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Abstract

For digraphs D and H, a mapping f : V (D)→V (H) is a homomorphism of D
to H if uv ∈ A(D) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (D)
is associated with costs ci(u), i ∈ V (H), then the cost of the homomorphism f is∑

u∈V (D) cf(u)(u). For each fixed digraph H, we have the minimum cost homomor-
phism problem for H (abbreviated MinHOM(H)). The problem is to decide, for an
input graph D with costs ci(u), u ∈ V (D), i ∈ V (H), whether there exists a homo-
morphism of D to H and, if one exists, to find one of minimum cost. We obtain a
dichotomy classification for the time complexity of MinHOM(H) when H is an ori-
ented cycle. We conjecture a dichotomy classification for all digraphs with possible
loops.

1 Introduction

For directed (undirected) graphs G and H, a mapping f : V (G)→V (H) is a homomor-
phism of G to H if uv is an arc (edge) implies that f(u)f(v) is an arc (edge). Let H
be a fixed directed or undirected graph. The homomorphism problem for H asks whether
a directed or undirected input graph G admits a homomorphism to H. The list homo-
morphism problem for H asks whether a directed or undirected input graph G with lists
(sets) Lu ⊆ V (H), u ∈ V (G) admits a homomorphism f to H in which f(u) ∈ Lu for each
u ∈ V (G).

Suppose G and H are directed (or undirected) graphs, and ci(u), u ∈ V (G), i ∈ V (H)
are nonnegative costs. The cost of a homomorphism f of G to H is

∑
u∈V (G) cf(u)(u). If H
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is fixed, the minimum cost homomorphism problem, MinHOM(H), for H is the following
optimization problem. Given an input graph G, together with costs ci(u), u ∈ V (G),
i ∈ V (H), we wish to find a minimum cost homomorphism of G to H, or state that none
exists.

The minimum cost homomorphism problem was introduced in [10], where it was mo-
tivated by a real-world problem in defence logistics. We believe it offers a practical and
natural model for optimization of weighted homomorphisms. The problem’s special cases
include the homomorphism and list homomorphism problems [15, 17] and the general op-
timum cost chromatic partition problem, which has been intensively studied [13, 19, 20].

There is an extensive literature on the minimum cost homomorphism problem, e.g., see
[5, 6, 7, 8, 9, 10]. These and other papers study the time complexity of MinHOM(H) for
various families of directed and undirected graphs. In particular, Gutin, Hell, Rafiey and
Yeo [6] proved a dichotomy classification for all undirected graphs (with possible loops):
If H is a reflexive proper interval graph or a proper interval bigraph, then MinHOM(H)
is polynomial time solvable; otherwise, MinHOM(H) is NP-hard. It is an open problem
whether there is a dichotomy classification for the complexity of MinHOM(H) when H is a
digraph with possible loops. We conjecture that such a classification exists and, moreover,
the following assertion holds:

Conjecture 1.1 Let H be a digraph with possible loops. Then MinHOM(H) is polynomial
time solvable if H has either a Min-Max ordering or a k-Min-Max ordering for some k ≥ 2.
Otherwise, MinHOM(H) is NP-hard.

For the definitions of a Min-Max and k-Min-Max ordering see Section 3, where we give
theorems (first proved in [10, 9]) showing that if H has one of the two orderings, then
MinHOM(H) is polynomial time solvable. So, it is the NP-hardness part of Conjecture
1.1 which is the ‘open’ part of the conjecture.

Very recently Gupta, Hell, Karimi and Rafiey [5] obtained a dichotomy classification
for all reflexive digraphs that confirms this conjecture. They proved that if a reflexive
digraph H has no Min-Max ordering, then MinMax(H) is NP-hard. Gutin, Rafiey and
Yeo [8, 9] proved that if a semicomplete multipartite digraph H has neither Min-Max
ordering nor k-Min-Max ordering, then MinMax(H) is NP-hard.

In this paper, we show that the same result (as for semicomplete multipartite digraphs)
holds for oriented cycles. This provides a further support for Conjecture 1.1. In fact,
we prove a graph-theoretical dichotomy for the complexity of MinMax(H) when H is an
oriented cycle. The fact that Conjecture 1.1 holds for oriented cycles follows from the proof
of the graph-theoretical dichotomy. In the proof, we use a new concept of a (k, l)-Min-Max
ordering introduced in Section 3. Our motivation for Conjecture 1.1 partially stems from
the fact that we initially proved polynomial time solvability of MinHOM(H) when V (H)
has a (k, l)-Min-Max ordering by reducing it to the minimum cut problem. However, we
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later proved that (k, l)-Min-Max orderings can simply be reduced to p-Min-Max orderings
for p ≥ 1 (see Section 3).

Homomorphisms to oriented cycles have been investigated in a number of papers.
Partial results for the homomorphism problem to oriented cycles were obtained in [11]
and [18]. A full dichotomy was proved by Feder [3]. Feder, Hell and Rafiey [4] obtained
a dichotomy for the list homomorphism problem for oriented cycles. Notice that our
dichotomy is different from the ones in [3] and [4].

Bulatov [2] proved that there exists a dichotomy classification for the list homomor-
phism problem for digraphs, but no such dichotomy has been obtained and even conjec-
tured to the best of our knowledge. For the homomorphism problem for digraphs, we do
not even know whether a dichotomy exists and there is no conjecture of such a classification
for the general case.

The rest of this paper is organized as follows. In the next section we consider so-called
levels of vertices in oriented paths and cycles. The concepts of Min-Max ordering, k-Min-
Max ordering and (k, l)-Min-Max ordering are considered in Section 3. In Section 4 we
obtain a dichotomy classification for MinHOM(H) when H is a balanced oriented cycle.
For all oriented cycles H, a dichotomy is proved in Section 5.

2 Levels of Vertices in Oriented Paths and Cycles

In this paper [p] denotes the set {1, 2, . . . , p}. Let D be a digraph. We will use V (D)
(A(D)) to denote the vertex (arc) set of D. We say that xy (x, y ∈ V (D)) is an edge
of D if either xy or yx is an arc of D. A sequence b1b2 . . . bp of distinct vertices of D
is an oriented path if bibi+1 is an edge for every i ∈ [p − 1]. If b1b2 . . . bp is an oriented
path, we call C = b1b2 . . . bpb1 an oriented cycle if bpb1 is an edge. An edge bibi+1 (here
bpbp+1 = bpb1) of an oriented path P or cycle C is called forward (backward) if bibi+1 ∈
A(D) (bi+1bi ∈ A(D)).

Let P = b1b2 . . . bp be an oriented path. We assign levels to the vertices of P as
follows: we set levelP (b1) = 0, and levelP (bt+1) = levelP (bt) + 1, if btbt+1 is forward and
and levelP (bt+1) = levelP (bt) − 1, if btbt+1 is backward. We say that P is of type r if
r = max{levelP (bi) : i ∈ [p]} = levelP (bp) and 0 ≤ levelP (bt) ≤ r for each t ∈ [p].

An oriented cycle C is balanced if the number of forward edges equals the number of
backward edges; if C is not balanced, it is called unbalanced. Note that the fact whether C
is balanced or unbalanced does not depend on the choice of the vertex b1 or the direction
of C.

Let C = b1b2 . . . bpb1 be an oriented cycle. It has two directions: b1b2 . . . bpb1 and
b1bpbp−1 . . . b1. In what follows, we will always consider the direction in which the number
of forward arcs is no smaller than the number of backward arcs. We can assign levels
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to the vertices of C as follows: level(b1) = k, where k is a non-negative integer, and
level(bt+1) = level(bt) + 1, if btbt+1 is forward and and level(bt+1) = level(bt)− 1, if btbt+1

is backward. Clearly, the value of each level(bi), i ∈ [p], depends on both k and the choose
of the initial vertex b1. Feder [3] proved the following useful result.

Proposition 2.1 The integer k and initial vertex b1 in an oriented cycle C can be chosen
such that level(b1) = 0 and level(bi) ≥ 0 for every i ∈ [p]. If C is unbalanced, then k and
b1 can be chosen such that level(b1) = 0 and level(bi) > 0 for every i ∈ [p] \ {1}.

Since the proposition was proved in [3], we will not give its complete proof. Instead, we
will outline a procedure for finding appropriate k and b1 and remark on how the procedure
can be used in showing the proposition.

Let C = b1b2 . . . bpb1 be an oriented cycle. We may assume that b1 is chosen in such a
way that if C has a backward edge, then bpb1 is a backward edge. Compute mi, the number
of the forward arcs minus the number of backward arcs in the oriented path b1b2 . . . bi, for
each i ∈ [p]. Set k = |min{mi : i ∈ [p]}|. Assign the level to each vertex of C using the
level definition and starting from assigning level k to b1. By the definition of k, the level of
each vertex bj is non-negative and there are vertices bi of level zero. Choose such a vertex
bi with maximum index i and reassign the levels to the vertices of C as follows. Consider
C ′ = bibi+1 . . . bpb1b2 . . . bi and set level(bi) = 0 and the rest of the levels according to the
order of vertices given in C ′.

This procedure can be turned into a proof of the proposition by observing that if C ′

is unbalanced, then the level of b1 in C ′ will be greater than the level of b1 in C. Thus,
the levels of all vertices vj , j ∈ [i− 1] will be greater than their levels in C, implying that
the only level zero vertex in C ′ is bi.

Thus, in the rest of the paper, we may assume that the ‘first’ vertex of b1 of an oriented
cycle C = b1b2 . . . bpb1 is chosen in such a way that the levels of all vertices of C satisfy
Proposition 2.1.

We will extensively use the following notation: V L(C) = {bt : level(bt) = 0, t ∈ [p]},
h(C) = max{level(bj) : j ∈ [p]}, and V H(C) = {bt : level(bt) = h(C), t ∈ [p]}. Note that
for unbalanced cycles C we have |V L(C)| = 1.

The concepts of this section are illustrated on Figure 1. In particular, Z is balanced
with forward edges b1b2, b3b4, . . . and backward edges b2b3, b4b5, . . .. We have level(b1) =
level(b3) = level(b5) = 0, level(b2) = level(b4) = level(b6) = level(b8) = level(b14) = 1,
level(b7) = level(b9) = level(b11) = level(b13) = 2 and level(b10) = level(b12) = 3. Thus,
h(Z) = 3, V L(Z) = {b1, b3, b5}, V H(Z) = {b10, b12}.
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Figure 1: A level diagram of oriented cycle Z = b1b2 . . . b14b1, where
b1b2, b3b2, b3b4, b5b4, b5b6, b6b7, b8b7b8b9, b9b10, b11b10, b11b12, b13b12, b14b13, b1b14 are arcs.

3 k-Min-Max and (k, l)-Min-Max Orderings

All known polynomial cases of MinHOM(H) can be formulated in terms of certain vertex
orderings. In fact, all known polynomial cases can be partitioned into two classes: digraphs
H admitting a Min-Max ordering of their vertices and digraphs H having a k-Min-Max
ordering of their vertices (k ≥ 2). Both types of orderings are defined in this section,
where we also introduce a new type of ordering, a (k, l)-Min-Max ordering. It may be
surprising, but we prove that the new type of ordering can be reduced to the two known
orderings.

Let H be a digraph and let (v1, v2, . . . , vp) be an ordering of the vertices of H. Let
e = vivr and f = vjvs be two arcs in H. The pair vmin{i,j}vmin{s,r} (vmax{i,j}vmax{s,r}) is
called the minimum (maximum) of the pair e, f . (The minimum (maximum) of two arcs is
not necessarily an arc.) An ordering (v1, v2, . . . , vp) is a Min-Max ordering of V (H) if both
minimum and maximum of every two arcs in H are in A(H). Two arcs e, f ∈ A(H) are
called a crossing pair if {e, f} 6= {g′, g′′}, where g′ (g′′) is the minimum (maximum) of e, f.
Clearly, to check that an ordering is Min-Max, it suffices to verify that the minimum and
maximum of every crossing pair of arcs are arcs, too. The concept of Min-Max ordering
is of interest due to the following:

Theorem 3.1 [10] If a digraph H has a Min-Max ordering of V (H), then MinHOM(H)
is polynomial-time solvable.

We will sometimes call a Min-Max ordering also a 1-Min-Max ordering. The reason
for this will become apparent in the rest of this section.

A collection V1, V2, . . . Vk of subsets of a set V is called a k-partition of V if V =
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V1 ∪ V2 ∪ · · · ∪ Vk, Vi ∩ Vj = ∅ provided i 6= j.

Let H = (V, A) be a digraph and let k ≥ 2 be an integer. We say that H has a
k-Min-Max ordering of V (H) if there is a k-partition of V into subsets V1, V2, . . . Vk and
there is an ordering ~Vi = (vi

1, v
i
2, . . . , v

i
`(i)) of Vi for each i such that

(i) Every arc of H is an arc from Vi to Vi+1 for some i ∈ [k] and

(ii) (~Vi, ~Vi+1) = (vi
1, v

i
2, . . . , v

i
`(i)v

i+1
1 vi+1

2 , . . . , vi+1
`(i+1)) is a Min-Max ordering of the sub-

digraph of H induced by Vi ∪ Vi+1 for each i ∈ [k]. (All indices are taken modulo
k.)

In such a case, (~V1, ~V2, . . . , ~Vk) is a k-Min-Max ordering of V (H); k-Min-Max orderings
are of interest due to the following:

Theorem 3.2 [9] If a digraph H has a k-Min-Max ordering of V (H), then MinHOM(H)
is polynomial-time solvable.

Our study of MinHOM(H) for oriented cycles H has led us to the following new
concept.

Definition 3.3 Let H = (V, A) be a digraph and let k ≥ 2 and l be integers. For l < k
we say that H has a (k, l)-Min-Max ordering if there is a (k + l − 2)-partition of V into
subsets V1, V2, . . . , Vk, U2, U3, . . . , Ul−1 (set U1 = V1, Ul = Vk) and there is an ordering ~Vi =
(vi

1, v
i
2, . . . , v

i
`v(i)) of Vi for each 1 ≤ i ≤ k and there is an ordering ~Ui = (ui

1, u
i
2, . . . , u

i
`u(i))

of Ui for each 1 ≤ i ≤ l such that

(i) Every arc of H is an arc from Vi to Vi+1) for some i ∈ [k − 1], or is an arc from Uj

to Uj+1 for some j ∈ [l − 1].

(ii) (~Vi, ~Vi+1) is a Min-Max ordering of the subdigraph H[Vi ∪ Vi+1] for all i ∈ [k − 1].

(iii) (~Ui, ~Ui+1) is a Min-Max ordering of the subdigraph H[Ui ∪ Ui+1] for all i ∈ [l − 1].

(iv) (~V1, ~V2, ~U2) is a Min-Max ordering of the subdigraph H[V1 ∪ V2 ∪ U2].

(v) (~Ul−1, ~Vk−1, ~Vk) is a Min-Max ordering of the subdigraph H[Vk−1 ∪ Ul−1 ∪ Vk].

It turns out that (k, l)-Min-Max orderings can be reduced to p-Min-Max orderings as
follows from the next assertion:

Theorem 3.4 If a digraph H has a (k, l)-Min-Max ordering, then MinHOM(H) is polynomial-
time solvable.
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Proof: Let H have a (k, l)-Min-Max ordering as described in Definition 3.3. Let d =
k− l. We will show that H has a d-Min-Max ordering, which will be sufficient because of
Theorems 3.1 and 3.2. (Recall that a 1-Min-Max ordering is simply a Min-Max ordering.)
Let us consider two cases.

Case 1: d = 1. It is not difficult to show that the ordering

(~V1, ~V2, ~U2, ~V3, ~U3, . . . , ~Vk−2, ~Uk−2, ~Vk−1, ~Vk)

is a Min-Max ordering. Indeed, all crossing pairs of arcs are only in the subgraphs given
in (ii)-(v) of Definition 3.3. According to the definition, the maximum and minimum of
every crossing pair is in H.

Case 2: d ≥ 2. Let si = max{p : i + pd ≤ l} for each i ∈ [d]. Consider the following
orderings for each 2 ≤ i ≤ d

~Wi = (~Vi, ~Ui, ~Vi+d, ~Ui+d, ~Vi+2d, ~Ui+2d, . . . , ~Vi+sid,
~Ui+sid,

~Vi+(si+1)d)

and the ordering

~W1 = (~V1, ~V1+d, ~U1+d, ~V1+2d, ~U1+2d, . . . , ~V1+s1d, ~U1+s1d, ~V1+(s1+1)d).

Observe that W1,W2, . . . ,Wd form a partition of V (H) and that every arc is from Wi to
Wi+1 for some i ∈ [d], where Wd+1 = W1. As in Case 1, it is not difficult to see that
( ~W1, ~W2, . . . , ~Wd) is a d-Min-Max ordering of H. ¦

Remark 3.5 Notice that not always a p-Min-Max ordering can be reduced to a (k, l)-Min-
Max ordering. As an example, consider ~C5.

4 Balanced Oriented Cycles

We say that a balanced oriented cycle C = b1b2 . . . bpb1 is of the form (l+h+)q with q ≥ 1
if P = C − bpb1 can be written as P = x1P1y1R1x2P2y2R2 . . . xqPqyqRq, where xi ∈
V L(C), yi ∈ V H(C) for each i ∈ [q], Pi, Ri are oriented paths and all vertices in V L(C)∩
V (Pi) (V H(C)∩V (Ri)) appear before all vertices in V H(C)∩V (Pi) in Pi (V L(C)∩V (Ri)
in Ri) for each i ∈ [q]. We write l+h+ instead of (l+h+)1. For example, the cycle in Figure
1 is of the form l+h+. Balanced oriented cycles C of the form l+h+ are considered in the
following:

Theorem 4.1 Let C = b1b2 . . . bpb1 be a balanced oriented cycle of the form l+h+. Then
MinHOM(C) is polynomial time solvable.
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Proof: Let q = min{j : bj ∈ V H(C)}, let m = h(C) and let V = V (C). Consider the
following ordering ~V = (bp, bp−1, . . . , bq+1, b1, b2 . . . , bq) of V . We can define the following
natural (m + 1)-partition of V : V1, V2, . . . , Vm+1, where Vj = {bs ∈ V (C) : level(bs) =
j − 1}. Note that every arc of C is an arc from Vj to Vj+1 for some j ∈ [m].

Let ~Vj be the ordering of Vj obtained from ~V by deleting all vertices not in Vj and let
~Vj = (sj

1, s
j
2, . . . , s

j
b(j)). Observe that the digraph C[Vj ∪ Vj+1] has no crossing pair of arcs

for any j ∈ [m] since, for every pair sj
αsj+1

β , sj
γsj+1

δ of arcs in the digraph, we have that
either α ≤ γ and β ≤ δ, or α ≥ γ and β ≥ δ. Thus, C has an (m + 1)-Min-Max ordering
of vertices and, by Theorem 3.2, MinHOM(C) is polynomial-time solvable. ¦

The following lemma was first proved in [12]; see also [3, 21] and Lemma 2.36 in [17].

Lemma 4.2 Let P1 and P2 be two oriented paths of type r. Then there is an oriented
path P of type r that maps homomorphically to P1 and P2 such that the initial vertex of P
maps to the initial vertices of P1 and P2 and the terminal vertex of P maps to the terminal
vertices of P1 and P2. The length of P is polynomial in the lengths of P1 and P2.

We need a modified version of Lemma 4.2, Lemma 4.3. We say that an oriented path
b1b2 . . . bp of type r is of the form (l+h+)k if the balanced oriented cycle

b1b2 . . . bpar−1ar−2 . . . a2a1b1

is of the form (l+h+)k, where b1a1a2 . . . ar−2ar−1bp is a directed path.

Lemma 4.3 Let P1 and P2 be two oriented paths of type r. Let P1 be of the form h+l+

and let P2 be of the form (l+h+)k, k ≥ 1. Then there is an oriented path P of type r that
maps homomorphically to P1 and P2 such that the initial vertex of P maps to the initial
vertices of P1 and P2 and the terminal vertex of P maps to the terminal vertices of P1

and P2. The length of P is polynomial in the lengths of P1 and P2, and P is of the form
(l+h+)k.

Proof: We will show that our construction implies that |V (P )| ≤ |V (P1)| × |V (P2)|.
We first prove the lemma for the case when k = 1. The proof is by induction on

r ≥ 0. If 0 ≤ r ≤ 1, the claim is trivial. Assume that r ≥ 2. Let P1 = a1a2 . . . ap, let
P2 = b1b2 . . . bq, let s1 = min{i : levelP1(ai) = r} and let s2 = min{i : levelP2(bi) = r}.
Let β1 = min{levelP1(ai) : s1 ≤ i} and β2 = min{levelP2(bi) : s2 ≤ i}. Without loss of
generality assume that β1 ≤ β2 and let t1 = min{i : levelP1(ai) = β1 and i ≥ s1} and let
s2 = max{i : levelP2(bi) = β1 and i ≤ s2}. Note that β1 > 1 as P1 is of form h+l+.

By the induction hypothesis, there is an appropriate oriented path P ′ that can be
mapped homomorphically to a1a2 . . . as1−1 and b1b2 . . . bs2−1. There is also an oriented
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path P ′′ that can be mapped homomorphically to as1as1+1 . . . at1 and bs2bs2−1 . . . bt2 (by
reversing the two paths and then reversing the path we get by the induction hypothe-
sis). Furthermore there is an oriented path P ′′′ that can be mapped homomorphically
to at1+1at1+2 . . . ap and bt2+1bt2+2 . . . bp. Let P = P ′P ′′P ′′′ (where the arc between the
last vertex of P ′ to the first vertex of P ′′ is oriented from P ′ to P ′′ and similarly the arc
between P ′′ and P ′′′ is oriented in that direction). Note that P is of type r and form h+l+

and maps homomorphically to P1 and P2 such that the initial vertex of P maps to the
initial vertices of P1 and P2 and the terminal vertex of P maps to the terminal vertices of
P1 and P2. Furthermore |V (P )| ≤ (s1−1)(s2−1)+(t1−s1+1)(s2−t2+1)+(p−s1)(q−t2).
As (s1 − 1) + (t1 − s1 + 1) + (p− s1) = p and (s2 − 1), (s2 − t2 + 1), (q − t2) ≤ q we have
|V (P )| ≤ pq ≤ |V (P1)| × |V (P2)|.

Now we proceed by induction on k ≥ 1. The base case has already been proved.
Assume that k ≥ 2 and let P1 = a1a2 . . . ap and P2 = b1b2 . . . bq. Let t = max{i :
levelP2(bi) = 0} and let s = max{i : i < t, levelP2(bi) = r}. By the induction hypothesis,
there is an appropriate oriented path P ′ that can be mapped homomorphically to P1

and b1b2 . . . bs. Also, there is an appropriate oriented path P ′′ (P ′′′) that can be mapped
homomorphically to apap−1 . . . a1 and bsbs+1 . . . bt (P1 and btbt+1 . . . bq). Now obtain a
new oriented path P by identifying the terminal vertex of P ′ with the initial vertex of P ′′

and the terminal vertex of P ′′ with the initial vertex of P ′′′. Observe that P satisfies the
required properties. ¦

Consider the oriented cycle C0
4 = 12341 with arcs 12, 32, 14, 34. Observe that 1, 2, 3, 4

is a Min-Max ordering of V (C0
4 ) and, thus, MinHOM(C0

4 ) is polynomial-time solvable.

Theorem 4.4 Let C = b1b2 . . . bpb1 be a balanced oriented cycle of the form (l+h+)k ,
k ≥ 2, and let C 6= C0

4 . Then MinHOM(C) is NP-hard.

Proof: Let C 6= C0
4 . Let s = min{j : bj ∈ V H(C)}, q = min{j : j > s, bj ∈ V L(C)},

t = min{j : j > q, bj ∈ V H(C)} and m = h(C). Let P1 = b1b2 . . . bs, P2 = bqbq−1 . . . bs,
P3 = bqbq+1 . . . bt and P4 = b1bpbp−1 . . . bt. Note that each Pj is of type m. By Lemma 4.3
there is a path Q1 of type m which is mapped homomorphically to P4, P2 and P3. There
is also a path Q2 of type m and which is mapped homomorphically to P1 and P3. Since
C 6= C0

4 and the end-vertices vertices of Q1 are mapped to the end-vertices vertices of P4,
the path Q1 contains more than two vertices. Furthermore, by Lemma 4.3 we may assume
that Q1 is of the form (l+h+)k−1 and Q2 is of the form l+h+.

Let x (y) be the terminal vertex of Q1 (Q2). Form a new oriented path Q = q1q2 . . . ql

by identifying x with y and let 1 ≤ r ≤ l be defined such that Q1 = q1q2 . . . qr and
Q2 = qlql−1 . . . qr. As Q1 contains more than two vertices we have that r ≥ 3.

Let D be an arbitrary digraph. We will now reduce the problem of finding a maximum
independent set in D (i.e. in the underlying graph of D) to MinHOM(C). Replace every
arc ab of D by a copy of Q identifying q1 with a and ql with b, and denote the obtained
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digraph by D′. For every path Q in D′ which we added in the construction of D′ we define
the cost function c as follows, where M is a number greater than |V (D)|:

(i) cb1(q1) = cb1(ql) = 0 and cbq(q1) = cbq(ql) = 1;
(ii) cbs(qr) = cbt(qr) = 0 and cb(qr) = M for all b ∈ V (C)− {bs, bt};
(iii) cb2(q) = M for all q ∈ {q2, q3, . . . , qr−1} (6= ∅, as r ≥ 3);
(iv) if s = 2 then cb1(qr−1) = M ;
(v) all other costs of mapping vertices of D′ to H are zero.

Consider a mapping g from V (Q) to V (C), where g(q1) = bq, g(ql) = bq, and Q1 and
Q2 are both homomorphically mapped to P3 (i.e., g(qr) = bt). Observe that g is a homo-
morphism from Q to C of cost 2. This implies, in particular, that there is a homomorphism
from D′ to H of cost less than M . We now consider three other homomorphisms from Q
to C:

(a) f(q1) = b1 and f(ql) = bq, and Q1 is mapped to P4 and Q2 is mapped to P3

homomorphically (i.e., f(qr) = bt). The cost of f is 1.

(b) f ′(q1) = bq and f ′(ql) = b1, and f ′ maps Q1 to P2 and Q2 to P1 homomorphically
(i.e., f ′(qr) = bs). The cost of f ′ is 1.

(c) f ′′(q1) = b1 and f ′′(ql) = b1. We will show that the cost of f ′′ is at least M . If
this is not the case then f ′′(qr) ∈ {bs, bt} by (ii). First assume that f ′′(qr) = bs. By (iii)
no vertex of V (Q1) − {qr} is mapped to b2 and if s = 2 then by (iv) qr−1 is not mapped
to b1. However as Q1 is of the form (l+h+)k−1 and the path b1bpbp−1 . . . bs is of the form
(l+h+)k we get a contradiction to f ′′ mapping Q1 to C and f ′′(q1) = b1 and f ′′(qr) = bs.
So now assume that f ′′(qr) = bt. However Q2 is of the form (l+h+) and there is no path
in C from b1 to bt of the form (l+h+), a contradiction. Therefore the cost of f ′′ is at least
M .

By the above a minimum cost homomorphism h : D′ → C maps all vertices from a
maximum independent set in D to b1 and all other vertices from D to bq. As finding a
maximum independent set in a digraph is NP-hard we see that MinHOM(C) is NP-hard.
¦

5 Dichotomy and Unbalanced Oriented Cycles

We are ready to prove the following main result:

Theorem 5.1 Let C be an oriented cycle. If C is unbalanced or C is balanced of the form
l+h+ or C = C0

4 , then MinHOM(C) is polynomial-time solvable. Otherwise, MinHOM(C)
is NP-hard.
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By Theorems 4.1 and 4.4, to show Theorem 5.1 it suffices to prove the following:

Theorem 5.2 Let C = b1b2 . . . bpb1 be an unbalanced oriented cycle. Then MinHOM(C)
is polynomial-time solvable.

Proof: It is well-known that the minimum cost homomorphism problem to a directed
cycle is polynomial-time solvable (see, e.g., [7]). Thus, we may assume that C is not a
directed cycle. By Proposition 2.1, we may assume that level(b1) = 0 and level(bi) > 0 for
all i ∈ [p] \ {1}. Let q = max{j : bj ∈ V H(C)}.

Consider the oriented path P = b1b2 . . . bq. Let Vi+1 = {bj ∈ V (P ) : level(bj) = i} for
all i ∈ [k] ∪ {0}, where k = level(bq). Now consider the oriented path Q = b1bpbp−1 . . . bq.
Assign levels to the vertices of Q stating from levelQ(b1) = 0 and continuing as described
in Section 1. Observe that all vertices of Q get non-negative levels. Let Ui+1 = {bj ∈
V (Q) : levelQ(bj) = i}, i ∈ [l] ∪ {0}, where l = levelQ(bq). Clearly, V1 = U1 = {b1}; set
Ul+1 = Vk+1.

Consider the ordering ~U = (b1, bp, bp−1, . . . , bq) of the vertices of Q. For i ∈ [l + 1], the
ordering ~Ui is obtained from ~U by deleting all vertices not in Ui. Consider the ordering
~V = (b1, b2, . . . , bq) of the vertices of P . For i ∈ [k + 1], the ordering ~Vi is obtained
from ~V by deleting all vertices not in Vi. Observe that the ordering (~V1, ~V2, ~U2) of the
vertices of C[V1∪V2∪U2] has no crossing arcs. Similarly, the ordering (~Ul, ~Vk, ~Vk+1) of the
vertices of C[Ul ∪ Vk ∪ Vk+1] has no crossing arcs, and orderings (~Vi, ~Vi+1) and (~Uj , ~Uj+1)
(i ∈ [k], j ∈ [l]) have no crossing arcs. Thus, C has a (k + 1, l + 1)-ordering of vertices.
Now we are done by Theorem 3.4. ¦
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