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Linear Arrangements

A linear arrangement of a graph G = (V, E)

is a one-to-one mapping α : V → {1, . . . , |V |}.
The length of an edge uv ∈ E relative to α is

λα(uv) = |α(u)− α(v)|.
The cost c(α, G) of a linear arrangement α is

c(α, G) =
∑

e∈E

λα(e).

Linear arrangements of minimal cost are op-

timal; ola(G) denotes the cost of an optimal

linear arrangement of G.
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Linear Arrangement Problem (LAP)

It is the problem of deciding, given a graph G

and an integer k, whether ola(G) ≤ k.

LAP is a classical NP-complete problem (Garey

and Johnson, 1979).

Goldberg and Klipker (1976) were the first to

obtain a polynomial-time algorithm for com-

puting optimal linear arrangements of trees.

Faster algorithms for trees were obtained by

Shiloach (1979) and Chung (1984).
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Fixed Parameter Tractability: Definitions

A parameterized problem Π can be considered

as a set of pairs (I, k) where I is the problem

instance and k (usually an integer) is the pa-

rameter. Π is called fixed-parameter tractable

(FPT) if membership of (I, k) in Π can be de-

cided in time O(f(k)|I|c), where |I| is the size

of I, f(k) is a computable function, and c is a

constant independent from k and I.

A reduction to problem kernel (or kerneliza-

tion) is a polynomial-time many-to-one trans-

formation from the parameterized problem to

itself, such that (i) (I, k) is reduced to (I ′, k′)
with k′ ≤ ck, |I ′| ≤ g(k), for some constant

c and some computable function g, and (ii)

(I, k) ∈ Π if and only if (I ′, k′) ∈ Π. Here,

(I ′, k′) is called the problem kernel.
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Fixed Parameter Tractability: Approaches

FPT: one of the approaches to solve NP-hard

problems

FPT applicability: bioinformatics (e.g., M.A.

Langston, clique computation via vertex cover)

FPT applicability: preprocessing rules for ex-

act and approx. computations

Well-known FPT approaches:

(a) Reduction to problem kernel (lots)

(b) Bounded search trees (even more)

(c) Color-coding
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Parameterized LAP

The following is a straightforward way to para-

meterize LAP (Fernau, 2005, Serna and Thi-

likos, 2005):

Parameterized LAP

Instance: A graph G.

Parameter: A positive integer k.

Question: Does G have a linear arrange-

ment of cost at most k?

An edge has length at least 1 in any LA. Thus,

for a graph G with m edges we have ola(G) ≥
m. Consequently, parameterized LAP is FPT

by trivial reasons.
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LAPAGV

Consider the net cost nc(α, G) of a linear arrange-

ment α defined as follows: nc(α, G) =
∑

e∈E(λα(e)−
1). The net cost of an optimal LA of G is

ola+(G) = ola(G) − m. The following para-

meterization of LAP is due to (Fernau, 2005)

who asked whether LAPAGV is FPT ?

LA parameterized above guaranteed

value (LAPAGV)

Instance: A graph G.

Parameter: A positive integer k.

Question: Does G have a linear arrange-

ment of net cost at most k?
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Lemmas

Lemma 1. Let G1, . . . , Gp be the connected

components of a graph G. Then ola+(G) =∑p
i=1 ola+(Gi).

Lemma 2. If G is a connected bridgeless graph

of order n ≥ 1, then ola+(G) ≥ (n− 1)/2.

Proof: Assume n ≥ 3; G is 2-edge-connected.

Let α be an optimal linear arrangement of G

and u = α−1(1), w = α−1(n).

Since G is 2-edge-connected, by Menger’s The-

orem there are two paths P, P ′ between u to

w such that E(P ) ∩ E(P ′) = {u, w}. Let G′ =
P ∪ P ′. We can prove |E(G′)| ≤ 3(n − 1)/2.

We obtain ola+(G) = nc(α, G) ≥ nc(α, G′) ≥
2(n− 1)− |E(G′)| ≥ (n− 1)/2.
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Lemma 3

Lemma 3. Let G be a connected graph. Let

X be a vertex set of G such that G[X] is con-

nected and let G−X have connected compo-

nents G1, G2, . . . , Gr with n1, n2, . . . , nr vertices,

respectively, such that n1 ≤ n2 ≤ . . . ≤ nr.

Then ola+(G) ≥ ola+(G[X]) +
∑r−2

i=1 ni.
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ola+(G) ≥ ola+(G[X]) + (n1 + n2 + n3 + n4)
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Proof: We call a vertex u ∈ V (G) α-special if

G−u is connected and α(u) 6∈ {1, n}. Let α be

an optimal LA of G. Assume r ≥ 3. Each non-

trivial Gi has a pair ui, vi of distinct vertices

such that Gi − ui and Gi − vi are connected.

If Gi is trivial, then set ui = vi. Since r ≥ 3,

for some j ∈ {1,2, . . . , r}, α(uj) 6∈ {1, n} and

α(vj) 6∈ {1, n}. Now we claim that there is a

vertex u ∈ V (Gj) such that G−u is connected.

Indeed, we set u = uj if there are edges be-

tween vj and G[X], we set u = vj, otherwise.

We have proved that G has an α-special vertex

u not in X. Note: ola+(G) ≥ ola+(G− u) + 1

for an α-special vertex u of G. Procedure: while

G − X has a least three components, choose

an α-special vertex u 6∈ X of G and replace G

with G− u.
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Lemma 4

A bridge e of G is k-separating if both compo-

nents of G− e have more than k vertices.

Lemma 4. Let k be a positive integer and let

G be a connected graph with n vertices with

ola+(G) ≤ k. Then either G has a k-separating

bridge or n ≤ 4k + 1.
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Proof: If G is a bridgeless graph, by Lemma 2,

n ≤ 2k+1. Assume: G has a bridge. Choose a

bridge e1 with maximal min{|V (F1)|, |V (F0)|},
where F1, F0 are the components of G − e1.

Assume: |V (F1)| ≤ |V (F0)|. Since e1 is not

a k-separating bridge, |V (F1)| ≤ k. Let F ∗0 the

bridgeless component of F0 containing a vertex

incident to e1. If F0 = F ∗0 then |V (F0)| ≤ 2k+1

and we are done; hence we assume that F0 6=
F ∗0.

Let e2, . . . , er denote the bridges of F0 that

are incident to vertices in F ∗0. Moreover, let

F2, . . . , Fr denote the corresponding connected

components of F0 − V (F ∗0).
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Assume: |V (F2)| ≥ |V (F3)| ≥ . . . ≥ |V (Fr)|.
Easy to see: |V (F1)| ≥ |V (F2)|. By Lemma

3, ola+(G) ≥ ola+(F ∗0) +
∑r

i=3 |V (Fi)|. Thus,∑r
i=3 |V (Fi)| ≤ k − ola+(F ∗0). Since |V (F2)| ≤

|V (F1)| ≤ k and, by Lemma 2, |V (F ∗0)| ≤ 2 ·
ola+(F ∗0) + 1, we obtain that

n = |V (F ∗0)|+∑r
i=1 |V (Fi)| ≤ (2·ola+(F ∗0)+1)+

(3k− ola+(F ∗0)) = 3k +ola+(F ∗0)+1 ≤ 4k +1.
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Suppressing Lemma

Let G be a graph and let v be a vertex of de-

gree 2 of G. Let vu1, vu2 denote be the edges

incident with v. Assume that u1u2 /∈ E(G). We

obtain a graph G′ from G by removing v (and

the edges vu1, vu2) from G and adding instead

the edge u1u2. We say that G′ is obtained

from G by suppressing vertex v. Furthermore,

if the two edges incident with v are k-separat-

ing bridges for some positive integer k, then

we say that v is k-suppressible.

Lemma 5. Let G be a connected graph and

let v be an ola+(G)-suppressible vertex of G.

Then ola+(G) = ola+(G′) holds for the graph

G′ obtained from G by suppressing v.
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Kernel Theorems

Theorem 1. Let k be a positive integer, and let

G be a connected graph without k-suppressible

vertices. If ola+(G) ≤ k, then G has at most

5k + 2 vertices and at most 6k + 1 edges.

Theorem 2. Let f(n, m) be the time sufficient

for checking whether ola+(G) ≤ k for a con-

nected graph G with n vertices and m edges.

Then f(n, m) = O(m + n + f(5k + 2,6k + 1)).

Theorem 3. We have f(5k + 2,6k + 1) =

O(5.88k).
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Serna-Thilikos Problems (2005)

Vertex Average Min Linear Arrange-

ment

Instance: A graph G.

Parameter: A positive integer k.

Question: Does G have an LA of cost

≤ k|V (G)|?

Edge Average Min Linear Arrange-

ment

Instance: A graph G.

Parameter: A positive integer k.

Question: Does G have an LA of cost

≤ k|E(G)|?
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Serna-Thilikos Question

Q.: Are the problems FPT ?

Theorem 4. For each fixed k ≥ 2, both prob-

lems are NP-complete.

A.: No, unless P=NP.
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Serna-Thilikos Problem on Graph Profile

(2005)

For an LA α of G = (V, E), its profile prf(α, G) =

∑
v∈V max{α(v)− α(u) : u ∈ N [v]}.

Vertex Average Profile

Instance: A graph G.

Parameter: A positive integer k.

Question: Does G have an LA of profile

≤ k|V (G)|?

Theorem 5. For each fixed k ≥ 2, the above

problem is NP-complete.
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