impossible. If i = j − 2, then uwvj−1vj . . . vj−4u is an n-cycle of
D distinct from C, which is impossible. 2

Theorem 4.2 There are no strong n-partite tournaments, n ≥ 4, which are not them-
selves tournaments, with exactly one cycle of length n and two cycles of length n− 1.

Proof: Let D ∈ UCn. By Corollary 3.4, the unique n-cycle in D is C = v1v2 . . . vnv1,
where vi ∈ Vi, i = 1, 2, . . . , n. Let y be a vertex in D − V (C) such that D〈V (C) ∪ {y}〉
is strong. By Theorem 2.2, y lies in a cycle C ′ of D〈V (C) ∪ {y}〉 that contains vertices
from exactly n− 1 partite sets. If C ′ contains vi and vi belongs to the same partite set as
y, then the length of C ′ is n, a contradiction. Thus, C ′ is an (n− 1)-cycle. It remains to
observe that D〈V (C)〉 has at least two (n− 1)-cycles by Theorem 2.3. 2
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