Solution of a conjecture of Volkmann on the number of vertices in longest paths and cycles of strong semicomplete multipartite digraphs

Gregory Gutin
Department of Computer Science
Royal Holloway University of London
Egham, Surrey, TW20 0EX, UK
G.Gutin@rhul.ac.uk
Anders Yeo
Department of Computer Science
University of Aarhus, Ny Munkegade, Building 540
8000 Aarhus C, Denmark
yeo@daimi.au.dk

Abstract

A digraph obtained by replacing each edge of a complete multipartite graph by an arc or a pair of mutually opposite arcs with the same end vertices is called a semicomplete multipartite digraph. L. Volkmann conjectured that $l \leq 2 c-1$, where l (c, respectively) is the number of vertices in a longest path (longest cycle) of a strong semicomplete multipartite digraph. The bound on l is sharp. We settle this conjecture in affirmative.

Running title: Solution of a conjecture of Volkmann

1 Introduction, terminology and notation

L. Volkmann [6] conjectured that $l \leq 2 c-1$, where $l(c$, respectively) is the number of vertices in a longest path (longest cycle) of a strong semicomplete multipartite digraph. An example taken from [2] shows that the bound on l is sharp. (We describe this example in the end of this paper.) We settle Volkmann's conjecture in affirmative.

We will assume that the reader is familiar with the standard terminology on graphs and digraphs and refer the reader to [3]. By a cycle and a path in a directed graph we mean a directed simple cycle and path, respectively. Let D be a digraph. $V(D)(A(D))$ denotes
the vertex (arc) set of D. A digraph D is strong if there exists a path from x to y for every choice of distinct vertices x, y of D. A path from x to y is an (x, y)-path. The subpath of a cycle C from a vertex v to a vertex w will be denoted by $C[v, w]$. Analogously, $C[v, w[$ stands for the subpath of C from v to the predecessor of w (in the path $C[v, w]$).

If D has an arc $x y \in A(D)$, then we often use the notation $x \rightarrow y$ and say that x dominates y and y is dominated by x. For disjoint sets X and Y of vertices in D, we say that X strongly dominates Y, and use the notation $X \Rightarrow Y$, if there is no arc from Y to X. This means that for every pair $x \in X, y \in Y$ of adjacent vertices x dominates y, but y does not dominate x. For a subset X of $V(D), D\langle X\rangle$ is the subdigraph of D induced by X.

A collection $B_{1}, B_{2}, \ldots, B_{m}$ of sets is a partition of a set B, if and only if, $\cup_{i=1}^{m} B_{i}=B$ and $B_{i} \cap B_{j}=\emptyset$ for all $1 \leq i<j \leq m$. Note that we allow some B_{i} 's to be empty sets. A digraph D is called semicomplete p-partite (or, just, semicomplete multipartite) if there is a partition V_{1}, \ldots, V_{p} of $V(D)$ such that no set of the partition is empty, no arc has both end vertices in the same V_{i}, and, for every pair $x_{i} \in V_{i}, x_{j} \in V_{j}(i \neq j)$ at least one of the arcs $x_{i} x_{j}$ and $x_{j} x_{i}$ is in D. The sets V_{i} are the partite sets of D. Semicomplete multipartite digraphs are well studied, see, e.g., survey papers [1, 4, 5, 7].

2 Bound

Lemma 2.1 Let D be a semicomplete multipartite digraph. Let non-empty sets $Q_{1}, Q_{2}, \ldots, Q_{l}$ form a partition of $V(D)$ such that $Q_{i} \Rightarrow Q_{j}$ for every $1 \leq i<j \leq l$. Assume that $|V(D)|>l$ and $D\left\langle Q_{i}\right\rangle$ has a Hamilton path $q_{1}^{i} q_{2}^{i} \ldots q_{\left|Q_{i}\right|}^{i}$ for every $i=1,2, \ldots, l$. Then, D has a $\left(q_{1}^{1}, q_{\left|Q_{\mid}\right|}^{l}\right)$-path with at least $|V(D)|-l+1$ vertices.

Proof: We use the induction on l. Clearly the theorem holds when $l=1$, so assume that $l>1$.

If $\left|V(D)-Q_{l}\right|>(l-1)$ then, by the induction hypothesis, there is a $\left(q_{1}^{1}, q_{\left|Q_{l-1}\right|}^{l-1}\right)-$ path, $p_{1} p_{2} . . p_{k}$, in $D-Q_{l}$ which contains $k \geq\left|V(D)-Q_{l}\right|-(l-1)+1 \geq 2$ vertices. As $\left\{p_{k-1}, p_{k}\right\} \Rightarrow q_{1}^{l}$ and p_{k-1} and p_{k} belong to different partite sets, $p_{k-1} \rightarrow q_{1}^{l}$ or $p_{k} \rightarrow q_{1}^{l}$. Therefore, the path $p_{1} p_{2} \ldots p_{s} q_{1}^{l} q_{2}^{l} \ldots q_{\left|Q_{l}\right|}^{l}$, where $s=k-1$ or k, is of the desired type.

If $\left|V(D)-Q_{l}\right| \leq(l-1)$, then clearly $\left|Q_{l}\right|>1$. As $q_{1}^{1} \Rightarrow\left\{q_{1}^{l}, q_{2}^{l}\right\}$ and q_{1}^{l} and q_{2}^{l} belong to different partite sets, $q_{1}^{1} \rightarrow q_{1}^{l}$ or $q_{1}^{1} \rightarrow q_{2}^{l}$. Therefore, the path $q_{1}^{1} q_{s}^{l} q_{s+1}^{l} \cdots q_{\left|Q_{l}\right|}^{l}$, where $s \in\{1,2\}$, is of the desired type.

Theorem 2.2 Let D be a strong semicomplete multipartite digraph and let l be the number of vertices in a longest path in D and let c be the number of vertices in a longest cycle in D. Then $l \leq 2 c-1$.

Proof: Let $P=p_{1} p_{2} . . p_{l}$ be a path in D of maximum length and let $R=V(D)-V(P)$. Let $x_{0}=p_{l}$ and define S_{i}, x_{i} and y_{i} recursively as follows ($i=1,2, \ldots$).

First let S_{1}^{\prime} be a $\left(p_{l}, p_{k}\right)$-path in D, such that k is chosen as small as possible. Let $x_{1}=$ p_{k}, let $y_{1}=p_{l}$ and let $S_{1}=S_{1}^{\prime}-\left\{x_{1}, y_{1}\right\}$ (note that $S_{1}=\emptyset$, by the maximality of l). Now for $i=2,3,4, \ldots$ let S_{i}^{\prime} be a $\left(p_{t}, p_{k}\right)$-path in $D\left\langle\left\{p_{t}, p_{k}\right\} \cup R-\left(V\left(S_{1}\right) \cup V\left(S_{2}\right) \cup \ldots \cup V\left(S_{i-1}\right)\right\rangle\right.$, such that $p_{t} \in V\left(P\left[x_{i-1}, p_{l}\right]\right)$ and $p_{k} \in V\left(P\left[p_{1}, x_{i-1}[)\right.\right.$, and firstly k is chosen as small as possible, thereafter t is chosen as large as possible. Let also $x_{i}=p_{k}, y_{i}=p_{t}$ and $S_{i}=S_{i}^{\prime}-\left\{x_{i}, y_{i}\right\}$. (Some paths S_{i} can be empty)

We continue the above process until $x_{i}=p_{1}$. Let the last value of i found above be denoted by m (i.e. $x_{m}=p_{1}$). Observe that the paths S_{i}^{\prime} always exist as D is strong. Observe also that $y_{1}=p_{l}$ and that T below is a path in D :

$$
T=y_{1} S_{1} P\left[x_{1}, y_{2}\right] S_{2} P\left[x_{2}, y_{3}\right] S_{3} \ldots P\left[x_{m-1}, y_{m}\right] S_{m} x_{m}
$$

Let $U_{0}=P\left[x_{m}, x_{m-1}\right]-\left\{x_{m}, x_{m-1}\right\}$ and let $U_{i}=P\left[y_{m-i+1}, x_{m-i-1}\right]-\left\{y_{m-i+1}, x_{m-i-1}\right\}$ for $i=1,2, . ., m-1$. Note that some of the U_{i} 's $(i=0,1,2, . ., m-1)$ can be empty. Observe that $V(T), U_{0}, U_{1}, \ldots, U_{m-1}$ partitions the set $V(P) \cup V\left(S_{1}\right) \cup \ldots \cup V\left(S_{m}\right)$. Let $Z_{0}, Z_{1}, \ldots, Z_{m^{\prime}-1}$ be the non-empty sets in $U_{0}, U_{1}, \ldots, U_{m-1}$, where the relative ordering has been kept (i.e. if $Z_{i}=U_{i^{\prime}}, Z_{j}=U_{j^{\prime}}$ and $i^{\prime}<j^{\prime}$ then $i<j$). Let $B_{0}=Z_{0} \cup Z_{2} \cup \ldots \cup Z_{f}$ and $B_{1}=Z_{1} \cup Z_{3} \cup \ldots \cup Z_{g}$, where $f(g$, respectively) is the maximum even integer (odd integer, respectively) not exceeding $m^{\prime}-1$.

If $p_{l} \rightarrow p_{1}$, then we are done (the cycle $P p_{1}$ is of length l). Thus, we may assume that p_{1} is not dominated by p_{l}. As $x_{m}=p_{1}$, we obtain the following:

$$
\begin{equation*}
p_{1} \Rightarrow Z_{1} \cup Z_{2} \cup \ldots \cup Z_{m^{\prime}-1} \cup\left\{p_{l}\right\} . \tag{1}
\end{equation*}
$$

By the definitions of x_{i}, y_{i} and S_{i},

$$
\begin{equation*}
Z_{i} \Rightarrow Z_{i+2} \cup Z_{i+3} \cup \ldots \cup Z_{m^{\prime}-1} \cup\left\{p_{l}\right\}, i=0,1, . ., m^{\prime}-2 . \tag{2}
\end{equation*}
$$

As $\left\{x_{0}, x_{1}, \ldots, x_{m}\right\} \subseteq V(T)$ and $m \geq m^{\prime}$, we have

$$
\begin{equation*}
|V(T)| \geq m^{\prime}+1 \tag{3}
\end{equation*}
$$

As $V(T), B_{0}, B_{1}$ partitions the set $V(P) \cup V\left(S_{1}\right) \cup \ldots \cup V\left(S_{m}\right)$,

$$
\begin{equation*}
|V(T)|+\left|B_{0}\right|+\left|B_{1}\right| \geq l . \tag{4}
\end{equation*}
$$

All $Z_{i} \cup\left\{x_{i}\right\}$ are disjoint sets containing at least two vertices. Thus, there are at most $l / 2$ such sets. Hence, we obtain

$$
\begin{equation*}
m^{\prime} \leq \frac{l}{2} . \tag{5}
\end{equation*}
$$

We only consider the case when m^{\prime} is odd since the case of even m^{\prime} can be treated similarly.

If $\left|B_{0}\right|+2>\frac{m^{\prime}+1}{2}$ then, by (1), (2) and Lemma 2.1, there is a path W_{0} from p_{1} to p_{l} in $D\left\langle\left\{p_{1}, p_{l}\right\} \cup B_{0}\right\rangle$ containing at least $\left|B_{0}\right|+2-\frac{m^{\prime}+1}{2}+1$ vertices (let $V\left(Q_{1}\right)=\left\{p_{1}\right\} \cup Z_{0}$, $\left.V\left(Q_{2}\right)=Z_{2}, \ldots, V\left(Q_{\left(m^{\prime}-1\right) / 2}\right)=Z_{m^{\prime}-3}, V\left(Q_{\left(m^{\prime}+1\right) / 2}\right)=Z_{m^{\prime}-1} \cup\left\{p_{l}\right\}\right)$. Analogously if $\left|B_{1}\right|>\frac{m^{\prime}-1}{2}$, then there is a path W_{1} from p_{1} to p_{l} in $D\left\langle\left\{p_{1}, p_{l}\right\} \cup B_{1}\right\rangle$ containing at least $\left|B_{1}\right|-\frac{m^{\prime}-1}{2}+1$ vertices (let $V\left(Q_{1}\right)=\left\{p_{1}\right\}, V\left(Q_{2}\right)=Z_{1}, \ldots, V\left(Q_{\left(m^{\prime}-1\right) / 2}\right)=Z_{m^{\prime}-2}$, $\left.V\left(Q_{\left(m^{\prime}+1\right) / 2}\right)=\left\{p_{l}\right\}\right)$.

We now consider the cases where none, one or two of the paths W_{0} and W_{1} exist.
Case 1: Both W_{0} and W_{1} exist. The cycle $C_{0}=W_{0} T$ contains $|V(T)|+\left|V\left(W_{0}\right)\right|-2$ vertices (as p_{1} and p_{l} are counted twice). The cycle $C_{1}=W_{1} T$ contains $|V(T)|+\left|V\left(W_{1}\right)\right|-2$ vertices. By (3) and (4), this implies the following:

$$
\begin{aligned}
\left|V\left(C_{0}\right)\right|+\left|V\left(C_{1}\right)\right| & =2|V(T)|+\left|V\left(W_{0}\right)\right|+\left|V\left(W_{1}\right)\right|-4 \\
& \geq 2|V(T)|+\left(\left|B_{0}\right|+2-\frac{m^{\prime}+1}{2}+1\right)+\left(\left|B_{1}\right|-\frac{m^{\prime}-1}{2}+1\right)-4 \\
& =|V(T)|+\left(|V(T)|+\left|B_{0}\right|+\left|B_{1}\right|\right)-m^{\prime} \\
& \geq|V(T)|+l-m^{\prime} \\
& \geq l+1 .
\end{aligned}
$$

This implies that the largest cycle of C_{0} and C_{1} contains at least $\lceil(l+1) / 2\rceil$ vertices. Thus, we are done.

Case 2: Exactly one of W_{0} or W_{1} exists. Let $j \in\{0,1\}$ be defined such that W_{j} exists, but W_{1-j} does not exist. Using (4) and (5), and observing that either $\left|B_{0}\right|+2-$ $\frac{m^{\prime}+1}{2}+1 \leq 1$ or $\left|B_{1}\right|-\frac{m^{\prime}-1}{2}+1 \leq 1$, we obtain the following ($C_{j}=W_{j} T$, as above):

$$
\begin{aligned}
\left|V\left(C_{j}\right)\right| & \geq|V(T)|-2+\left(\left|B_{0}\right|+2-\frac{m^{\prime}+1}{2}+1\right)+\left(\left|B_{1}\right|-\frac{m^{\prime}-1}{2}+1\right)-1 \\
& \geq|V(T)|+\left|B_{0}\right|+\left|B_{1}\right|-m^{\prime}+1 \\
& \geq l-m^{\prime}+1 \\
& \geq l-\frac{l}{2}+1 \\
& \geq \frac{l+2}{2} .
\end{aligned}
$$

This is the desired result.
Case 3: Neither W_{0} nor W_{1} exists. This means that $\left|B_{0}\right|+2-\frac{m^{\prime}+1}{2} \leq 0$ and $\left|B_{1}\right|-\frac{m^{\prime}-1}{2} \leq 0$. Thus,

$$
\begin{aligned}
|V(T)| & \geq|V(T)|+\left(\left|B_{0}\right|+2-\frac{m^{\prime}+1}{2}\right)+\left(\left|B_{1}\right|-\frac{m^{\prime}-1}{2}\right) \\
& =|V(T)|+\left|B_{0}\right|+\left|B_{1}\right|+2-m^{\prime} \\
& \geq l-m^{\prime}+2 \\
& \geq \frac{l+2}{2}+1
\end{aligned}
$$

If $p_{1} \rightarrow p_{l}$ then there is a cycle of length at least $\left\lceil\frac{l+2}{2}+1\right\rceil$ (using all vertices in $V(T)$). $\mathrm{By}(1), p_{l}$ does not dominate p_{1}, so we may assume that p_{1} and p_{l} are in the same partite set. We have $S_{m}=\emptyset$ as otherwise $S_{m} P$ is longer than P which is impossible, hence y_{m} and p_{l} are in different partite sets. If $p_{l} \rightarrow y_{m}$ then either $P\left[y_{m}, p_{l}\right] y_{m}$ or $P\left[p_{1}, y_{m}\right] p_{1}$ is a cycle with at least $\left\lceil\frac{l+1}{2}\right\rceil$ vertices. Therefore, we may assume that $y_{m} \rightarrow p_{l}$. Then the cycle $T\left[p_{l}, y_{m}\right] p_{l}$ contains at least $\left\lceil\frac{l+2}{2}\right\rceil$ vertices. We are done.

3 Bondy's example

This example originates from [2]. Let H be a semicomplete m-partite digraph with partite sets $V_{1}, V_{2}, \ldots, V_{m}(m \geq 3)$ such that $V_{1}=\{v\}$ and $\left|V_{i}\right| \geq 2$ for every $2 \leq i \leq n$. Let also $V_{2} \Rightarrow v, v \Rightarrow V_{j}$ for $3 \leq j \leq m$, and $V_{k} \Rightarrow V_{i}$ for $2 \leq i<k \leq m$. It is easy to verify that a longest path (cycle, respectively) in H contains $2 m-1$ (m, respectively) vertices.

References

[1] Bang-Jensen, J., Gutin, G.: Generalizations of tournaments: a survey. J. Graph Theory 28, 171-202 (1998).
[2] Bondy, J.A.: Diconnected orientation and a conjecture of Las Vergnas. J. London Math. Soc. 14, 277-282 (1976).
[3] Bondy, J.A., Murty, U.R.S.: Graph Theory with Applications, MacMillan Press (1976).
[4] Gutin, G.: Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: a survey. J. Graph Theory 19, 481-505 (1995).
[5] Reid, K.B.: Tournaments: scores, kings, generalizations and special topics. Congressus Nummerantium 115, 171-211 (1996).
[6] Volkmann, L.: Spanning multipartite tournaments of semicomplete multipartite digraphs. Manuscript, June, 1998.
[7] Volkmann, L.: Cycles in multipartite tournaments: results and problems. Submitted.

