
Domination analysis for minimum multiprocessor scheduling

Gregory Gutin∗ Tommy Jensen† Anders Yeo‡

Abstract

Let P be a combinatorial optimization problem, and let A be an approximation al-
gorithm for P . The domination ratio domr(A, s) is the maximal real q such that the
solution x(I) obtained by A for any instance I of P of size s is not worse than at least the
fraction q of the feasible solutions of I. We say that P admits an Asymptotic Domination
Ratio One (ADRO) algorithm if there is a polynomial time approximation algorithm A
for P such that lims→∞ domr(A, s) = 1. Alon, Gutin and Krivelevich (J. Algorithms
50 (2004), 118–131) proved that the partition problem admits an ADRO algorithm. We
extend their result to the minimum multiprocessor scheduling problem.

Keywords: combinatorial optimization; domination analysis; minimum multiprocessor
scheduling

1 Introduction, Terminology and Notation

Let P be a combinatorial optimization problem, I an instance of P, A an approximation
algorithm for P and x(I) the solution of I obtained by A. The domination ratio domr(A, I)
of A for I is the number of solutions of I that are no better than x(I) divided by the
total number of feasible solutions of I. The domination ratio domr(A, s) of A for P is
the minimum of domr(A, I) taken over all instances I of P of size s. We say that A is an
asymptotic domination ratio one (ADRO) algorithm for P if A runs in polynomial time and
lims→∞ domr(A, s) = 1.

Domination analysis, whose aim is to evaluate the domination ratios of various combina-
torial optimization heuristics, allows one to understand the worst case behaviour of heuristics.
Thus, domination analysis complements the results of the classical approximation analysis.
Notice that the domination ratio avoids some drawbacks of the approximation ratio [21]. In
particular, the domination ratio does not change on equivalent instances of the same prob-
lem. For example, by adding a positive constant to the weight of every arc of a weighted
complete digraph, we obtain an equivalent instance of the traveling salesman problem (TSP).
While the domination ratio of a TSP heuristics remains the same for both instances, the
approximation ratio changes its value. For more details, see [9].

Sometimes, domination analysis provides us with a deep insight into the behaviour of
heuristics. For example, it is proved in [11] that the greedy algorithm is of the minimum
possible domination ratio (i.e., 1/f(s), where f(s) is the number of feasible solutions in in-
stances of size s) for a number of optimization problems including TSP and the assignment

∗Corresponding author. Department of Computer Science, Royal Holloway, University of London, Egham,
Surrey, TW20 0EX, UK, gutin@cs.rhul.ac.uk and Department of Computer Science, University of Haifa, Israel

†Institut für Mathematik, Alpen-Adria-Universität Klagenfurt, Universittsstr. 65-67, A-9020, Klagenfurt,
Austria, tjensen@uni-klu.ac.at

‡Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX,
UK, anders@cs.rhul.ac.uk

1

problem. In order words, the greedy algorithm may find the unique worst possible solution.
(This theoretical result is in line with computational experiments with the greedy algorithm
for TSP, e.g. see [14], where the authors came to the conclusion that the greedy algorithm
’might be said to self-destruct’, and that it should not be used even as ’a general-purpose
starting tour generator’.) Notice that this result cannot be formulated in the terms of ap-
proximation analysis (AA) since AA does not distinguish between solutions with the same
objective function value.

Domination analysis was introduced by Glover and Punnen [8] and was initially used only
for analysis of TSP heuristics, see, e.g., [11, 12, 18, 19]. Apart from the greedy algorithm
and other constructive TSP heuristic, some authors studied local search for TSP. For the
Symmetric TSP, Punnen, Margot and Kabadi [18] showed that after a polynomial number of
iterations the domination number of the best improvement 2-Opt that uses small neighbor-
hoods significantly exceeds that of the best improvement local search based on neighborhoods
of much larger cardinality. Punnen, Margot and Kabadi [18] and other papers have led Gutin
and Yeo [10] to the conclusion that the cardinality of the neighborhood used by a local search
is not the right measure of the effectiveness of the local search. Domination ratio, along with
some other parameters such as the diameter of the neighborhood digraph (see Gutin, Yeo
and Zverovitch [12]), provide a much better measure.

Recently, the domination ratios of algorithms for some other combinatorial optimization
problems have also been investigated [2, 5, 6, 9, 11, 15]. In [5], two heuristics for Generalized
TSP have been compared. Their performances in computational experiments are very similar.
Nevertheless, bounds for domination ratios show that one of the heuristics is much better
than the other one in the worst case. Two greedy-type heuristics for the frequency assignment
problem were compared in [15]. Again, bounds for the domination ratios allowed the authors
of [15] to find out which of the two heuristics behaves better in the worst case. For more
details, see a recent survey on domination analysis [10].

Let p ≥ 2 be an integer and let S be a finite set. A p-partition of S is a p-tuple
(A1, A2, . . . , Ap) of subsets of S such that A1 ∪ A2 ∪ . . . ∪ Ap = S and Ai ∩ Aj = ∅ for
all 1 ≤ i < j ≤ p.

In what follows, N always denotes the set {1, 2, . . . , n} and each i ∈ N is assigned a
positive integral weight σ(i). For a subset A of N , σ(A) =

∑
i∈A σ(i). The minimum

multiprocessor scheduling problem (MMSP) [3] can be stated as follows. We are given a triple
(N,σ, p), where p is an integer, p ≥ 2. We are required to find a p-partition C of N that
minimizes σ(A) = max1≤i≤p σ(Ai) over all p-partitions A = (A1, A2, . . . , Ap) of N .

Clearly, if p ≥ n, then MMSP becomes trivial. Thus, in what follows, p < n. The size s
of MMSP is Θ(n +

∑n
i=1 log σ(i)).

Hochbaum and Shmoys [13] proved that MMSP admits a polynomial time approximation
scheme. Alon, Gutin and Krivelevich [2] proved that the partition problem, which coincides
with MMSP for the special case of p = 2, admits an ADRO algorithm. We extend their result
to MMPS with unrestricted p. While using some of the ideas from [2], our proof is based on
a number of new ideas and is much more complicated.

Let (a1, a2, . . . , ap) be a p-tuple of p non-negative integers such that
∑p

i=1 ai = n. The
number of p-partitions (A1, A2, . . . , Ap) of N in which ai = |Ai| equals

(
n

a1, a2, . . . , ap

)
=

n!
a1!a2! · · · ap!

. (1)

Given n, p (p ≤ n), let mc(n, p) denote the maximum value of the multinomial coefficient

2

(n
a1,a2,...,ap

)
.

2 Preliminary Results

It is well-known that the multinomial coefficient
(n
a1,a2,...,ap

)
is maximal when the parameters

a1, . . . , ap are nearly equal. It is quite possible that the following upper bound on mc(n, p)
is well-known. We give its proof for the sake of completeness.

Lemma 2.1 Let n ≥ p. Then the following holds:

mc(n, p) < pn+1/2 ×
(√

p

2πn

)p−1

.

Proof: Suppose that (a1, a2, . . . , ap) is chosen in such a way as to maximize
(n
a1,a2,...,ap

)
for

given n and p. It is not difficult to see that all ai ≥ 1. By (1), using the Robbins formulation
of Stirling’s formula [20] we get the following:

(n
a1,a2,...,ap

)
= n!

a1!a2!···ap!

<
√

2π nn+1/2e−ne1/(12n)

Πp
i=1

√
2π a

ai+1/2
i e−aie1/(12ai+1)

= (
√

2π)1−p × nn+1/2

Πp
i=1a

ai+1/2
i

× e1/(12n)−
∑p

i=1
1/(12ai+1)

< (
√

2π)1−p × nn+1/2

Πp
i=1a

ai+1/2
i

.

By differentiating g(x) = (x + 1/2) lnx twice we get g′′(x) = 1
x − 1

2x2 . Since g′′(x) ≥ 0
for x ≥ 1/2 we conclude that g(x) is convex for x ≥ 1/2. Thus, by Jensen’s Inequal-
ity,

∑p
i=1 g(ai)/p ≥ g(

∑p
i=1 ai/p) as a1, a2, . . . , ap > 1/2. However, this is equivalent to

Πp
i=1a

ai+1/2
i ≥ (n/p)(n/p+1/2)p, which together with the inequality above implies the follow-

ing:

mc(n, p) < (
√

2π)1−p × nn+1/2

(n/p)(n/p+1/2)p
= pn+1/2

(√
p

2πn

)p−1

.

This completes the proof. 2

Corollary 2.2 For even n, n!
(n/2)!2

< 2n ×
√

2
πn .

Recall that N = {1, 2, . . . , n}. A set F of subsets of N is called an antichain if no element
of F is contained in another element of F . By the famous Sperner’s Lemma, |F| ≤ (n

bn/2c
)
.

Consider a set P of p-partitions of N. We call P a p-antichain if it has no pair (A1, A2, . . . , Ap),
(B1, B2, . . . , Bp) such that Ai ⊂ Bi and Ai 6= Bi for some i ∈ {1, 2, . . . , p}.

The following generalization of Sperner’s Lemma is due to Meshalkin [17] (its further
extensions are given in [4]).

Lemma 2.3 The number of elements in a p-antichain of N is at most mc(n, p).

The next two lemmas are well known. Nevertheless, since they have short proofs, we
provide such proofs.

Lemma 2.4 The number of p-tuples (x1, x2, . . . , xp) of non-negative integers satisfying x1 +
x2 + · · ·+ xp ≤ q equals

(q+p
q

)
.

3

Proof: Consider the set S = {1, 2, . . . , p + q}. Choose a p-element subset T = {t1, t2, . . . , tp}
of S, t1 < t2 < · · · < tp. Observe that every T corresponds to a p-tuple (t1 − t0 − 1, t2 −
t1− 1, . . . , tp− tp−1− 1), where t0 = 0, satisfying the conditions of the lemma and vice versa.
The well-known fact that there are

(q+p
p

)
=

(q+p
q

)
p-element subsets in a (p + q)-element set

completes the proof. 2

Lemma 2.5 For every integer k ≥ 2, (1− 1
k)k−1 > e−1 and (1− 1

k)k < e−1.

Proof: By differentiating lnx we see that 1
k < ln(k) − ln(k − 1) < 1

k−1 for k ≥ 2, which
implies that −1

k > ln(k−1
k) > −1

k−1 . Thus, −1 > k ln(1 − 1
k) and (k − 1) ln(1 − 1

k) > −1.
Exponentiating each side in the above inequalities, we obtain the desired results. 2

Lemma 2.6 Let (N, σ, p) be a triple defining an instance of MMSP (p ≥ 2) and let σ(1) ≥
σ(2) ≥ . . . ≥ σ(n) = 1. Let σ̃ =

∑n
i=1 σ(i)/p. The number gp of p-partitions A =

(A1, A2, . . . , Ap) of N for which the objective function of MMSP satisfies

σ(A) = max
1≤i≤p

σ(Ai) < σ̃ + 1

is less than pn

(√
8p
πn

)p−1 √
4
π .

Proof: Let A = (A1, A2, . . . , Ap) be a p-partition of N such that σ(A) < σ̃ +1. We call such
a p-partition balanced. Then, for each j ∈ {1, 2, . . . , p}, we may write

σ(Aj) = σ̃ − ij + αj , (2)

where ij is a non-negative integer and 0 ≤ αj < 1. For a p-tuple (i1, i2, . . . , ip) of non-negative
integers, we denote by Q′(i1, i2, . . . , ip) the set of all balanced p-partitions A satisfying

0 ≤ ij − (σ̃ − σ(Aj)) < 1

for each j = 1, 2, . . . , p (see (2)). It is not difficult to see that Q′(i1, i2, . . . , ip) forms a
p-antichain of S. Thus, by Lemma 2.3 and Lemma 2.1,

|Q′(i1, i2, . . . , ip)| ≤ pn+1/2 ×
(√

p

2πn

)p−1

.

By (2) and the definitions of σ̃, ij and αj ,
∑p

j=1 ij =
∑p

j=1 αj < p. Since
∑p

j=1 ij is
integral,

∑p
j=1 ij ≤ p − 1 and the sum of |Q′(i1, i2, . . . , ip)| over all p-tuples (i1, i2, . . . , ip) of

non-negative integers with
∑p

j=1 ij ≤ p− 1 equals the number gp.
By the arguments above, Lemma 2.4 and Corollary 2.2, we have

gp =
∑

i1+i2+...+ip≤p−1
|Q′(i1, i2, . . . , ip)| ≤ (2p−1

p

)
pn+1/2

(√
p

2πn

)p−1

= 1
2

(2p
p

)
pn+1/2

(√
p

2πn

)p−1

< 1
222p

√
2

π2p × pn+1/2
(√

p
2πn

)p−1

= pn

(√
8p
πn

)p−1 √
4
π .

2

Lemma 2.7 Let p ≥ 2 and x be integers, and let a be a rational number such that x > a > 0
and ap is an integer with ap ≥ x. If (1− x−1

ap)x > ε, then
(ap

x

)
(1

p)x(1− 1
p)ap−x > ε× ax

eax! .

4

Proof: By Lemma 2.5 we get the following:

(ap
x

)
(1

p)x(1− 1
p)ap−x > (ap−x+1)x

x! (1
p)x((1− 1

p)p−1)a(1− 1
p)a−x

> (1− x−1
ap)x (ap)x

pxx! (e−1)a(p
p−1)x−a

> ε× ax

x! × e−a.
2

The following simple procedure allows us to obtain a random p-partition of a finite set
S: assign each element of S independently at random to one of Ai’s. (In particular for each
j ∈ S and i ∈ {1, 2, . . . , p}, Prob(j ∈ Ai) = 1/p.)

Lemma 2.8 Let p, b ≥ 2 be integers and let a be a positive rational number such that ap is an
integer and b > a. Assume that ap ≥ b and (1 − b−1

ap)b > 1
2 holds. Let A = (A1, A2, . . . , Ap)

be a random p-partition of {1, 2, . . . , ap}. Then the probability that |Ai| < b for all i ∈
{1, 2, . . . , p} is at most (1− ab

2eab!)
p.

Proof: Let Bi be the event that |Ai| < b. Mallows [16] proved that the probability that all
Bi hold is bounded above by Πp

i=1Prob(Bi) (various more general results can be found in
[7]). We will now give an upper bound for Prob(Bi). Using ε = 1/2 in Lemma 2.7, we obtain
the following:

Prob(Bi) < 1− (ap
b

)
(1

p)b(1− 1
p)ap−b < 1− ab

2eab!

This implies that Πp
i=1Prob(Bi) < (1− ab

2eab!)
p. 2

Lemma 2.9 Let (N, σ, p) be a triple defining an instance of MMSP (p ≥ 2) and let σ(1) ≥
σ(2) ≥ . . . ≥ σ(n) = 1. Assume that there is a rational number q such that 0 < q < 3
and n = qp. Let σ̃ =

∑qp
i=1 σ(i)/p. Let A = (A1, A2, . . . , Ap) be a random p-partition of

N = {1, 2, . . . , qp} and let E be the event that
∑

j∈Ai
σ(j) ≤ σ̃ + 1 for all i ∈ {1, 2, . . . , p}.

Let a = d qp
2q+1e/p and b = d2q+1e. If (1− b−1

pa)b > 1
2 and ap ≥ b then Prob(E) ≤ (1− ab

2eab!)
p.

Proof: If σ(1) > σ̃ + 1, then clearly Prob(E) = 0. Thus, we may assume that 1 + σ̃ ≥
σ(1) ≥ σ(2) ≥ . . . ≥ σ(qp) = 1. Since σ̃/q ≥ 1, we have (q+1)σ̃

q ≥ 1 + σ̃. Thus,

(q + 1)σ̃
q

≥ 1 + σ̃ ≥ σ(1) ≥ σ(2) ≥ . . . ≥ σ(qp) = 1.

Let m be the maximal integer for which σ(m) ≥ σ̃/(2q). Thus, m (q+1)σ̃
q +(qp−m) σ̃

2q ≥ pσ̃.

This implies that m ≥ qp
2q+1 . Let S = {1, 2, . . . , ap}. By Lemma 2.8, the probability that at

least b elements of S are assigned to the same set Ai is at least 1− (1− ab

2eab!)
p. We will now

show that the sum of weights σ of at least b elements of S exceeds σ̃ + 1, which implies that
Prob(E) ≤ (1− ab

2eab!)
p.

If σ̃ < 2q then the total weight of at least b elements is at least b ≥ 2q + 1 > σ̃ + 1. And
if σ̃ ≥ 2q then the total weight of at least b elements is at least bσ̃/(2q) ≥ (2q + 1)σ̃/(2q) =
σ̃ + σ̃/2q ≥ σ̃ + 1. 2

5

3 Main Result

Recall that the size s of MMSP is Θ(n +
∑n

i=1 log σ(i)). Consider the following approxima-
tion algorithm H for MMSP. If s ≥ pn, then we simply solve the problem optimally. This
takes O(s2) time, as there are at most O(s) solutions, and each one can be evaluated and
compared to the current best in O(s) time. If s < pn, then sort the elements of the sequence
σ(1), σ(2), . . . , σ(n). For simplicity of notation, assume that σ(1) ≥ σ(2) ≥ · · · ≥ σ(n). Com-
pute r = dlog n/ log pe and solve MMSP for ({1, 2, . . . , r}, σ, p) to optimality. Suppose we
have obtained a p-partition A of {1, 2, . . . , r}. Now for i from r + 1 to n add i to the set Aj

of the current p-partition A with smallest σ(Aj).

Theorem 3.1 The algorithm H runs in time O(s2 log s). We have lims→∞ domr(H, s) = 1.

Proof: We may assume that every operation of addition and comparison takes O(s) time
(see, e.g., [1]). As we observed above, the case s ≥ pn takes O(s2) time. Let s < pn. The
sorting part of H takes time O(sn log n). The ’optimality’ part can be executed in time
O(spdlog n/ log pe) = O(sn). Using an appropriate data structure, one can find out where to
add each element i for i ≥ r in O(s log p) time. Thus, the time complexity of H is O(s2 log s).

In what follows, we assume that s < pn. Observe that to prove that lims→∞ domr(H, s) =
1 it suffices to show that limn→∞ domr(H, s) = 1. Indeed, by p < n and s < pn < nn,
lims→∞ n = ∞.

Let ε > 0 be arbitrary. We will show that there exists an integer nε such that domr(H, s) >
1− ε for all n > nε. Let nε = max{n0, n1, n2, n3}, where n0, n1, n2 and n3 are any integers
satisfying the following inequalities for all 1/3 < a ≤ 1 and 3 < b ≤ 7.

(1− b−1

a
√

log n0/3
)b > 1

2 ε >
(
1− ab

2eab!

)√log n1/3

a
√

log n0/3 ≥ b

ε >
√

4
π

√
8 log log n2 log log log n2

π log n2
ε >

√
4
π × 0.95log log n3−1

Let I be an instance (N, σ, p), where n > nε, and let A = (A1, A2, . . . , Ap) be a p-partition
of N obtained by H for I.

Let Aj be the set of maximal weight in A and let m be the maximum element of Aj .
Clearly, σ(A) = σ(Aj). Note that if m ≤ r or m ≤ p, then A is an optimal solution. Indeed,
if m ≤ r, then H solves MMSP for ({1, 2, . . . , m}, σ, p) to optimality with value σ(Aj). Since
the value of the solution for ({1, 2, . . . , n}, σ, p) remains σ(Aj), the solution stays optimal.
If m ≤ p, then we may assume that r < m ≤ p. Hence, Aj = {m} and H solves MMSP
for ({1, 2, . . . ,m}, σ, p) to optimality with value σ(m). Since the value of the solution for
({1, 2, . . . , n}, σ, p) remains σ(m), the solution stays optimal.

Thus, we may assume that
m > r and m > p (3)

Since m > r, m is the last element added to Aj . If we divide every σ(i), i = 1, 2, . . . , n, by
σ(m) we do not change the solution A of H. Thus, we may assume that σ(m) = 1.

At the time just before m was appended to Aj , σ(Ai) ≥ σ(Aj) for every i 6= j. Hence,
σ(Aj) ≤ σ(m) +

∑m−1
i=1 σ(i)/p < σ̃ + 1, where σ̃ =

∑m
i=1 σ(i)/p. Thus,

σ(A) < σ̃ + 1. (4)

We now consider the following cases.

6

Case 1: m ≥ 3p. There are pm possible ways of putting 1, 2, . . . ,m into p sets of a p-
partition. By (4) and Lemma 2.6, the number of p-partitions of {1, 2, . . . , m} that are worse
than A is more than

pm − pm

√
4
π

(√
8p

πm

)p−1

.

Clearly, no matter how we place the elements m + 1,m + 2, . . . , n into the sets of a p-
partition B worse than A (i.e., σ(A) < σ(B)), we will end up with a solution worse than A.
Thus, the number of solutions worse than A is more than

pn−m

pm − pm

√
4
π

(√
8p

πm

)p−1

 = pn

1−

√
4
π

(√
8p

πm

)p−1

 .

Thus,

domr(H, I) > 1−
√

4
π

(√
8p

πm

)p−1

(5)

Since m ≥ 3p, we have
√

8p/(πm) < 0.95. So if p ≥ log log n, then we are done as n ≥ n3.
If p < log log n, then by (3) and the definition of n2 we obtain the following:

domr(H, I) > 1−
√

4
π

(√
8p

π log n/ log p

)p−1

> 1−
√

4
π

(√
8 log log n log log log n

π log n

)
> 1− ε.

Case 2: m < 3p. We define q = m
p < 3, and note that (by (3)), q > 1 and p > m/3 >

log n/(3 log p). This implies that p >
√

log n/3. Let a = d qp
2q+1e/p and b = d2q +1e, and note

that 1
3 < a ≤ 1 and 3 < b ≤ 7 and ap > b (by the definition of n0). By the definitions of

n0, n1 and Lemma 2.9, we have the following:

domr(H, I) > 1−
(

1− ab

2eab!

)p

> 1−
(

1− ab

2eab!

)√log n/3

> 1− ε. (6)

2

Acknowledgement

This research of all authors was partially supported by a Leverhulme Trust grant.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading MA, 1974.

[2] N. Alon, G. Gutin and M. Krivelevich, Algorithms with large domination ratio. J. Algorithms 50
(2004), 118–131.

[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela and M. Protasi,
Complexity and Approximation, Springer, Berlin, 1999.

[4] M. Beck and T. Zaslavsky, A shorter, simpler, stronger proof of the Meshalkin-Hochberg-Hirsh
bounds on componentwise antichains. J. Combin. Theory Ser. A 100 (2002), 196–199.

7

[5] D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo and A. Zverovitch, Transformations of Generalized
ATSP into ATSP: experimental and theoretical study. Oper. Res. Lett. 31 (2003), 357–365.

[6] D. Berend and S.S. Skiena, Combinatorial dominance guarantees for heuristic algorithms. Man-
uscript, 2002.

[7] D.P. Dubhashi and D. Ranjan, Balls and bins: A study in negative dependence. Random Struct.
Alg. 13(2) (1998), 99–124.

[8] F. Glover and A. Punnen, The traveling salesman problem: New solvable cases and linkages with
the development of approximation algorithms. J. Oper. Res. Soc. 48 (1997), 502–510.

[9] G. Gutin, A. Vainshtein and A. Yeo, Domination analysis of combinatorial optimization problems.
Discrete Appl. Math. 129 (2003), 513–520.

[10] G. Gutin and A. Yeo, Domination Analysis of Combinatorial Optimization Algorithms and Prob-
lems. In Graph Theory, Combinatorics and Algorithms: Interdisciplinary Applications (M.C.
Golumbic and I. Ben-Arroyo Hartman, eds.), Springer-Verlag, New York, 2005.

[11] G. Gutin and A. Yeo, Anti-matroids. Oper. Res. Lett. 30 (2002), 97–99.

[12] G. Gutin, A. Yeo and A. Zverovitch, Exponential Neighborhoods and Domination Analysis for
the TSP. In The Traveling Salesman Problem and its Variations (G. Gutin and A.P. Punnen,
eds.), Kluwer, Dordrecht, 2002.

[13] D.S. Hochbaum and D.B. Shmoys, Using dual approximation algorithms for scheduling problems:
theoretical and practical results. J. ACM 34 (1987), 144–162.

[14] D.S. Johnson, G. Gutin, L. McGeoch, A. Yeo, X. Zhang, and A. Zverovitch, Experimental Analy-
sis of Heuristics for ATSP. In The Traveling Salesman Problem and its Variations (G. Gutin and
A. Punnen, eds.), Kluwer, Dordrecht, 2002.

[15] A.E. Koller and S.D. Noble, Domination analysis of greedy heuristics for the frequency assignment
problem. Discrete Math. 275 (2004), 331–338.

[16] C.L. Mallows, An Inequality Involving Multinomial Probabilities. Biometrika 55 (1968), 422–424.

[17] L.D. Meshalkin, A generalisation of Sperner’s theorem on the number of subsets of a finite set.
Theor. Probability Appl. 8 (1963), 203–204.

[18] A.P. Punnen, F. Margot and S.N. Kabadi, TSP heuristics: domination analysis and complexity.
Algorithmica 35 (2003), 111–127.

[19] A.P. Punnen and S.N. Kabadi, Domination ananlysis of some heuristics for the asymmetric
traveling salesman problem. Discrete Appl. Math. 119 (2002), 117–128.

[20] H. Robbins, A remark on Stirling’s formula. Amer. Math. Monthly 62 (1955), 26–29.

[21] E. Zemel, Measuring the quality of approximate solutions to zero-one programming problems.
Math. Oper. Res. 6 (1981), 319–332.

8

