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Abstract

We use the notion of domination ratio introduced by Glover and Punnen in 1997 to
present a new classification of combinatorial optimization (CO) problems: DOM-easy
and DOM-hard problems. It follows from results already proved in the 1970’s that min
TSP (both symmetric and asymmetric versions) is DOM-easy. We prove that several
CO problems are DOM-easy including weighted max k-SAT and max cut. We show
that some other problems, such as max clique and min vertex cover, are DOM-hard
unless P=NP.
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1 Introduction

In this paper, we use the notion of domination ratio introduced by Glover and Punnen [6]
to present a new classification of combinatorial optimization (CO) problems: DOM-easy
and DOM-hard problems. Let P be a CO problem, and let H be an heuristic for P. The
domination ratio domr(H, n) is the maximal q(n) such that the solution x(I) obtained by H
for any instance I of P of size n is not worse than at least the fraction q(n) of the feasible
solutions of I. A CO problem P is called DOM-easy if there exists a polynomial time
heuristic for P with domination ratio Ω(1/nk) for some integer k ≥ 0. A CO problem that is
not DOM-easy is called DOM-hard.

It follows from the main results in [17, 18] that min TSP (both asymmetric and symmet-
ric versions) is DOM-easy. We prove that several CO problems are DOM-easy including
weighted max k-SAT and max cut. We show that some other problems, such as max clique
and min vertex cover, are DOM-hard unless P=NP.

This classification does not have certain drawbacks inherent in some well-known clas-
sifications of CO problems based on the best possible value of performance ratio of their
approximation algorithms. APX is the class of CO problems that admit polynomial time
approximation algorithms with a constant performance ratio [2]. It is well known that while
max TSP belongs to APX, min TSP does not. This is at odds with the simple fact that a
’good’ approximation algorithm for max TSP can be easily transformed into an algorithm for
min TSP. Thus, it seems that both max and min TSP should be in the same class of CO prob-
lems. The above asymmetry was already viewed as a drawback of performance ratio based
classifications in the 1970’s, see, e.g., [5, 12, 19].
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Another example is max independence set and min vertex cover. It is well known
and easy to prove that, in a graph G, every independent set complements a vertex cover
and vise versa. Nevertheless, min vertex cover is considered to be ’easy’ (and is in APX),
while max independence set is viewed as a ’very hard’ CO problem (not in APX). In our
classification both min TSP and max TSP are DOM-easy, and both max independence set
and min vertex cover are DOM-hard, unless P=NP.

Zemel [19] was the first to characterize measures of quality of approximate solutions (of
binary integer programming problems) that satisfy a few basic and natural properties: the
measure becomes smaller for better solutions, it equals 0 for optimal solutions and it is the
same for corresponding solutions of equivalent instances. While the performance ratio and
even the relative error (see [2]) do not satisfy the last property, the parameter 1− r, where
r is the domination ratio, does satisfy all of the properties. Thus, our new classification
does not have the drawbacks of some well-known classifications of CO problems based on
performance ratio. (We do not dispute the fact that the performance ratio by itself is a very
useful parameter for many CO heuristics, but no single parameter can cover a complex issue
of quality of heuristics.) For results on another quality measure satisfying Zemel’s properties,
see [11] and the references therein.

Notice that previous papers on domination analysis (see, e.g., [3, 4, 6, 7, 8, 9, 13, 15, 16,
17]) have dealt with evaluation and classification of algorithms. In the present paper we, for
the first time, concentrate on domination properties of CO problems themselves.

2 Terminology and Notation

In this paper we consider only CO problems that have the property that every instance has
only a finite number of feasible solutions. Let P be a CO problem, I an instance of P,
and A an algorithm for finding an approximate solution of P. Let sol(I) be the number
of feasible solutions of I. The domination number domn(A, I) of A on I is the number of
feasible solutions of I that are not better than the solution x found by A (including x itself).
For example, consider an instance T of the Symmetric TSP (STSP) on 5 vertices. Suppose
that the weights of tours in T are 4,5,5,6,7,9,9,11,11,12,14,14 (every instance of STSP on 5
vertices has 12 tours) and suppose that the greedy algorithm computes the tour T of weight
7. Then domn(greedy, T ) = 8. In general, if domn(A, I) = sol(I), then A computes an
optimal solution for I.

The domination number domn(A, n) of an algorithm A for a CO problem P is the mini-
mum of domn(A, I) over all instances I of P having size n. It was proved in [8] (see also [9])
that for STSP domn(greedy, n) = 1. This means that for every n ≥ 2 there is an instance
of STSP for which the greedy algorithm finds the unique worst possible tour. Not every
heuristic for STSP is that bad: already in 1973 Rublineckii [17] (see also [9]) proved that
vertex insertion algorithms for STSP are of domination number at least (n − 2)!/2. Thus,
certain STSP (and Asymmetric TSP) heuristics always produce tours that are at least as
good as Ω((n− 2)!) other tours, see e.g. [7, 9, 15].

When the number of feasible solutions depends not only on the size of the instance of
the CO problem at hand (for example, the number of independent sets of vertices in a graph
G on n vertices depends on the structure of G), the domination ratio of an algorithm A is
of interest: the domination ratio of A for a CO problem P, domr(A, n), is the minimum
of domn(A, I)/sol(I) taken over all instances I of size n. Clearly, exact algorithms are of
domination ratio 1.

An algorithm A for a CO problem P is DOM-good if A is of polynomial time complexity
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and there exists a polynomial p for any size n of P such that the domination ratio of A is
at least 1/p(n) for any size n of P. A CO problem P is DOM-easy if it admits a DOM-
good algorithm and P is DOM-hard if there is no DOM-good algorithm for P. The above
mentioned vertex insertion algorithms for STSP are of domination ratio Ω(1/(n − 1)) and
thus STSP is DOM-easy.

In this paper, we prove that several CO problems are DOM-easy. Interestingly, max SAT
is among them despite the fact that some well-known algorithms for max SAT are of very small
domination ratio [4]. We also show that several other CO problems, such as max clique and
min vertex cover, are DOM-hard unless P=NP.

3 DOM-hard Problems

Consider max clique, the problem of finding the cardinality of a maximum clique in a graph.
H̊astad [10] proved that, provided P6=NP, max clique is not approximable within a multi-
plicative factor of n1/2−ε for any ε > 0, where n is the number of vertices in a graph. We will
use this remarkably strong result to prove the following:

Theorem 3.1 max clique is DOM-hard unless P=NP.

Proof: Let G be a graph with n vertices, and let q be the number of vertices in a maximum
clique Q of G. Let A be a polynomial time algorithm that finds a clique M with m vertices
in G.

Since the clique Q ’dominates’ all 2q of its subcliques and the clique M ’dominates’ at
most

(
n
m

)
2m cliques in G, the domination ratio r of A is at most

(
n
m

)
2m/2q. By the above

non-approximability result of [10], there exists a graph G such that mn0.4 ≤ q. Thus,

r ≤
(

n
m

)
2m

2q
≤ (en/m)m2m

2q
≤ (n/m)m(2e)m

2mn0.4 = 2s,

where s = m(log n− log m+1+log e−n0.4). Clearly, for any polynomial p(n) and sufficiently
large n, 2s < 1/p(n). 2

Obvious graph duality properties immediately imply the following:

Corollary 3.2 max independent set and min vertex cover are DOM-hard unless P=NP.

Theorem 3.1 holds for some cases of the following much more general problem: max
induced subgraph with property Π (see Problem GT25 in the compendium of [2]). The
property Π must be hereditary, i.e., every induced subgraph of a graph with property Π
has property Π, and non-trivial, i.e., it is satisfied for infinitely many graphs and false for
infinitely many graphs. Lund and Yannakakis [14] proved that max induced subgraph with
property Π is not approximable within nε for some ε > 0 unless P=NP, if Π is hereditary,
non-trivial and is false for some clique or independent set (e.g., planar, bipartite, triangle-
free). This non-approximability result can be used as in the proof of Theorem 3.1.

4 DOM-easy Problems

Recall that min partition is the following problem: given n numbers a1, a2, . . . , an, find a
bipartition of the set N = {1, 2, . . . , n} into sets X and Y such that f(X, Y ) = |∑i∈X ai −
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∑
i∈Y ai| is minimum. For simplicity we assume, for min partition (and max cut considered

below), that a bipartition (X,Y ) is an ordered pair and (∅, N) and (N, ∅) are feasible solutions.
Thus, min partition and max cut have 2n feasible solutions each.

Consider the following greedy-type algorithm G for min partition. G sorts the numbers
such that aπ(1) ≥ aπ(2) ≥ · · · ≥ aπ(n), initiates X = {π(1)}, Y = {π(2)}, and, for each j ≥ 3,
puts π(j) into X if

∑
i∈X ai ≤

∑
i∈Y ai, and into Y , otherwise. It is easy to see that any

solution (X, Y ) produced by G satisfies f(X, Y ) ≤ aπ(1).
Consider any solution (X ′, Y ′) of min partition with input {a1, a2, . . . , an}− {aπ(1)}. If

we add aπ(1) to Y ′ if
∑

i∈X′ ai ≤
∑

i∈Y ′ ai and to X ′, otherwise, then we obtain a solution
(X ′′, Y ′′) for the original problem with f(X ′′, Y ′′) ≥ f(X, Y ). Thus, the domination number
of G is at least 2n−1 and its domination ratio is at least 0.5. We have proved the following:

Proposition 4.1 min partition is DOM-easy.

Recall that max cut is the following problem: given a weighted complete graph G =
(V,E, w) (weights w on the edges), find a bipartition (X,Y ) of V such that the sum of
weights of the edges with one end vertex in X and the other in Y , called the weight of the
cut (X,Y ), is maximum.

Theorem 4.2 max cut is DOM-easy.

Proof: Let G = (V,E, w) be a complete graph with n = |V | vertices and let W be the sum
of the weights of the edges in G. Clearly, the average weight of a cut of G is W = W/2.

Consider the following well-known approximation algorithm C that always produces a
cut of weight at least W. The algorithm C considers the vertices of G in any fixed order
v1, v2, . . . , vn, initiates X = {v1}, Y = {v2}, and for each i ≥ 3, appends vi to X or Y
depending on whether the sum of the weights of edges between v and Y or between v and
X is larger. A cut is bad if its weight is at most W. We will prove that C is DOM-good. To
show this, it suffices to prove that the proportion of bad cuts in G is an Ω(1/n) part of all
cuts.

We call a cut (X, Y ) of G a k-cut if |X| = k. We evaluate the fraction of bad cuts among
k-cuts when k ≤ n/2−√2n/2.

For a fixed edge uv of G, among the
(
n
k

)
k-cuts there are 2

(
n−2
k−1

)
k-cuts that contain uv.

Thus, the average weight of a k-cut is W k = 2
(
n−2
k−1

)
W/

(
n
k

)
. Let bk be the number of bad

k-cuts. Then, (
(
n
k

)− bk)W/
(
n
k

) ≤ W k. Hence,

bk ≥
(

n

k

)
− 4

(
n− 2
k − 1

)
≥

(
n

k

)(
1− 4k(n− k)

n(n− 1)

)
.

It is easy to verify that 1− 4k(n − k)/(n(n − 1)) > 1/n for all k ≤ n/2 −√2n/2. Hence, G
has more than 1

n

∑
k≤n/2−√2n/2

(
n
k

)
bad cuts. By the famous DeMoivre-Laplace theorem of

probability theory, it follows that the last sum is at least c2n for some positive constant c.
Thus, G has more than c2n/n bad cuts. 2

For a set U = {x1, . . . , xn} of variables, a literal is one of the variables or its negation.
Consider weighted max k-SAT: Given a set U = {x1, . . . , xn} of variables, and a collection
{C1, . . . , Cm} of disjunctive clauses each with at most k literals and of some positive weight
wi, find a truth assignment for U for which the sum of the weights of satisfied clauses is
maximum. We assume that the constant k ≥ 2. For simplicity, in the sequel true (false)
will be replaced by the binaries 1 (0).
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Berend and Skiena [4] analysed two algorithms for (unweighted) max k-SAT. Both turned
out to be of domination number at most n + 1 (despite the fact that one of the algorithms
is a local search heuristic). This might indicate that weighted max k-SAT is DOM-hard.
Below we prove that weighted max k-SAT is, in fact, DOM-easy.

Assign every variable its value 0 or 1 independently with probability 1/2. Let pi be the
probability that Ci is satisfied. Clearly, if Ci contains a variable and its negation, then pi = 1,
otherwise pi = 1−2−ki , where ki is the number of distinct literals in Ci. Thus, the expectation
of the total weight of clauses satisfied by a random assignment is E =

∑m
i=1 wipi.

By the construction described in Section 15.2 of [1], there exists a binary matrix A = (aij)
with n columns and r = O(nbk/2c) rows such that, for each k′ ≤ k, every r × k′ submatrix
of A contains an equal number of all binary k′-vectors as its rows. This matrix can be
constructed in polynomial time. Consider the truth assignment βj : x1 = aj1, . . . , xn = ajn.
Let Tj be the total weight of clauses satisfied by βj . Consider a polynomial algorithm S
that computes T1, . . . , Tr and outputs β∗(A) for which the total weight of satisfied clauses is
T ∗(A) = maxr

j=1 Tj . We have
∑r

j=1 Tj =
∑m

i=1 rwipi = rE. Thus, E ≤ T ∗(A). Besides, let
T∗(A) = minr

j=1 Tj , and let β∗(A) be the corresponding assignment. Clearly, T∗(A) ≤ E.
Consider all subsets of columns of A. For every such subset Q, replace all zeros (ones) by

ones (zeros) in the columns of A. This results in a binary matrix AQ with the same property
as A. Thus, for the worst assignment β∗(AQ) the total weight of satisfied clauses is at most
E. This way, we can find 2n worst assignments (with repetitions) for which the total weight
of satisfied clauses is at most E. Moreover, every worst assignment can be picked up at most
r = O(nbk/2c) times as it may appear only in at most r matrices AQ obtained from A by
the operation described above. Thus, for at least Ω(2n/nbk/2c) truth assignments the total
weight of satisfied clauses is at most that for β∗(A). Hence, the domination number of S is
at least Ω(2n/nbk/2c).

We have proved the following:

Theorem 4.3 weighted max k-SAT is DOM-easy.

Consider unweighted max SAT (max k-SAT when k is not fixed). This is weighted max
SAT in which the weight of each clause equals 1. We have

Theorem 4.4 unweighted max SAT is DOM-easy.

Proof: We use the notation in the proof of the previous theorem. The simplest random-
ized algorithm for unweighted max SAT consists of assigning every variable true (false)
independently with probability 0.5. This algorithm is derandomized by the method of con-
ditional probabilities in Section 5.4 of [2], where it is shown that the resulting polynomial
deterministic algorithm D always satisfies at least E =

∑m
i=1 pi clauses. Clearly, D finds a

truth assignment that satisfies at least A = dEe clauses.
Assume that D is of domination ratio less than 1/(m + 1). This means that more than

(1− 1/(m + 1))2n truth assignments will have at least A + 1 satisfied clauses. Since E is the
average number of satisfied clauses and A ≥ E, we see that (1− 1/(m + 1))2n(A + 1) < A2n,
which implies that A > m, a contradiction. 2

5 Further Research

In this paper, we determined that some CO problems are DOM-easy and that others are
DOM-hard provided P6=NP. For many CO problems, it seems to be a quite non-trivial task
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to find out to which of the two classes they belong. One such example, is the quadratic
assignment problem, a generalization of min TSP, which seems to be a good candidate for the
class of DOM-easy problems according to some results in [7]. Nevertheless, we do not know
whether this or some other problems including weighted max SAT are DOM-easy or not.

An interesting problem to investigate is the capacitated vehicle routing problem, a well-
known generalization of min TSP. Another extension of min TSP is the Generalized TSP
(GTSP): given a weighted complete k-partite digraph D with m vertices in each partite set,
find a lightest cycle in D that contains exactly one vertex from each partite set. It is proved
in [3] that there is a polynomial time algorithm for GTSP with domination ratio at least
1/((k − 1)m2). Thus, GTSP is DOM-easy.

We have seen that min partition admits a polynomial time algorithm with domination
ratio bounded from below by a constant. It would be interesting to determine what other
DOM-easy problems have this property.
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