Worst Case Analysis of Greedy,
Max-Regret and Other Heuristics for Multidimensional Assignment and

Traveling Salesman Problems

Gregory Gutin

Royal Holloway, University of London, UK and University of Haifa, Israel joint work with

Boris Goldengorin

University of Groningen, Netherlands and Khmelnitsky National U., Ukraine Jing Huang

University of Victoria, Canada and
Nanjing Normal University, China

Talk Overview

- ATSP
- Multidimensional Assignment Problem
- General results and results for other problems

ATSP

- A Hamilton cycle is a tour; $(n-1)$! tours
- Many heuristics (how to compare them?)
- Computational experiments
- Approximation and domination analyzes

Domination Number

- Introduced in 1997 by Glover and Punnen
- First results obtained by Rublineckii in 1973 [in Russian]
- For an ATSP heuristic H and ATSP instance I, domn (H, I) is the number of tours in I of weight at least the weight of the tour obtained by H for I
- $\operatorname{domn}(H, n)=\min \{\operatorname{domn}(H, I):|I|=n\}$

Use of Domination Number

- domn is invariant under linear transformations of arc weights
- Worst case comparison:
domn $(H, n)>\operatorname{domn}\left(H^{\prime}, n\right)$ for n large enough
Ben-Arieh, Gutin, Penn, Yeo and Zverovitch (2003) for Generalized ATSP
- Neighborhoods for local search: why some exponential-size neighborhoods perform bad while small-size ones perform well (Orlin et al.)?

Low Dom Number Heuristics

- Greedy and NN are of dom number 1 (may produce the unique worst possible tour), Gutin, Yeo and Zverovitch (2002)
- Any greedy-type heuristic is of dom number 1 (greedy-type introduced by Gutin, Vainshtein and Yeo, 2002, proved by Bendall and Margot, to appear)
- Max-Regret is of dom number 1 (Proc. WAOA'06)

Large Dom Number Heuristics

Any heuristic that always produces a tour of weight not worse that the average weight is of dom number at least $(n-2)!, n \neq 6$ (n odd: Sarvanov, 1976, n even: Gutin and Yeo, 2002). Such heuristics are:
(a) Greedy-expectation algorithm (Gutin and Yeo, 2002)
(b) Vertex insertion algorithms (Lifshitz, 1973, Punnen and Kabadi, 2002)
(c) 3-Opt, Lin-Kernighan in polynomial time (Punnen, Margot and Kabadi, 2003)

In computational experiments low dom number algorithms often perform worse than large dom number algorithms

ATSP-Max-Regret

ATSP-Max-Regret-FC: Set $W=T=\emptyset$. While $V \neq W$ do the following: For each $i \in V \backslash W$, compute two lightest $\operatorname{arcs}(i, j)$ and (i, k) that are feasible additions to T, and compute the difference $\Delta_{i}=\left|w_{i j}-w_{i k}\right|$. For $i \in V \backslash W$ with maximum Δ_{i} choose the lightest arc (i, j), which is a feasible addition to T and add (i, j) to M and i to W.

ATSP-Max-Regret: The same with not only outgoing, but also incoming arcs considered.

Question (Ghosh et al., 2007): What is the dom number of ATSP-Max-Regret? (ATSP-Max-Regret often outperforms Greedy)

Dom Number of ATSP-Max-Regret

Theorem Both ATSP-Max-Regret-FC and ATSP-Max-Regret are of dom number 1.

Proof: Consider an instance of ATSP with vertex set $\{1,2, \ldots, n\}, n \geq 2$. The weights: $w_{i k}=\min \{i-k, 0\}$ for each $1 \leq i \neq k \leq n$, $i \neq n$, and $w_{n k}=-k$ for each $1 \leq k \leq n-1$.

Modify the weights: $w_{i j}^{\prime}=w_{i j}$ unless $j=i+1$ modulo n. Set $w_{i, i+1}^{\prime}=-1-\frac{1}{n+1}$ for $1 \leq i \leq n$.

ATSP-Max-Regret-FC will use w^{\prime}.

Proof cont'd (a)

ATSP-Max-Regret-FC constructs the tour

$$
T_{M R}=(1,2, \ldots, n, 1)
$$

by choosing the arc $(n-1, n)$, the arc $(n-2, n-$ $1)$, etc. The last two arcs are $(1,2)$ and $(n, 1)$ (they must be included in the tour).

Indeed, initially $\Delta_{n-1}=\frac{n+2}{n+1}>\Delta_{i}=1$ for each $i \neq n-1$. Once $(n-1, n)$ is added to $T_{M R}$, $\Delta_{n-2}=\frac{n+2}{n+1}$ becomes maximal, etc.

Let $T^{\prime}, T^{\prime \prime}$ be tours. Since $\sum_{(i, j) \in K_{n}^{*}}\left|w_{i j}-w_{i j}^{\prime}\right|<$ $1, w\left(T^{\prime}\right)<w\left(T^{\prime \prime}\right)$ implies $w^{\prime}\left(T^{\prime}\right)<w^{\prime}\left(T^{\prime \prime}\right)$. Thus, in the rest of the proof we may use w rather than w^{\prime}.

Proof cont'd (b)

Observe $w\left(T_{M R}\right)=-n$.

Let $T=\left(i_{1}, i_{2}, \ldots, i_{n}, i_{1}\right)$ be an arbitrary tour, where $i_{1}=1$. Let $i_{s}=n, P=\left(i_{1}, i_{2}, \ldots, i_{s}\right)$.
$w(P)=\sum_{k=1}^{s-1} \min \left\{0, i_{k}-i_{k+1}\right\} \leq$
$\sum_{k=1}^{s-1}\left(i_{k}-i_{k+1}\right)=i_{1}-i_{s}$.

Thus, $w(P) \leq 1-n$ and $w(P)=1-n$ iff $i_{1}<$ $i_{2}<\cdots<i_{s}$.

Since $i_{s}=n$, the weight of the $\operatorname{arc}\left(i_{s}, i_{s+1}\right)$ equals $-i_{s+1}$. Thus, $w(T) \leq 1-n-i_{s+1}$ and $w(T) \geq w\left(T_{M R}\right)$ iff $i_{s+1}=1$ and $i_{1}<i_{2}<$ $\cdots<i_{s}$. We conclude that $w(T) \geq w\left(T_{M R}\right)$ iff $T=T_{M R}$.

Multidimensional Assignment Problem (s-AP)

Let $X=\{1,2, \ldots, n\}^{s}$. Each vector $e \in X$ is assigned a real weight $w(e)$.

For a vector e, e_{j} denotes its j th coordinate. Vectors e, f are independent if $e_{j} \neq f_{j}$ for each $j=1,2, \ldots, s$.

An assignment is a set of n independent vectors. The weight of an assignment $\left\{e^{1}, \ldots, e^{n}\right\}$ is $\sum_{i=1}^{n} w\left(e^{i}\right)$.

The aim: to find an assignment of minimum weight.

Applications: In tracking objects, e.g., 5-AP to track elementary particles at CERN

Max-Regret by Balas and Saltzman (1991)

We have a partial assignment A.

Choose $j \in\{1, \ldots, s\}$ and $m \in\{1, \ldots, n\}$.

Choose two lightest vectors e, f with $e_{j}=f_{j}=$ m and independent from vectors in A. Find the regret $\Delta_{j, m}=|w(e)-w(f)|$.

Choose j, m with maximum $\Delta_{j, m}$ and the lightest e with $e_{j}=m$. Add e to A.

Low Dom Number Heuristics

In comput. experiments Balas and Saltzman (1991) show Max-Regret outperforms Greedy. In comput. experiments Robertson (2001) shows the heuristics are of similar performance.

Theorem For s-AP, $s \geq 3$, both Greedy and Max-Regret are of dom number 1.

Theorem For 2-AP, Greedy is of dom number 1.

Theorem For 2-AP, Max-Regret is of dom number at most 2^{n-1}.

Large Dom Number Heuristics

Theorem For s-AP, if a heuristic H always produces an assignment of weight at most the average weight \bar{w} of an assignment, then we have $\operatorname{domn}(H, n) \geq((n-1)!)^{s-1}$.
Proof: Consider an instance \mathcal{I} of s-AP. C denotes the set of all vectors of \mathcal{I} with the first coordinate equal $1 ; \mathcal{P}=\left\{A_{f}: f^{1} \in C\right\}$, where $A_{f}=\left\{f^{1}, f^{2}, \ldots, f^{n}\right\}$ is an assignment with $f_{j}^{i}=f_{j}^{1}+i-1$ (modulo n), $j=1,2, \ldots, s$.

Each vector is in exactly one A_{f} and, thus, \mathcal{P} is a partition of $X=X_{1} \times X_{2} \times \cdots \times X_{s}$, $X_{i}=\{1,2, \ldots, n\}$, into assignments.

Since $\sum_{f \in C} w\left(A_{f}\right)=w(X),|C|=n^{s-1}$ and $\bar{w}=w(X) / n^{s-1}$, the heaviest assignment A_{h} in \mathcal{P} is of weight at least \bar{w}.

Proof cont'd

Let $S\left(X_{i}\right)$ be the set of all permutations on X_{i} $(2 \leq i \leq s)$ and let $\pi_{2} \in S\left(X_{2}\right), \ldots, \pi_{s} \in S\left(X_{s}\right)$. To obtain $\mathcal{P}\left(\pi_{2}, \ldots, \pi_{s}\right)$ from \mathcal{P}, replace f_{j}^{i} with $\pi_{j}\left(f_{j}^{i}\right)$ for each $j \geq 2$ and $i=1,2, \ldots, n$. Thus, we obtain a family
$\mathcal{F}=\left\{\mathcal{P}\left(\pi_{2}, \ldots, \pi_{s}\right): \pi_{2} \in S\left(X_{2}\right), \ldots, \pi_{s} \in S\left(X_{s}\right)\right\}$ of partitions of X into assignments. The family consists of $(n!)^{s-1}$ partitions. We may choose the heaviest assignment in each partition and, thus, obtain a family \mathcal{A} of assignments of weight at least \bar{w}.

It's possible to prove that no assignment in \mathcal{A} can be repeated more than n^{s-1} times. Since \mathcal{A} has $(n!)^{s-1}$ assignments with repetitions, we can find (in \mathcal{A}) $((n-1)!)^{s-1}$ distinct assignments of weight at least \bar{w}.

ROM Heuristic

Recursive Opt Matching (ROM):
Theorem For 3-AP, 3-Opt (by Balas and Saltzman) is of dom number at least $((n-1)!)^{2}$.

Compute a new weight $\bar{w}(i, j)=w\left(X_{i j}\right) / n^{s-2}$, where $X_{i j}$ is the set of all vectors with last two coordinates equal i and j, respectively. Solving the 2-AP with the new weights, find an optimal assignment $M=\left\{\left(i, \pi_{s}(i)\right): i=1,2, \ldots, n\right\}$, where π_{s} is a permutation.

Continue for coordinates $s-2$ and $s-1$ with M 'fixing' coordinates $s-1$ and s, etc. Use $X^{\prime}=\{1,2, \ldots, n\}^{s-1}$ instead of X.

Theorem
$\operatorname{domn}(R O M, n) \geq((n-1)!)^{s-1}$.

Proof

It suffices to show that the assignment obtained by ROM is of weight at most $\bar{w}=$ $w(X) / n^{s-1}$, the average weight of an assignment. By induction on $s \geq 2$. Clearly the assertion holds for $s=2$ and consider $s \geq 3$. Observe that
$\bar{w}=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \bar{w}(i, j) \geq \sum_{i=1}^{n} \bar{w}\left(i, \pi_{s}(i)\right)=\frac{w^{\prime}\left(X^{\prime}\right)}{n^{s-2}}$.
Let $A=\left\{\left(g^{1}, \pi_{s}(1)\right), \ldots,\left(g^{n}, \pi_{s}(n)\right)\right\}$ be an assignment obtained by ROM, where $g^{i} \in X^{\prime}$ such that $g_{s-1}^{i}=i$ for every $i=1, \ldots, n$. Let $A^{\prime}=\left\{g^{1}, \ldots, g^{n}\right\}$. Then by induction hypothesis, $\bar{w}^{\prime}=w^{\prime}\left(X^{\prime}\right) / n^{s-2} \geq w^{\prime}\left(A^{\prime}\right)=w(A)$ and we are done.

Preliminary Computational Experiments (by Gerold Jäger)

100 random examples with $n=8, s=6$, entries in $[0,1000$] (sum of all solutions):

1. Greedy: 58310
2. Recursive Opt Matching: 53820
3. Balas-Saltzman: 54637
4. Shifted Recursive Opt Matching: 36878

Results for Other Problems

1. Independence Systems (IS). Sufficient conditions for Greedy to be of domination number 1, Gutin and Yeo, 2002
2. IS. Weights form a finite set. Necessary and sufficient conditions for Greedy to be of domination number 1, Bang-Jensen, Gutin and Yeo, 2004.
3. IS. Sufficient conditions for greedy-type heuristics to be of domination number 1, Bendall and Margot, to appear
4. Dom analysis of various problems: Alon, Gutin and Krivelevich (2004), Berend, Skiena and Twitto (submitted), Gutin, Vainshtein and Yeo 2003, Gutin, Jensen and Yeo (2006), etc.
