Minimum Cost Homomorphism Dichotomy for Oriented Cycles

Gregory Gutin ${ }^{1}$, Arash Rafiey ${ }^{2}$, and Anders Yeo ${ }^{1}$
${ }^{1}$ Department of Computer Science Royal Holloway, University of London Egham, Surrey TW20 0EX, UK
gutin(anders)@cs.rhul.ac.uk
${ }^{2}$ School of Computing Science Simon Fraser University
Burnaby, B.C., Canada, V5A 1S6
arashr@cs.sfu.ca

Abstract

For digraphs D and H, a mapping $f: V(D) \rightarrow V(H)$ is a homomorphism of D to H if $u v \in A(D)$ implies $f(u) f(v) \in A(H)$. If, moreover, each vertex $u \in V(D)$ is associated with costs $c_{i}(u), i \in V(H)$, then the cost of the homomorphism f is $\sum_{u \in V(D)} c_{f(u)}(u)$. For each fixed digraph H, we have the minimum cost homomorphism problem for H (abbreviated $\operatorname{MinHOM}(H)$). In this discrete optimization problem, we are to decide, for an input graph D with costs $c_{i}(u), u \in V(D), i \in V(H)$, whether there exists a homomorphism of D to H and, if one exists, to find one of minimum cost. We obtain a dichotomy classification for the time complexity of $\operatorname{MinHOM}(H)$ when H is an oriented cycle. We conjecture a dichotomy classification for all digraphs with possible loops.

1 Introduction

For directed (undirected) graphs G and H, a mapping $f: V(G) \rightarrow V(H)$ is a homomorphism of G to H if $u v$ is an arc (edge) implies that $f(u) f(v)$ is an arc (edge). Let H be a fixed directed or undirected graph. The homomorphism problem for H asks whether a directed or undirected input graph G admits a homomorphism to H. The list homomorphism problem for H asks whether a directed or undirected input graph G with lists (sets) $L_{u} \subseteq V(H), u \in V(G)$ admits a homomorphism f to H in which $f(u) \in L_{u}$ for each $u \in V(G)$.

Suppose G and H are directed (or undirected) graphs, and $c_{i}(u), u \in V(G)$, $i \in V(H)$ are nonnegative costs. The cost of a homomorphism f of G to H is $\sum_{u \in V(G)} c_{f(u)}(u)$. If H is fixed, the minimum cost homomorphism problem, $\operatorname{MinHOM}(H)$, for H is the following discrete optimization problem. Given an input graph G, together with $\operatorname{costs} c_{i}(u), u \in V(G), i \in V(H)$, we wish to find a minimum cost homomorphism of G to H, or state that none exists.

The minimum cost homomorphism problem was introduced in [10], where it was motivated by a real-world problem in defence logistics. We believe it
offers a practical and natural model for optimization of weighted homomorphisms. The problem's special cases include the homomorphism and list homomorphism problems $[15,17]$ and the general optimum cost chromatic partition problem, which has been intensively studied $[13,19,20]$.

There is an extensive literature on the minimum cost homomorphism problem, e.g., see [5-10]. These and other papers study the time complexity of $\operatorname{MinHOM}(H)$ for various families of directed and undirected graphs. In particular, Gutin, Hell, Rafiey and Yeo [6] proved a dichotomy classification for all undirected graphs (with possible loops): If H is a reflexive proper interval graph or a proper interval bigraph, then $\operatorname{MinHOM}(H)$ is polynomial time solvable; otherwise, $\operatorname{MinHOM}(H)$ is NP-hard. It is an open problem whether there is a dichotomy classification for the complexity of $\operatorname{MinHOM}(H)$ when H is a digraph with possible loops. We conjecture that such a classification exists and, moreover, the following assertion holds:

Conjecture 1. Let H be a digraph with possible loops. Then $\operatorname{MinHOM}(H)$ is polynomial time solvable if H has either a Min-Max ordering or a k-Min-Max ordering for some $k \geq 2$. Otherwise, $\operatorname{MinHOM}(H)$ is NP-hard.

For the definitions of a Min-Max and k-Min-Max ordering see Section 3, where we give theorems (first proved in $[10,9]$) showing that if H has one of the two orderings, then $\operatorname{MinHOM}(H)$ is polynomial time solvable. So, it is the NP-hardness part of Conjecture 1 which is the 'open' part of the conjecture.

Very recently Gupta, Hell, Karimi and Rafiey [5] obtained a dichotomy classification for all reflexive digraphs that confirms this conjecture. They proved that if a reflexive digraph H has no Min-Max ordering, then $\operatorname{MinHOM}(H)$ is NP-hard. Gutin, Rafiey and Yeo $[8,9]$ proved that if a semicomplete multipartite digraph H has neither Min-Max ordering nor k-Min-Max ordering, then $\operatorname{MinHOM}(H)$ is NP-hard.

In this paper, we show that the same result (as for semicomplete multipartite digraphs) holds for oriented cycles. This provides a further support for Conjecture 1. In fact, we prove a graph-theoretical dichotomy for the complexity of $\operatorname{MinHOM}(H)$ when H is an oriented cycle. The fact that Conjecture 1 holds for oriented cycles follows from the proof of the graph-theoretical dichotomy. In the proof, we use a new concept of a (k, l)-Min-Max ordering introduced in Section 3. Our motivation for Conjecture 1 partially stems from the fact that we initially proved polynomial time solvability of $\operatorname{MinHOM}(H)$ when $V(H)$ has a (k, l)-Min-Max ordering by reducing it to the minimum cut problem. However, we later proved that (k, l)-Min-Max orderings can simply be reduced to p-Min-Max orderings for $p \geq 1$ (see Section 3).

Homomorphisms to oriented cycles have been investigated in a number of papers. Partial results for the homomorphism problem to oriented cycles were obtained in [11] and [18]. A full dichotomy was proved by Feder [3]. Feder,

Hell and Rafiey [4] obtained a dichotomy for the list homomorphism problem for oriented cycles. Notice that our dichotomy is different from the ones in [3] and [4].

Bulatov [2] proved that there exists a dichotomy classification for the list homomorphism problem for digraphs, but no such dichotomy has been obtained and even conjectured to the best of our knowledge. For the homomorphism problem for digraphs, we do not even know whether a dichotomy exists and there is no conjecture of such a classification for the general case.

The rest of this paper is organized as follows. In the next section we consider so-called levels of vertices in oriented paths and cycles. The concepts of MinMax ordering, k-Min-Max ordering and (k, l)-Min-Max ordering are considered in Section 3. In Section 4 we obtain a dichotomy classification for $\operatorname{MinHOM}(H)$ when H is a balanced oriented cycle. For all oriented cycles H, a dichotomy is proved in Section 5.

2 Levels of Vertices in Oriented Paths and Cycles

In this paper $[p]$ denotes the set $\{1,2, \ldots, p\}$. Let D be a digraph. We will use $V(D)(A(D))$ to denote the vertex (arc) set of D. We say that $x y(x, y \in V(D))$ is an edge of D if either $x y$ or $y x$ is an arc of D. A sequence $b_{1} b_{2} \ldots b_{p}$ of distinct vertices of D is an oriented path if $b_{i} b_{i+1}$ is an edge for every $i \in[p-1]$. If $b_{1} b_{2} \ldots b_{p}$ is an oriented path, we call $C=b_{1} b_{2} \ldots b_{p} b_{1}$ an oriented cycle if $b_{p} b_{1}$ is an edge. An edge $b_{i} b_{i+1}$ (here $b_{p} b_{p+1}=b_{p} b_{1}$) of an oriented path P or cycle C is called forward (backward) if $b_{i} b_{i+1} \in A(D)\left(b_{i+1} b_{i} \in A(D)\right)$.

Let $P=b_{1} b_{2} \ldots b_{p}$ be an oriented path. We assign levels to the vertices of P as follows: we set $\operatorname{level}_{P}\left(b_{1}\right)=0$, and $\operatorname{level}_{P}\left(b_{t+1}\right)=\operatorname{level}_{P}\left(b_{t}\right)+1$, if $b_{t} b_{t+1}$ is forward and and level $P_{P}\left(b_{t+1}\right)=\operatorname{level}_{P}\left(b_{t}\right)-1$, if $b_{t} b_{t+1}$ is backward. We say that P is of type r if $r=\max \left\{\operatorname{level}_{P}\left(b_{i}\right): i \in[p]\right\}=\operatorname{level}_{P}\left(b_{p}\right)$ and $0 \leq \operatorname{level}_{P}\left(b_{t}\right) \leq r$ for each $t \in[p]$.

An oriented cycle C is balanced if the number of forward edges equals the number of backward edges; if C is not balanced, it is called unbalanced. Note that the fact whether C is balanced or unbalanced does not depend on the choice of the vertex b_{1} or the direction of C.

Let $C=b_{1} b_{2} \ldots b_{p} b_{1}$ be an oriented cycle. It has two directions: $b_{1} b_{2} \ldots b_{p} b_{1}$ and $b_{1} b_{p} b_{p-1} \ldots b_{1}$. In what follows, we will always consider the direction in which the number of forward arcs is no smaller than the number of backward arcs. We can assign levels to the vertices of C as follows: level $\left(b_{1}\right)=k$, where k is a non-negative integer, and level $\left(b_{t+1}\right)=\operatorname{level}\left(b_{t}\right)+1$, if $b_{t} b_{t+1}$ is forward and and level $\left(b_{t+1}\right)=\operatorname{level}\left(b_{t}\right)-1$, if $b_{t} b_{t+1}$ is backward. Clearly, the value of each level $\left(b_{i}\right), i \in[p]$, depends on both k and the choose of the initial vertex b_{1}. Feder [3] proved the following useful result.

Proposition 1. The integer k and initial vertex b_{1} in an oriented cycle C can be chosen such that level $\left(b_{1}\right)=0$ and $\operatorname{level}\left(b_{i}\right) \geq 0$ for every $i \in[p]$. If C is unbalanced, then k and b_{1} can be chosen such that $\operatorname{level}\left(b_{1}\right)=0$ and $\operatorname{level}\left(b_{i}\right)>0$ for every $i \in[p] \backslash\{1\}$.

Since the proposition was proved in [3], we will not give its complete proof. Instead, we will outline a procedure for finding appropriate k and b_{1} and remark on how the procedure can be used in showing the proposition.

Let $C=b_{1} b_{2} \ldots b_{p} b_{1}$ be an oriented cycle. We may assume that b_{1} is chosen in such a way that if C has a backward edge, then $b_{p} b_{1}$ is a backward edge. Compute m_{i}, the number of the forward arcs minus the number of backward arcs in the oriented path $b_{1} b_{2} \ldots b_{i}$, for each $i \in[p]$. Set $k=\left|\min \left\{m_{i}: i \in[p]\right\}\right|$. Assign the level to each vertex of C using the level definition and starting from assigning level k to b_{1}. By the definition of k, the level of each vertex b_{j} is non-negative and there are vertices b_{i} of level zero. Choose such a vertex b_{i} with maximum index i and reassign the levels to the vertices of C as follows. Consider $C^{\prime}=b_{i} b_{i+1} \ldots b_{p} b_{1} b_{2} \ldots b_{i}$ and set level $\left(b_{i}\right)=0$ and the rest of the levels according to the order of vertices given in C^{\prime}.

This procedure can be turned into a proof of the proposition by observing that if C^{\prime} is unbalanced, then the level of b_{1} in C^{\prime} will be greater than the level of b_{1} in C. Thus, the levels of all vertices $v_{j}, j \in[i-1]$ will be greater than their levels in C, implying that the only level zero vertex in C^{\prime} is b_{i}.

Thus, in the rest of the paper, we may assume that the 'first' vertex of b_{1} of an oriented cycle $C=b_{1} b_{2} \ldots b_{p} b_{1}$ is chosen in such a way that the levels of all vertices of C satisfy Proposition 1.

We will extensively use the following notation: $V L(C)=\left\{b_{t}\right.$: level $\left(b_{t}\right)=$ $0, t \in[p]\}, h(C)=\max \left\{\operatorname{level}\left(b_{j}\right): j \in[p]\right\}$, and $V H(C)=\left\{b_{t}: \operatorname{level}\left(b_{t}\right)=\right.$ $h(C), t \in[p]\}$. Note that for unbalanced cycles C we have $|V L(C)|=1$.

The concepts of this section are illustrated on Figure 1. In particular, Z is balanced with forward edges $b_{1} b_{2}, b_{3} b_{4}, \ldots$ and backward edges $b_{2} b_{3}, b_{4} b_{5}, \ldots$. We have level $\left(b_{1}\right)=\operatorname{level}\left(b_{3}\right)=\operatorname{level}\left(b_{5}\right)=0, \operatorname{level}\left(b_{2}\right)=\operatorname{level}\left(b_{4}\right)=\operatorname{level}\left(b_{6}\right)=$ $\operatorname{level}\left(b_{8}\right)=\operatorname{level}\left(b_{14}\right)=1, \operatorname{level}\left(b_{7}\right)=\operatorname{level}\left(b_{9}\right)=\operatorname{level}\left(b_{11}\right)=\operatorname{level}\left(b_{13}\right)=2$ and level $\left(b_{10}\right)=\operatorname{level}\left(b_{12}\right)=3$. Thus, $h(Z)=3, V L(Z)=\left\{b_{1}, b_{3}, b_{5}\right\}, V H(Z)=$ $\left\{b_{10}, b_{12}\right\}$.

$3 \quad k$-Min-Max and (k, l)-Min-Max Orderings

All known polynomial cases of $\operatorname{MinHOM}(H)$ can be formulated in terms of certain vertex orderings. In fact, all known polynomial cases can be partitioned into two classes: digraphs H admitting a Min-Max ordering of their vertices and digraphs H having a k-Min-Max ordering of their vertices $(k \geq 2)$. Both types of orderings are defined in this section, where we also introduce a new

Fig. 1. A level diagram of oriented cycle $Z=b_{1} b_{2} \ldots b_{14} b_{1}$, where $b_{1} b_{2}, b_{3} b_{2}, b_{3} b_{4}, b_{5} b_{4}, b_{5} b_{6}, b_{6} b_{7}, b_{8} b_{7} b_{8} b_{9}, b_{9} b_{10}, b_{11} b_{10}, b_{11} b_{12}, b_{13} b_{12}, b_{14} b_{13}, b_{1} b_{14}$ are arcs.
type of ordering, a (k, l)-Min-Max ordering. It may be surprising, but we prove that the new type of ordering can be reduced to the two known orderings.

Let H be a digraph and let $\left(v_{1}, v_{2}, \ldots, v_{p}\right)$ be an ordering of the vertices of H. Let $e=v_{i} v_{r}$ and $f=v_{j} v_{s}$ be two arcs in H. The pair $v_{\min \{i, j\}} v_{\min \{s, r\}}$ $\left(v_{\max \{i, j\}} v_{\max \{s, r\}}\right)$ is called the minimum (maximum) of the pair e, f. (The minimum (maximum) of two arcs is not necessarily an arc.) An ordering $\left(v_{1}, v_{2}, \ldots, v_{p}\right)$ is a Min-Max ordering of $V(H)$ if both minimum and maximum of every two arcs in H are in $A(H)$. Two arcs $e, f \in A(H)$ are called a crossing pair if $\{e, f\} \neq\left\{g^{\prime}, g^{\prime \prime}\right\}$, where $g^{\prime}\left(g^{\prime \prime}\right)$ is the minimum (maximum) of e, f. Clearly, to check that an ordering is Min-Max, it suffices to verify that the minimum and maximum of every crossing pair of arcs are arcs, too. The concept of Min-Max ordering is of interest due to the following:

Theorem 1. [10] If a digraph H has a Min-Max ordering of $V(H)$, then $\operatorname{MinHOM}(H)$ is polynomial-time solvable.

We will sometimes call a Min-Max ordering also a 1-Min-Max ordering. The reason for this will become apparent in the rest of this section.

A collection $V_{1}, V_{2}, \ldots V_{k}$ of subsets of a set V is called a k-partition of V if $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}, V_{i} \cap V_{j}=\emptyset$ provided $i \neq j$.

Let $H=(V, A)$ be a digraph and let $k \geq 2$ be an integer. We say that H has a k-Min-Max ordering of $V(H)$ if there is a k-partition of V into subsets $V_{1}, V_{2}, \ldots V_{k}$ and there is an ordering $\boldsymbol{V}_{i}=\left(v_{1}^{i}, v_{2}^{i}, \ldots, v_{\ell(i)}^{i}\right)$ of V_{i} for each i such that
(i) Every arc of H is an arc from V_{i} to V_{i+1} for some $i \in[k]$ and
(ii) $\left(\boldsymbol{V}_{i}, \boldsymbol{V}_{i+1}\right)=\left(v_{1}^{i}, v_{2}^{i}, \ldots, v_{\ell(i)}^{i} v_{1}^{i+1} v_{2}^{i+1}, \ldots, v_{\ell(i+1)}^{i+1}\right)$ is a Min-Max ordering of the subdigraph of H induced by $V_{i} \cup V_{i+1}$ for each $i \in[k]$. (All indices are taken modulo k.)

In such a case, $\left(\boldsymbol{V}_{1}, \boldsymbol{V}_{2}, \ldots, \boldsymbol{V}_{k}\right)$ is a k-Min-Max ordering of $V(H) ; k$-Min-Max orderings are of interest due to the following:

Theorem 2. [9] If a digraph H has a k-Min-Max ordering of $V(H)$, then $\operatorname{MinHOM}(H)$ is polynomial-time solvable.

Our study of $\operatorname{MinHOM}(H)$ for oriented cycles H has led us to the following new concept.

Definition 1. Let $H=(V, A)$ be a digraph and let $k \geq 2$ and l be integers. For $l<k$ we say that H has a (k, l)-Min-Max ordering if there is a $(k+l-2)$ partition of V into subsets $V_{1}, V_{2}, \ldots, V_{k}, U_{2}, U_{3}, \ldots, U_{l-1}$ (set $U_{1}=V_{1}, U_{l}=$ V_{k}) and there is an ordering $\boldsymbol{V}_{i}=\left(v_{1}^{i}, v_{2}^{i}, \ldots, v_{\ell^{v}(i)}^{i}\right)$ of V_{i} for each $1 \leq i \leq k$ and there is an ordering $\boldsymbol{U}_{i}=\left(u_{1}^{i}, u_{2}^{i}, \ldots, u_{\ell^{u}(i)}^{i}\right)$ of U_{i} for each $1 \leq i \leq l$ such that
(i) Every arc of H is an arc from V_{i} to V_{i+1}) for some $i \in[k-1]$, or is an arc from U_{j} to U_{j+1} for some $j \in[l-1]$.
(ii) $\left(\boldsymbol{V}_{i}, \boldsymbol{V}_{i+1}\right)$ is a Min-Max ordering of the subdigraph $H\left[V_{i} \cup V_{i+1}\right]$ for all $i \in[k-1]$.
(iii) $\left(\boldsymbol{U}_{i}, \boldsymbol{U}_{i+1}\right)$ is a Min-Max ordering of the subdigraph $H\left[U_{i} \cup U_{i+1}\right]$ for all $i \in[l-1]$.
(iv) $\left(\boldsymbol{V}_{1}, \boldsymbol{V}_{2}, \boldsymbol{U}_{2}\right)$ is a Min-Max ordering of the subdigraph $H\left[V_{1} \cup V_{2} \cup U_{2}\right]$.
(v) $\left(\boldsymbol{U}_{l-1}, \boldsymbol{V}_{k-1}, \boldsymbol{V}_{k}\right)$ is a Min-Max ordering of the subdigraph $H\left[V_{k-1} \cup U_{l-1} \cup\right.$ $\left.V_{k}\right]$.

It turns out that (k, l)-Min-Max orderings can be reduced to p-Min-Max orderings as follows from the next assertion:

Theorem 3. If a digraph H has a (k, l)-Min-Max ordering, then $\operatorname{MinHOM}(H)$ is polynomial-time solvable.

Proof. Let H have a (k, l)-Min-Max ordering as described in Definition 1. Let $d=k-l$. We will show that H has a d-Min-Max ordering, which will be sufficient because of Theorems 1 and 2. (Recall that a 1-Min-Max ordering is simply a Min-Max ordering.) Let us consider two cases.

Case 1: $d=1$. It is not difficult to show that the ordering

$$
\left(\boldsymbol{V}_{1}, \boldsymbol{V}_{2}, \boldsymbol{U}_{2}, \boldsymbol{V}_{3}, \boldsymbol{U}_{3}, \ldots, \boldsymbol{V}_{k-2}, \boldsymbol{U}_{k-2}, \boldsymbol{V}_{k-1}, \boldsymbol{V}_{k}\right)
$$

is a Min-Max ordering. Indeed, all crossing pairs of arcs are only in the subgraphs given in (ii)-(v) of Definition 1. According to the definition, the maximum and minimum of every crossing pair is in H.

Case 2: $d \geq 2$. Let $s_{i}=\max \{p: i+p d \leq l\}$ for each $i \in[d]$. Consider the following orderings for each $2 \leq i \leq d$

$$
\boldsymbol{W}_{\boldsymbol{i}}=\left(\boldsymbol{V}_{i}, \boldsymbol{U}_{i}, \boldsymbol{V}_{i+d}, \boldsymbol{U}_{i+d}, \boldsymbol{V}_{i+2 d}, \boldsymbol{U}_{i+2 d}, \ldots, \boldsymbol{V}_{i+s_{i} d}, \boldsymbol{U}_{i+s_{i} d}, \boldsymbol{V}_{i+\left(s_{i}+1\right) d}\right)
$$

and the ordering

$$
\boldsymbol{W}_{\mathbf{1}}=\left(\boldsymbol{V}_{1}, \boldsymbol{V}_{1+d}, \boldsymbol{U}_{1+d}, \boldsymbol{V}_{1+2 d}, \boldsymbol{U}_{1+2 d}, \ldots, \boldsymbol{V}_{1+s_{1} d}, \boldsymbol{U}_{1+s_{1} d}, \boldsymbol{V}_{1+\left(s_{1}+1\right) d}\right) .
$$

Observe that $W_{1}, W_{2}, \ldots, W_{d}$ form a partition of $V(H)$ and that every arc is from W_{i} to W_{i+1} for some $i \in[d]$, where $W_{d+1}=W_{1}$. As in Case 1, it is not difficult to see that $\left(\boldsymbol{W}_{1}, \boldsymbol{W}_{2}, \ldots, \boldsymbol{W}_{d}\right)$ is a d-Min-Max ordering of H.

Remark 1. Notice that not always a p-Min-Max ordering can be reduced to a (k, l)-Min-Max ordering. As an example, consider the directed cycle \boldsymbol{C}_{5}.

4 Balanced Oriented Cycles

We say that a balanced oriented cycle $C=b_{1} b_{2} \ldots b_{p} b_{1}$ is of the form $\left(l^{+} h^{+}\right)^{q}$ with $q \geq 1$ if $P=C-b_{p} b_{1}$ can be written as $P=P_{1} R_{1} P_{2} R_{2} \ldots P_{q} R_{q}$, where

$$
\begin{aligned}
& V\left(P_{i}\right) \cap V L(C) \neq \emptyset, V\left(P_{i}\right) \cap V H(C)=\emptyset, \\
& V\left(R_{i}\right) \cap V L(C)=\emptyset, V\left(R_{i}\right) \cap V H(C) \neq \emptyset
\end{aligned}
$$

for each $i \in[q]$. We write $l^{+} h^{+}$instead of $\left(l^{+} h^{+}\right)^{1}$. For example, the cycle in Figure 1 is of the form $l^{+} h^{+}$. Balanced oriented cycles C of the form $l^{+} h^{+}$are considered in the following:

Theorem 4. Let $C=b_{1} b_{2} \ldots b_{p} b_{1}$ be a balanced oriented cycle of the form $l^{+} h^{+}$. Then MinHOM(C) is polynomial time solvable.

Proof. Let $q=\min \left\{j: b_{j} \in V H(C)\right\}$, let $m=h(C)$ and let $V=V(C)$. Consider the following ordering $\boldsymbol{V}=\left(b_{p}, b_{p-1}, \ldots, b_{q+1}, b_{1}, b_{2} \ldots, b_{q}\right)$ of V. We can define the following natural $(m+1)$-partition of $V: V_{1}, V_{2}, \ldots, V_{m+1}$, where $V_{j}=\left\{b_{s} \in V(C): \operatorname{level}\left(b_{s}\right)=j-1\right\}$. Note that every arc of C is an arc from V_{j} to V_{j+1} for some $j \in[m]$.

Let \boldsymbol{V}_{j} be the ordering of V_{j} obtained from \boldsymbol{V} by deleting all vertices not in V_{j} and let $\boldsymbol{V}_{j}=\left(s_{1}^{j}, s_{2}^{j}, \ldots, s_{b(j)}^{j}\right)$. Observe that the digraph $C\left[V_{j} \cup V_{j+1}\right]$ has no crossing pair of arcs for any $j \in[m]$ since, for every pair $s_{\alpha}^{j} s_{\beta}^{j+1}$, $s_{\gamma}^{j} s_{\delta}^{j+1}$ of arcs in the digraph, we have that either $\alpha \leq \gamma$ and $\beta \leq \delta$, or $\alpha \geq \gamma$ and $\beta \geq \delta$. Thus, C has an ($m+1$)-Min-Max ordering of vertices and, by Theorem $2, \operatorname{MinHOM}(C)$ is polynomial-time solvable.

The following lemma was first proved in [12]; see also [3, 21] and Lemma 2.36 in [17].

Lemma 1. Let P_{1} and P_{2} be two oriented paths of type r. Then there is an oriented path P of type r that maps homomorphically to P_{1} and P_{2} such that the initial vertex of P maps to the initial vertices of P_{1} and P_{2} and the terminal vertex of P maps to the terminal vertices of P_{1} and P_{2}. The length of P is polynomial in the lengths of P_{1} and P_{2}.

We need a modified version of Lemma 1, Lemma 2. We say that an oriented path $b_{1} b_{2} \ldots b_{p}$ of type r is of the form $\left(l^{+} h^{+}\right)^{k}$ if the balanced oriented cycle

$$
b_{1} b_{2} \ldots b_{p} a_{r-1} a_{r-2} \ldots a_{2} a_{1} b_{1}
$$

is of the form $\left(l^{+} h^{+}\right)^{k}$, where $b_{1} a_{1} a_{2} \ldots a_{r-2} a_{r-1} b_{p}$ is a directed path.
Lemma 2. Let P_{1} and P_{2} be two oriented paths of type r. Let P_{1} be of the form $h^{+} l^{+}$and let P_{2} be of the form $\left(l^{+} h^{+}\right)^{k}, k \geq 1$. Then there is an oriented path P of type r that maps homomorphically to P_{1} and P_{2} such that the initial vertex of P maps to the initial vertices of P_{1} and P_{2} and the terminal vertex of P maps to the terminal vertices of P_{1} and P_{2}. The length of P is polynomial in the lengths of P_{1} and P_{2}, and P is of the form $\left(l^{+} h^{+}\right)^{k}$.

Proof. We will show that our construction implies that $|V(P)| \leq\left|V\left(P_{1}\right)\right| \times$ $\left|V\left(P_{2}\right)\right|$.

We first prove the lemma for the case when $k=1$. The proof is by induction on $r \geq 0$. If $0 \leq r \leq 1$, the claim is trivial. Assume that $r \geq 2$. Let $P_{1}=$ $a_{1} a_{2} \ldots a_{p}$, let $P_{2}=b_{1} b_{2} \ldots b_{q}$, let $s_{1}=\min \left\{i: \operatorname{level}_{P_{1}}\left(a_{i}\right)=r\right\}$ and let $s_{2}=\min \left\{i: \operatorname{level}_{P_{2}}\left(b_{i}\right)=r\right\}$. Let $\beta_{1}=\min \left\{\operatorname{level}_{P_{1}}\left(a_{i}\right): s_{1} \leq i\right\}$ and $\beta_{2}=\min \left\{\right.$ level $\left._{P_{2}}\left(b_{i}\right): s_{2} \leq i\right\}$. Without loss of generality assume that $\beta_{1} \leq \beta_{2}$ and let $t_{1}=\min \left\{i: \operatorname{level}_{P_{1}}\left(a_{i}\right)=\beta_{1}\right.$ and $\left.i \geq s_{1}\right\}$ and let $s_{2}=\max \{i$: level $_{P_{2}}\left(b_{i}\right)=\beta_{1}$ and $\left.i \leq s_{2}\right\}$. Note that $\beta_{1}>1$ as P_{1} is of form $h^{+} l^{+}$.

By the induction hypothesis, there is an appropriate oriented path P^{\prime} that can be mapped homomorphically to $a_{1} a_{2} \ldots a_{s_{1}-1}$ and $b_{1} b_{2} \ldots b_{s_{2}-1}$. There is also an oriented path $P^{\prime \prime}$ that can be mapped homomorphically to $a_{s_{1}} a_{s_{1}+1} \ldots a_{t_{1}}$ and $b_{s_{2}} b_{s_{2}-1} \ldots b_{t_{2}}$ (by reversing the two paths and then reversing the path we get by the induction hypothesis). Furthermore there is an oriented path $P^{\prime \prime \prime}$ that can be mapped homomorphically to $a_{t_{1}+1} a_{t_{1}+2} \ldots a_{p}$ and $b_{t_{2}+1} b_{t_{2}+2} \ldots b_{p}$. Let $P=P^{\prime} P^{\prime \prime} P^{\prime \prime \prime}$ (where the arc between the last vertex of P^{\prime} to the first vertex of $P^{\prime \prime}$ is oriented from P^{\prime} to $P^{\prime \prime}$ and similarly the arc between $P^{\prime \prime}$ and $P^{\prime \prime \prime}$ is oriented in that direction). Note that P is of type r and form $h^{+} l^{+}$and maps homomorphically to P_{1} and P_{2} such that the initial vertex of P maps to the initial vertices of P_{1} and P_{2} and the terminal vertex of P maps to the terminal vertices of P_{1} and P_{2}. Furthermore $|V(P)| \leq\left(s_{1}-1\right)\left(s_{2}-1\right)+\left(t_{1}-\right.$ $\left.s_{1}+1\right)\left(s_{2}-t_{2}+1\right)+\left(p-s_{1}\right)\left(q-t_{2}\right)$. As $\left(s_{1}-1\right)+\left(t_{1}-s_{1}+1\right)+\left(p-s_{1}\right)=p$ and $\left(s_{2}-1\right),\left(s_{2}-t_{2}+1\right),\left(q-t_{2}\right) \leq q$ we have $|V(P)| \leq p q \leq\left|V\left(P_{1}\right)\right| \times\left|V\left(P_{2}\right)\right|$.

Now we proceed by induction on $k \geq 1$. The base case has already been proved. Assume that $k \geq 2$ and let $P_{1}=a_{1} a_{2} \ldots a_{p}$ and $P_{2}=b_{1} b_{2} \ldots b_{q}$. Let $t=\max \left\{i: \operatorname{level}_{P_{2}}\left(b_{i}\right)=0\right\}$ and let $s=\max \left\{i: i<t\right.$, level $\left.P_{P_{2}}\left(b_{i}\right)=r\right\}$. By the induction hypothesis, there is an appropriate oriented path P^{\prime} that can be mapped homomorphically to P_{1} and $b_{1} b_{2} \ldots b_{s}$. Also, there is an appropriate oriented path $P^{\prime \prime}\left(P^{\prime \prime \prime}\right)$ that can be mapped homomorphically to $a_{p} a_{p-1} \ldots a_{1}$ and $b_{s} b_{s+1} \ldots b_{t}\left(P_{1}\right.$ and $\left.b_{t} b_{t+1} \ldots b_{q}\right)$. Now obtain a new oriented path P by identifying the terminal vertex of P^{\prime} with the initial vertex of $P^{\prime \prime}$ and the terminal vertex of $P^{\prime \prime}$ with the initial vertex of $P^{\prime \prime \prime}$. Observe that P satisfies the required properties.

Consider the oriented cycle $C_{4}^{0}=12341$ with arcs $12,32,14,34$. Observe that $1,2,3,4$ is a Min-Max ordering of $V\left(C_{4}^{0}\right)$ and, thus, $\operatorname{MinHOM}\left(C_{4}^{0}\right)$ is polynomial-time solvable.

Theorem 5. Let $C=b_{1} b_{2} \ldots b_{p} b_{1}$ be a balanced oriented cycle of the form $\left(l^{+} h^{+}\right)^{k}, k \geq 2$, and let $C \neq C_{4}^{0}$. Then $\operatorname{MinHOM(C)~is~NP-hard.~}$

Proof. Let $C \neq C_{4}^{0}$. Let $s=\min \left\{j: b_{j} \in V H(C)\right\}, q=\min \left\{j: j>s, b_{j} \in\right.$ $V L(C)\}, t=\min \left\{j: j>q, b_{j} \in V H(C)\right\}$ and $m=h(C)$. Let $P_{1}=b_{1} b_{2} \ldots b_{s}$, $P_{2}=b_{q} b_{q-1} \ldots b_{s}, P_{3}=b_{q} b_{q+1} \ldots b_{t}$ and $P_{4}=b_{1} b_{p} b_{p-1} \ldots b_{t}$. Note that each P_{j} is of type m. By Lemma 2 there is a path Q_{1} of type m which is mapped homomorphically to P_{4}, P_{2} and P_{3}. There is also a path Q_{2} of type m and which is mapped homomorphically to P_{1} and P_{3}. Since $C \neq C_{4}^{0}$ and the endvertices vertices of Q_{1} are mapped to the end-vertices vertices of P_{4}, the path Q_{1} contains more than two vertices. Furthermore, by Lemma 2 we may assume that Q_{1} is of the form $\left(l^{+} h^{+}\right)^{k-1}$ and Q_{2} is of the form $l^{+} h^{+}$.

Let $x(y)$ be the terminal vertex of $Q_{1}\left(Q_{2}\right)$. Form a new oriented path $Q=q_{1} q_{2} \ldots q_{l}$ by identifying x with y and let $1 \leq r \leq l$ be defined such that $Q_{1}=q_{1} q_{2} \ldots q_{r}$ and $Q_{2}=q_{l} q_{l-1} \ldots q_{r}$. As Q_{1} contains more than two vertices we have that $r \geq 3$.

Let D be an arbitrary digraph. We will now reduce the problem of finding a maximum independent set in D (i.e. in the underlying graph of D) to $\operatorname{MinHOM}(C)$. Replace every arc $a b$ of D by a copy of Q identifying q_{1} with a and q_{l} with b, and denote the obtained digraph by D^{\prime}. For every path Q in D^{\prime} which we added in the construction of D^{\prime} we define the cost function c as follows, where M is a number greater than $|V(D)|$:
(i) $c_{b_{1}}\left(q_{1}\right)=c_{b_{1}}\left(q_{l}\right)=0$ and $c_{b_{q}}\left(q_{1}\right)=c_{b_{q}}\left(q_{l}\right)=1$;
(ii) $c_{b_{s}}\left(q_{r}\right)=c_{b_{t}}\left(q_{r}\right)=0$ and $c_{b}\left(q_{r}\right)=M$ for all $b \in V(C)-\left\{b_{s}, b_{t}\right\}$;
(iii) $c_{b_{2}}(q)=M$ for all $q \in\left\{q_{2}, q_{3}, \ldots, q_{r-1}\right\}(\neq \emptyset$, as $r \geq 3)$;
(iv) if $s=2$ then $c_{b_{1}}\left(q_{r-1}\right)=M$;
(v) all other costs of mapping vertices of D^{\prime} to H are zero.

Consider a mapping g from $V(Q)$ to $V(C)$, where $g\left(q_{1}\right)=b_{q}, g\left(q_{l}\right)=b_{q}$, and Q_{1} and Q_{2} are both homomorphically mapped to P_{3} (i.e., $g\left(q_{r}\right)=b_{t}$). Observe that g is a homomorphism from Q to C of cost 2 . This implies, in particular, that there is a homomorphism from D^{\prime} to H of cost less than M. We now consider three other homomorphisms from Q to C :
(a) $f\left(q_{1}\right)=b_{1}$ and $f\left(q_{l}\right)=b_{q}$, and Q_{1} is mapped to P_{4} and Q_{2} is mapped to P_{3} homomorphically (i.e., $f\left(q_{r}\right)=b_{t}$). The cost of f is 1 .
(b) $f^{\prime}\left(q_{1}\right)=b_{q}$ and $f^{\prime}\left(q_{l}\right)=b_{1}$, and f^{\prime} maps Q_{1} to P_{2} and Q_{2} to P_{1} homomorphically (i.e., $f^{\prime}\left(q_{r}\right)=b_{s}$). The cost of f^{\prime} is 1 .
(c) $f^{\prime \prime}\left(q_{1}\right)=b_{1}$ and $f^{\prime \prime}\left(q_{l}\right)=b_{1}$. We will show that the cost of $f^{\prime \prime}$ is at least M. If this is not the case then $f^{\prime \prime}\left(q_{r}\right) \in\left\{b_{s}, b_{t}\right\}$ by (ii). First assume that $f^{\prime \prime}\left(q_{r}\right)=b_{s}$. By (iii) no vertex of $V\left(Q_{1}\right)-\left\{q_{r}\right\}$ is mapped to b_{2} and if $s=2$ then by (iv) q_{r-1} is not mapped to b_{1}. However as Q_{1} is of the form $\left(l^{+} h^{+}\right)^{k-1}$ and the path $b_{1} b_{p} b_{p-1} \ldots b_{s}$ is of the form $\left(l^{+} h^{+}\right)^{k}$ we get a contradiction to $f^{\prime \prime}$ mapping Q_{1} to C and $f^{\prime \prime}\left(q_{1}\right)=b_{1}$ and $f^{\prime \prime}\left(q_{r}\right)=b_{s}$. So now assume that $f^{\prime \prime}\left(q_{r}\right)=b_{t}$. However Q_{2} is of the form $\left(l^{+} h^{+}\right)$and there is no path in C from b_{1} to b_{t} of the form $\left(l^{+} h^{+}\right)$, a contradiction. Therefore the cost of $f^{\prime \prime}$ is at least M.

By the above a minimum cost homomorphism $h: D^{\prime} \rightarrow C$ maps all vertices from a maximum independent set in D to b_{1} and all other vertices from D to b_{q}. As finding a maximum independent set in a digraph is NP-hard we see that $\operatorname{MinHOM}(C)$ is NP-hard.

5 Dichotomy and Unbalanced Oriented Cycles

We are ready to prove the following main result:
Theorem 6. Let C be an oriented cycle. If C is unbalanced or C is balanced of the form $l^{+} h^{+}$or $C=C_{4}^{0}$, then $\operatorname{MinHOM(C)}$ is polynomial-time solvable. Otherwise, $\operatorname{MinHOM}(C)$ is NP-hard.

By Theorems 4 and 5, to show Theorem 6 it suffices to prove the following:
Theorem 7. Let $C=b_{1} b_{2} \ldots b_{p} b_{1}$ be an unbalanced oriented cycle. Then $\operatorname{MinHOM}(C)$ is polynomial-time solvable.

Proof. It is well-known that the minimum cost homomorphism problem to a directed cycle is polynomial-time solvable (see, e.g., [7]). Thus, we may assume that C is not a directed cycle. By Proposition 1, we may assume that $\operatorname{level}\left(b_{1}\right)=0$ and level $\left(b_{i}\right)>0$ for all $i \in[p] \backslash\{1\}$. Let $q=\max \left\{j: b_{j} \in\right.$ $V H(C)\}$.

Consider the oriented path $P=b_{1} b_{2} \ldots b_{q}$. Let $V_{i+1}=\left\{b_{j} \in V(P)\right.$: level $\left.\left(b_{j}\right)=i\right\}$ for all $i \in[k] \cup\{0\}$, where $k=$ level $\left(b_{q}\right)$. Now consider the
oriented path $Q=b_{1} b_{p} b_{p-1} \ldots b_{q}$. Assign levels to the vertices of Q stating from $\operatorname{level}_{Q}\left(b_{1}\right)=0$ and continuing as described in Section 1. Observe that all vertices of Q get non-negative levels. Let $U_{i+1}=\left\{b_{j} \in V(Q): \operatorname{level}_{Q}\left(b_{j}\right)=i\right\}$, $i \in[l] \cup\{0\}$, where $l=\operatorname{level}_{Q}\left(b_{q}\right)$. Clearly, $V_{1}=U_{1}=\left\{b_{1}\right\}$; set $U_{l+1}=V_{k+1}$.

Consider the ordering $\boldsymbol{U}=\left(b_{1}, b_{p}, b_{p-1}, \ldots, b_{q}\right)$ of the vertices of Q. For $i \in[l+1]$, the ordering \boldsymbol{U}_{i} is obtained from \boldsymbol{U} by deleting all vertices not in U_{i}. Consider the ordering $\boldsymbol{V}=\left(b_{1}, b_{2}, \ldots, b_{q}\right)$ of the vertices of P. For $i \in[k+1]$, the ordering \boldsymbol{V}_{i} is obtained from \boldsymbol{V} by deleting all vertices not in V_{i}. Observe that the ordering $\left(\boldsymbol{V}_{1}, \boldsymbol{V}_{2}, \boldsymbol{U}_{2}\right)$ of the vertices of $C\left[V_{1} \cup V_{2} \cup U_{2}\right]$ has no crossing arcs. Similarly, the ordering $\left(\boldsymbol{U}_{l}, \boldsymbol{V}_{k}, \boldsymbol{V}_{k+1}\right)$ of the vertices of $C\left[U_{l} \cup V_{k} \cup V_{k+1}\right]$ has no crossing arcs, and orderings ($\boldsymbol{V}_{i}, \boldsymbol{V}_{i+1}$) and $\left(\boldsymbol{U}_{j}, \boldsymbol{U}_{j+1}\right)$ $(i \in[k], j \in[l])$ have no crossing arcs. Thus, C has a $(k+1, l+1)$-ordering of vertices. Now we are done by Theorem 3 .

References

1. J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, SpringerVerlag, London, 2000; freely available online at www.cs.rhul.ac.uk/books/dbook/
2. A.A. Bulatov, Tractable conservative constraint satisfaction problems. To appear in ACM Trans. Comput. Logic.
3. T. Feder, Homomorphisms to oriented cycles and k-partite satisfiability. SIAM J. Discrete Math 14 (2001) 471-480.
4. T. Feder, P. Hell and A. Rafiey, List homomorphism to balanced digraphs. Submitted.
5. A. Gupta, P. Hell, M. Karimi and A. Rafiey, Minimum cost homomorphisms to reflexive digraphs. To appear in LATIN 2008.
6. G. Gutin, P. Hell, A. Rafiey and A. Yeo, Minimum Cost Homomorphisms to Proper Interval Graphs and Bigraphs. To appear in Europ. J. Combin.
7. G. Gutin, A. Rafiey and A. Yeo, Minimum Cost and List Homomorphisms to Semicomplete Digraphs. Discrete Appl. Math. 154 (2006), 890-897.
8. G. Gutin, A. Rafiey and A. Yeo, Minimum Cost Homomorphisms to Semicomplete Multipartite Digraphs. To apear in Discrete Applied Math.
9. G. Gutin, A. Rafiey and A. Yeo, Minimum Cost Homomorphisms to Semicomplete Bipartite Digraphs. Submitted.
10. G. Gutin, A. Rafiey, A. Yeo and M. Tso, Level of repair analysis and minimum cost homomorphisms of graphs. Discrete Appl. Math. 154 (2006), 881-889. A preliminary version appeared in Proc. 1st International Conference on Algorithmic Applications in Management, Xian, China, June 2005, N. Megiddo, Y. Xu, N. Alonstioti and B. Zhu (eds.), LNCS 3521 (2005), 427-439.
11. W. Gutjahr, Graph Colourings, PhD thesis, Free University, Berlin, 1991.
12. R. Häggkvist, P. Hell, D.J. Miller and V. Neumann-Lara, On multiplicative graphs and the product conjecture. Combinatorica 8 (1988), 63-74.
13. M. M. Halldorsson, G. Kortsarz, and H. Shachnai, Minimizing average completion of dedicated tasks and interval graphs. Approximation, Randomization, and Combinatorial Optimization (Berkeley, Calif, 2001), Lecture Notes in Computer Science, vol. 2129, Springer, Berlin, 2001, pp. 114-126.
14. T.Feder, P.Hell, J.Huang, List homomorphisms and circular arc graphs. Combinatorica. 19 (1999) 487-505.
15. P. Hell, Algorithmic aspects of graph homomorphisms, in 'Survey in Combinatorics 2003', London Math. Soc. Lecture Note Series 307, Cambridge University Press, 2003, 239-276.
16. P. Hell and J. Nešetřil, On the complexity of H-colouring. J. Combin. Theory $B 48$ (1990), 92-110.
17. P. Hell and J. Nešetřil, Graphs and Homomorphisms. Oxford University Press, Oxford, 2004.
18. P. Hell and X. Zhu, The existence of homomorphisms to oriented cycles. SIAM J. Discrete Math. 8 1995), 208-222.
19. K. Jansen, Approximation results for the optimum cost chromatic partition problem. J. Algorithms 34 (2000), 54-89.
20. T. Jiang and D.B. West, Coloring of trees with minimum sum of colors. J. Graph Theory 32 (1999), 354-358.
21. X. Zhu, A simple proof of the multipilicatively of directed cycles of prime power length. Discrete Appl. Math. , 36 (1992) 333-345.
