Establishing Complexity of Problems Parameterized Above Average

Gregory Z. Gutin

Department of Computer Science
Royal Holloway, University of London
RHUL, June 2010

Outline

(1) Introduction
(2) Problems Parameterized Above Average and Strictly Above Expectation Method
(3) Linear Ordering AA

4 Exact r-SAT AA
(5) Boolean CSPs AA
(6) Pseudo-boolean Functions and Max Lin AA
(7) Betweenness AA

Outline

(1) Introduction
(2) Problems Parameterized Above Average and Strictly Above Expectation Method
(3) Linear Ordering AA

4 Exact r-SAT AA
(3) Boolean CSPs AA
(6) Pseudo-boolean Functions and Max Lin AABetweenness AA

Fixed-parameter Tractability

- A parameterized problem Π : a set of pairs (I, k) where I is the main part and k (usually an integer) is the parameter; l is an instance of the classical sense.
- Π is fixed-parameter tractable (FPT) if membership of (I, k) in Π can be decided in time $O\left(f(k)|/|^{c}\right)$, where $|I|$ is the size of $I, c=O(1)$ and $f(k)$ is a computable function.
- The idea: for small values of $k, O\left(f(k)|I|^{c}\right)$ is not too large.

Fixed-parameter Tractability

Examples of FPT problems:

- Does a graph G have a vertex cover of size $\leq k$? An algorithm of runtime $O\left(1.2852^{k}+k n\right)$ (Chen, Kanj and Jia, 2001) instead of an $O\left(n^{k} m\right)$-algorithm.
- Does a digraph D have a spanning out-tree with $\geq k$ leaves? Algorithms of runtime $4^{k} n^{O(1)}$ (Kneis, Langer and Rossmanith, 2008) and $3.72^{k} n^{O(1)}$ (Daligault, Gutin, Kim and Yeo, JCSS 2010) instead of an $O\left(n^{k} m\right)$-algorithm.

Bikernelization-1

- Suggested by Alon, Gutin, Kim, Szeider and Yeo (arXiv'09).
- A bikernelization of Π to Π^{\prime} : a polynomial-time algorithm that maps an instance $(x, k) \in \Pi$ to an instance $\left(x^{\prime}, k^{\prime}\right) \in \Pi^{\prime}$ (the bikernel) such that
- (x, k) is YES iff $\left(x^{\prime}, k^{\prime}\right)$ is YES
- $k^{\prime} \leq f(k)$ and $\left|x^{\prime}\right| \leq g(k)$ for some functions f and g.
- The function $g(k)$ is called the size of the bikernel.

Bikernelization-2

- A decidable parameterized problem is FPT iff it is and admits a bikernelization to a parameterized problem.
- Wanted: low degree polynomial-size bikernels to well-studied problems.
- Similar to a theorem in Bodlaender, Thomassé and Yeo on polynomial time and parameter transformations (ESA'09):

Lemma (Alon, Gutin, Kim, Szeider and Yeo)

Let P, P^{\prime} be a pair of parameterized problems such that P^{\prime} is in $N P$ and P is NP-complete. If there is a bikernelization from P to P^{\prime} producing a bikernel of polynomial size, then P has a polynomial-size kernel.

Kernelization

- A kernelization of Π : a polynomial-time algorithm that maps an instance $(x, k) \in \Pi$ to an instance $\left(x^{\prime}, k^{\prime}\right) \in \Pi$ (the kernel) such that
- (x, k) is YES iff $\left(x^{\prime}, k^{\prime}\right)$ is YES
- $k^{\prime} \leq f(k)$ and $\left|x^{\prime}\right| \leq g(k)$ for some functions f and g.
- The function $g(k)$ is called the size of the kernel.
- A decidable parameterized problem is FPT if and only if it admits a kernelization.
- Wanted: low degree polynomial-size kernels (for preprocessing).
- Does a graph G have a vertex cover of size $\leq k$? Kernel of size $\leq 2 k$ (Chen, Kanj and Jia, 2001).

Outline

(1) Introduction
(2) Problems Parameterized Above Average and Strictly Above Expectation Method
(3) Linear Ordering AA
4) Exact r-SAT AA
(3) Boolean CSPs AA
(6) Pseudo-boolean Functions and Max Lin AABetweenness AA

Acyclic Subgraphs of Digraphs: Parameterization Above Average

- Parameterization Above Average: Does $D=(V, A)$ have an acyclic subgraph with at least $|A| / 2+k$ arcs? [Acyclic AA]
- The bound is tight: For symmetric digraphs, $k=0$: a digraph D is symmetric if $x y \in A$ implies $y x \in A$.
- Mahajan, Raman and Sikdar (JCSS, 2009): Is Acyclic AA fixed-parameter tractable?

Strictly Above Expectation Method (SAEM): Symmetric Case

- Gutin, Kim, Szeider and Yeo [JCSS, ta]. Problem Π parameterized AA.
- Apply some reduction rules.
- Introduce a random variable X s.t. $\mathbb{E}(X)=0$ and if $\operatorname{Prob}(X \geq k)>0$ then the answer to Π is YES.
- If X is symmetric (X and $-X$ have the same distribution), then $\operatorname{Prob}\left(X \geq \sqrt{\mathbb{E}\left(X^{2}\right)}\right)>0$.
- If $k \leq \sqrt{\mathbb{E}\left(X^{2}\right)}$ then YES. Otherwise, $\sqrt{\mathbb{E}\left(X^{2}\right)}<k$ and we can often solve the problem using a brute-force algorithm.

Strictly Above Expectation Method (SAEM): Asymmetric Case

Lemma (Alon, Gutin, Krivelevich, 2004; Alon, Gutin, Kim, Szeider, Yeo, SODA'2010)

Let X be a real random variable and suppose that its first, second and forth moments satisfy $\mathbb{E}(X)=0, \mathbb{E}\left(X^{2}\right)=\sigma^{2}>0$ and $\mathbb{E}\left(X^{4}\right) \leq b \cdot\left(\mathbb{E}\left(X^{2}\right)\right)^{2}$, respectively. Then $\operatorname{Prob}\left(X>\frac{\sigma}{2 \sqrt{b}}\right)>0$.

Lemma (Hypercontractive Inequality, Bonami, Gross, 1970s)

Let $f=f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial of degree r in n variables x_{1}, \ldots, x_{n}. Define a random variable X by choosing a vector $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{-1,1\}^{n}$ uniformly at random and setting $X=f\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$. Then $\mathbb{E}\left(X^{4}\right) \leq 9^{r}\left(\mathbb{E}\left(X^{2}\right)\right)^{2}$.

Outline

(1) Introduction

2. Problems Parameterized Above Average and Strictly Above Expectation Method

(3) Linear Ordering AA

(4) Exact r-SAT AA
(5) Boolean CSPs AA
(6) Pscudo-boolean Functions and Max Lin AABetweenness AA

Reduction Rule for Linear Ordering Problem AA

- Linear Ordering AA: Each arc ij has positive integral weight $w_{i j}$, does $D=(V, A)$ have an acyclic subgraph of weight at least $W / 2+k$, where $W=\sum_{i j \in A} w_{i j}$?
- Reduction rule: Assume D has a directed 2-cycle iji;
- if $w_{i j}=w_{j i}$ delete the cycle,
- if $w_{i j}>w_{j i}$ delete the arc $j i$ and replace $w_{i j}$ by $w_{i j}-w_{j i}$,
- if $w_{j i}>w_{i j}$ delete the arc $i j$ and replace $w_{j i}$ by $w_{j i}-w_{i j}$.
- Thus, we've reduced Linear Ordering AA to the one on oriented graphs.

SAEM for Linear Ordering AA-1

- Let $D=(V, A)$ be an oriented graph, $n=|V|$; a bijection: $\alpha: V \rightarrow\{1, \ldots, n\}$.
- Define $X(\alpha)=\frac{1}{2} \sum_{i j \in A} \varepsilon_{i j}$, where $\varepsilon_{i j}=w_{i j}$ if $\alpha(i)<\alpha(j)$ and $\varepsilon_{i j}=-w_{i j}$, otherwise.
- We have $X(\alpha)=\sum\left\{w_{i j}: i j \in A, \alpha(i)<\alpha(j)\right\}-W / 2$. Thus, the answer is YES iff there is an $\alpha: V \rightarrow\{1, \ldots, n\}$ such that $X(\alpha) \geq k$.
- Consider a random bijection: $\alpha: V \rightarrow\{1, \ldots, n\}$. Then X is a random variable.
- Since $\mathbb{E}\left(\varepsilon_{i j}\right)=0$, we have $\mathbb{E}(X)=0$.

SABEM for Linear Ordering AA-2

Lemma

$$
\mathbb{E}\left(X^{2}\right) \geq W^{(2)} / 12, \text { where } W^{(2)}=\sum_{i j \in A} w_{i j}^{2}
$$

Since X is symmetric, we have $\operatorname{Prob}\left(X \geq \sqrt{W^{(2)} / 12}\right)>0$. Hence, if $\sqrt{W^{(2)} / 12} \geq k$, there is an $\alpha: V \rightarrow\{1, \ldots, n\}$ such that $X(\alpha) \geq k$ and, thus, the answer is YES. Otherwise, $|A| \leq W^{(2)}<12 \cdot k^{2}$. Thus, we have:

Theorem (GG, Kim, Szeider, Yeo, JCSS, ta)

Linear Ordering AA is FPT and has an $O\left(k^{2}\right)$-size kernel.

Outline

(1) Introduction

2. Problems Parameterized Above Average and Strictly Above Expectation Method
(3) Linear Ordering AA

4 Exact r-SAT AA
(5) Boolean CSPs AA
(6) Pseudo-boolean Functions and Max Lin AABetweenness AA

Exact r-SAT

- Exact r-SAT: A CNF formula \mathcal{F} which contains m clauses each with r literals. Is there a truth assignment satisfying all m clauses of \mathcal{F} ?
- Max Exact r-SAT: Find a truth assignment satisfying the max number of clauses.
- The prob. of a clause to be satisfied: $1-2^{-r}$.
- The average number of satisfied clauses: $\left(1-2^{-r}\right) m$. This lower bound is tight.

Exact r-SAT AA-1

- Exact r-SAT AA: Is there a truth assignment satisfying $\geq\left(1-2^{-r}\right) m+k 2^{-r}$ clauses?
- Mahajan, Raman and Sikdar (JCSS, 2009): What is the parameterized complexity of ExACT r-SAT AA for each fixed r ?
- Alon, GG, Kim, Szeider and Yeo (SODA 2010): Exact r-SAT AA is FPT.

Exact r-SAT AA-2

- $-1=$ true.
- $X=\sum_{C \in \mathcal{F}}\left[1-\prod_{x_{i} \in \operatorname{var}(C)}\left(1+\varepsilon_{i} x_{i}\right)\right]$, where var's $x_{i} \in\{-1,1\}$, coef's $\varepsilon_{i} \in\{-1,1\}$ and $\varepsilon_{i}=1$ iff x_{i} is in C.
- For a truth assignment τ, we have $X=2^{r}\left(\operatorname{sat}(\tau, F)-\left(1-2^{-r}\right) m\right)$.
- The answer to ExACT r-SAT AA is Yes iff $X \geq k$.

Exact r-SAT AA-3

- After algebraic simplification: $X=\sum_{I \in \mathcal{S}} X_{l}$, where $X_{I}=c_{I} \prod_{i \in I} x_{i}$, where each c_{I} is a nonzero integer and \mathcal{S} is a family of nonempty subsets of [n] each with at most r elements.
- This is a Fourier expansion of X over orthogonal basis $\prod_{i \in I} x_{i}, I \subseteq[n]$.

Exact r-SAT AA-4

- Choose x_{i} randomly. Then X is random.
- $\mathbb{E}(X)=0$ [Condition 1 of the Alon et al. inequality]
- $\mathbb{E}\left(X^{2}\right)=\sum_{l \in \mathcal{S}} c_{l}^{2}>0$ [by Parseval's Theorem]
- By Hypercontractive Inequality, $\mathbb{E}\left(X^{4}\right) \leq 9^{r} \mathbb{E}\left(X^{2}\right)^{2}$. [Condition 2 of the Alon et al. inequality]

Exact r-SAT AA-5

- By the Alon et. al. inequality, $\operatorname{Prob}\left(X \geq \frac{\sqrt{\mathbb{E}\left(X^{2}\right)}}{2 \cdot 3^{r}}\right)>0$.
- $\mathbb{E}\left(X^{2}\right)=\sum_{I \in \mathcal{S}} c_{l}^{2} \geq|\mathcal{S}|>0$
- If $k \leq \frac{\sqrt{|\mathcal{S}|}}{2 \cdot 3^{r}}$ then YES.
- Otherwise $r|\mathcal{S}| \leq 4 r 9^{r} k^{2}=O\left(k^{2}\right)$.

Exact r-SAT AA-6

- Max r-Lin AA: $X=\sum_{l \in \mathcal{S}} X_{l}$, where $X_{I}=c_{l} \prod_{i \in I} x_{i}$; is $\max X \geq k$?
- Thus, an $O\left(k^{2}\right)$-size bikernel from Exact r-SAT AA to Max r-Lin AA.
- More work gives: $O\left(k^{2}\right)$-size kernel (Alon, GG, Kim, Szeider and Yeo, arXiv'09):

Outline

(1) Introduction

2. Problems Parameterized Above Average and Strictly Above Expectation Method
(3) Linear Ordering AA
(4) Exact r-SAT AA
(5) Boolean CSPs AA
(6) Pseudo-boolean Functions and Max Lin AABetweenness AA

Boolean CSP AA-1

- Let r be a fixed positive integer.
- Let Φ be a set of Boolean functions, each with at most r var's out of n var's x_{1}, \ldots, x_{n}.
- MAX-r-CSP: $\mathcal{F}=\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}, f_{i} \in \Phi$; satisfy the max number of f_{i} 's.

Boolean CSP AA-2

- Alon, GG, Kim, Szeider and Yeo, arXiv'09.
- MAX- r-CSP AA: Is there a truth assignment satisfying $\geq \mathbb{E}(\operatorname{sat}(F))+k$ formulas?
- If Φ is closed under replacing each x_{i} by \bar{x}_{i}, then $\mathbb{E}(\operatorname{sat}(F))$ is a tight LB.
- There is an $O\left(k^{2}\right)$-size bikernel from MAX- r-CSP AA to Max r-Lin AA.
- Bikernel Lemma implies polynomial-size kernel for MAX-r-CSP AA.

Outline

(1) Introduction

2. Problems Parameterized Above Average and Strictly Above Expectation Method
(3) Linear Ordering AA
(4) Exact r-SAT AA
(5) Boolean CSPs AA
(6) Pseudo-boolean Functions and Max Lin AABetweenness AA

Fourier Expansions of Pseudo-boolean Functions

- Pseudo-boolean function: an arbitrary $f:\{-1,+1\}^{n} \rightarrow \mathbb{R}$.
- It can be uniquely written as $f(x)=\sum_{S \subseteq[n]} c_{S} \prod_{i \in S} x_{i}$ (Fourier expansion of f).
- c_{S} are the Fourier coefficients of $f ; c_{S}=\hat{f}(S)$.
- $\prod_{i \in S} x_{i}$ form an orthogonal basis.

Pseudo-boolean Functions and Linear Equations

- $f(x)=\hat{f}(\emptyset)+\sum_{S \in \mathcal{F}} c_{S} \prod_{i \in S} x_{i}$, where $\mathcal{F}=\left\{\emptyset \neq S \subseteq[n]: c_{S} \neq 0\right\}$.
- A weighted system $A z=b$ of linear equations on \mathbb{F}_{2}^{n} : for each $S \in \mathcal{F}$, we have an equation $\sum_{i \in S} z_{i}=b_{S}$ with weight $\left|c_{S}\right|$, where $b_{S}=0$ if $c_{S}>0$ and $b_{S}=1$, otherwise.
- The max excess of $A z=b$ is max of the total weight of satisfied equations minus the total weight of falsified equations.
- $\max _{x \in\{-1,+1\}^{n}} f(x)-\hat{f}(\emptyset)=\max$ excess of $A z=b$.
- Lower bounds on max f via max excess.

Max Lin

- Max Lin: Given a weighted system (all weights are positive) of linear equations over \mathbb{F}_{2}^{n}, maximize the max excess of $A z=b$.
- Max r-Lin: Each equation has at most r variables.
- Håstad (2001): unless $P=N P$ for each $\epsilon>0$, there is no polynomial algorithm for distinguishing instances of MAX 3 -Lin in which at least $(1-\epsilon) m$ equations can be simultaneously satisfied from instances in which less than $(1 / 2+\epsilon) m$ equations can be simultaneously satisfied.

Max Lin AA

- Max Lin AA: Given a weighted system (all weights are positive integers) of m linear equations over \mathbb{F}_{2}^{n}, is the max excess of $A z=b$ at least k ?
- It can be solved in time $O\left(m^{k+O(1)}\right)$ (Crowston, GG, Jones, Kim, Ruzsa, SWAT 2010)
- We believe that Max Lin AA is not FPT (too 'general').

FPT Special Cases of Max Lin AA: 'Symmetric'

- Assumption: $\operatorname{rank} A=n$, the number of variables.
- Using Symmetric SAEM (GG, Kim, Szeider, Yeo, JCSS 2010):

Theorem

If \exists a set U of vars s.t. each equation has odd number of vars from U, then MAx Lin AA is FPT and has a quadratic kernel.

FPT Special Cases of Max Lin AA: 'Small' Systems

Assumptions: (i) Equations in $A z=b$ are distinct, (2) $\operatorname{rank} A=n$.

Theorem (Excess Theorem; Crowston, GG, Jones, Kim, Ruzsa, SWAT 2010)

Let $k \geq 2$. If $k \leq m \leq 2^{n /(k-1)}-2$, then the maximum excess of $A z=b$ is at least k, i.e., $A z=b$ constitutes a YES-instance.
Moreover, we can find an assignment that achieves an excess of at least k in time $m^{O(1)}$.

Using the Excess Theorem:
Theorem (Crowston, GG, Jones, Kim, Ruzsa, SWAT 2010)
Let $p(n)$ be an arbitrary function s.t. $p(n)=o(n)$. If $m \leq 2^{p(n)}$ then Max Lin AA is FPT.

Smaller Kernels

Using the Excess Theorem:
Theorem (Crowston, GG, Jones, Kim, Ruzsa, SWAT 2010)
For each fixed integral $r \geq 2$ MAx r-Lin AA admits a kernel on $O(k \log k)$ variables.

Theorem (Crowston, GG, Jones, Kim, Ruzsa, SWAT 2010)
For each fixed integral $r \geq 2$ MAx Exact r-SAT AA admits a kernel on $O(k \log k)$ variables.

Outline

(1) Introduction

2. Problems Parameterized Above Average and Strictly Above Expectation Method
(3) Linear Ordering AA
(4) Exact r-SAT AA
(5) Boolean CSPs AA
(8) Pscudo-boolean Functions and Max Lin AA
(7) Betweenness AA

Betweenness AA

- Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of variables and let \mathcal{C} be a set of m betweenness constraints of the form $\left(v_{i},\left\{v_{j}, v_{k}\right\}\right)$.
- Given a bijection $\alpha: V \rightarrow\{1, \ldots, n\}$, we say that a constraint $\left(v_{i},\left\{v_{j}, v_{k}\right\}\right)$ is satisfied if either $\alpha\left(v_{j}\right)<\alpha\left(v_{i}\right)<\alpha\left(v_{k}\right)$ or $\alpha\left(v_{k}\right)<\alpha\left(v_{i}\right)<\alpha\left(v_{j}\right)$.
- Betweenness: find a bijection α satisfying the max number of constraints in \mathcal{C}.
- Tight Lower Bound: $m / 3$, the expectation number of satisfied constraints is $m / 3$.

Difficulties

- Betweenness AA: Is there α that satisfies $\geq m / 3+\kappa$ constraints? (κ is the parameter)
- Benny Chor's question in Niedermeier's book (2006): What is the parameterized complexity of Betweenness AA?
- Difficult to estimate $\mathbb{E}\left(X^{2}\right)$, practically impossible to do $\mathbb{E}\left(X^{4}\right)$, but we cannot use Hypercontractive Inequality as X is not a polynomial of constant-bounded degree.
- What to do?

Way Around Difficulties-1

- Gutin, Kim, Mnich and Yeo [JCSS, ta]: Betweenness AA has an $O\left(\kappa^{2}\right)$-kernel.
- An instance (V, \mathcal{C}), where V is the set of variables and $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ is the set of betweenness constraints.
- A random function $\phi: V \rightarrow\{0,1,2,3\}$.
- ϕ-compatible bijections α : if $\phi\left(v_{i}\right)<\phi\left(v_{j}\right)$ then $\alpha\left(v_{i}\right)<\alpha\left(v_{j}\right)$.

Way Around Difficulties-2

- Let α be a random ϕ-compatible bijection and $\nu_{p}(\alpha)=1$ if C_{p} is satisfied and 0 , otherwise.
- Let the weights $w\left(C_{p}, \phi\right)=\mathbb{E}\left(\nu_{p}(\alpha)\right)-1 / 3$ and $w(\mathcal{C}, \phi)=\sum_{p=1}^{m} w\left(C_{p}, \phi\right)$.

Lemma

If $w(\mathcal{C}, \phi) \geq \kappa$ then (V, \mathcal{C}) is a Yes-instance of Betweenness AA.

- Thus, to solve Betweenness AA, it suffices to find ϕ for which $w(\mathcal{C}, \phi) \geq \kappa$.
- We may forget about bijections α !

Thank you!

- Questions?
- Comments?

