Hamiltonian cycles avoiding prescribed arcs in tournaments

Jørgen Bang-Jensen Gregory Gutin *
Anders Yeo
Department of Mathematics and Computer Science
Odense University, Denmark

Abstract

In [6], Thomassen conjectured that if I is a set of $k-1 \operatorname{arcs}$ in a k-strong tournament T, then $T-I$ has a Hamiltonian cycle. This conjecture was proved by Fraisse and Thomassen [3]. We prove the following stronger result. Let $T=(V, A)$ be a k-strong tournament on n vertices and let $X_{1}, X_{2}, \ldots, X_{l}$ be a partition of the vertex set V of T such that $\left|X_{1}\right| \leq\left|X_{2}\right| \leq \ldots \leq\left|X_{l}\right|$. If $k \geq \sum_{i=1}^{l-1}\left\lfloor\left|X_{i}\right| / 2\right\rfloor+\left|X_{l}\right|$, then $T-\cup_{i=1}^{l}\left\{x y \in A: x, y \in X_{i}\right\}$ has a Hamiltonian cycle. The bound on k is sharp.

1 Introduction

In [6], Thomassen conjectured that if I is a set of $k-1 \operatorname{arcs}$ in a k-strong tournament T, then $T-I$ has a Hamiltonian cycle. This conjecture was proved by Fraisse and Thomassen [3]. This result is sharp since the deletion of a set I of k arcs from a k-strong tournament may create a vertex of indegree or outdegree 0 . However, the authors of [6] realized that, for some sets I, their bound was far from being the best possible (see, e.g., Section 5 in [6]).

[^0]In this paper, we prove the following stronger result. Let $T=(V, A)$ be a k-strong tournament on n vertices and let $X_{1}, X_{2}, \ldots, X_{l}$ be a partition of the vertex set V of T such that $\left|X_{1}\right| \leq\left|X_{2}\right| \leq \ldots \leq\left|X_{l}\right|$. If $k \geq$ $\sum_{i=1}^{l-1}\left\lfloor\left|X_{i}\right| / 2\right\rfloor+\left|X_{l}\right|$, then $T-\cup_{i=1}^{l}\left\{x y \in A: x, y \in X_{i}\right\}$ has a Hamiltonian cycle. The bound on k is sharp (see Theorem 4.2).

It is easy to see that the above theorem by Fraisse and Thomassen follows from our result. Indeed, let I be a set of arcs in a tournament T, let G be the undirected graph obtained by ignoring all orientations of the arcs of $T\langle I\rangle$, the subgraph of T which has arc set I and no isolated vertices, and let Y_{1}, \ldots, Y_{m} be the vertex sets of the connected components of G so that $\left|Y_{1}\right| \leq \ldots \leq\left|Y_{m}\right|$. By our result, T has a Hamiltonian cycle avoiding the arcs in I if T is k-strong, where $k \geq k^{\prime}=\sum_{i=1}^{m-1}\left\lfloor\left|Y_{i}\right| / 2\right\rfloor+\left|Y_{m}\right|$. But $k^{\prime} \leq 1+\sum_{i=1}^{m}\left(\left|Y_{i}\right|-1\right) \leq 1+\sum_{i=1}^{m} e\left(Y_{i}\right)=1+|I|$, where $e\left(Y_{i}\right)$ is the number of edges in the component of G induced by Y_{i}.

A simple analysis of the last calculation shows precisely when the FraisseThomassen and our theorems provide the same value of strong connectivity of T - namely, when I consists of one tree, plus maybe some independent arcs. In all other cases our result gives a better bound. In particular, if $T\langle I\rangle$ is a union of (vertex) disjoint subtournaments of T of order n_{1}, \ldots, n_{m} ($3 \leq n_{1} \leq \ldots \leq n_{m}$), then, to guarantee that $T-I$ has a Hamiltonian cycle, we need T to be $\left(\sum_{i=1}^{m}\binom{n_{i}}{2}+1\right)$-strong by the Fraisse-Thomassen theorem and to be ($n_{m}+\sum_{i=1}^{m-1}\left\lfloor n_{i} / 2\right\rfloor$)-strong by our result.

Our proof is based on Hoffmann's theorem on circulations in networks [4] and a theorem by the third author on minimal spanning 1-diregular subgraphs in semicomplete multipartite digraphs [7]. The proof of the FraisseThomassen theorem was also based on a non-trivial result, namely one from [5].

2 Terminology and notation

We shall assume that the reader is familiar with the standard terminology on graphs and digraphs and refer the reader to [1].

By a cycle and a path in a directed graph we mean a directed simple cycle and path, respectively. Let D be a digraph. $V(D)(A(D))$ denotes the vertex (arc) set of D. Two cycles Q and R (or paths) are disjoint if $V(Q) \cap V(R)=\emptyset$. A collection of vertex disjoint cycles of D is called a
cycle subgraph of D. A cycle subgraph F of D consisting of disjoint cycles C_{1}, \ldots, C_{t} will be denoted $F=C_{1} \cup \ldots \cup C_{t}$. A digraph D is strong if there exists a path from x to y and a path from y to x for every choice of distinct vertices x, y of D. A digraph D is $k-$ strong $(k>0)$ if $D-X$ is strong for any subset X of the vertices of D with $|X|<k$. Let G and H be subgraphs of D and let $P=v_{1} v_{2} \ldots v_{k-1} v_{k}$ be a path in $D . P$ is called a (G, H)-path if $v_{1} \in V(G), v_{k} \in V(H)$ and $\left\{v_{2}, \ldots, v_{k-1}\right\} \cap(V(G) \cup V(H))=\emptyset$.

Let $C=x_{1} x_{2} \ldots x_{c} x_{1}$ be a cycle in D. Then we shall usually denote x_{i+1} by x_{i}^{+}and x_{i-1} by x_{i}^{-}, where $i=1,2, \ldots, c$ and all subscripts are taken modulo c. For a set X of vertices in C, we denote $X^{+}=\left\{x^{+}: x \in X\right\}$ and $X^{-}=\left\{x^{-}: x \in X\right\}$. When we use such notation, the digraph D considered has a spanning cycle subgraph F, thus every vertex x of D has a unique predecessor x^{-}and a unique succesor x^{+}on the unique cycle in F containing x. The subpath of a cycle C from a vertex v to a vertex w will be denoted by $C[v, w]$.

If D has an $\operatorname{arc} x y \in A(D)$, then we sometimes use the notation $x \rightarrow y$ and say that x dominates y and y is dominated by x. For disjoint sets X and Y of vertices in D, we say that X strongly dominates Y, and use the notation $X \Rightarrow Y$, if there is no arc from Y to X. For arbitrary sets X and Y of vertices in $D,(X, Y)_{D}=\{x y \in A(D): x \in X, y \in Y\}$. In particular, if $|X|=1$, then $(X, X)_{D}$ is empty.

A digraph H is called semicomplete if every two distinct vertices of H are adjacent. A semicomplete digraph without cycles of length two is a tournament. Let $X_{1}, X_{2}, \ldots, X_{p}(p \geq 2)$ be a partition of the vertex set of a semicomplete digraph H. Then the digraph $D=H-\cup_{i=1}^{p}\left(X_{i}, X_{i}\right)_{H}$ is called semicomplete p-partite or semicomplete multipartite (when the value of p is not important). We call $X_{1}, X_{2}, \ldots, X_{p}$ the colour classes of D.

3 Preliminaries

In this section we describe some results which will be important tools for the proof of our main result (Theorem 4.1). The following result is a very special case of a theorem proved by the third author in [7].

Theorem 3.1 Let D be a semicomplete p-partite digraph with colour classes $X_{1}, X_{2}, \ldots, X_{p}$ and let F be a spanning cycle subgraph of D with the minimum
possible number of cycles t. Then either $t=1$, or the cycles of F can be labeled C_{1}, \ldots, C_{t} such that the following holds: There is a pair of indices $q, q^{\prime} \in\{1,2, \ldots, p\}$ (q and q^{\prime} may be equal), such that every arc to C_{1} from the outside is in $\left(X_{q}^{-}, X_{q}^{+}\right)_{D}$ and every arc from C_{t} to outside is in $\left(X_{q^{\prime}}^{-}, X_{q^{\prime}}^{+}\right)_{D}$.

We recall the classical theorem by Hoffmann, characterizing the existence of a feasible circulation in a network with upper and lower bounds on the arcs. Below we use the following notation. If X is a subset of the vertex set of a digraph D, then we denote by \bar{X} the set $V(D) \backslash X$. If r is a function on the arc set of D, then $r(X, \bar{X})=\sum\{r(u v): u v \in(X, \bar{X})\}$. Let N be a network. A flow f in N is called an integer flow if $f(a)$ is integer for every arc a in N. A circulation is a flow of value zero in N.

Theorem 3.2 [4] Let $N=(V, A, \ell, c)$ denote a network with vertex set V, arc set A and lower (upper) bound $\ell(a)(c(a))$ on every arc $a \in A$. Suppose $\ell(a), c(a)$ are non-negative integers for each $a \in A$. There exists an integer circulation f in N such that $\ell(a) \leq f(a) \leq c(a)$ for all $a \in A$ if and only if $c(\bar{X}, X) \geq \ell(X, \bar{X})$ for all proper subsets X of V.

For a proof of this theorem, see for example [2, page 50]. We finish this section by the following simple but useful lemma. The proof is left for the reader.

Lemma 3.3 Let T be a tournament, and let $Y_{1}, Y_{2}, \ldots, Y_{s}(s \geq 1)$ be disjoint sets of vertices in T and let x and y be arbitrary distinct vertices in $V(T)-$ $\left(Y_{1} \cup Y_{2} \cup \ldots \cup Y_{s}\right)$. If there exist k disjoint (x, y)-paths in T, then there exist at least $k-\sum_{i=1}^{s}\left\lfloor\left|Y_{i}\right| / 2\right\rfloor$ disjoint (x, y)-paths in $T-\cup_{i=1}^{s}\left(Y_{i}, Y_{i}\right)$.

4 Results

Theorem 4.1 Let $T=(V, A)$ be a k-strong tournament on n vertices, and let $X_{1}, X_{2}, \ldots, X_{l}(l \geq 1)$ be a partition of $V\left(V=\cup_{i=1}^{l} X_{i}, X_{i} \cap X_{j}=\emptyset\right.$ for every $i \neq j$). Set $D=T-\cup_{i=1}^{l}\left(X_{i}, X_{i}\right)_{T}, D_{i}=D \cup\left(X_{i}, X_{i}\right)_{T}, D_{i, j}=D \cup$ $\left(X_{i}, X_{i}\right)_{T} \cup\left(X_{j}, X_{j}\right)_{T}(1 \leq i, j \leq l)$. If $1 \leq\left|X_{1}\right| \leq\left|X_{2}\right| \leq \ldots \leq\left|X_{l}\right| \leq n / 2$ and $k \geq\left|X_{l}\right|+\sum_{i=1}^{l-1}\left\lfloor\left|X_{i}\right| / 2\right\rfloor$, then the following hold.
(a) If $x \in X_{i}$ and $y \in X_{j}(1 \leq i \neq j \leq l)$, then there are $\left\lfloor\left|X_{i}\right| / 2\right\rfloor+$ $\left\lfloor\left|X_{j}\right| / 2\right\rfloor+\left\lceil\left|X_{l}\right| / 2\right\rceil$ disjoint (x, y)-paths in $D_{i, j}$.
(b) If $x, y \in X_{i}(x \neq y)$, then there are $\left|X_{i}\right|$ disjoint (x, y)-paths in D_{i}. Furthermore there is an (x, y)-path in D.
(c) D is strong.
(d) D contains a spanning cycle subgraph.
(e) D is Hamiltonian.

Proof:

Claim (a) easily follows from Lemma 3.3.
Proof of Claim (b): From Lemma 3.3 we easily get that there are $\left|X_{i}\right|$ disjoint (x, y)-paths in D_{i}. By deleting all arcs in $\left(X_{i}, X_{i}\right)_{T}$, we can destroy at most $\left|X_{i}\right|-1$ of these paths, since at most $\left|X_{i}\right|-2$ paths can contain vertices from $X_{i}-\{x, y\}$, and only one path can be the arc $x y$. Thus there is an (x, y)-path in D.

Proof of Claim (c): Let x and y be arbitrary distinct vertices of D. If $\{x, y\} \subseteq X_{i}$, then there is an (x, y)-path in D, because of Claim (b). Therefore we may now assume that $x \in X_{i}$ and $y \in X_{j}$, where $i \neq j$. Let W be the maximal set of vertices such that for all $w \in W$, there is an (x, w)-path in D.

Assume that $W \cap X_{j} \neq \emptyset$ and let $w \in W \cap X_{j}$. From (b) there is a (w, y)-path in D. Now we see that there is a (x, y)-path in D.

Assume that $W \cap X_{j}=\emptyset$. Therefore, there is no (x, y)-path in D_{j}, and at most $\left|X_{i}\right|-1$ disjoint (x, y)-paths in $D_{i, j}$, since each (x, y)-path in $D_{i, j}$ must include a vertex from $X_{i}-x$. This is a contradiction against (a), since $\left\lfloor\left|X_{i}\right| / 2\right\rfloor+\left\lceil\left|X_{l}\right| / 2\right\rceil \geq\left|X_{i}\right|>\left|X_{i}\right|-1$.

Hence we have proved that there exists a (x, y)-path in D for an arbitrary choice of distinct x and y, which means that D is strong.

Proof of Claim (d): Let $D^{\prime}=\left(V^{\prime} \cup V^{\prime \prime}, A\left(D^{\prime}\right)\right)$ be the digraph obtained from D by replacing each vertex $v \in V$ by two vertices v^{\prime} and $v^{\prime \prime}$ joined by an arc from v^{\prime} to $v^{\prime \prime}$. For each original arc $u v \in A, D^{\prime}$ contains the arc $u^{\prime \prime} v^{\prime}$.

Let $N=\left(V^{\prime} \cup V^{\prime \prime}, A(N), \ell, c\right)\left(A(N)=A\left(D^{\prime}\right)\right)$ be the network obtained from D^{\prime} by specifying the following lower and upper bounds for the arcs. Every arc of the kind $u^{\prime \prime} v^{\prime}$ (corresponding to an original arc in D) has lower
bound zero and an upper bound ∞. Every arc $x^{\prime} x^{\prime \prime}$ where $x \in V$ has lower and upper bounds equal to one.

For a subset B of V, B^{\prime} and $B^{\prime \prime}$ will stand for the sets $\left\{v^{\prime}: v \in B\right\}$ and $\left\{v^{\prime \prime}: v \in B\right\}$, respectively.

It is easy to see that every feasible integer circulation in N corresponds to a spanning cycle subgraph in D and vice versa. Hence, by Theorem 3.2, it suffices to prove that for every proper subset U of $V^{\prime} \cup V^{\prime \prime}$ we have $c(\bar{U}, U) \geq \ell(U, \bar{U})$.

Assume that $c(\bar{U}, U)<\ell(U, \bar{U})$, where U is a proper subset of $V^{\prime} \cup V^{\prime \prime}$. The vertex set V of D can be partitioned into the following sets: $Y=\{y \in$ $\left.V: y^{\prime} \in U, y^{\prime \prime} \in \bar{U}\right\}, Z=\left\{z \in V: z^{\prime \prime} \in U, z^{\prime} \in \bar{U}\right\}, R_{1}=\{v \in V:$ $\left.\left\{v^{\prime}, v^{\prime \prime}\right\} \subseteq U\right\}$ and $R_{2}=\left\{v \in V:\left\{v^{\prime}, v^{\prime \prime}\right\} \subseteq \bar{U}\right\}$. We have $|Z|<|Y|$ since $|Z| \leq c(\bar{U}, U)$ and $\ell(U, \bar{U})=|Y|$.

Observe that an arc $u v \in A(D)$ between two vertices in $Y \subseteq V(D)$ will correspond to an arc $u^{\prime \prime} v^{\prime}$ in N with $u^{\prime \prime} \in \bar{U}$ and $v^{\prime} \in U$, thus contributing ∞ to $c(\bar{U}, U)$. Therefore there is an $i \in\{1,2, \ldots, l\}$ such that $Y \subseteq X_{i}$. If D has an arc $y r_{1}$ from Y to R_{1}, then $y^{\prime \prime} r_{1}^{\prime} \in A(N)$ contributes ∞ to $c(\bar{U}, U)$. Hence, $R_{1} \Rightarrow Y$. Analogously, $\left(R_{1} \cup Y\right) \Rightarrow R_{2}$. Since $|Z|<|Y| \leq\left|X_{i}\right| \leq n / 2$ and $Y \subseteq X_{i}$, we obtain that either $W_{1}=R_{1}-X_{i}$ or $W_{2}=R_{2}-X_{i}$ is nonempty. Since X_{1}, \ldots, X_{l} form a partition of $V(D)$, there is $j, j \neq i$, so that $\left(W_{1} \cup W_{2}\right) \cap X_{j} \neq \emptyset$.

Assume that $\left|W_{1} \cap X_{j}\right| \geq\left|W_{2} \cap X_{j}\right|$ and choose a vertex w_{1} in $W_{1} \cap X_{j}$ and vertex $y \in Y$. Set $S=\left(W_{2} \cap X_{j}\right) \cup Z \cup\left(X_{i}-Y\right)$. By (a) there exist at least $\left|X_{i}\right|+\left\lfloor\left|X_{j}\right| / 2\right\rfloor$ disjoint $\left(y, w_{1}\right)$-paths in $D_{i, j}$. However, $D_{i, j}-S$ has no (y, w_{1})-paths and $|S| \leq\left\lfloor\left|X_{j}\right| / 2\right\rfloor+|Z|+\left|X_{i}\right|-|Y|<\left\lfloor\left|X_{j}\right| / 2\right\rfloor+\left|X_{i}\right|$; a contradiction.

If $\left|W_{1} \cap X_{j}\right|<\left|W_{2} \cap X_{j}\right|$, then choose a vertex w_{2} in $W_{2} \cap X_{j}$ and vertex $y \in Y$. Set $S=\left(W_{1} \cap X_{j}\right) \cup Z \cup\left(X_{i}-Y\right)$. Now $D_{i, j}-S$ has no $\left(w_{2}, y\right)$-path and we obtain a contradiction as above.

Proof of (e): Assume that D is not Hamiltonian.
We first observe that D is a semicomplete multipartite digraph with colour classes $X_{1}, X_{2}, \ldots, X_{l}$. By (c) the digraph D is strong. By (d) D contains a spanning cycle subgraph. Let F be a spanning cycle subgraph of D with the minimal possible number of cycles t. Assume that $t \geq 2$. Let C_{1}, \ldots, C_{t} be a labeling of the cycles of F determined in Theorem 3.1. By Theorem 3.1, there is a pair of indices $q, q^{\prime} \in\{1,2, \ldots, p\}$ such that the conclusion of the
theorem holds. Let us fix the labeling and pair of indices above.
If $\left|V\left(C_{1}\right)\right|>n / 2$, we reverse all the arcs in D and relabel the cycles in the spanning cycle subgraph corresponding to F. Hence, we may assume that $\left|V\left(C_{1}\right)\right| \leq n / 2$. Moreover assume that $\left|V\left(C_{1}\right)\right|$ has the minimal possible value. Set $W=V\left(C_{2}\right) \cup \ldots \cup V\left(C_{t}\right)$. For all $i=1,2, \ldots, l$ set $z_{i}=\mid V\left(C_{1}\right) \cap$ $X_{i} \mid$.

Assume that $z_{q}=\left|V\left(C_{1}\right)\right| / 2$. There are $\left|V\left(C_{1}\right)\right|\left(\left|V\left(C_{1}\right)\right|-1\right) / 2 \operatorname{arcs}$ in $\left(V\left(C_{1}\right), V\left(C_{1}\right)\right)_{T}$, and, by Theorem 3.1, there are at most $z_{q}\left(\left|X_{q}\right|-z_{q}\right)$ arcs in $\left(W, V\left(C_{1}\right)\right)_{D}$. Let $i \in\{1, \ldots, l\}$. Since $z_{i} /\left|V\left(C_{1}\right)\right| \leq 1 / 2$, we have $\left|\left(X_{i} \cap W, X_{i} \cap V\left(C_{1}\right)\right)_{T}\right| \leq z_{i}\left(\left|X_{i}\right|-z_{i}\right) \leq\left|V\left(C_{1}\right)\right|\left\lfloor\left|X_{i}\right| / 2\right\rfloor$. Now we obtain the following:

$$
\begin{aligned}
\left|\left(V, V\left(C_{1}\right)\right)_{T}\right| & \leq\left|V\left(C_{1}\right)\right|\left(\left|V\left(C_{1}\right)\right|-1\right) / 2+z_{q}\left(\left|X_{q}\right|-z_{q}\right)+\sum_{i=1}^{l} z_{i}\left(\left|X_{i}\right|-z_{i}\right) \\
& \leq\left|V\left(C_{1}\right)\right|\left(\left|V\left(C_{1}\right)\right|-1\right) / 2+2 z_{q}\left(\left|X_{q}\right|-z_{q}\right)+\sum_{\substack{l=1 \\
i \neq q}}^{l}\left|V\left(C_{1}\right)\right|\left\lfloor\left|X_{i}\right| / 2\right\rfloor \\
& =\left|V\left(C_{1}\right)\right|\left[\left|V\left(C_{1}\right)\right| / 2-1 / 2+\left|X_{q}\right|-\left|V\left(C_{1}\right)\right| / 2+\sum_{\substack{i=1 \\
i \neq q}}^{l}\left\lfloor\left|X_{i}\right| / 2\right\rfloor\right] \\
& \left.<\left|V\left(C_{1}\right)\right|\left[\left|X_{q}\right|+\sum_{\substack{i=1 \\
i \neq q}}^{l} \backslash\left|X_{i}\right| / 2\right]\right] .
\end{aligned}
$$

This implies that there is a vertex w in $V\left(C_{1}\right)$ such that

$$
\left|(V, w)_{T}\right|<\left|X_{q}\right|+\sum_{i=1, i \neq q}^{l}\left\lfloor\left|X_{i}\right| / 2\right\rfloor \leq k
$$

which is a contradiction against the fact that T is k-strong. Therefore we have shown that $\left|V\left(C_{1}\right) \cap X_{q}\right|<\left|V\left(C_{1}\right)\right| / 2$.

Let

$$
S=\left\{s \in V\left(C_{1}\right): \text { there exists an arc from } W \text { to } s^{+} \text {in } D\right\}
$$

Note that, by Theorem 3.1, $S \subseteq X_{q} \cap V\left(C_{1}\right)$. Since $\left|V\left(C_{1}\right) \cap X_{q}\right|<$ $\left|V\left(C_{1}\right)\right| / 2$, the set $R=V\left(C_{1}\right)-\left(X_{q} \cup X_{q}^{+}\right)$is not empty. We prove that $R \Rightarrow S$ in D. Assume that there exist $s \in S$ and $r \in R$ so that $s r \in A(D)$. There is vertex $w \in V\left(C_{i}\right)$ (for some $i, 2 \leq i \leq l$) so that $w s^{+} \in A(D)$. Since $w^{+} \in X_{q}$ and $r^{-} \notin X_{q}$, the arc $r^{-} w^{+} \in A(D)\left(w^{+} r^{-} \notin A(D)\right.$ because $w^{++} \notin X_{q}$). Replace the cycles C_{1} and C_{i} by the cycles $C_{1}[r, s] r$ and $C_{i}\left[w^{+}, w\right] C_{1}\left[s^{+}, r^{-}\right] w^{+}$in F. The new spanning cycle subgraph F^{\prime} has t cycles as well. However, the first cycle of F^{\prime} contains less vertices than C_{1} does; a contradiction.

Let X_{j} be a colour class of D so that $X_{j} \cap R$ is not empty. Let r be a vertex in $X_{j} \cap R$ and let w_{q} be a vertex in $X_{q} \cap W$. Consider two cases.

Case 1: S is a proper subset of $X_{q} \cap V\left(C_{1}\right)$.
Let $x \in\left(X_{q} \cap C_{1}\right)-S$. For all colour classes, $X_{i} \neq X_{q}$ we have $\mid X_{i} \cap$ $V\left(C_{1}\right)\left|>\left|X_{i} \cap W\right|\right.$ because of the following. Assume that there is a colour class, $X_{i} \neq X_{q}$, with $\left|X_{i} \cap V\left(C_{1}\right)\right| \leq\left|X_{i} \cap W\right|$. Let $w \in X_{i} \cap W$ be arbitrary. Claim (a) implies that there exist $\left\lfloor\left|X_{i}\right| / 2\right\rfloor+\left|X_{q}\right|$ disjoint (w, x)-paths in $D_{i, q}$. However, $B=\left[\left(W \cap X_{q}\right) \cup S^{+}\right] \cup\left(X_{i} \cap V\left(C_{1}\right)\right)$ separates x from w in $D_{i, q}$ and $|B|<\left|X_{q}\right|+\left\lfloor\left|X_{i}\right| / 2\right\rfloor ;$ a contradiction.

Since $\left|V\left(C_{1}\right)\right| \leq|V(D)| / 2$, we obtain $\left|X_{q} \cap V\left(C_{1}\right)\right| \leq\left|X_{q} \cap W\right|$. Claim (a) implies that there exist $\left\lfloor\left|X_{j}\right| / 2\right\rfloor+\left|X_{q}\right|$ disjoint $\left(w_{q}, r\right)$-paths in $D_{j, q}$. However, $B=\left[\left(V\left(C_{1}\right) \cap X_{q}\right) \cup S^{+}\right] \cup\left(X_{j} \cap W\right)$ separates r from w_{q} in $D_{j, q}$ and $|B|<\left|X_{q}\right|+\left\lfloor\left|X_{j}\right| / 2\right\rfloor$; a contradiction.

Case 2: $S=X_{q} \cap V\left(C_{1}\right)$.
Subcase 2a: $\left|X_{j} \cap V\left(C_{1}\right)\right| \geq\left|X_{j} \cap W\right|$ or $|S| \leq\left|X_{q} \cap W\right|$.
Set $B=S^{+} \cup\left(X_{j} \cap W\right)$. The digraph $D_{j, q}-B$ has no $\left(w_{q}, r\right)$-paths since $R \Rightarrow S$ in D. If $\left|X_{j} \cap V\left(C_{1}\right)\right| \geq\left|X_{j} \cap W\right|$, then $|B|<\left\lfloor\left|X_{j}\right| / 2\right\rfloor+\left|X_{q}\right|$ since $X_{q} \cap W$ is not empty. If $|S| \leq\left|X_{q} \cap W\right|$, then $|B|<\left\lfloor\left|X_{q}\right| / 2\right\rfloor+\left|X_{j}\right|$ since $X_{j} \cap V\left(C_{1}\right)$ is not empty. Each of the last two bounds for $|B|$ contradicts (a).

Subcase 2b: $\left|X_{j} \cap V\left(C_{1}\right)\right|<\left|X_{j} \cap W\right|$ and $|S|>\left|X_{q} \cap W\right|$.
If $X_{j} \cap W \subseteq\left(X_{q} \cap W\right)^{-}$, then set $B=S^{+} \cup\left(X_{j} \cap W\right)$. The digraph $D_{j, q}-B$ has no $\left(w_{q}, r\right)$-path. However, $|B| \leq\left|X_{q}\right|<\left\lfloor\left|X_{j}\right| / 2\right\rfloor+\left|X_{q}\right|$; a contradiction to (a).

If $\left(X_{j} \cap W\right)-\left(X_{q} \cap W\right)^{-} \neq \emptyset$, then set $B=\left(X_{q} \cap W\right) \cup\left(X_{q} \cap W\right)^{-} \cup\left(X_{j} \cap\right.$ $\left.V\left(C_{1}\right)\right)$. The digraph $D_{j, q}-B$ has no (w, x)-path, where $x \in V\left(C_{1}\right) \cap X_{q}$ and $w \in\left(X_{j} \cap W\right)-\left(X_{q} \cap W\right)^{-}$. However, $|B|<\left\lfloor\left|X_{j}\right| / 2\right\rfloor+\left|X_{q}\right|$; a contradiction to (a).

Hence, we have got a contradiction in both cases which implies that D is Hamiltonian.

The bound for k in Theorem 4.1 is sharp because of the following theorem.

Theorem 4.2 Let $2 \leq r_{1} \leq r_{2} \leq \ldots \leq r_{l}$ be arbitrary integers, then there exists a tournament T and a collection $X_{1}, X_{2}, \ldots, X_{l}$ of disjoint sets of vertices in T such that
(i) T is $\left(r_{l}-1+\sum_{i=1}^{l-1}\left\lfloor r_{i} / 2\right\rfloor\right)$-strong;
(ii) $\left|X_{i}\right|=r_{i}$ for $i=1,2, \ldots, l$;
(iii) $D=T-\cup_{i=1}^{l}\left(X_{i}, X_{i}\right)_{T}$ is not Hamiltonian.

Proof: Let $k=r_{l}+\sum_{i=1}^{l-1}\left\lfloor r_{i} / 2\right\rfloor$. We construct a tournament T with the properties (i)-(iii): $V(T)=X_{1} \cup X_{2} \cup \ldots \cup X_{l} \cup Y_{1}^{\prime} \cup Y_{2}^{\prime} \cup Y_{1}^{\prime \prime} \cup Y_{2}^{\prime \prime} \cup Z$, where all the sets in the union are mutually disjoint. Let $\left|Y_{1}^{\prime}\right|=\left|Y_{2}^{\prime}\right|=\left|Y_{1}^{\prime \prime}\right|=$ $\left|Y_{2}^{\prime \prime}\right|=k,|Z|=r_{l}-1, X_{j}=\left\{x_{j 1}, \ldots, x_{j, r_{j}}\right\}, X_{j}^{\prime}=\left\{x_{j 1}, \ldots, x_{j,\left\lfloor r_{i} / 2\right\rfloor}\right\}$ and $X_{j}^{\prime \prime}=$ $\left\{x_{j,\left\lfloor r_{i} / 2\right\rfloor+1}, \ldots, x_{j, r_{j}}\right\}$ for every $j \in\{1, \ldots, l-1\}$. Set $S^{\prime}=\left(\cup_{j=1}^{l-1} X_{j}^{\prime}\right) \cup Y_{1}^{\prime} \cup Y_{2}^{\prime}$, $S^{\prime \prime}=\left(\cup_{j=1}^{l-1} X_{j}^{\prime \prime}\right) \cup Y_{1}^{\prime \prime} \cup Y_{2}^{\prime \prime}$. The arc set of T is defined as follows. Let $S^{\prime} \Rightarrow X_{l} \Rightarrow S^{\prime \prime} \Rightarrow Z \Rightarrow S^{\prime}$. If $s^{\prime} \in S^{\prime}$ and $s^{\prime \prime} \in S^{\prime \prime}$, then $s^{\prime} \rightarrow s^{\prime \prime}$ unless there exists $j \in\{1, \ldots, l-1\}$ so that both s^{\prime} and $s^{\prime \prime}$ are from X_{j} in which case $s^{\prime \prime} \rightarrow s^{\prime}$. For every $i=\left\{{ }^{\prime}{ }^{\prime \prime}{ }^{\prime}\right\}$ and $j \in\{1, \ldots, l-1\}, X_{j}^{i} \Rightarrow Y_{1}^{i} \Rightarrow Y_{2}^{i} \Rightarrow X_{j}^{i}$. The direction of the arcs between the vertices non-adjacent so far can be chosen arbitrary.

To see that T is $(k-1)$-strong, note that the deletion of any $k-2$ vertices leaves at least one vertex y_{i}^{j} in each of the sets Y_{i}^{j}, and either (a) a vertex z in Z, or (b) an edge $s^{\prime \prime} \rightarrow s^{\prime}$ from some $X_{j}^{\prime \prime}$ to the corresponding X_{j}^{\prime}. In case (a), there is a cycle $z y_{1}^{\prime} y_{2}^{\prime} y_{1}^{\prime \prime} y_{2}^{\prime \prime} z$ remaining, and in case (b) we have the cycle $s^{\prime} y_{1}^{\prime} y_{2}^{\prime} y_{1}^{\prime \prime} y_{2}^{\prime \prime} s^{\prime \prime} s^{\prime}$. In either case, every other vertex sends and receives at least one edge to/from the cycle, so the remaining digraph is strong.

Assume that $D=T-\cup_{i=1}^{l}\left(X_{i}, X_{i}\right)_{T}$ is Hamiltonian. In a Hamiltonian cycle of D, after every visit to X_{l}, the cycle must pass through Z before returning to X_{l} since $A(D-Z) \subseteq\left(S^{\prime}, S^{\prime \prime}\right)_{T} \cup\left(S^{\prime}, X_{l}\right)_{T} \cup\left(X_{l}, S^{\prime \prime}\right)_{T}$. However, there are more vertices of X_{l} than of Z, thus there is no Hamiltonian cycle.

5 Conclusions and open problems

In fact, this paper is concerned with aspects of the following general question. Which sets B of edges of the complete graph K_{n} have the property that every k-strong orientation of K_{n} induces a Hamiltonian digraph on $K_{n}-B$? The

Fraisse-Thomassen theorem says that this is the case whenever A contains at most $k-1$ edges. Here, it has been shown that a union of disjoint cliques of sizes r_{1}, \ldots, r_{l} has the property, whenever $\sum_{i=1}^{l}\left\lfloor r_{i} / 2\right\rfloor+\max _{1 \leq i \leq l}\left\{\left\lceil r_{i} / 2\right\rceil\right\} \leq$ k. This is the best possible result for unions of cliques. Also, it implies the Fraisse-Thomassen theorem.

It seems natural to investigate bounds for k in different cases of the set B. In particular, what are sharp bounds for k when B is a spanning forest of K_{n} consisting of m disjoint paths containing r_{1}, \ldots, r_{m} vertices, respectively ? The same question can be asked if we replace "paths" by "stars" or by "cycles" (in the last case "spanning forest" should also be replaced by "spanning cycle subgraph").

6 Acknowledgments

We are grateful to the referee for numerous remarks and suggestions that have improved the presentation.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, MacMillan Press, 1976.
[2] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton New Jersey (1962).
[3] P. Fraisse and C. Thomassen, Hamiltonian dicycles avoiding prescribed arcs in tournaments. Graphs and Combin. 3 (1987) 239-250.
[4] A. J. Hoffmann, Some recent applications of the theory of linear inequalities to extremal combinatorial analysis, Proc. Symposia on Applied Math. 10 (1960) 113-127.
[5] C. Thomassen, Hamiltonian-connected tournaments. J. Combin. Theory B28 (1980) 142-163.
[6] C. Thomassen, Edge-disjoint Hamiltonian paths and cycles in tournaments. Proc. London Math. Soc. 45 (1982) 151-168.
[7] A. Yeo, One-diregular subgraphs in semicomplete multipartite digraphs. To appear in J. Graph Theory.

[^0]: *This work was supported by the Danish Research Council under grant no. 11-0534-1. The support is gratefully acknowledged.

