Note on edge-colored graphs and digraphs without properly colored cycles

Gregory Gutin
Department of Computer Science
Royal Holloway, University of London
Egham, Surrey, TW20 0EX, UK
Gutin@cs.rhul.ac.uk

Abstract

We study the following two functions: $d(n, c)$ and $\vec{d}(n, c) ; d(n, c)(\vec{d}(n, c))$ is the minimum number k such that every c-edge-colored undirected (directed) graph of order n and minimum monochromatic degree (out-degree) at least k has a properly colored cycle. Abouelaoualim et al. (2007) stated a conjecture which implies that $d(n, c)=1$. Using a recursive construction of c-edge-colored graphs with minimum monochromatic degree p and without properly colored cycles, we show that $d(n, c) \geq \frac{1}{c}\left(\log _{c} n-\log _{c} \log _{c} n\right)$ and, thus, the conjecture does not hold. In particular, this inequality significantly improves a lower bound on $\vec{d}(n, 2)$ obtained by Gutin, Sudakov and Yeo in 1998.

Keywords: edge-colored graphs, properly colored cycles.

1 Introduction

All directed and undirected graphs considered in this paper are simple, i.e., have no loops or parallel edges. We consider only directed cycles in digraphs; the term cycle (in a digraph) will always mean a directed cycle.

Let $G=(V, E)$ be a directed or undirected graph, and let $\chi: E \rightarrow\{1,2, \ldots, c\}$ be a fixed (not necessarily proper) edge-coloring of G with c colors, $c \geq 2$. With given χ, G is called a c-edge-colored (or, edge-colored) graph. A subgraph H of G is called properly colored if χ defines a proper edge-coloring of H, i.e., no vertex
of H is incident to a pair of edges of the same color. For a vertex of a c-edgecolored graph $G, d_{i}(x)$ denotes the number of edges of color i incident with x. Let $\delta_{\text {mon }}(G)=\min \left\{d_{i}(x): x \in V(G), i \in\{1,2, \ldots, c\}\right\}$. If G is directed, $d_{i}^{+}(x)$ denotes the number of edges of color i in which x is tail. Let $\delta_{\text {mon }}^{+}(G)=\min \left\{d_{i}^{+}(x): x \in\right.$ $V(G), i \in\{1,2, \ldots, c\}\}$.

The authors of [2] stated the following:

Conjecture 1.1 Let G be a c-edge-colored undirected graph of order n with $\delta_{\text {mon }}(G)=$ $d \geq 1$. Then G has a properly colored cycle of length at least $\min \{n, c d\}$. Moreover, if $c>2$, then G has a properly colored cycle of length at least $\min \{n, c d+1\}$.

In the next section, using a recursive construction of c-edge-colored graphs with minimum monochromatic degree d and without properly colored cycles, we show that this conjecture does not hold. Moreover, for every $d \geq 1$ there exists an edgecolored graph G with $\delta_{\text {mon }}(G) \geq d$ and with no properly colored cycle.

We will study the following two functions: $d(n, c)$ and $\vec{d}(n, c) ; d(n, c)(\vec{d}(n, c))$ is the minimum number k such that every c-edge-colored graph (digraph) of order n and minimum monochromatic degree (out-degree) at least k has a properly colored cycle. Gutin, Sudakov and Yeo [5] proved the following bounds for $\vec{d}(n, 2)$

$$
\begin{equation*}
\frac{1}{4} \log _{2} n+\frac{1}{8} \log _{2} \log _{2} n+\Theta(1) \leq \vec{d}(n, 2) \leq \log _{2} n-\frac{1}{3} \log _{2} \log _{2} n+\Theta(1) \tag{1}
\end{equation*}
$$

Using our construction, we prove that $\vec{d}(n, 2) \geq \frac{1}{2}\left(\log _{2} n-\log _{2} \log _{2} n\right)$. This improves the lower bound in (1). (The lower bound in (1) was obtained using significantly more elaborate arguments.) This bound on $\vec{d}(n, 2)$ follows from lower and upper bounds on $d(n, c)$ and $\vec{d}(n, c)$ obtained for each value of c. The bounds imply that $d(n, c)=\Theta\left(\log _{2} n\right)$ and $\vec{d}(n, c)=\Theta\left(\log _{2} n\right)$ for each fixed $c \geq 2$.

Properly colored cycles have been studied in several papers, for a survey, see Chapter 11 in [3]. Properly colored cycles in 2-edge-colored undirected graphs generalize cycles in digraphs and are of interest in genetics [3]. More recent papers on properly colored cycles include [1, 2, 4]. Interestingly, the problem to check whether an edge-colored undirected graph has a properly colored cycle is polynomial time solvable (we can even find a shortest properly colored cycle is polynomial time [1]), but the same problem for edge-colored digraphs is NP-complete [5].

Figure 1: Edge-coloured graphs with no PC cycles.

2 Results

Theorem 2.1 For each $d \geq 1$ there is an edge-colored graph G with $\delta_{\text {mon }}(G)=d$ and with no properly colored cycle.

Proof: Let $\left(p_{1}, p_{2}, \ldots, p_{c}\right)$ be a vector with nonnegative integral coordinates p_{i}. For an arbitrary $\left(p_{1}, p_{2}, \ldots, p_{c}\right), G\left(p_{1}, p_{2}, \ldots, p_{c}\right)$ is recursively defined as follows: take a new vertex x and graphs $H_{1}=G\left(p_{1}-1, p_{2}, p_{3}, \ldots, p_{c-1}, p_{c}\right)$ if $p_{1}>0, H_{2}=$ $G\left(p_{1}, p_{2}-1, p_{3}, \ldots, p_{c-1}, p_{c}\right)$ if $p_{2}>0, \ldots, H_{c}=G\left(p_{1}, p_{2}, p_{3}, \ldots, p_{c-1}, p_{c}-1\right)$ if $p_{c}>0$ and add an edge of color i between x and and every vertex of H_{i} for each i for which $p_{i}>0$. In particular, $G(0,0, \ldots, 0)=K_{1}$. (Fig. 1 depicts $G(1,0), G(0,1)$ and $G(1,1)$.)

It is easy to see, by induction on $p_{1}+p_{2}+\cdots+p_{c}$, that $G=G\left(p_{1}, p_{2}, \ldots, p_{c}\right)$ has no properly colored cycle and $\delta_{\text {mon }}(G)=\min \left\{p_{i}: i=1,2, \ldots, c\right\}$.

In fact, for each $d \geq 1$ there are infinitely many edge-colored graphs G with $\delta_{\text {mon }}(G)=d$ and with no properly colored cycle. Indeed, in the construction of $G\left(p_{1}, p_{2}, \ldots, p_{c}\right)$ above we may assume that $G(0,0, \ldots, 0)$ is an edgeless graph of arbitrary order.

Lemma 2.2 Let $n\left(p_{1}, p_{2}, \ldots, p_{c}\right)$ be the order of $G\left(p_{1}, p_{2}, \ldots, p_{c}\right)$ and let $n_{c}(p)=$ $n\left(p_{1}, \ldots, p_{c}\right)$ for $p=p_{1}=\cdots=p_{c}$. Then $n\left(p_{1}, \ldots, p_{c}\right) \leq s 2^{s}$, where $s=p_{1}+p_{2}+$ $\ldots+p_{c}$, provided $s>0$ and $p \geq \frac{1}{c}\left(\log _{c} n_{c}(p)-\log _{c} \log _{c} n_{c}(p)\right)$.

Proof: We first prove $n\left(p_{1}, \ldots, p_{c}\right) \leq s 2^{s}$ by induction on $s \geq 1$. The inequality clearly holds for $s=1$. By induction hypothesis, for $s \geq 2$, we have

$$
\begin{aligned}
n\left(p_{1}, \ldots, p_{c}\right) & \leq 1+\sum_{i=1}^{c}\left\{n\left(p_{1}, \ldots, p_{i-1}, p_{i}-1, p_{i+1}, \ldots, p_{c}\right): p_{i}>0\right\} \\
& \leq 1+c(s-1) c^{s-1} \leq s c^{s}
\end{aligned}
$$

Thus, $n_{c}(p) \leq c p \cdot c^{c p}$. Observe that $n_{c}(p)>a c^{a}$ provided $a=\log _{c} n_{c}(p)-$ $\log _{c} \log _{c} n_{c}(p)$ and, thus, $c p \geq \log _{c} n_{c}(p)-\log _{c} \log _{c} n_{c}(p)$.

Corollary 2.3 We have $\vec{d}(n, c) \geq d(n, c) \geq \frac{1}{c}\left(\log _{c} n-\log _{c} \log _{c} n\right)$.
Proof: Let H be a c-edge-colored undirected graph and H^{*} be a digraph obtained from H by replacing every edge $e=x y$ with arcs $x y$ and $y x$ both of color $\chi(e)$. Clearly, H has a properly colored cycle if and only if H^{*} has a properly colored cycle. Thus, $\vec{d}(n, c) \geq d(n, c)$. The inequality $d(n, c) \geq \frac{1}{c}\left(\log _{c} n-\log _{c} \log _{c} n\right)$ follows from Lemma 2.2 and the fact that graphs $G(p, p, \ldots, p)$ have no properly colored cycles.

We see that $\vec{d}(n, 2) \geq \frac{1}{2}\left(\log _{2} n-\log _{2} \log _{2} n\right)$. This is an improvement over the lower bound on $\vec{d}(n, 2)$ in (1). Using the upper bound in (1), we will obtain an upper bound on $\vec{d}(n, c)$ and, thus, $d(n, c)$.

Proposition 2.4 We have $\vec{d}(n, c) \leq \frac{1}{\lfloor c / 2\rfloor}\left(\log _{2} n-\frac{1}{3} \log _{2} \log _{2} n+\Theta(1)\right)$.
Proof: Let D be a c-edge-colored digraph of order n with $\delta_{\text {mon }}(D) \geq \frac{1}{\lfloor c / 2\rfloor}\left(\log _{2} n-\right.$ $\left.\frac{1}{3} \log _{2} \log _{2} n+\Theta(1)\right)$. Let D^{\prime} be the 2-edge-colored digraph obtained from D by assigning color 1 to all edges of D of color $1,2, \ldots,\lfloor c / 2\rfloor$ and color 2 to all edges of D of color $\lfloor c / 2\rfloor+1,\lfloor c / 2\rfloor+2, \ldots, c$. It remains to observe that $\delta_{\text {mon }}\left(D^{\prime}\right) \geq$ $\log _{2} n-\frac{1}{3} \log _{2} \log _{2} n+\Theta(1)$ and every properly colored cycle in D^{\prime} is a properly colored cycle in D.

Corollary 2.5 For every fixed $c \geq 2$, we have $d(n, c)=\Theta\left(\log _{2} n\right)$ and $\vec{d}(n, c)=$ $\Theta\left(\log _{2} n\right)$.

3 Open Problems

We believe that there are functions $s(c), r(c)$ dependent only on c such that $d(n, c)=$ $s(c) \log _{2} n(1+o(1))$ and $\vec{d}(n, c)=r(c) \log _{2} n(1+o(1))$. In particular, it would be interesting to determine $s(2)$ and $r(2)$.
Acknowledgement This research was supported in part by the IST Programme of the European Community, under the PASCAL Network of Excellence, IST-2002506778.

References

[1] A. Abouelaoualim, K.Ch. Das, L. Faria, Y. Manoussakis, C.A. Martinhon and R. Saad, Paths and trails in edge-colored graphs. Submitted, 2007.
[2] A. Abouelaoualim, K.Ch. Das, W. Fernandez de la Vega, M. Karpinski, Y. Manoussakis, C.A. Martinhon and R. Saad, Cycles and paths in edge-colored graphs with given degrees. Submitted, 2007.
[3] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer-Verlag, London, 2000.
[4] H. Fleischner and S. Szeider, On Edge-Colored Graphs Covered by Properly Colored Cycles. Graphs and Combinatorics 21 (2005), 301-306.
[5] G. Gutin, B. Sudakov and A. Yeo, Note on alternating directed cycles. Discrete Math. 191 (1998), 101-107.

