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Abstract

An edge-colored graph H is properly colored if no two adjacent edges of H have
the same color. In 1997, J. Bang-Jensen and G. Gutin conjectured that an edge-
colored complete graph G has a properly colored Hamilton path if and only if G has
a spanning subgraph consisting of a properly colored path C0 and a (possibly empty)
collection of properly colored cycles C1, C2, . . . , Cd such that V (Ci) ∩ V (Cj) = ∅
provided 0 ≤ i < j ≤ d. We prove this conjecture.
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1 Introduction

Let G = (V, E) be a complete graph, and let c : E → {1, 2, . . . , χ} be a fixed (not
necessarily proper) edge-coloring of G with χ colors, χ ≥ 2. With given c, G is called a
χ-edge-colored (or, edge-colored) complete graph. A subgraph H ⊆ G is called properly
colored if c defines a proper edge-coloring of H.

The existence of properly colored Hamilton paths and cycles has been studied in several
papers; this topic was surveyed in [2] and later in Chapter 11 of [3]. While there are
characterizations [6, 11] (see also Chapter 11 of [3]) of 2-edge-colored complete graphs
with properly colored Hamilton cycles, no such characterization is known for χ-edge-
colored complete graphs with χ ≥ 3, and it is still an open question to determine the
computational complexity of this problem [8].
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The most studied possibly sufficient condition for an edge-colored complete graph with
n vertices to have a properly colored Hamilton cycle is ∆mon < bn/2c, where ∆mon is
the maximal number of edges of the same color incident to the same vertex. This was
conjectured by B. Bollobás and P. Erdős [9] in 1976, but remains unsolved. The best
result so far for ’small’ values of n is by J. Shearer [12]: 7∆mon < bn/2c guarantees the
existence of a properly colored Hamilton cycle. The best result so far for large values
of n is due to N. Alon and G. Gutin [1]: For every ε > 0 and n = nε large enough,
∆mon ≤ (1− 1√

2
− ε)bn/2c implies the existence of a properly colored Hamilton cycle.

For the case of properly colored Hamilton paths, the situation is somewhat different.
Let the abbreviation PCHP stand for “properly colored Hamilton path”. Let G be an
edge-colored graph. A properly colored cycle factor of G is a spanning subgraph of G
consisting of properly colored cycles C1, C2, . . . , Cd such that V (Ci)∩V (Cj) = ∅ provided
1 ≤ i < j ≤ d. A properly colored 1-path-cycle factor of G is a spanning subgraph of G
consisting of a properly colored path C0 and a (possibly empty) collection of properly
colored cycles C1, C2, . . . , Cd such that V (Ci) ∩ V (Cj) = ∅ provided 0 ≤ i < j ≤ d.

The following theorem gives a PCHP characterization for the case of just two colors:

Theorem 1.1 [2] A 2-edge-colored complete graph G has a PCHP if and only if G con-
tains a properly colored 1-path-cycle factor.

It is conjectured in [2] that the above theorem holds for any number of colors. We call
it the BJG conjecture. In support of the BJG conjecture, the following result was proved
in [5]: If a χ-edge-colored complete graph G (χ ≥ 2) contains a properly colored cycle
factor, then G contains a PCHP.

It is easy to see that the BJG conjecture in [2] can be reduced to the following:

Conjecture 1.2 (PCHP Conjecture) Let χ ≥ 3 and let G be a χ-edge-colored complete
graph. Assume that there exist C, P ⊆ G, where C is a properly colored cycle and P a
properly colored path, such that V (C) ∩ V (P ) = ∅ and V (C) ∪ V (P ) = V (G). Then G
contains a PCHP.

In this paper we prove the PCHP conjecture and, thus, the BJG conjecture. Since
it takes polynomial time to check whether an edge-colored graph has a properly colored
1-path-cycle factor [2], our result implies that the PCHP problem is polynomial time
solvable for edge-colored complete graphs. The proof of Theorem 2.1 is constructive and
can be turned into a polynomial time algorithm for transforming a a properly colored
1-path-cycle factor into a properly colored Hamilton path.

This gives, in particular, some indication that the problem of the existence of a properly
colored Hamilton cycle in an edge-colored graph may be polynomial time solvable after all.
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The situation may remind one of that with the existence of Hamilton paths and cycles in
semicomplete multipartite digraphs (SMDs) [4] (see also Chapter 5 in [3]). Both Hamilton
path and cycle problems for SMDs are polynomial time solvable, but only for the Hamilton
path problem we have a nice characterization (see, e.g., [10] or Chapter 5 in [3]) so far.

In passing we mention a simple sufficient condition proved in [7] for the existence of a
PCHP in an edge-colored Kn : Kn has no monochromatic triangles.

2 Results

If H is connected, the distance in H between two vertices u, v ∈ V (H) is the length of a
shortest path in H from u to v, and we denote it by distH(u, v).

Theorem 2.1 The PCHP Conjecture holds.

Proof: Let C = v1 . . . vnv1 (n ≥ 3) and P = u1 . . . um (m ≥ 1). Throughout we will
perform addition and subtraction in the indices of the vertices vj ∈ C modulo n.

Let j ∈ {1, 2, . . . , n}. If m ≥ 2 and c(u1vj) 6= c(u1u2), then at least one of the paths
umum−1 . . . u1vjvj+1 . . . vj−1 and umum−1 . . . u1vjvj−1 . . . vj+1 is a PCHP. Similarly there
exists a PCHP if c(umvj) 6= c(um−1um−2). So we may assume the following:

(1) If m ≥ 2, then c(u1vj) = c(u1u2) and c(umvj) = c(um−1um) for every j =
1, 2, . . . , n.

Thus, to complete the proof of this theorem it suffices to prove the following claim:

Claim A If (1) is satisfied, then there exists a PCHP H in G with u1 as its first vertex,
such that the initial edge of H is either u1u2 or one of the edges u1vj (1 ≤ j ≤ n), and
such that if m ≥ 2, then um is the last vertex of H and the last edge of H is either um−1um

or one of the edges vjum (1 ≤ j ≤ n).

Let b(P, C) = 2(n− 3)+m; we notice that b(P,C) ≥ 1. Suppose that Claim A is false,
and let (G,P, C, c) be a counterexample with a minimal value of b(P, C).

If m = 1, then either u1v1v2 . . . vn or u1v1vn . . . v2 is a PCHP as desired. Thus, we
have established m ≥ 2 and b(P, C) ≥ 2.

Now we prove

(2) m ≥ 3.
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Suppose that m = 2. With x = c(u1u2), we have c(u1vj) = c(u2vj) = x for all j =
1, 2, . . . , n, by (1). Choose r such that c(vr−1vr) 6= x 6= c(vr+1vr+2); this is possible
if r can be chosen with c(vrvr+1) = x, and otherwise it is trivial. But then the path
u1vrvr−1 . . . vr+2vr+1u2 yields a contradiction.

We continue to prove further properties of the coloring c.

(3) For every i, 1 < i < m, there exist r and s (1 ≤ r, s ≤ n), such that c(uiui+1) 6=
c(uivr), c(ui−1ui) 6= c(uivs).

Otherwise the path P ′ = P−u1−u2−· · ·−ui−1 satisfies (1) in G′ = G−u1−u2−· · ·−ui−1

(with ui in place of u1). Since b(P ′, C) < b(P, C), there exists a PCHP H ′ in G′ that starts
from ui with one of the edges uiui+1 or uivj , 1 ≤ j ≤ n and finishes in um with um−1um

or with an edge vkum, 1 ≤ k ≤ n. Then u1 . . . ui−1H
′ is a PCHP in G of the desired type

having u1u2 as its initial edge, a contradiction. A similar argument shows the existence
of s.

Suppose that c(vi−1vi) = c(vjvj+1) = x, where distC(vi, vj+1) ≥ 3. If c(vivj) = x, then
define G′ = G− vi − vi+1 − · · · − vj and define c′ : E(G′) → {1, 2, . . . , χ} by

c′(e) =
{

x if e = vi−1vj+1

c(e) otherwise.

Both P and the cycle C ′ = vj+1vj+2 . . . vnv1 . . . vi−1vj+1 are properly colored by c′. More-
over, P clearly satisfies (1) with respect to C ′. Since b(P, C ′) < b(P,C), there exists a
PCHP P1 in G′ with initial edge u1u2 or u1vr for some r ∈ {j +1, j +2, . . . , n, 1, . . . , i−1}.
If vi−1vj+1 ∈ P1, then we find the desired PCHP H in G by replacing the edge vi−1vj+1

by the path vi−1vi . . . vjvj+1. Otherwise, if vi−1vj+1 6∈ P1, then P1 is properly colored in
G and satisfies (1) with respect to C ′′ = vivi+1 . . . vjvi, which is a properly colored cycle.
By b(P1, C

′′) < b(P, C), the desired PCHP exists in G, a contradiction.

Thus, we have the following:

(4) Assume that distC(vs, vt+1) ≥ 3. If c(vs−1vs) = c(vtvt+1) = x, then c(vsvt) 6= x.

Consider the path u1 . . . up−2up−1vq−1vq−2 . . . vq+1vqupup+1 . . . um. As it cannot be a
PCHP we conclude the following.

(5) Let 2 ≤ p ≤ m and 1 ≤ q ≤ n. Then at least one of the following holds.
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u1 u2 up−2 up−1 up up+1 um−1 um

vq−2
vq−1 vq

vq+1

Figure 1: The path used to prove (5).

a) p ≥ 3 and c(up−2up−1) = c(up−1vq−1)

b) c(up−1vq−1) = c(vq−2vq−1)

c) c(upvq) = c(vqvq+1)

d) p < m and c(upvq) = c(upup+1).

Considering the path u1 . . . up−2up−1vq+1vq+2 . . . vq−1vqupup+1 . . . um similarly leads to:

(6) Let 2 ≤ p ≤ m and 1 ≤ q ≤ n. Then at least one of the following holds.

a) p ≥ 3 and c(up−2up−1) = c(up−1vq+1)

b) c(up−1vq+1) = c(vq+1vq+2)

c) c(upvq) = c(vq−1vq)

d) p < m and c(upvq) = c(upup+1).

In several of the following applications of (5) and (6) it will be useful to note that (5c)
and (6c) are mutually exclusive statements for any values of p and q, since C is properly
colored, and that (5d) and (6d) are identical statements.

For the remaining part of the paper we define x = c(u1u2) and y = c(um−1um).

(7) Assume c(u2vj) = z 6= c(u2u3) for some j ∈ {1, 2, . . . , n}.
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u1 u2 up−2 up−1 up up+1 um−1 um

vq−1
vq vq+1

vq+2

Figure 2: The path used to prove (6).

a) If c(vjvj+1) 6= z then c(vj−2vj−1) = x, and if c(vj−1vj) 6= z then c(vj+1vj+2) = x.

b) If z = x or c(vj−1vj) 6= z 6= c(vjvj+1), then c(vj−2vj−1) = c(vj+1vj+2) =
c(vj−1vj+1) = x and n ∈ {3, 5}.

If c(vj−1vj) 6= z, then c(vj+1vj+2) = x follows from (6) with p = 2 and q = j (only (b) of
(6) is not necessarily false). If c(vjvj+1) 6= z, then c(vj−2vj−1) = x similarly follows from
(5). This shows (a).

Now assume c(vj−1vj) 6= z 6= c(vjvj+1) or z = x. In the case z = x the fact that c
is a proper coloring of C together with (a) implies c(vj−2vj−1) = c(vj+1vj+2) = x. The
same conclusion follows directly from (a) when c(vj−1vj) 6= z 6= c(vjvj+1). By symmetry,
and since c(vj−1vj) 6= c(vjvj+1), we may assume c(vj−1vj+1) 6= c(vjvj+1). Since the
Hamilton path u1vj+2vj+3 . . . vj−2vj−1vj+1vju2 . . . um fails to be a PCHP, it follows that
c(vj−1vj+1) = x.

Consider (4) for s = j − 1 and t = j + 1. The conclusion c(vsvt) 6= x of (4) implies
distC(vj−1, vj+2) ≤ 2, which is only possible for n ≤ 5. Moreover, the edges vj−2vj−1 and
vj+1vj+2, both of color x, are not adjacent on C, which implies n 6= 4. Thus (b) is proved.

(8) Assume c(um−1vk) = z 6= c(um−2um−1) for some k ∈ {1, 2, . . . , n}.

a) If c(vk−1vk) 6= z then c(vk+1vk+2) = y, and if c(vkvk+1) 6= z then c(vk−2vk−1) = y.

b) If z = y or c(vk−1vk) 6= z 6= c(vkvk+1), then c(vk−2vk−1) = c(vk+1vk+2) =
c(vk−1vk+1) = y and n ∈ {3, 5}.
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The proof of (8) is similar to that of (7).

(9) Assume c(u2vj) 6= x for all j = 1, 2, . . . , n. Then there exists j ∈ {1, 2, . . . , n}
such that

a) c(u2vj−1) = c(u2vj) 6= c(u2u3), and

b) c(vj−2vj−1) = c(vjvj+1) = x.

By (3) there exists j ∈ {1, 2, . . . , n} such that c(u2vj) = z 6= c(u2u3). We may assume
c(vjvj+1) 6= z (if not, then c(vj−1vj) 6= z holds, and we may renumber the vertices on C
so that vj+` becomes vj−` for all ` = 0, 1, 2, . . . without change of the conclusion). Then
(7a) implies c(vj−2vj−1) = x.

Again by (3) there exists r ∈ {1, 2, . . . , n} such that if m ≥ 4, then c(u3vr) 6= c(u3u4)
holds.

Suppose c(u2vj−1) 6= z. Since u1vr+1vr+2 . . . vj−2vj−1u2vjvj+1 . . . vr−1vru3u4 . . . um is
not a PCHP, at least one of the following holds:

i) c(u1vr+1) = c(vr+1vr+2),

ii) c(u3vr) = c(vr−1vr),

iii) r = j and c(u2vr) = c(u3vr).

Since u1vr−1vr−2 . . . vj+1vju2vj−1vj−2 . . . vr+1vru3u4 . . . um is not a PCHP, at least one of
the following holds:

iv) c(u1vr−1) = c(vr−2vr−1),

v) c(u3vr) = c(vrvr+1),

vi) r = j − 1 and c(u2vr) = c(u3vr).

Let p = 3 and q = r, and observe that neither of (5a), (5d), (6a) or (6d) holds.

We will now show that (iii) and (vi) do not hold. If r = j, then c(vr−2vr−1) = x 6=
c(u2vr−1), hence also (5b) does not hold, and (5c) must be satisfied, that is, c(u3vr) =
c(vrvr+1). In particular, if r = j, then c(u3vr) = c(vjvj+1) 6= z = c(u2vj), contrary to (iii).

If r = j − 1, then c(u2vr+1) = c(u2vj) = z and c(vr+1vr+2) = c(vjvj+1) 6= z, so (6b)
does not hold. Then (6c) implies c(u3vr) = c(vr−1vr) = c(vj−2vj−1) = x. In particular, if
r = j − 1, then c(u2vr) 6= c(u3vr) follows, hence also (vi) does not hold.
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We deduce that (i) or (ii) is true, and that (iv) or (v) is true. Now (6c) is equivalent to
(ii), and (6b) and (i) are not both true (by (1) and our assumption), therefore (ii) holds.
Similarly (5c) is equivalent to (v), and (5b) contradicts (iv), so also (v) holds. But (ii)
contradicts (v), since C is properly colored. This establishes c(u2vj−1) = z.

Finally c(vjvj+1) = x follows from (7a).

(10) Assume c(um−1vj) 6= y for all j = 1, 2, . . . , n. Then there exists k ∈ {1, 2, . . . , n}
such that

a) c(um−1vk−1) = c(um−1vk) 6= c(um−2um−1), and

b) c(vk−2vk−1) = c(vkvk+1) = y.

The proof is similar to the proof of (9).

(11) Assume z = c(u2vj) = c(u2vj−1) 6∈ {x, c(u2u3)} for some j ∈ {1, 2, . . . , n}.
Furthermore assume c(vjvj+1) 6= z. Then one of the following holds:

a) n is an even number, and n/2 edges of C have color x.

b) If c(vj′vj′+1) = x, then vj′ ∈ S = {vj−4, vj−2, vj , vj+2}.

First c(vj−2vj−1) = c(vjvj+1) = x follows from two applications of (7a), applying (7) to
u2vj and u2vj−1 in this order. Since C is properly colored, we conclude that c(vj′vj′+1) = x
implies vj′ 6∈ {vj−3, vj−1, vj+1}. Assume that (b) does not hold, and choose any vj′ ∈
V (C) \ S satisfying c(vj′vj′+1) = x. Then n ≥ 8 follows from vj′ /∈ S ∪ {vj−3, vj−1, vj+1}.
We will prove the following statement.

(∗) c(vj′−2vj′−1) = c(vj′+2vj′+3) = x.

First we suppose c(vj′−2vj′−1) 6= x. Then vj′ /∈ S ∪ {vj−3, vj−1, vj+1} and n ≥ 8
imply distC(vj−1, vj′+1) ≥ 3. By (4) with s = j − 1 and t = j′ we have c(vj−1vj′) 6=
x. We consider the path P1 = u1vj′−1vj′−2 . . . vj+1vju2u3 . . . um and the cycle C1 =
vj′vj′+1 . . . vj−2vj−1vj′ , which are properly colored and satisfy (1). Since b(C1, P1) <
b(C,P ) holds, our minimality assumption yields a PCHP as in Claim A, which is a con-
tradiction. So c(vj′−2vj′−1) = x holds. Now suppose c(vj′+2vj′+3) 6= x. Then by (4)
with s = j and t = j′ + 1 we similarly have c(vjvj′+1) 6= x, and we consider the path
P2 = u1vj′+2vj′+3 . . . vj−2vj−1u2u3 . . . um and the cycle C2 = vj′+1vj′ . . . vj+1vjvj′+1 in-
stead, again with a contradiction. Thus we have also c(vj′+2vj′+3) = x, which finishes the
proof of (∗).
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Applying (∗) recursively, it follows that c(vj′+2`vj′+2`+1) = x holds for every ` ∈ N with
vj′+2` /∈ S ∪ {vj−3, vj−1, vj+1}. In particular, either c(vj+3vj+4) = x or c(vj+4vj+5) = x
holds (vj+3 /∈ S follows from n ≥ 8, and vj+4 ∈ S only occurs if n = 8 and vj′ = vj+3, in
which case c(vj+3vj+4) = x follows). However, applying (∗), c(vj+3vj+4) = x would imply
c(vj+1vj+2) = x, contradicting the fact that C is properly colored. So c(vj+4vj+5) =
x holds. Similar reasoning leads to c(vj−6vj−5) = x. It follows from (∗) that all of
vj+4vj+5, vj+6vj+7, . . . , vj−6vj−5 are colored x.

Since both vj+4vj+5 and vj−6vj−5 are colored x, it follows from (∗) that vj+2vj+3 and
vj−4vj−3 are also colored x. Combining this with the fact that vjvj+1 and vj−2vj−1 are
both colored x, we have shown that (a) is true, which proves (11).

(12) There is an index j, 1 ≤ j ≤ n, such that c(u2vj) = x or c(um−1vj) = y.

Suppose c(u2vj) 6= x and c(um−1vj) 6= y for all j = 1, 2, . . . , n. By (9) and (10) we
may choose j, k ∈ {1, 2, . . . , n} such that j satisfies (9a) and (9b), and k satisfies (10a)
and (10b).

By (9b) we have c(vj−2vj−1) = c(vjvj+1) = x, from which m ≥ 4 follows, as otherwise
u1u2vjvj+1 . . . vj−2vj−1u3 would be a PCHP. Now the path

u1vk−1vk−2 . . . vj+1vju2u3 . . . um−2um−1vkvk+1 . . . vj−2vj−1um

is not a PCHP, so y = x follows.

We will show that (11a) holds. So suppose not; then it follows from (11) that (11b)
holds. By (10b) we have c(vk−2vk−1) = c(vkvk+1) = x, which by (11b) implies vk ∈
{vj−2, vj , vj+2}.

The case vk = vj would lead to a contradiction, since the path

u1vj−2vj−3 . . . vj+1vju2u3 . . . um−2um−1vj−1um

would be a PCHP.

Suppose vk = vj−2. By (10b) we then have c(vj−4vj−3) = x. Then n /∈ {3, 5} follows
from the fact that C is properly colored, and n /∈ {4, 6} holds since (11a) is not satisfied,
so we deduce n ≥ 7. Applying (4) to s = j− 3 and t = j we have c(vj−3vj) 6= x. However,
the path u1vj−1u2u3 . . . um−2um−1vj−2um and the cycle vjvj+1 . . . vj−4vj−3vj are properly
colored and satisfy (1), which contradicts our minimality assumption.

For vk = vj+2 we similarly conclude by (10b) and (4), with s = j − 1 and t = j + 2,
that c(vj−1vj+2) 6= x. Examination of the path u1vju2u3 . . . um−2um−1vj+1um and the
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cycle vj−1vj+2vj+3 . . . vj−2vj−1 again leads to contradiction, which shows that (11a) does
hold.

We have that n is an even number, and the edges of C are alternately colored x. Let
r ∈ {1, 2, . . . , n} be chosen so that c(u3vr) 6= c(u3u4); this is possible by (3). We apply
(5) and (6) with p = 3 and q = r. Then (5d) and (6d) both fail by the choice of r.
Neither of the edges u2vr−1 and u2vr+1 have color x, due to our assumption, hence (5a)
and (6a) both fail. For the same reason one of (5b) and (6b) fails, because either vr−2vr−1

or vr+1vr+2 is colored x. If vr−2vr−1 is colored x, then (5b) fails, so (5c) holds and gives
c(u3vr) = c(vrvr+1), and now

u1u2vkvk+1 . . . vr−1vru3u4 . . . um−2um−1vk−1vk−2 . . . vr+2vr+1um

is a PCHP, a contradiction. If vr+1vr+2 is colored x, then (6b) fails, and c(u3vr) =
c(vr−1vr) follows similarly. But

u1u2vk−1vk−2 . . . vr+1vru3u4 . . . um−2um−1vkvk+1 . . . vr−2vr−1um

is a PCHP, again with contradiction. This finishes the proof of (12).

(13) Assume c(u2vj) = x for some j ∈ {1, 2, . . . , n}, and let w = c(vj−1vj) and
z = c(vjvj+1). Then

a) c(vj−2vj−1) = c(vj+1vj+2) = c(vj−1vj+1) = x and n ∈ {3, 5}
b) c(u2vk) 6= x for all vk 6= vj

c) c(u2vj−1) = c(u2vj+1) = c(u2u3) ∈ {w, z}
d) m ≥ 4

e) if c(u2u3) = w, then c(u3vk) = c(u3u4) 6= c(u3vj−1) = w for all vk 6= vj−1.

f) if c(u2u3) = z, then c(u3vk) = c(u3u4) 6= c(u3vj+1) = z for all vk 6= vj+1.

We may assume j = 1, so that c(u2v1) = x, c(vnv1) = w and c(v1v2) = z. Then
c(u2v1) = x 6= c(u2u3) and (7b) directly imply (a). Since n ∈ {3, 5} and C is properly
colored, c(u2vk) = x now implies vk = v1 by (a) and (7b), so (b) holds.

Now c(u2v2) = c(u2u3) follows from (5) and (6) with p = 2 and q = 2, since (5a), (5b),
(6a), (6b) all fail, and (5c) contradicts (6c), so that (5d) and the equivalent (6d) hold.
Similarly we deduce c(u2vn) = c(u2u3) from (5) and (6) with p = 2 and q = n.

Now (d) and c(u3v1) = c(u3u4) follow from (5) and (6) with p = 3 and q = 1,
as (5d) or (6d) is again satisfied. Moreover for n = 5 the identity c(u3v3) = c(u3u4)
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follows, using c(v2v3) 6= c(v3v4), from the fact that neither u1u2v4v5v1v2v3u3u4 . . . um nor
u1v2v1u2v5v4v3u3u4 . . . um is a PCHP. Similarly we have c(u3v4) = c(u3u4) when n = 5.

We deduce c(u3vn) ∈ {w, c(u3u4)}, since u1vn−1vn−2 . . . v3v2u2v1vnu3u4 . . . um is not a
PCHP, Moreover c(u3vn) ∈ {c(u2u3), c(u3u4)} follows, using c(u2vn) = c(u2u3), by exam-
ining the path u1vn−1vn−2 . . . v2v1u2vnu3u4 . . . um, and we have c(u3vn) ∈ {w, c(u3u4)} ∩
{c(u2u3), c(u3u4)}. A similar argument shows c(u3v2) ∈ {z, c(u3u4)} ∩ {c(u2u3), c(u3u4)}.
At least one of c(u3vn) and c(u3v2) is not equal to c(u3u4), by (3), so it follows that either
c(u3vn) = c(u2u3) = w or c(u3v2) = c(u2u3) = z holds. This shows the remaining parts of
(c), (e) and (f), and (13) is proved.

(14) Assume c(um−1vj) = y for some j ∈ {1, 2, . . . , n}, and let w′ = c(vj−1vj) and
z′ = c(vjvj+1). Then

a) c(vj−2vj−1) = c(vj+1vj+2) = c(vj−1vj+1) = y and n ∈ {3, 5}
b) c(um−1vk) 6= y for all vk 6= vj

c) c(um−1vj−1) = c(um−1vj+1) = c(um−2um−1) ∈ {w′, z′}
d) m ≥ 4

e) if c(um−2um−1) = w′, then c(um−2vk) = c(um−3um−2) 6= c(um−2vj−1) = w′ for all
vk 6= vj−1.

f) if c(um−2um−1) = z′, then c(um−2vk) = c(um−3um−2) 6= c(um−2vj+1) = z′ for all
vk 6= vj+1.

(14) is proved similarly to (13).

By (12) we may assume c(u2v1) = x without loss of generality. Let w = c(vnv1) and
z = c(v1v2). We will further assume c(u2vn) = c(u2v2) = c(u2u3) = w, which is admissible
by (13c) without loss of generality. Then m ≥ 4 holds by (13d) and

c(u3vk) = c(u3u4) 6= c(u3vn) = w for all vk 6= vn

by (13e). These facts will be used frequently throughout the remaining part of the proof.

(15) n = 3.

Suppose n 6= 3; from (13a) it follows that n is equal to 5. Further we then have
c(v4v5) = c(v2v3) = c(v2v5) = x by (13a), and c(u2vk) 6= x for vk ∈ {v3, v4} by (13b).

11
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Figure 3: The situation in the proof of (15), where a = c(u3u4).

We will first show that there exists j ∈ {1, 2, . . . , 5} with c(um−1vj) = y. So suppose
not. Then by (10) there is a k such that c(um−1vk−1) = c(vm−1vk) 6= c(um−2um−1) and
c(vk−2vk−1) = c(vkvk+1) = y. The latter implies k /∈ {1, 2}, using c(v4v5) 6= c(v1v2)
and c(v5v1) 6= c(v2v3). For k ∈ {3, 4} the path u1v4u2v1v2v5u3u4 . . . um−2um−1v3um is a
PCHP, and for k = 5 the path u1v3u2v1v2v5u3u4 . . . um−2um−1v4um is a PCHP, giving
a contradiction in each case. Thus we have shown that j exists as desired. Figure 3
summarizes what has been shown so far about the colors of various edges.

Now (14a) implies y ∈ {x, z, w}, and the value of j is uniquely determined, by (14b).
Moreover, (14c) implies c(um−2um−1) ∈ {x, z, w} \ {y}.

Case 1: y = x. In this case j = 1, and c(um−1v1) = x 6= c(um−2um−1). However,
u1u2v2v1um−1um−2 . . . u4u3v5v4v3um is a PCHP, a contradiction.

Case 2: y = z. In this case j = 5, c(um−1v5) = z, and c(um−2um−1) ∈ {x, w}.
Supposing that c(um−2um−1) = x holds, the path u1u2 . . . um−3um−2v4v3um−1um and the
cycle v1v5v2v1 would both be properly colored, contradicting our minimality assumption.
So we have c(um−2um−1) = w.

By (13e) we have c(u3v1) = c(u3u4), and c(um−1v1) = c(um−2um−1) follows from (14c),
so we deduce m 6= 4. Since c(u2u3) = w = c(um−2um−1) it is clear that m 6= 5 holds,
hence m ≥ 6. By (14e) we have c(um−2v1) = w. Now

u1u2v2v1um−2um−3 . . . u4u3v5v4v3um−1um
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Figure 4: The situation in the final steps of the proof of Claim A, where a = c(u3u4).

is a PCHP, a contradiction.

Case 3: y = w. In this case j = 2, and c(um−1v2) = w. We note by (14a) that
c(v1v3) = w holds. However u1u2v4v5u3u4 . . . um and v1v2v3v1 are now properly colored,
again contradicting our minimality assumption. This finishes the last case, and (15) is
proved.

We choose j ∈ {1, 2, 3} with c(um−1vj) = y, which is possible since (10b) fails for n = 3,
implying that the assumption of (10) does not hold. Then j satisfies the assumption of
(8), hence c(vj+1vj+2) = y follows from (8b). We deduce y ∈ {x, z, w} and proceed to
divide into the three respective cases (see also Figure 4).

Case 1: y = x. Then j = 1 follows from c(v2v3) = x, and the choice of j implies
c(um−1v1) = x. But now u1u2v2v1um−1um−2 . . . u4u3v3um is a PCHP, a contradiction.

Case 2: y = z. In this case j = 3 follows from c(v1v2) = y, implying c(um−1v3) = z.
By (13e) c(u3v1) = c(u3v2) = c(u3u4) 6= c(u3v3) = w. For m = 4 all of (6a,b,c,d) would
fail for p = 4 and q = 1 (in particular (6b) fails by c(u3v2) = c(u3u4) = y 6= x = c(v2v3)),
so we deduce m ≥ 5.

Suppose c(u4v1) 6= c(u4u5). Then c(u3v1) = c(u4v1) holds, as otherwise the path
u1u2v2v3u3v1u4u5 . . . um would be a PCHP. Now (6) with p = 4 and q = 1 implies
c(u3v2) = x or c(u4v1) = w (i.e. (6b) or (6c)). We have c(u4v1) = c(u3v1) = c(u3u4) 6=
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c(u2u3) = w, so c(u3v2) = x follows. But then u1u2v2u3v3um−1um−2 . . . u5u4v1um is a
PCHP, which is a contradiction. We conclude that c(u4v1) = c(u4u5) holds.

Suppose c(u4v2) 6= c(u4u5). Then (5c) for p = 4 and q = 2 holds, that is c(u4v2) = x,
and u1u2u3v1v3um−1um−2 . . . u5u4v2um is a PCHP, a contradiction. Hence c(u4v2) =
c(u4u5) follows. Now by (3) we have c(u4v3) 6= c(u4u5). With p = 4 and q = 3
either (5b) or (5c) holds, hence c(u3v2) = z or c(u4v3) = w. Examination of the
path u1v2u2v1u3v3u4u5 . . . um allows us to deduce c(u3v1) = x or c(u4v3) = w. Then
c(u4v3) = w follows, since the two alternatives conflict due to c(u3v1) = c(u3v2).

Let i be the largest number such that i ≤ m and such that c(ui′v1) = c(ui′v2) =
c(ui′ui′+1) 6= c(ui′v3) = w holds for every i′ = 3, 4, . . . , i − 1. We note that i exists
and satisfies i ≥ 5. It is useful to observe that (5a) and (6a) fail for p = i and every
q = 1, 2, 3; for (5a) this follows from c(ui−2ui−1) 6= w for q = 1, and it follows from
c(ui−1vq−1) = c(ui−1ui) 6= c(ui−2ui−1) for q 6= 1. Similarly for (6a).

For i = m all of (6a,b,c,d) fail for p = i and q = 1 (in particular (6b) fails by
c(ui−1v2) = c(ui−1ui) = y 6= x = c(v2v3)), so we deduce i < m.

Suppose c(uiv1) 6= c(uiui+1). For p = i and q = 1 (5) and (6) imply c(uiv1) = z
and c(ui−1v2) = x (respectively (5c) and (6b)). Using c(ui−1v1) = c(ui−1v2) = x and
c(ui−2v2) = c(ui−2ui−1) 6= c(ui−1ui) = c(ui−1v2) = x, the path

u1 . . . ui−3ui−2v2v3ui−1v1uiui+1 . . . um

is a PCHP. This contradiction shows c(uiv1) = c(uiui+1). Suppose c(uiv2) 6= c(uiui+1).
Then (5) with p = i and q = 2 implies c(uiv2) = x, but

u1u2 . . . ui−2ui−1v1v3um−1um−2 . . . ui+1uiv2um

is a PCHP, a contradiction. Therefore c(uiv2) = c(uiui+1). By (3) we have c(uiv3) 6=
c(uiui+1). Then c(uiv3) 6= w follows from the choice of i, and

u1v2v1u2u3 . . . ui−2ui−1v3uiui+1 . . . um

is a PCHP, a contradiction.

Case 3: y = w. This implies j = 2 and c(um−1v2) = w. By (14c) we have
c(um−2um−1) ∈ {x, z}. The case c(um−2um−1) = z is symmetric to Case 2, so only the
case c(um−2um−1) = x remains. Then m ≥ 5 follows, as P is properly colored. We can
assume c(u2um−1) 6= x without loss of generality. But u1u2um−1um−2 . . . u4u3v3v2v1um is
a PCHP, with contradiction. This finishes the proof of Case 3, and of Claim A. 2
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