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Abstract

In [6], Thomassen conjectured that if I is a set of k − 1 arcs in
a k-strong tournament T , then T − I has a Hamiltonian cycle. This
conjecture was proved by Fraisse and Thomassen [3]. We prove the
following stronger result. Let T = (V, A) be a k-strong tournament
on n vertices and let X1, X2, . . . , Xl be a partition of the vertex set V
of T such that |X1| ≤ |X2| ≤ . . . ≤ |Xl|. If k ≥ ∑l−1

i=1b|Xi|/2c + |Xl|,
then T − ∪l

i=1{xy ∈ A : x, y ∈ Xi} has a Hamiltonian cycle. The
bound on k is sharp.

1 Introduction

In [6], Thomassen conjectured that if I is a set of k − 1 arcs in a k-strong
tournament T , then T − I has a Hamiltonian cycle. This conjecture was
proved by Fraisse and Thomassen [3]. This result is sharp since the deletion
of a set I of k arcs from a k-strong tournament may create a vertex of indegree
or outdegree 0. However, the authors of [6] realized that, for some sets I,
their bound was far from being the best possible (see, e.g., Section 5 in [6]).
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In this paper, we prove the following stronger result. Let T = (V, A) be
a k-strong tournament on n vertices and let X1, X2, . . . , Xl be a partition
of the vertex set V of T such that |X1| ≤ |X2| ≤ . . . ≤ |Xl|. If k ≥∑l−1

i=1b|Xi|/2c + |Xl|, then T − ∪l
i=1{xy ∈ A : x, y ∈ Xi} has a Hamiltonian

cycle. The bound on k is sharp (see Theorem 4.2).
It is easy to see that the above theorem by Fraisse and Thomassen follows

from our result. Indeed, let I be a set of arcs in a tournament T , let G
be the undirected graph obtained by ignoring all orientations of the arcs
of T 〈I〉, the subgraph of T which has arc set I and no isolated vertices,
and let Y1, ..., Ym be the vertex sets of the connected components of G so
that |Y1| ≤ ... ≤ |Ym|. By our result, T has a Hamiltonian cycle avoiding
the arcs in I if T is k-strong, where k ≥ k′ =

∑m−1
i=1 b|Yi|/2c + |Ym|. But

k′ ≤ 1 +
∑m

i=1(|Yi| − 1) ≤ 1 +
∑m

i=1 e(Yi) = 1 + |I|, where e(Yi) is the number
of edges in the component of G induced by Yi.

A simple analysis of the last calculation shows precisely when the Fraisse-
Thomassen and our theorems provide the same value of strong connectivity
of T – namely, when I consists of one tree, plus maybe some independent
arcs. In all other cases our result gives a better bound. In particular, if
T 〈I〉 is a union of (vertex) disjoint subtournaments of T of order n1, ..., nm

(3 ≤ n1 ≤ ... ≤ nm), then, to guarantee that T − I has a Hamiltonian cycle,

we need T to be (
∑m

i=1

(
ni

2

)
+ 1)-strong by the Fraisse-Thomassen theorem

and to be (nm +
∑m−1

i=1 bni/2c)-strong by our result.
Our proof is based on Hoffmann’s theorem on circulations in networks

[4] and a theorem by the third author on minimal spanning 1-diregular sub-
graphs in semicomplete multipartite digraphs [7]. The proof of the Fraisse-
Thomassen theorem was also based on a non-trivial result, namely one from
[5].

2 Terminology and notation

We shall assume that the reader is familiar with the standard terminology
on graphs and digraphs and refer the reader to [1].

By a cycle and a path in a directed graph we mean a directed simple
cycle and path, respectively. Let D be a digraph. V (D) (A(D)) denotes
the vertex (arc) set of D. Two cycles Q and R (or paths) are disjoint if
V (Q) ∩ V (R) = ∅. A collection of vertex disjoint cycles of D is called a
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cycle subgraph of D. A cycle subgraph F of D consisting of disjoint cycles
C1, ..., Ct will be denoted F = C1 ∪ ... ∪ Ct. A digraph D is strong if there
exists a path from x to y and a path from y to x for every choice of distinct
vertices x, y of D. A digraph D is k−strong (k > 0) if D − X is strong for
any subset X of the vertices of D with |X| < k. Let G and H be subgraphs
of D and let P = v1v2...vk−1vk be a path in D. P is called a (G,H)-path if
v1 ∈ V (G), vk ∈ V (H) and {v2, ..., vk−1} ∩ (V (G) ∪ V (H)) = ∅.

Let C = x1x2...xcx1 be a cycle in D. Then we shall usually denote xi+1 by
x+

i and xi−1 by x−i , where i = 1, 2, ..., c and all subscripts are taken modulo
c. For a set X of vertices in C, we denote X+ = {x+ : x ∈ X} and
X− = {x− : x ∈ X}. When we use such notation, the digraph D considered
has a spanning cycle subgraph F , thus every vertex x of D has a unique
predecessor x− and a unique succesor x+ on the unique cycle in F containing
x. The subpath of a cycle C from a vertex v to a vertex w will be denoted
by C[v, w].

If D has an arc xy ∈ A(D), then we sometimes use the notation x→y and
say that x dominates y and y is dominated by x. For disjoint sets X and Y
of vertices in D, we say that X strongly dominates Y , and use the notation
X⇒Y , if there is no arc from Y to X. For arbitrary sets X and Y of vertices
in D, (X,Y )D = {xy ∈ A(D) : x ∈ X, y ∈ Y }. In particular, if |X| = 1,
then (X,X)D is empty.

A digraph H is called semicomplete if every two distinct vertices of H
are adjacent. A semicomplete digraph without cycles of length two is a
tournament. Let X1, X2, . . . , Xp (p ≥ 2) be a partition of the vertex set of a
semicomplete digraph H. Then the digraph D = H−∪p

i=1(Xi, Xi)H is called
semicomplete p-partite or semicomplete multipartite (when the value of p is
not important). We call X1, X2, ..., Xp the colour classes of D.

3 Preliminaries

In this section we describe some results which will be important tools for the
proof of our main result (Theorem 4.1). The following result is a very special
case of a theorem proved by the third author in [7].

Theorem 3.1 Let D be a semicomplete p-partite digraph with colour classes
X1, X2, ..., Xp and let F be a spanning cycle subgraph of D with the minimum
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possible number of cycles t. Then either t = 1, or the cycles of F can be
labeled C1,..., Ct such that the following holds: There is a pair of indices
q, q′ ∈ {1, 2, ..., p} (q and q′ may be equal), such that every arc to C1 from the
outside is in (X−

q , X+
q )D and every arc from Ct to outside is in (X−

q′ , X
+
q′ )D.

We recall the classical theorem by Hoffmann, characterizing the existence
of a feasible circulation in a network with upper and lower bounds on the
arcs. Below we use the following notation. If X is a subset of the vertex set
of a digraph D, then we denote by X̄ the set V (D) \ X. If r is a function
on the arc set of D, then r(X, X̄) =

∑{r(uv) : uv ∈ (X, X̄)}. Let N be a
network. A flow f in N is called an integer flow if f(a) is integer for every
arc a in N . A circulation is a flow of value zero in N .

Theorem 3.2 [4] Let N = (V, A, `, c) denote a network with vertex set V ,
arc set A and lower (upper) bound `(a) (c(a)) on every arc a ∈ A. Suppose
`(a), c(a) are non-negative integers for each a ∈ A. There exists an integer
circulation f in N such that `(a) ≤ f(a) ≤ c(a) for all a ∈ A if and only if
c(X̄, X) ≥ `(X, X̄) for all proper subsets X of V .

For a proof of this theorem, see for example [2, page 50]. We finish this
section by the following simple but useful lemma. The proof is left for the
reader.

Lemma 3.3 Let T be a tournament, and let Y1, Y2, . . . , Ys (s ≥ 1) be disjoint
sets of vertices in T and let x and y be arbitrary distinct vertices in V (T )−
(Y1∪Y2∪ . . .∪Ys). If there exist k disjoint (x, y)-paths in T , then there exist
at least k −∑s

i=1b|Yi|/2c disjoint (x, y)-paths in T − ∪s
i=1(Yi, Yi).

4 Results

Theorem 4.1 Let T = (V, A) be a k-strong tournament on n vertices, and
let X1, X2, . . . , Xl (l ≥ 1) be a partition of V (V = ∪l

i=1Xi, Xi ∩Xj = ∅ for
every i 6= j). Set D = T − ∪l

i=1(Xi, Xi)T , Di = D ∪ (Xi, Xi)T , Di,j = D ∪
(Xi, Xi)T ∪ (Xj, Xj)T (1 ≤ i, j ≤ l). If 1 ≤ |X1| ≤ |X2| ≤ . . . ≤ |Xl| ≤ n/2
and k ≥ |Xl|+ ∑l−1

i=1b|Xi|/2c, then the following hold.

(a) If x ∈ Xi and y ∈ Xj (1 ≤ i 6= j ≤ l), then there are b|Xi|/2c +
b|Xj|/2c+ d|Xl|/2e disjoint (x, y)-paths in Di,j.
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(b) If x, y ∈ Xi (x 6= y), then there are |Xi| disjoint (x, y)-paths in Di.
Furthermore there is an (x, y)-path in D.

(c) D is strong.

(d) D contains a spanning cycle subgraph.

(e) D is Hamiltonian.

Proof:
Claim (a) easily follows from Lemma 3.3.

Proof of Claim (b): From Lemma 3.3 we easily get that there are |Xi|
disjoint (x, y)-paths in Di. By deleting all arcs in (Xi, Xi)T , we can destroy
at most |Xi| − 1 of these paths, since at most |Xi| − 2 paths can contain
vertices from Xi − {x, y}, and only one path can be the arc xy. Thus there
is an (x, y)-path in D.

Proof of Claim (c): Let x and y be arbitrary distinct vertices of D.
If {x, y} ⊆ Xi, then there is an (x, y)-path in D, because of Claim (b).
Therefore we may now assume that x ∈ Xi and y ∈ Xj, where i 6= j. Let W
be the maximal set of vertices such that for all w ∈ W , there is an (x,w)-path
in D.

Assume that W ∩ Xj 6= ∅ and let w ∈ W ∩ Xj. From (b) there is a
(w, y)-path in D. Now we see that there is a (x, y)-path in D.

Assume that W ∩Xj = ∅. Therefore, there is no (x, y)-path in Dj, and
at most |Xi| − 1 disjoint (x, y)-paths in Di,j, since each (x, y)-path in Di,j

must include a vertex from Xi− x. This is a contradiction against (a), since
b|Xi|/2c+ d|Xl|/2e ≥ |Xi| > |Xi| − 1.

Hence we have proved that there exists a (x, y)-path in D for an arbitrary
choice of distinct x and y, which means that D is strong.

Proof of Claim (d): Let D′ = (V ′ ∪ V ′′, A(D′)) be the digraph obtained
from D by replacing each vertex v ∈ V by two vertices v′ and v′′ joined by
an arc from v′ to v′′. For each original arc uv ∈ A, D′ contains the arc u′′v′.

Let N = (V ′ ∪ V ′′, A(N), `, c) (A(N) = A(D′)) be the network obtained
from D′ by specifying the following lower and upper bounds for the arcs.
Every arc of the kind u′′v′ (corresponding to an original arc in D) has lower
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bound zero and an upper bound ∞. Every arc x′x′′ where x ∈ V has lower
and upper bounds equal to one.

For a subset B of V , B′ and B′′ will stand for the sets {v′ : v ∈ B} and
{v′′ : v ∈ B}, respectively.

It is easy to see that every feasible integer circulation in N corresponds
to a spanning cycle subgraph in D and vice versa. Hence, by Theorem
3.2, it suffices to prove that for every proper subset U of V ′ ∪ V ′′ we have
c(Ū , U) ≥ `(U, Ū).

Assume that c(Ū , U) < `(U, Ū), where U is a proper subset of V ′ ∪ V ′′.
The vertex set V of D can be partitioned into the following sets: Y = {y ∈
V : y′ ∈ U, y′′ ∈ Ū}, Z = {z ∈ V : z′′ ∈ U, z′ ∈ Ū}, R1 = {v ∈ V :
{v′, v′′} ⊆ U} and R2 = {v ∈ V : {v′, v′′} ⊆ Ū}. We have |Z| < |Y | since
|Z| ≤ c(Ū , U) and `(U, Ū) = |Y |.

Observe that an arc uv ∈ A(D) between two vertices in Y ⊆ V (D) will
correspond to an arc u′′v′ in N with u′′ ∈ Ū and v′ ∈ U , thus contributing
∞ to c(Ū , U). Therefore there is an i ∈ {1, 2, . . . , l} such that Y ⊆ Xi. If D
has an arc yr1 from Y to R1, then y′′r′1 ∈ A(N) contributes ∞ to c(Ū , U).
Hence, R1⇒Y . Analogously, (R1 ∪ Y )⇒R2. Since |Z| < |Y | ≤ |Xi| ≤ n/2
and Y ⊆ Xi, we obtain that either W1 = R1 −Xi or W2 = R2 −Xi is non-
empty. Since X1, ..., Xl form a partition of V (D), there is j, j 6= i, so that
(W1 ∪W2) ∩Xj 6= ∅.

Assume that |W1 ∩Xj| ≥ |W2 ∩Xj| and choose a vertex w1 in W1 ∩Xj

and vertex y ∈ Y . Set S = (W2 ∩ Xj) ∪ Z ∪ (Xi − Y ). By (a) there exist
at least |Xi|+ b|Xj|/2c disjoint (y, w1)-paths in Di,j. However, Di,j − S has
no (y, w1)-paths and |S| ≤ b|Xj|/2c + |Z| + |Xi| − |Y | < b|Xj|/2c + |Xi|; a
contradiction.

If |W1 ∩Xj| < |W2 ∩Xj|, then choose a vertex w2 in W2 ∩Xj and vertex
y ∈ Y . Set S = (W1 ∩Xj)∪Z ∪ (Xi− Y ). Now Di,j −S has no (w2, y)-path
and we obtain a contradiction as above.

Proof of (e): Assume that D is not Hamiltonian.
We first observe that D is a semicomplete multipartite digraph with colour

classes X1, X2, . . . , Xl. By (c) the digraph D is strong. By (d) D contains a
spanning cycle subgraph. Let F be a spanning cycle subgraph of D with the
minimal possible number of cycles t. Assume that t ≥ 2. Let C1,..., Ct be
a labeling of the cycles of F determined in Theorem 3.1. By Theorem 3.1,
there is a pair of indices q, q′ ∈ {1, 2, ..., p} such that the conclusion of the
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theorem holds. Let us fix the labeling and pair of indices above.
If |V (C1)| > n/2, we reverse all the arcs in D and relabel the cycles in

the spanning cycle subgraph corresponding to F . Hence, we may assume
that |V (C1)| ≤ n/2. Moreover assume that |V (C1)| has the minimal possible
value. Set W = V (C2) ∪ . . . ∪ V (Ct). For all i = 1, 2, . . . , l set zi = |V (C1) ∩
Xi|.

Assume that zq = |V (C1)|/2. There are |V (C1)|(|V (C1)| − 1)/2 arcs
in (V (C1), V (C1))T , and, by Theorem 3.1, there are at most zq(|Xq| − zq)
arcs in (W,V (C1))D. Let i ∈ {1, ..., l}. Since zi/|V (C1)| ≤ 1/2, we have
|(Xi ∩W,Xi ∩ V (C1))T | ≤ zi(|Xi| − zi) ≤ |V (C1)|b|Xi|/2c. Now we obtain
the following:

|(V, V (C1))T | ≤ |V (C1)|(|V (C1)| − 1)/2 + zq(|Xq| − zq) +
∑l

i=1 zi(|Xi| − zi)
≤ |V (C1)|(|V (C1)| − 1)/2 + 2zq(|Xq| − zq) +

∑l
i=1
i6=q

|V (C1)|b|Xi|/2c
= |V (C1)|

[
|V (C1)|/2− 1/2 + |Xq| − |V (C1)|/2 +

∑l
i=1
i6=q

b|Xi|/2c
]

< |V (C1)|
[
|Xq|+ ∑l

i=1
i6=q

b|Xi|/2c
]
.

This implies that there is a vertex w in V (C1) such that

|(V,w)T | < |Xq|+
l∑

i=1, i 6=q

b|Xi|/2c ≤ k,

which is a contradiction against the fact that T is k-strong. Therefore we
have shown that |V (C1) ∩Xq| < |V (C1)|/2.

Let

S = {s ∈ V (C1) : there exists an arc from W to s+ in D}.
Note that, by Theorem 3.1, S ⊆ Xq ∩ V (C1). Since |V (C1) ∩ Xq| <

|V (C1)|/2, the set R = V (C1) − (Xq ∪ X+
q ) is not empty. We prove that

R⇒S in D. Assume that there exist s ∈ S and r ∈ R so that sr ∈ A(D).
There is vertex w ∈ V (Ci) (for some i, 2 ≤ i ≤ l) so that ws+ ∈ A(D).
Since w+ ∈ Xq and r− /∈ Xq, the arc r−w+ ∈ A(D) (w+r− /∈ A(D) be-
cause w++ /∈ Xq). Replace the cycles C1 and Ci by the cycles C1[r, s]r and
Ci[w

+, w]C1[s
+, r−]w+ in F . The new spanning cycle subgraph F ′ has t cy-

cles as well. However, the first cycle of F ′ contains less vertices than C1 does;
a contradiction.
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Let Xj be a colour class of D so that Xj ∩ R is not empty. Let r be a
vertex in Xj ∩R and let wq be a vertex in Xq ∩W . Consider two cases.

Case 1: S is a proper subset of Xq ∩ V (C1).
Let x ∈ (Xq ∩ C1) − S. For all colour classes, Xi 6= Xq we have |Xi ∩

V (C1)| > |Xi ∩W | because of the following. Assume that there is a colour
class, Xi 6= Xq, with |Xi ∩ V (C1)| ≤ |Xi ∩W |. Let w ∈ Xi ∩W be arbitrary.
Claim (a) implies that there exist b|Xi|/2c+|Xq| disjoint (w, x)-paths in Di,q.
However, B = [(W ∩ Xq) ∪ S+] ∪ (Xi ∩ V (C1)) separates x from w in Di,q

and |B| < |Xq|+ b|Xi|/2c; a contradiction.
Since |V (C1)| ≤ |V (D)|/2, we obtain |Xq ∩ V (C1)| ≤ |Xq ∩ W |. Claim

(a) implies that there exist b|Xj|/2c + |Xq| disjoint (wq, r)-paths in Dj,q.
However, B = [(V (C1) ∩Xq) ∪ S+] ∪ (Xj ∩W ) separates r from wq in Dj,q

and |B| < |Xq|+ b|Xj|/2c; a contradiction.

Case 2: S = Xq ∩ V (C1).
Subcase 2a: |Xj ∩ V (C1)| ≥ |Xj ∩W | or |S| ≤ |Xq ∩W |.
Set B = S+ ∪ (Xj ∩W ). The digraph Dj,q −B has no (wq, r)-paths since

R⇒S in D. If |Xj ∩ V (C1)| ≥ |Xj ∩W |, then |B| < b|Xj|/2c + |Xq| since
Xq ∩W is not empty. If |S| ≤ |Xq ∩W |, then |B| < b|Xq|/2c + |Xj| since
Xj ∩ V (C1) is not empty. Each of the last two bounds for |B| contradicts
(a).

Subcase 2b: |Xj ∩ V (C1)| < |Xj ∩W | and |S| > |Xq ∩W |.
If Xj ∩ W ⊆ (Xq ∩ W )−, then set B = S+ ∪ (Xj ∩ W ). The digraph

Dj,q − B has no (wq, r)-path. However, |B| ≤ |Xq| < b|Xj|/2c + |Xq|; a
contradiction to (a).

If (Xj∩W )− (Xq∩W )− 6= ∅, then set B = (Xq∩W )∪ (Xq∩W )−∪ (Xj∩
V (C1)). The digraph Dj,q−B has no (w, x)-path, where x ∈ V (C1)∩Xq and
w ∈ (Xj ∩W )− (Xq ∩W )−. However, |B| < b|Xj|/2c+ |Xq|; a contradiction
to (a).

Hence, we have got a contradiction in both cases which implies that D is
Hamiltonian. 2.

The bound for k in Theorem 4.1 is sharp because of the following theorem.
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Theorem 4.2 Let 2 ≤ r1 ≤ r2 ≤ . . . ≤ rl be arbitrary integers, then there
exists a tournament T and a collection X1, X2, ..., Xl of disjoint sets of ver-
tices in T such that

(i) T is (rl − 1 +
∑l−1

i=1bri/2c)-strong;

(ii) |Xi| = ri for i = 1, 2, . . . , l;

(iii) D = T − ∪l
i=1(Xi, Xi)T is not Hamiltonian.

Proof: Let k = rl +
∑l−1

i=1bri/2c. We construct a tournament T with the
properties (i)-(iii): V (T ) = X1∪X2∪ . . .∪Xl ∪Y ′

1 ∪Y ′
2 ∪Y ′′

1 ∪Y ′′
2 ∪Z, where

all the sets in the union are mutually disjoint. Let |Y ′
1 | = |Y ′

2 | = |Y ′′
1 | =

|Y ′′
2 | = k, |Z| = rl− 1, Xj = {xj1, ..., xj,rj

}, X ′
j = {xj1, ..., xj,bri/2c} and X ′′

j =

{xj,bri/2c+1, ..., xj,rj
} for every j ∈ {1, ..., l− 1}. Set S ′ = (∪l−1

j=1X
′
j) ∪ Y ′

1 ∪ Y ′
2 ,

S ′′ = (∪l−1
j=1X

′′
j ) ∪ Y ′′

1 ∪ Y ′′
2 . The arc set of T is defined as follows. Let

S ′⇒Xl⇒S ′′⇒Z⇒S ′. If s′ ∈ S ′ and s′′ ∈ S ′′, then s′→s′′ unless there exists
j ∈ {1, ..., l−1} so that both s′ and s′′ are from Xj in which case s′′→s′. For
every i = {′,′′ } and j ∈ {1, ..., l− 1}, X i

j⇒Y i
1⇒Y i

2⇒X i
j. The direction of the

arcs between the vertices non-adjacent so far can be chosen arbitrary.
To see that T is (k−1)-strong, note that the deletion of any k−2 vertices

leaves at least one vertex yj
i in each of the sets Y j

i , and either (a) a vertex z
in Z, or (b) an edge s′′ → s′ from some X ′′

j to the corresponding X ′
j. In case

(a), there is a cycle zy′1y
′
2y
′′
1y
′′
2z remaining, and in case (b) we have the cycle

s′y′1y
′
2y
′′
1y
′′
2s
′′s′. In either case, every other vertex sends and receives at least

one edge to/from the cycle, so the remaining digraph is strong.
Assume that D = T − ∪l

i=1(Xi, Xi)T is Hamiltonian. In a Hamiltonian
cycle of D, after every visit to Xl, the cycle must pass through Z before
returning to Xl since A(D−Z) ⊆ (S ′, S ′′)T ∪ (S ′, Xl)T ∪ (Xl, S

′′)T . However,
there are more vertices of Xl than of Z, thus there is no Hamiltonian cycle.

2.

5 Conclusions and open problems

In fact, this paper is concerned with aspects of the following general question.
Which sets B of edges of the complete graph Kn have the property that every
k-strong orientation of Kn induces a Hamiltonian digraph on Kn − B? The
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Fraisse-Thomassen theorem says that this is the case whenever A contains at
most k− 1 edges. Here, it has been shown that a union of disjoint cliques of
sizes r1, . . . , rl has the property, whenever

∑l
i=1bri/2c+ max1≤i≤l{dri/2e} ≤

k. This is the best possible result for unions of cliques. Also, it implies the
Fraisse-Thomassen theorem.

It seems natural to investigate bounds for k in different cases of the set
B. In particular, what are sharp bounds for k when B is a spanning forest
of Kn consisting of m disjoint paths containing r1, ..., rm vertices, respec-
tively ? The same question can be asked if we replace ”paths” by ”stars”
or by ”cycles” (in the last case ”spanning forest” should also be replaced by
”spanning cycle subgraph”).
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