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Abstract

We corrected proofs of two results on the greedy algorithm for the Symmetric TSP
and answered a question in Gutin and Yeo, Oper. Res. Lett. 30 (2002), 97–99.
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1 Introduction

Many combinatorial optimization problems can be formulated as follows [7]. We are given a
pair (E,F), where E is a finite set and F is a family of subsets of E, and a weight function c
that assigns a real weight c(e) to every element of E. The weight c(S) of S ∈ F is defined as
the sum of the weights of the elements of S. It is required to find a maximal (with respect to
inclusion) set B ∈ F of minimum weight. The greedy algorithm starts from an element of E
of minimum weight that belongs to a set in F . In every iteration the greedy algorithm adds
a minimum weight unconsidered element e to the current set X provided X ∪ {e} is a subset
of a set in F .

The sequence [5, 4, 1] of papers studied the greedy algorithm for the Asymmetric and
Symmetric Traveling Salesman Problems (ATSP and STSP) and wide classes of combinatorial
optimization problems that include both TSPs. It was proved in [5] that for each n ≥ 3, there
is an instance of ATSP on n vertices for which the greedy algorithm produces the unique
worst possible solution. In [4] we introduced a wide class of optimization problems, which we
called anti-matroids (they are defined later), for which the greedy algorithm similarly fails.
The Assignment Problem and ATSP were proved to be anti-matroids by showing that they
belong to a special family of anti-matroids (I-anti-matroids, also defined later). Erroneously,
we also claimed that STSP is also an I-anti-matroid. However, this is not true as we show in
Proposition 2.1 of this paper. We also prove, in Theorem 2.2, that STSP is an anti-matroid
by giving a direct proof. (It is worth pointing out that anti-matroids defined in [4] form a
combinatorial structure different to the one with same name used in some papers, see, e.g.,
[2].)

Both Proposition 2.1 and Theorem 2.2 answer an open question in [4] to provide a well-
studied combinatorial optimization problem which is an anti-matroid, but not an I-anti-
matroid. Another proof that STSP is anti-matroid is given in [1], but the proof there is
indirect and relatively long. Our proof of Theorem 2.2 is also of interest since it can be used
to correct the proof of Theorem 4.3 in [1] (see Theorem 2.3) for STSP, which is incorrect due
to the fact that STSP is not an I-anti-matroid. (The proof of Theorem 4.3 in [1] is correct
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for ATSP.) Notice that the result of Theorem 2.3 is stronger (by a factor of n) than Theorem
4.3 in [1] for STSP.

Interestingly, there are numerous STSP heuristics which always find a tour that is better
than a large number of other tours, see, e.g., [5, 6].

An anti-matroid is a pair (E,F) such that there is an assignment of weights to the elements
of E for which the greedy algorithm for finding a maximal set B in F of minimum weight
constructs the unique maximal set of maximum weight.

An I-independence family is a pair consisting of a finite set E and a family F of subsets
(called independent sets) of E such that (I1)-(I3) are satisfied.

(I1) the empty set is in F ;

(I2) If X ∈ F and Y is a subset of X, then Y ∈ F ;

(I3) All maximal sets of F (called bases) are of the same cardinality k.

If S ∈ F , then let I(S) = {x : S ∪ {x} ∈ F} − S. This means that I(S) contains all
elements (different from S), which can be added to S, in order to have an independent set.
An I-independence family (E,F) is an I-anti-matroid if

(I4) There exists a base B′ ∈ F , B′ = {x1, x2, . . . , xk}, such that the following holds for
every base B ∈ F , B 6= B′,

k−1∑

j=0

|I(x1, x2, . . . , xj) ∩B| < k(k + 1)/2.

Consider STSP on n vertices, n ≥ 3. We recall that STSP is the problem of finding a
minimum weight Hamilton cycle in a weighted complete graph Kn. We view STSP as an
I-independence family whose independent sets are collections of disjoint paths of Kn and
Hamilton cycles in Kn. We will represent independent sets of STSP as sets of their edges.
We denote the vertices of Kn 1, 2, . . . , n and call Hamilton cycles tours.

2 Results

Proposition 2.1 For n ≥ 4, STSP is not an I-anti-matroid.

Proof: Let T ′ = {e1, e2, . . . , en}, where ei = {i, i + 1} for i < n and en = {n, 1}. Let
T = T ′ ∪ {f1, f3} − {e1, e3}, where f1 = {1, 3} and f3 = {2, 4}. Since we can consider T ′ as
an arbitrary tour (i.e., a base) of STSP, if STSP was an I-anti-matroid, we would have

n−1∑

j=0

|I(e1, e2, . . . , ej) ∩ T | < n(n + 1)/2.

However, |T | = |I(e1) ∩ T | = n, |I(e1, e2) ∩ T | = n− 3, and |I(e1, e2, . . . , ej) ∩ T | = n− j for
each j ≥ 3. Hence,

∑n−1
j=0 |I(e1, e2, . . . , ej) ∩ T | = n(n + 1)/2. 2

Theorem 2.2 STSP is an anti-matroid.
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Proof: Let T ′ = {e1, . . . , en} be the tour, where ei = {i, i + 1} for i < n and en = {n, 1}.
We first show the following:

Claim A: For every tour T 6= T ′, we have the following:

n−1∑

j=0

|I(e1, e2, . . . , ej) ∩ T | ≤
{

n(n−1)
2 if e1 6∈ T

n(n−1)
2 − 1 if e1 ∈ T

Proof of Claim A: We will first prove that |I(e1, e2, ..., ej) ∩ T | ≤ n − j for all j =
0, 1, 2, . . . , n− 1, except for e1 6∈ T and j = 1, in which case |I(e1) ∩ T | = n. This statement
is clearly true when j = 0, j = 1 and j = n − 1, so now assume that 2 ≤ j < n − 1, and
note that all edges of T belong to I(e1, e2, ..., ej), except for those with one end-vertex in
J = {2, 3, ..., j} and the edge {1, j + 1}. Let Qj denote the set of edges in T with at least
one end-vertex in J . Let mj denote the number of edges in T in which both end-vertices
belong to the set J and observe that |Qj | = 2(j − 1)−mj (since each vertex in J has degree
2 in T and every edge of T between vertices in J ’cancels’ one degree unit). Observe that
mj ≤ j − 2, which implies that |I(e1, e2, ..., ej) ∩ T | ≤ n− |Qj | = n− 2(j − 1) + mj ≤ n− j.

Now let ab be an edge in T such that a < b−1 < n−1 and a is as small as possible. Observe
that ab exists since T ′ 6= T . If a = 1 then we have |I(e1, e2, ..., eb−1) ∩ T | ≤ n − (b − 1) − 1,
as ab 6∈ Qb−1, but ab 6∈ I(e1, e2, ..., eb−1) ∩ T . If a > 1 then 123 . . . a is a path in T and
ma+1 = (a + 1)− 3 as ea 6∈ T . Hence, |I(e1, e2, ..., ea+1)∩ T | ≤ n− (a + 1)− 1. Therefore the
following holds.

n−1∑

j=0

|I(e1, e2, . . . , ej) ∩ T | ≤
{

(n + n +
∑n−1

j=2 (n− j))− 1 if e1 6∈ T

(n + (n− 1) +
∑n−1

j=2 (n− j))− 1 if e1 ∈ T

This proves Claim A.

Now let M > n and assign weights to the edges of Kn as follows:

c(e1) = 2M
c(ei) = iM for all i ≥ 2 (1)
c(e) = 1 + jM if e 6∈ T ′, e ∈ I(e1, e2, . . . , ej−1) but e 6∈ I(e1, e2, . . . , ej)

Observe that c(e) ≥ 2M for each e. By this remark and the definition of costs, the greedy
algorithm constructs T ′ and c(T ′) = Mn(n + 1)/2 + M.

Let T = {f1, f2, . . . , fn} be an arbitrary tour distinct from T ′. By the choice of c made
above, we have that c(fi) ∈ {aiM,aiM + 1} for some positive integer ai. First assume
that fi 6= e1, in which case fi ∈ I(e1, e2, . . . , eai−1) but fi 6∈ I(e1, e2, . . . , eai). Therefore
fi ∈ I(e1, e2, . . . , ej) ∩ T exactly when j ≤ ai − 1, which implies that fi is counted ai times
in the sum in Claim A. So if e1 6∈ T then, by Claim A, the following holds:

n(n + 1)
2

≥
n−1∑

j=0

|I(e1, e2, . . . , ej) ∩ T | =
n∑

i=1

ai.

Since c(T ) ≤ ∑n
i=1(aiM + 1) ≤ Mn(n + 1)/2 + n < c(T ′), we are done in the case when

e1 6∈ T . If fi = e1 then ai = 2 and fi ∈ I(e1, e2, . . . , ej)∩T only when j = 0, which, by Claim
A, implies the following:

n(n + 1)
2

− 1 ≥
n−1∑

j=0

|I(e1, e2, . . . , ej) ∩ T | =
(

n∑

i=1

ai

)
− 1.
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As above we note that c(T ) ≤ ∑n
i=1(aiM + 1) ≤ Mn(n + 1)/2 + n < c(T ′), which completes

the proof. 2

Theorem 2.3 For each even n ≥ 4 there exists an instance of STSP that has Ω( (n−1)!

2nn1/2 )
optimal tours, each of which is at least f(n) times shorter than the unique worst tour, where
f(n) ≥ 1 is an arbitrary function in n, and yet the greedy algorithms produces the unique
worst tour.

Proof: Let Kn be a complete graph on vertices {1, 2, . . . , n} and let edge {i, i+1} be denoted
by ei for i = 1, 2, . . . , n, where n+1 = 1. Then T ′ = {e1, e2, . . . , en} is a base. Assign weights
c(e) for each edge e of Kn as in the proof of Theorem 2.2, see (1), with M > n. It is proved
in Theorem 2.2 that T ′ is the unique heaviest tour in Kn; let P (n) be the weight of T ′. Let
L = {2, 3, . . . , n

2 + 1} and R = {n
2 + 2, n

2 + 3, . . . , n} ∪ {1}. We define the new weights of
edges e of Kn as follows: w(e) = c(e) unless both end-vertices of e are in R, in which case
w(e) = c(e) + f(n)P (n).

Clearly, the greedy algorithm constructs T ′ and T ′ remains the unique heaviest tour of
Kn. Let A be the set of all tours alternating between L and R and containing the edge
e′ = en/2+1 and not containing the edge e′′ = e1. Observe that for each tour H in A, we
have w(T ′)/w(H) ≥ f(n). It remains to prove that every H ∈ A is an optimal tour and
|A| = Ω( (n−1)!

2nn1/2 ).
Let A′ be the set of tours alternating between L and R and containing the edge e′. Let A′′

be the set of tours in A′ containing e′′. Clearly, A = A′ \A′′. Let G be the induced subgraph
of Kn obtained from Kn by deleting the vertices n

2 + 1 and n
2 + 2. Observe that there are

[(n/2− 1)!]2 Hamilton paths in G. Each such path Q can be transformed into a tour in Kn

by adding the edge e′ and two more edges linking the end-vertices of Q with the end-vertices
of e′. Thus, |A′| = [(n/2−1)!]2. Observe that there are [(n/2−2)!]2 tours alternating between
L and R and containing the edge e′′ in the graph G. To form a tour containing e′, e′′ in Kn

from a tour C containing e′′ in G, it suffices to insert the edge e′ into C such that e′′ remains
in the tour. This can be done in n−3 ways. Hence, |A′′| = [(n/2−2)!]2(n−3). So, we obtain
that |A| = |A′| − |A′′| = [(n/2− 1)!]2(1− o(1)) = Ω( (n−1)!

2nn1/2 ).
Let H 6= H ′ ∈ A. Observe that every tour C not alternating between L and R must

contain an edge with both end-vertices in R. This, by the definition of w, implies that
w(H) < w(C). Let C be a tour alternating between L and R, but not in A. To prove that
w(H) = w(H ′) < w(C), we add M to the weight of each edge incident to the vertex 1. Now
observe that the sum of the weights of two edges of C incident to a vertex i ∈ L equals 2iM+2
provided none of the two edges coincides with e′ or e′′. Including e′ into C, we decrease the
weight of C by one and including e′′ we increase it by M. Thus, w(H) = w(H ′) < w(C). 2
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