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Abstract

For digraphs D and H, a mapping f : V (D)→V (H) is a homomorphism of D
to H if uv ∈ A(D) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (D)
is associated with costs ci(u), i ∈ V (H), then the cost of the homomorphism f is∑

u∈V (D) cf(u)(u). For each fixed digraph H, we have the minimum cost homomor-
phism problem for H. The problem is to decide, for an input graph D with costs
ci(u), u ∈ V (D), i ∈ V (H), whether there exists a homomorphism of D to H and,
if one exists, to find one of minimum cost. Minimum cost homomorphism problems
encompass (or are related to) many well studied optimization problems.

1 Introduction, Terminology and Notation

The purpose of this paper is twofold: (a) To give an introduction to a new area, the
minimum cost homomorphism problem for graphs; (b) To initiate the study of the problem
for digraphs with possible loops and to prove new results for such digraphs. Notice that
our proofs of the new results illustrate approaches known from the literature.

In most of the literature on digraphs, only digraphs without loops and multiple arcs
are studied. This is justified by the fact that multiple arcs and especially loops play no
role when we investigate path and cycle structure of digraphs and several other central
topics. However, digraphs with possible loops appear naturally in many applications such
as digraphs of relations, automata, Markov chains, etc. In homomorphism problems for
undirected graphs, graphs with loops are often investigated [6, 12, 14] (multiple edges
are of no interest for such problems). Nevertheless, loops are usually not taken into
consideration when digraph homomorphisms are studied [12, 14] (one notable exception is
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[4]). We think the situation should be changed and we initiate research of the minimum
cost homomorphism problem for digraphs with possible loops.

In this paper, we consider only directed (undirected) graphs that do not have multiple
arcs (edges), but may have loops. If a directed (undirected) graph G has no loops, we
call G loopless. If a directed (undirected) graph G has a loop at every vertex, we call G
reflexive. When we wish to stress that a family of digraphs contains digraphs with loops
we will say digraphs with possible loops (w.p.l.) For an undirected graph H, V (H) and
E(H) denote its vertex and edge sets, respectively. For a digraph H, V (H) and A(H)
denote its vertex and arc sets, respectively.

For directed (undirected) graphs G and H, a mapping f : V (G)→V (H) is a ho-
momorphism of G to H if uv is an arc (edge) implies that f(u)f(v) is an arc (edge). A
homomorphism f of G to H is also called an H-coloring of G, and f(x) is called the color of
the vertex x in G. We denote the set of all homomorphisms from G to H by HOM(G, H).
Recent treatments of homomorphisms in directed and undirected graphs can be found in
[12, 14]. Let H be a fixed directed or undirected graph. The homomorphism problem
for H asks whether a directed or undirected input graph G admits a homomorphism to
H. The list homomorphism problem for H asks whether a directed or undirected input
graph G with lists (sets) Lu ⊆ V (H), u ∈ V (G) admits a homomorphism f to H in which
f(u) ∈ Lu for each u ∈ V (G).

Suppose G and H are directed (or undirected) graphs, and ci(u), u ∈ V (G), i ∈ V (H)
are real costs. The cost of a homomorphism f of G to H is

∑
u∈V (G) cf(u)(u). If H is

fixed, the minimum cost homomorphism problem, MinHOM(H), for H is the following
optimization problem. Given an input graph G, together with costs ci(u), u ∈ V (G),
i ∈ V (H), we wish to find a minimum cost homomorphism of G to H, or state that none
exists.

The minimum cost homomorphism problem was introduced in [10], where it was mo-
tivated by a real-world problem in defence logistics. We believe it offers a practical and
natural model for optimization of weighted homomorphisms. The problem’s special cases
include the list homomorphism problem [12, 14] and the general optimum cost chromatic
partition problem, which has been intensively studied [11, 15, 16], and has a number of
applications [19, 21].

By directed path (cycle) we mean a simple directed path (cycle) (i.e., with no self-
crossing). We assume that a directed cycle has at least two vertices. In particular, a loop
is not a cycle. A directed cycle with k vertices is called a directed k-cycle and denoted by
~Ck. A digraph H is cyclic if H has a cycle and acyclic if H has no cycle.

Let H be a digraph. The converse of H is the digraph obtained from H by replacing
every arc xy with the arc yx. If xy is an arc of a digraph H, we will say that x dominates
y, y is dominated by x and denote it by x→y. For a pair X,Y of vertex sets of a digraph
H, we define X×Y = {xy : x ∈ X, y ∈ Y }; X→Y means that x→y for each x ∈ X, y ∈ Y.
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The underlying graph UN(H) is the undirected graph obtained from H by disregarding
all orientations and deleting an edge in each pair of parallel edges.

An empty digraph is a digraph with no arcs. A loopless digraph D is a tournament
(semicomplete digraph) if there is exactly one arc (at least one arc) between every pair of
vertices. We will consider tournaments with possible loops (w.p.l.), i.e., digraphs obtained
from tournaments by appending some number of loops (possibly zero loops). A k-partite
tournament (semicomplete k-partite digraph) is a digraph obtained from a complete k-
partite graph by replacing every edge xy with one of the two arcs xy, yx (with at least
one of the arcs xy, yx). We will also consider k-partite tournaments w.p.l. An acyclic
semicomplete digraph on p vertices with no loops is denoted by TTp and called a transitive
tournament. The vertices of a transitive tournament TTp can be labelled 1, 2, . . . , p such
that ij ∈ A(TTp) if and only if 1 ≤ i < j ≤ p. By TT−p (p ≥ 2), we denote TTp without
the arc 1p.

Let H be a loopless digraph with vertices x1, x2, . . . , xp and let S1, S2, . . . , Sp be di-
graphs. Then the composition H[S1, S2, . . . , Sp] is the digraph obtained from H by replac-
ing xi with Si for each i = 1, 2, . . . , p. In other words,

V (H[S1, S2, . . . , Sp]) = V (S1) ∪ V (S2) ∪ . . . ∪ V (Sp) and

A(H[S1, S2, . . . , Sp]) = ∪{V (Si)× V (Sj) : xixj ∈ A(H), 1 ≤ i 6= j ≤ p} ∪ (∪p
i=1A(Si)).

If every Si is an empty digraph, the composition H[S1, S2, . . . , Sp] is called an extension
of H.

2 Polynomial Time Solvable Cases

In the three subsections of this section, we describe various approaches used in the lit-
erature to prove that MinHOM(H) is polynomial time solvable for a certain directed or
undirected graph H. While the approaches described in Subsection 2.1 are elementary, the
methods described in the other two subsections are more sophisticated.

2.1 Directed Cycles and Extensions

Recall that ~Ck denotes a directed cycle on k vertices, k ≥ 2; let V (~Ck) = {1, 2, . . . , k} and
A(~Ck) = {12, 23, . . . , (k−1)k}∪{k1}. One can check whether HOM(D, ~Ck) 6= ∅ using the
following algorithm A from Section 1.4 of [14]. First, we may assume that D is connected
(i.e., its underlying undirected graph is connected) as otherwise A can be applied to each
component of D separately. Choose a vertex x of D and assign it color 1. Assign every
out-neighbor of x color 2 and each in-neighbor of x color k. For every vertex y with color
i, we assign every out-neighbor of y color i + 1 modulo k and every in-neighbor of y color
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i − 1 modulo k. We have HOM(D, ~Ck) 6= ∅ if and only if no vertex is assigned different
colors.

To solve MinHOM(H) for H = ~Ck, choose an initial vertex x in each component D′

of D (a component of its underlying graph). Using the algorithm A from the previous
paragraph, we can check whether each D′ admits an H-coloring. If the coloring of D′

exists, we compute the cost of this coloring and compute the costs of the other k − 1
H-colorings when x is colored 2, 3, . . . , k, respectively. Thus, we can find a minimum cost
homomorphism in HOM(D′,H). Thus, in polynomial time, we can obtain a H-coloring
of the whole digraph D of minimum cost. In other words, we have the following lemma,
which was first proved in [7].

Lemma 2.1 For H = ~Ck, k ≥ 2, MinHOM(H) is polynomial time solvable.

The following simple lemma proved in [8] is useful when dealing with extensions of
certain digraphs.

Lemma 2.2 Let H be a loopless digraph. If MinHOM(H) is polynomial time solvable
then, for each extension H ′ of H, MinHOM(H ′) is also polynomial time solvable.

Proof: Recall that we can obtain H ′ from H by replacing every vertex i ∈ V (H) with an
empty digraph Si. Consider an H ′-coloring h′ of an input digraph D. We can reduce h′

into an H-coloring of D as follows: if h′(u) ∈ Si, then h(u) = i.

Let u ∈ V (D). Assign min{cj(u) : j ∈ Si} to be a new cost ci(u) for each i ∈ V (H).
Observe that we can find an optimal H-coloring h of D with the new costs in polynomial
time and transform h into an optimal H ′-coloring of D with the original costs using the
obvious inverse of the reduction described above. ¦

Corollary 2.3 Let H be an extension of a directed cycle. Then MinHOM(H) is polyno-
mial time solvable.

2.2 Min-Max Ordering Theorem

Let H be a digraph and let v1, v2, . . . , vp be an ordering of vertices of H. Let e = vivr

and f = vjvs be two arcs in H. The pair vmin{i,j}vmin{s,r} (vmax{i,j}vmax{s,r}) is called
the minimum (maximum) of the pair e, f . (The minimum (maximum) of two arcs is not
necessarily an arc.) An ordering v1, v2, . . . , vp is a Min-Max ordering of V (H) if both
minimum and maximum of every two arcs in H are in A(H). Two arcs e, f ∈ A(H) are
called a non-trivial pair if {e, f} 6= {g′, g′′}, where g′ (g′′) is the minimum (maximum) of
e, f. Clearly, to check that an ordering is Min-Max, it suffices to verify that the minimum
and maximum of every non-trivial pair of arcs are arcs, too.
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The following approach is based on some results for the valued constraint satisfaction
problem (VCSP) [2, 3]. Let Z be the set consisting of of all nonnegative integers and ∞,
and let Φ be a set of functions φ : W r(φ)→Z, where r(φ) is the arity of φ. An instance
I of VCSP(Φ) is a triple (V,W,C), where V is a finite set of variables, which are to be
assigned values from the set W , and C is a set of (valued) constraints. Each element of
C is a pair c = (σ, φ), where σ is a |σ|-tuple of variables and φ : W |σ|→Z is a (cost)
function, φ ∈ Φ. An assignment for I is a mapping s from V to W . The cost of s is
defined as follows: cI(s) =

∑
((v1,...,vm),φ)∈C φ(s(v1), . . . , s(vm)). An optimal solution of I

is an assignment s of minimum cost.

Let W be a totally ordered set. A binary function φ : W 2→Z is called submodular if,
for all x, y, u, v ∈ W , we have

φ(min{x, u}, min{y, v}) + φ(max{x, u},max{y, v}) ≤ φ(x, y) + φ(u, v).

The following theorem is the main ‘positive’ result in [3].

Theorem 2.4 For each Φ consisting of some unary functions and some binary submod-
ular functions, VCSP(Φ) can be solved in time O(|V |3|W |3).

The following theorem was proved in [7] for loopless digraphs. In fact, the same proofs
is valid for digraphs with possible loops. We give the proof from [7] for the sake of
completeness. In fact, the theorem can be proved directly using a transformation from
MinHOM(H) to the minimum cut problem in a special flow network similar to networks
used in [3, 6, 9, 17].

Theorem 2.5 Let H be a digraph and let an ordering 1, 2, . . . , p of V (H) is a Min-Max
ordering, i.e., for any pair ik, js of arcs in H, we have min{i, j}min{k, s} ∈ A(H) and
max{i, j}max{k, s} ∈ A(H). Then MinHOM(H) is polynomial time solvable.

Proof: Let 1, 2, . . . , p be a Min-Max ordering of vertices of H. The Min-Max property of
the ordering ensures that the binary function φ, defined by φ(i, j) = 0 if ij ∈ A(H) and
φ(i, j) = ∞ otherwise, is submodular. We will reduce MinHOM(H) to VCSP(Φ), where Φ
satisfies the conditions of Theorem 2.4. Let φu(i) = ci(u) for all u ∈ V (D) and i ∈ V (H).
Let V = V (D) and W = V (H). An assignment is an arbitrary function f from V (D) to
V (H). Let C = C ′ ∪ C ′′, where C ′ = {(u, φu) : u ∈ V (D)} (for a fixed u, φu is a unary
function from V (H) to Z) and C ′′ = {((u, v), φuv) : uv ∈ A(D)}, where each φuv = φ.
Since each φuv is submodular, Φ = {φu : u ∈ V (D)} ∪ {φuv : uv ∈ A(D)} satisfies the
conditions of Theorem 2.4.

Let I be an instance of the above-constructed VCSP(Φ). It remains to observe that,
if an assignment f is an H-coloring of D, then

cI(f) =
∑

u∈V (D)

φu(f(u)) +
∑

uv∈A(D)

φuv(f(u), f(v)) =
∑

u∈V (D)

cf(u)(u),
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which is the cost of f in MinHOM(H) (an integer), and if f is not an H-coloring, then
cI(f) = ∞. Thus, by solving VCSP(Φ) we will determine whether HOM(H) 6= ∅, and
find an optimal h ∈ HOM(H), if HOM(H) 6= ∅. ¦

2.3 Applications of Min-Max Ordering Theorem

We start with the following result from [8], which has an almost trivial proof provided we
apply Theorem 2.5. It seems it is not easy to show directly (without the use of Theorem
2.5) that MinHOM(TT−p ) is polynomial time solvable.

Theorem 2.6 If H is TTp (p ≥ 1) or TT−p (p ≥ 3), then MinHOM(H) is polynomial
time solvable.

Proof: The first case is trivial. To show the case H = TT−p , label the vertices of TT−p by
1, 2, . . . p such that ij ∈ A(TT−p ) if and only if 1 ≤ i < j ≤ p, but ij 6= 1p. Observe that
1, 2, . . . , p is a Min-Max ordering since 1p can be neither the minimum nor the maximum
of a non-trivial pair of arcs. ¦

While studying homomorphisms, we can view an undirected graph G as a directed
graph by replacing every edge xy of G by the pair xy, yx of arcs. This way we can define
Min-Max orderings for undirected graphs and apply Theorem 2.5.

Consider two families of undirected graphs. A graph H with vertices {1, 2, . . . , p} is
called proper interval if there is an inclusion-free family {I1, I2, . . . , Ip} of intervals on the
real line such that ij ∈ E(H) (1 ≤ i, j ≤ p) if and only if Ii∩Ij 6= ∅. The definition implies
that each vertex of a proper interval graph has a loop. A bipartite graph H with partite
sets P = {1′, 2′, . . . , p′} and Q = {1′′, 2′′, . . . q′′} is called a proper interval bigraph if there
are two inclusion-free families {I1, I2, . . . Ip}, {J1, J2, . . . , Jq} of intervals on the real line
such that i′j′′ ∈ E(H) if and only if Ii ∩ Jj 6= ∅.

The following result was proved in [13, 20].

Theorem 2.7 The vertices of a reflexive graph H has a Min-Max ordering if and only if
it is a proper interval graph.

A similar result for loopless graphs contains proper interval bigraphs rather than proper
interval graphs [9]. These theorems and Theorem 2.5 imply the following:

Corollary 2.8 [9] Let H be a graph in which every component is either a proper interval
graph or a proper interval bigraph. Then MinHOM(H) is polynomial time solvable.

This result is of importance due to the following ’opposite’ result:
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Theorem 2.9 [9] Let H be a graph in which at least one component is neither a proper
interval graph nor a proper interval bigraph. Then MinHOM(H) is NP-hard.

Notice that if a component of H has a pair of vertices one with a loop and the other
without a loop, MinHOM(H) is NP-hard due to Lemma 4.2.

2.4 k-Min-Max Ordering

A collection V1, V2, . . . , Vk of subsets of a set V is called a k-partition of V if V = V1∪V2∪
· · · ∪ Vk, and Vi ∩ Vj = ∅ provided i 6= j.

Let H = (V,A) be a loopless digraph and let k ≥ 2 be an integer. We say that H has
a k-Min-Max ordering if there is a k-partition of V into subsets V1, V2, . . . Vk and there is
an ordering vi

1, v
i
2, . . . , v

i
`(i) of Vi for each i such that

(i) Every arc of H is an arc from Vi to Vi+1 for some i ∈ {1, 2, . . . , k},
(ii) vi

1, v
i
2, . . . , v

i
`(i)v

i+1
1 vi+1

2 , . . . , vi+1
`(i+1) is a Min-Max ordering of the subdigraph of H in-

duced by Vi ∪ Vi+1 for each i ∈ {1, 2, . . . , k},

where all indices i + 1 are taken modulo k.

Note that if H is a loopless strong digraph in which the greatest common divisor of
all cycle lengths is k, then V (H) has a k-partition, k ≥ 2, satisfying (i) (see Theorem
10.5.1 in [1]). A simple example of a digraph having a k-Min-Max ordering, but no Min-
Max ordering, is an extension of ~Ck. To see than an extension H of ~Ck has no Min-Max
ordering, consider an ordering 1, 2, . . . , p of the vertices of H, and an arc leaving 1 and an
arc coming into 1. The minimum arc of the two arcs is the loop 11 not in H.

The following theorem from [9] establishes usefulness of k-Min-Max orderings. The
proof of Theorem 2.10 in [9] is based on a reduction from MinHOM(H) to the minimum
cut problem in a special network. The reduction is somewhat similar to the ones used in
in [17] and [3].

Theorem 2.10 If a loopless digraph H has a k-Min-Max ordering, then MinHOM(H) is
polynomial time solvable.

Consider the following simple application of Theorem 2.10.

Proposition 2.11 Let H ′ be a directed k-cycle and let H be obtained from H ′ by append-
ing a set S of s ≤ k new vertices each dominated by exactly one vertex of H ′ such that
every vertex of H ′ dominates at most one vertex of S. Then MinHOM(H) is polynomial
time solvable.
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Figure 1: A bipartite claw (a), a bipartite net (b) and a bipartite tent (c).

The proof of Proposition 2.11 that uses Theorem 2.10 is trivial. However, it is not so
obvious how to prove Proposition 2.11 without using Theorem 2.10. It is interesting to
compare Proposition 2.11 with Theorem 4.5.

Theorem 2.10 allows us to prove much more difficult results such as Theorem 2.12
formulated below. We will start from a number of definitions. A bipartite graph H with
vertices x1, x2, x3, x4, y1, y2, y3 is called

a bipartite claw if its edge set E(H) = {x4y1, y1x1, x4y2, y2x2, x4y3, y3x3};
a bipartite net if its edge set E(H) = {x1y1, y1x3, y1x4, x3y2, x4y2, y2x2, y3x4};
a bipartite tent if its edge set E(H) = {x1y1, x1y2, x1y3, x2y1, x2y3, x3y1, x4y1, x4y2}.

The graphs are depicted in Figure 2.4.

Let us introduce five special digraphs for which the minimum homomorphism problem
is NP-hard [9]. The digraph C ′

4 has vertex set {x1, x2, y1, y2} and arc set

{x1y1, y1x2, x2y2, y2x1, y1x1}.

The digraph C ′′
4 has the same vertex set, but its arc set is A(C ′

4) ∪ {x2y1}. The digraph
H∗ has vertex set {x1, x2, y1, y2, y3} and arc set {x1y1, y1x2, x2y2, y2x1, x1y3, x2y3}.

Let N1 be a digraph with V (N1) = {x1, x2, x3, y1, y2, y3} and

A(N1) = {x1y1, y1x1, x2y2, y2x2, x3y3, y3x3, y1x2, y1x3, x1y2, x1y3, x3y2, x2y3}.

Let N2 be a digraph with V (N2) = {x1, x2, x3, y1, y2, y3} and

A(N2) = {x1y1, x2y2, y2x2, x3y3, y3x3, y1x2, y1x3, x1y2, x1y3, x3y2, x2y3}.

Let H be a bipartite digraph with partite sets P,Q. Then H→ (H←, H↔) denotes a
bipartite digraph obtained from H by deleting all arcs from Q to P (a bipartite digraph
obtained from H by deleting all arcs from P to Q, a bipartite digraph obtained from H
by deleting all arcs not in directed 2-cycles).
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A digraph H belongs to the family HFORB if H or its converse is isomorphic to one of
the five digraphs above or UN(Hs) is isomorphic to bipartite claw, bipartite net, bipartite
tent or even cycle with at least 6 vertices, where s ∈ {→,←,↔}.

The family HFORB is of importance due to the following two results proved in [9].

Theorem 2.12 If a semicomplete bipartite digraph H does not contain a digraph from
HFORB as an induced subdigraph, then MinHOM(H) is polynomial time solvable.

Theorem 2.13 The problem MinHOM(H) is NP-hard if H ∈ HFORB.

3 Known Dichotomies

In this paper we assume that P6=NP as otherwise the dichotomies below are of no inter-
est. Corollary 2.8 and Theorem 2.9 provide a complete dichotomy of the computational
complexity of MinHOM(H) when H is an undirected graph. Theorems 2.12 and 2.13
give a dichotomy when H is a semicomplete bipartite digraph. Interestingly, the following
dichotomy for semicomplete k-partite digraphs (k ≥ 3) is less complicated than the one
for semicomplete bipartite digraphs in both formulation and proof.

Theorem 3.1 Let H be a semicomplete k-partite digraph, k ≥ 3. If H is an exten-
sion of TTk, ~C3 or TT−k+1, then MinHOM(H) is polynomial time solvable. Otherwise,
MinHOM(H) is NP-hard.

The ’polynomial part’ of this theorem follows immediately from Lemmas 2.1 and 2.2
and Theorem 2.6.

4 New Dichotomies

The following lemma is an obvious basic observation often used to obtain dichotomies.

Lemma 4.1 [7] Let H ′ be an induced subdigraph of a digraph H. If MinHOM(H ′) is
NP-hard, then MinHOM(H) is also NP-hard.

4.1 Directed Cycles w.p.l.

NP-completeness of the independence set problem for graphs [5] is often used to prove NP-
hardness of MinHOM(H) for certain digraphs H. The next lemma gives a simple example
of this reduction.
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Lemma 4.2 If V (H) = {1, 2} and A(H) = {12, 21, 22}, then MinHOM(H) is NP-hard.

Proof: Let D be an input of MinHOM(H), let D be a symmetric digraph (i.e., xy ∈ A(D)
implies yx ∈ A(D)) and let G be the underlying graph of D. Set c1(x) = 0 and c2(x) = 1
for each vertex x ∈ V (D). Clearly, h(x) = 2 for each x ∈ V (D) defines a homomorphism
of D to H. Let f be a minimum cost homomorphism of D to H. Then f(x) = f(y) = 1
implies that x and y are not adjacent in G. Hence f−1(1) is a maximum size independent
set in G.

Let I is a maximum size independent set in G. Then a homomorphism g of D to H
such that g(x) = 1 if and only if x ∈ I is of minimum cost. Since the maximum size
independent set problem is NP-hard, MinHOM(H) is NP-hard as well. ¦

We have seen that MinHOM(~C2) is polynomial time solvable. The above lemma shows
that if we add just one loop to ~C2, we get an NP-hard case. It is easy to see that addition of
two loops returns us to polynomial time solvable cases. Similar changes in the complexity
are not valid for ~Ck, k ≥ 3, as shown in the next lemma.

Lemma 4.3 Let a digraph H is obtained from ~Ck, k ≥ 3, by adding at least one loop.
Then MinHOM(H) is NP-hard.

Proof: Assume that kk is a loop.

Let G be a loopless digraph with n vertices. Construct a digraph D as follows: V (D) =
{x1, x2, . . . , xk−1 : x ∈ V (G)} and A(D) = {x1x2, x2x3, . . . , xk−2xk−1 : x ∈ V (G)} ∪
{xk−1y1 : xy ∈ A(G)}. For each x ∈ V (G), set the costs for vertices of D as follows:
ci(xi) = 0 for each i = 1, 2, . . . , k− 1, cj(xi) = (k− 1)n + 1 for each i = 1, 2, . . . , k− 1 and
j ∈ {1, 2, . . . k − 1} − {i}, and ck(xi) = 1 for each i = 1, 2, . . . , k − 1.

Clearly, h(xi) = k for each x ∈ V (D) and i = 1, 2, . . . , k−1 defines a homomorphism of
D to H. Let f be a minimum cost homomorphism of D to H. It follows from the fact that
the cost of h is (k−1)n that f(xi) ∈ {i, k} for each x ∈ V (D) and i = 1, 2, . . . , k−1. Thus,
for every vertex x ∈ V (G) we have either f(xi) = i or f(xi) = k for each i = 1, 2, . . . , k−1.

Let f(x1) = f(y1) = 1, where x, y are distinct vertices of G. If xy ∈ A(G), then
xk−1y1 ∈ A(D), which is a contradiction since f(xk−1) = k − 1. Thus, x and y are non-
adjacent in G. Hence, I = {x ∈ V (G) : x1 ∈ f−1(1)} is an independent set in G. Observe
that the cost of f is (k − 1)(n− |I|).

Conversely, if I is an independent set in G, we obtain a homomorphism g of D to H
by fixing g(xi) = i, i = 1, 2, . . . , k−1, for every x ∈ I and g(xi) = k, i = 1, 2, . . . , k−1, for
every x ∈ V (G)− I. Observe that the cost of g is (k−1)(n−|I|). Hence a homomorphism
g of D to H is of minimum cost if and only if the corresponding independent set I is
of maximum size in G. Since the maximum size independent set problem is NP-hard,
MinHOM(H) is NP-hard as well. ¦
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Our first dichotomy follows directly from Lemmas 2.1, 4.2 and 4.3 and a simple obser-
vation that MinHOM(~C∗

2 ) is polynomial time solvable, where ~C∗
2 is the digraph obtained

from a directed 2-cycle by adding loop to each vertex.

Proposition 4.4 Let H be a digraph obtained from ~Ck, k ≥ 2, by possibly adding loops.
Then MinHOM(H) is polynomial time solvable if H ∈ {~C∗

2} ∪ {~Ck : k ≥ 2}. Otherwise,
MinHOM(H) is NP-hard.

4.2 Tournaments w.p.l.

A special case of the following lemma was proved in [7]. Our proof is a modification of
the proof in [7].

Lemma 4.5 Let H ′ be a digraph obtained from ~Ck, k ≥ 2, by adding an extra vertex k+1
dominated by at least two vertices of the cycle and let H ′′ is the digraph obtained from H ′

by adding the loop at vertex k + 1. Let H be H ′ or its converse or H ′′ or its converse.
Then MinHOM(H) is NP-hard.

Proof: Let V ( ~Ck) = {1, 2, . . . , k} and A( ~Ck) = {12, 23, . . . , (k− 1)k}∪ {k1}. Let H = H ′

or H ′′. Without loss of generality, we may assume that vertices 1 and ` dominate vertex
k + 1. We will reduce the maximum independent set problem to MinHOM(H). Let G be
a graph. Construct a digraph D as follows:

V (D) = V (G) ∪ {ve
i : e ∈ E(G) i ∈ V (H)}, A(D) = A1 ∪A2, where

A1 = {ve
1v

e
2, v

e
2v

e
3, . . . v

e
k−1v

e
k, v

e
kv

e
1 : e ∈ E(G)}

and
A2 = {vuv

1 u, vuv
k+1u, vuv

` v, vuv
k+1v : uv ∈ E(G)}.

Let all costs ci(t) = 1 for t ∈ V (D) apart from ck+1(p) = 2 for all p ∈ V (G).

Consider a minimum cost homomorphism f of D to H. By the choice of the costs,
f assigns the maximum possible number of vertices of G (in D) a color different from
k + 1. However, if pq is an edge in G, by the definition of D, f cannot assign colors
different from k +1 to both p and q. Indeed, if both p and q were assigned colors different
from k + 1, then the existence of arcs vpq

k+1p and vpq
k+1q would imply that they would be

assigned the same color, which however is impossible by the existence of arcs vpq
1 p and

vpq
` q. Observe that f may assign exactly one of the vertices p, q color k + 1 and the other

a color different from k + 1. Also f may assign both of them color k + 1. Thus, G has a
maximum independent set with α vertices if and only if D has a minimum cost H-coloring
of cost |E(G)| · |V (H)|+2|V (G)|−α. This reduces the maximum independent set problem
to MinHOM(H). ¦
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The proof of the following theorem is similar to the proof of the ’loopless version’ of
the theorem in [8]. The only significant difference is the use of Lemma 4.3.

Theorem 4.6 Let T be a tournament w.p.l. If H is an acyclic tournament w.p.l. or
H = ~C3, then MinHOM(H) is polynomial time solvable. Otherwise, MinHOM(H) is
NP-hard.

Proof: The polynomial time solvability part follows from Lemma 2.1 and Theorem 2.6.
Now assume that H is not an acyclic tournament and H 6= ~C3. Suppose MinHOM(H) is
not NP-hard. Since H is a cyclic tournament, it is easy to show that H contains a directed
3-cycle C. By Lemmas 4.1 and 4.3, C has no loops, and, thus, there is a vertex i ∈ V (H)
not on C.

Assume that the subdigraph L of H induced by V (C) ∪ {i} is strong. Assume that i
belongs to a directed 3-cycle. Then, if i has a loop, MinHOM(H) is NP-hard, a contra-
diction. Thus, i has no loop. However, MinHOM(H) is NP-hard by Lemmas 4.1 and 4.5,
a contradiction. ¦

4.3 Cyclic Multipartite Tournaments w.p.l.

Lemma 4.7 Let H ′ be given by V (H ′) = {1, 2, 3, 4}, A(H ′) = {12, 23, 31, 34, 41}. Let
H ′′ be obtained from H ′ by adding the loop 44. If H is H ′ or H ′′, then MinHOM(H) is
NP-hard.

Proof: Since the case H = H ′ was proved in [8], we will consider only the case H =
H ′′. We will reduce the maximum independent set problem to MinHOM(H). Consider a
digraph T (u, v) defined as follows: V (T (u, v)) = {x, y, u′, u, v′, v, z1, z2, . . . , z12},

A(T (u, v)) = {xy, xz1, yz1, z6u
′, u′u, z11v

′, v′v, z1z2, z2z3, z3z4, . . . , z11z12, z12z1}.

Let G be a graph with n vertices and m edges. Construct a digraph D as follows. Start
with V (D) = V (G) and, for each edge uv ∈ E(G), add a distinct copy of T (u, v) to D.
Note that the vertices in V (G) form an independent set in D and that |V (D)| = n+16m.

Let M = 2n + 16m. Let the cost ci(t) = 1 for each t ∈ V (D) and i = 1, 2, 3, 4 with the
following exceptions: cj(p) = 2 for each p ∈ V (G) and j 6= 2, and c4(zi) = 1 + M for each
i not divided by 4.

Consider a homomorphism h of T (u, v) to H defined as follows: h(z3i+1) = 1, h(z3i+2) =
2, h(z3i+3) = 3 for each i = 0, 1, 2, 3, h(u′) = h(u) = h(v) = h(y) = 4 and h(v′) = h(x) =
3. The cost of h equals M.

Let f be a minimum cost homomorphism of T (u, v) to H. Observe that we must have
f(z1) = 1 since x→z1, y→z1 and c4(z1) = 1 + M . This and the fact that f is of cost at
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most M imply that (f(z1), f(z2), . . . , f(z12)) has to coincide with one of the following two
sequences: (1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3) or (1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4).

If the first sequence is the actual one, then we have f(z6) = 3, f(u′) ∈ {1, 4}, f(u) ∈
{1, 2, 4}, f(z11) = 2, f(v′) = 3 and f(v) ∈ {1, 4}. If the second sequence is the actual
one, then we have f(z6) = 2, f(u′) = 3, f(u) ∈ {1, 4}, f(z11) = 3, f(v′) ∈ {1, 4} and
f(v) ∈ {1, 2, 4}. We can color one of u and v with color 2 and the other with color 1 or 4.
However we cannot assign color 2 to both u and v in a homomorphism.

Let g be a minimum cost homomorphism of D to H. Clearly, g must aim at assigning
as many vertices of V (G) in D color 2. Notice that if pq is an edge in G, by the arguments
above, g cannot assign color 2 to both p and q. However, g can assign color 2 to either p
or q (or neither). Thus, g corresponds to a maximum independent set in G and vise versa
(the vertices of a maximum independent set are assigned color 2 and all other vertices in
V (G) are assigned color 1 or 4). ¦

Theorem 4.8 Let H be a cyclic k-partite tournament w.p.l., k ≥ 2. If H is an extension
of ~C3 or ~C4, then MinHOM(H) is polynomial time solvable. Otherwise, MinHOM(H) is
NP-hard.

Proof: Assume that MinHOM(H) is polynomial time solvable and H is not an extension
of ~C3 and ~C4. Since H is a k-partite tournament, k ≥ 2, and H has a cycle, there can be
two possibilities for the length of a shortest cycle C in H: 3 or 4. Thus, we consider two
corresponding cases. Observe that, by Lemma 4.3, no cycle in H has a loop. In particular,
C has no loop.

Case 1: We have C = ijli. If H has at least four partite sets, then i, j, l together
with a vertex from a partite set containing none of i, j, l induce a tournament w.p.l. By
Theorem 4.6, MinHOM(H) is NP-hard, a contradiction. So, H has three partite sets.

Let I, J and L be partite sets of H such that i ∈ I, j ∈ J and l ∈ L. Let s be a
vertex outside C and let s ∈ I. If s is dominated by j and l or dominates j and l, then
MinHOM(H) is NP-hard by Lemma 4.5, a contradiction. If j→s→l, then MinHOM(H)
is NP-hard by Lemma 4.7, a contradiction. Thus, l→s→j. Similar arguments show that
l→I→j. Similarly we can prove that L→I→J→L, i.e., H is an extension of ~C3, contra-
diction.

Case 2: We have C = i1i2i3i4i1. Since C is a shortest cycle, i1, i3 are belong to the
same partite set, say L, and i2, i4 belong to the same partite set, say M . Assume first
that H is not bipartite. Then there is a vertex q belonging to a partite set different from
L and M. Since H has no directed 3-cycle, either q dominates V (C) or V (C) dominates
q. In both cases, MinHOM(H) is NP-hard by Lemma 4.5, a contradiction.
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Assume that H is bipartite. By Lemma 4.5, the vertices of H can be partitioned into
four sets: Ij = {p : ij−1→p→ij+1}, j = 1, 2, 3, 4, where all indices are taken modulo 4.
Suppose that there is pair q1 ∈ I1, q2 ∈ I2 of vertices such that q2→q1. Let H ′ denote the
subdigraph of H induced by q1, i2, i3, i4, q2. Observe that MinHOM(H ′) is NP-hard by
Lemma 4.5. Similar arguments imply that I1→I2→I3→I4→I1, i.e., H is an extension of
~C4, a contradiction. ¦

5 Further Research

We have managed to obtain dichotomies for tournaments w.p.l. and cyclic multipartite
tournaments w.p.l. The reader may ask why we have not obtained dichotomies, for ex-
ample, for semicomplete digraphs w.p.l. and acyclic multipartite tournaments w.p.l. Our
research indicates significant difficulties in obtaining these dichotomies. One of them is a
significantly larger number of polynomial time solvable (and NP-hard) cases. In fact, we
have recently obtained a dichotomy for semicomplete digraphs w.p.l. [18], but its proof is
far too long to be included here. A dichotomy for acyclic multipartite tournaments w.p.l.
remains an open problem.

The above indicates that addition of loops may well make dichotomies significantly
more complicated. Thus, the problem of obtaining a dichotomy for all semicomplete k-
partite digraphs, k ≥ 2, w.p.l. appears to be a very difficult open problem. We conjecture
that there is a dichotomy for the whole class of digraphs w.p.l. and it would be very
interesting to verify this conjecture.
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