Parameterized Complexity for Graph Linear Arrangement Problems

Gregory Gutin

Royal Holloway, U. of London (RHUL)

 and University of Haifajoint with Arash Rafiey (RHUL), Stefan Szeider (Durham University), and Anders Yeo (RHUL)

Linear Arrangements

A linear arrangement of a graph $G=(V, E)$ is a one-to-one mapping $\alpha: V \rightarrow\{1, \ldots,|V|\}$. The length of an edge $u v \in E$ relative to α is

$$
\lambda_{\alpha}(u v)=|\alpha(u)-\alpha(v)| .
$$

The cost $\mathrm{c}(\alpha, G)$ of a linear arrangement α is

$$
\mathrm{c}(\alpha, G)=\sum_{e \in E} \lambda_{\alpha}(e) .
$$

Linear arrangements of minimal cost are optimal; ola(G) denotes the cost of an optimal linear arrangement of G.

Linear arrangements α and β with

$$
c\left(\alpha, P_{4}\right)=4 \text { and } c\left(\beta, P_{4}\right)=3
$$

Linear Arrangement Problem (LAP)

It is the problem of deciding, given a graph G and an integer k, whether ola $(G) \leq k$.

LAP is a classical NP-complete problem (Garey and Johnson, 1979).

Goldberg and Klipker (1976) were the first to obtain a polynomial-time algorithm for computing optimal linear arrangements of trees.
Faster algorithms for trees were obtained by Shiloach (1979) and Chung (1984).

Fixed Parameter Tractability: Definitions

A parameterized problem Π can be considered as a set of pairs (I, k) where I is the problem instance and k (usually an integer) is the parameter. Π is called fixed-parameter tractable (FPT) if membership of (I, k) in Π can be decided in time $O\left(f(k)|I|^{c}\right)$, where $|I|$ is the size of $I, f(k)$ is a computable function, and c is a constant independent from k and I.

A reduction to problem kernel (or kernelization) is a polynomial-time many-to-one transformation from the parameterized problem to itself, such that (i) (I, k) is reduced to (I^{\prime}, k^{\prime}) with $k^{\prime} \leq c k,\left|I^{\prime}\right| \leq g(k)$, for some constant c and some computable function g, and (ii) $(I, k) \in \Pi$ if and only if $\left(I^{\prime}, k^{\prime}\right) \in \Pi$. Here, (I^{\prime}, k^{\prime}) is called the problem kernel.

Fixed Parameter Tractability: Approaches

FPT: one of the approaches to solve NP-hard problems

FPT applicability: bioinformatics (e.g., M.A. Langston, clique computation via vertex cover)

FPT applicability: preprocessing rules for exact and approx. computations

Well-known FPT approaches:
(a) Reduction to problem kernel (lots)
(b) Bounded search trees (even more)
(c) Color-coding

Parameterized LAP

The following is a straightforward way to parameterize LAP (Fernau, 2005, Serna and Thilikos, 2005):

Parameterized LAP
Instance: A graph G.
Parameter: A positive integer k.
Question: Does G have a linear arrangement of cost at most k ?

An edge has length at least 1 in any LA. Thus, for a graph G with m edges we have ola $(G) \geq$ m. Consequently, parameterized LAP is FPT by trivial reasons.

LAPAGV

Consider the net cost $\mathrm{nc}(\alpha, G)$ of a linear arrangement α defined as follows: $\mathrm{nc}(\alpha, G)=\sum_{e \in E}\left(\lambda_{\alpha}(e)-\right.$ 1). The net cost of an optimal LA of G is ola ${ }^{+}(G)=$ ola $(G)-m$. The following parameterization of LAP is due to (Fernau, 2005) who asked whether LAPAGV is FPT?

LA parameterized above guaranteed value (LAPAGV)
Instance: A graph G.
Parameter: A positive integer k.
Question: Does G have a linear arrangement of net cost at most k ?

Lemmas

Lemma 1. Let G_{1}, \ldots, G_{p} be the connected components of a graph G. Then ola ${ }^{+}(G)=$ $\sum_{i=1}^{p} \mathrm{ola}^{+}\left(G_{i}\right)$.

Lemma 2. If G is a connected bridgeless graph of order $n \geq 1$, then ola $+(G) \geq(n-1) / 2$.

Proof: Assume $n \geq 3$; G is 2-edge-connected. Let α be an optimal linear arrangement of G and $u=\alpha^{-1}(1), w=\alpha^{-1}(n)$.

Since G is 2-edge-connected, by Menger's Theorem there are two paths P, P^{\prime} between u to w such that $E(P) \cap E\left(P^{\prime}\right)=\{u, w\}$. Let $G^{\prime}=$ $P \cup P^{\prime}$. We can prove $\left|E\left(G^{\prime}\right)\right| \leq 3(n-1) / 2$. We obtain ola ${ }^{+}(G)=\mathrm{nc}(\alpha, G) \geq \mathrm{nc}\left(\alpha, G^{\prime}\right) \geq$ $2(n-1)-\left|E\left(G^{\prime}\right)\right| \geq(n-1) / 2$.

Lemma 3

Lemma 3. Let G be a connected graph. Let X be a vertex set of G such that $G[X]$ is connected and let $G-X$ have connected components $G_{1}, G_{2}, \ldots, G_{r}$ with $n_{1}, n_{2}, \ldots, n_{r}$ vertices, respectively, such that $n_{1} \leq n_{2} \leq \ldots \leq n_{r}$. Then ola ${ }^{+}(G) \geq$ ola $^{+}(G[X])+\sum_{i=1}^{r-2} n_{i}$.

ola $^{+}(G) \geq$ ola $^{+}(G[X])+\left(n_{1}+n_{2}+n_{3}+n_{4}\right)$

Proof: We call a vertex $u \in V(G) \alpha$-special if $G-u$ is connected and $\alpha(u) \notin\{1, n\}$. Let α be an optimal LA of G. Assume $r \geq 3$. Each nontrivial G_{i} has a pair u_{i}, v_{i} of distinct vertices such that $G_{i}-u_{i}$ and $G_{i}-v_{i}$ are connected. If G_{i} is trivial, then set $u_{i}=v_{i}$. Since $r \geq 3$, for some $j \in\{1,2, \ldots, r\}, \alpha\left(u_{j}\right) \notin\{1, n\}$ and $\alpha\left(v_{j}\right) \notin\{1, n\}$. Now we claim that there is a vertex $u \in V\left(G_{j}\right)$ such that $G-u$ is connected. Indeed, we set $u=u_{j}$ if there are edges between v_{j} and $G[X]$, we set $u=v_{j}$, otherwise.

We have proved that G has an α-special vertex u not in X. Note: ola ${ }^{+}(G) \geq$ ola $^{+}(G-u)+1$ for an α-special vertex u of G. Procedure: while $G-X$ has a least three components, choose an α-special vertex $u \notin X$ of G and replace G with $G-u$.

Lemma 4

A bridge e of G is k-separating if both components of $G-e$ have more than k vertices.

Lemma 4. Let k be a positive integer and let G be a connected graph with n vertices with ola $^{+}(G) \leq k$. Then either G has a k-separating bridge or $n \leq 4 k+1$.

Proof: If G is a bridgeless graph, by Lemma 2, $n \leq 2 k+1$. Assume: G has a bridge. Choose a bridge e_{1} with maximal $\min \left\{\left|V\left(F_{1}\right)\right|,\left|V\left(F_{0}\right)\right|\right\}$, where F_{1}, F_{0} are the components of $G-e_{1}$. Assume: $\left|V\left(F_{1}\right)\right| \leq\left|V\left(F_{0}\right)\right|$. Since e_{1} is not a k-separating bridge, $\left|V\left(F_{1}\right)\right| \leq k$. Let F_{0}^{*} the bridgeless component of F_{0} containing a vertex incident to e_{1}. If $F_{0}=F_{0}^{*}$ then $\left|V\left(F_{0}\right)\right| \leq 2 k+1$ and we are done; hence we assume that $F_{0} \neq$ F_{0}^{*}.

Let e_{2}, \ldots, e_{r} denote the bridges of F_{0} that are incident to vertices in F_{0}^{*}. Moreover, let F_{2}, \ldots, F_{r} denote the corresponding connected components of $F_{0}-V\left(F_{0}^{*}\right)$.

Assume: $\left|V\left(F_{2}\right)\right| \geq\left|V\left(F_{3}\right)\right| \geq \ldots \geq\left|V\left(F_{r}\right)\right|$. Easy to see: $\left|V\left(F_{1}\right)\right| \geq\left|V\left(F_{2}\right)\right|$. By Lemma 3, ola ${ }^{+}(G) \geq$ ola $^{+}\left(F_{0}^{*}\right)+\sum_{i=3}^{r}\left|V\left(F_{i}\right)\right|$. Thus, $\sum_{i=3}^{r}\left|V\left(F_{i}\right)\right| \leq k-$ ola $^{+}\left(F_{0}^{*}\right)$. Since $\left|V\left(F_{2}\right)\right| \leq$ $\left|V\left(F_{1}\right)\right| \leq k$ and, by Lemma 2, $\left|V\left(F_{0}^{*}\right)\right| \leq 2$. ola $^{+}\left(F_{0}^{*}\right)+1$, we obtain that
$n=\left|V\left(F_{0}^{*}\right)\right|+\sum_{i=1}^{r}\left|V\left(F_{i}\right)\right| \leq\left(2 \cdot\right.$ ola $\left.^{+}\left(F_{0}^{*}\right)+1\right)+$ $\left(3 k-\mathrm{ola}^{+}\left(F_{0}^{*}\right)\right)=3 k+\mathrm{ola}^{+}\left(F_{0}^{*}\right)+1 \leq 4 k+1$.

Suppressing Lemma

Let G be a graph and let v be a vertex of degree 2 of G. Let $v u_{1}, v u_{2}$ denote be the edges incident with v. Assume that $u_{1} u_{2} \notin E(G)$. We obtain a graph G^{\prime} from G by removing v (and the edges $v u_{1}, v u_{2}$) from G and adding instead the edge $u_{1} u_{2}$. We say that G^{\prime} is obtained from G by suppressing vertex v. Furthermore, if the two edges incident with v are k-separating bridges for some positive integer k, then we say that v is k-suppressible.

Lemma 5. Let G be a connected graph and let v be an ola+ ${ }_{(G) \text {-suppressible vertex of } G \text {. }}^{\text {. }}$ Then ola ${ }^{+}(G)=$ ola $^{+}\left(G^{\prime}\right)$ holds for the graph G^{\prime} obtained from G by suppressing v.

Kernel Theorems

Theorem 1. Let k be a positive integer, and let G be a connected graph without k-suppressible vertices. If ola+ $(G) \leq k$, then G has at most $5 k+2$ vertices and at most $6 k+1$ edges.

Theorem 2. Let $f(n, m)$ be the time sufficient for checking whether ola ${ }^{+}(G) \leq k$ for a connected graph G with n vertices and m edges. Then $f(n, m)=O(m+n+f(5 k+2,6 k+1))$.

Theorem 3. We have $f(5 k+2,6 k+1)=$ $O\left(5.88^{k}\right)$.

Serna-Thilikos Problems (2005)

Vertex Average Min Linear Arrangement

Instance: A graph G.
Parameter: A positive integer k.
Question: Does G have an LA of cost
$\leq k|V(G)|$?

Edge Average Min Linear Arrangement

Instance: A graph G.
Parameter: A positive integer k.
Question: Does G have an LA of cost
$\leq k|E(G)|$?

Serna-Thilikos Question

Q.: Are the problems FPT?

Theorem 4. For each fixed $k \geq 2$, both problems are NP-complete.
A.: No, unless $\mathrm{P}=\mathrm{NP}$.

Serna-Thilikos Problem on Graph Profile (2005)

For an LA α of $G=(V, E)$, its profile $\operatorname{prf}(\alpha, G)=$ $\sum_{v \in V} \max \{\alpha(v)-\alpha(u): u \in N[v]\}$.

Vertex Average Profile

Instance: A graph G.
Parameter: A positive integer k.
Question: Does G have an LA of profile
$\leq k|V(G)|$?

Theorem 5. For each fixed $k \geq 2$, the above problem is NP-complete.

