Polynomial-size Kernels for Problems
 Parameterized Above Tight Lower Bounds

Gregory Gutin

Department of Computer Science
Royal Holloway, University of London

Fredericia 2009, 27th November 2009

Outline

(1) Introduction
(2) Various Parameterizations
(3) Strictly Above/Below Expectation Method
(4) Linear Ordering Problem AA
(5) Exact r-SAT AA
(6) Betweenness AA
(7) Lin-2 AA

Introduction
Various Parameterizations
Strictly Above/Below Expectation Method
Linear Ordering Problem AA
Exact r-SAT AA
Betweenness AA
Lin-2 AA

Outline

(1) Introduction

(2) Various Parameterizations
(3) Strictly Above/Below Expectation Method
(a) Linear Ordering Problem AA
(5) Exact r-SAT AA
(4) Betweenness AA
(7) Lin-2 AA

Fixed-parameter Tractability

- A parameterized problem Π : a set of pairs (I, k) where I is the main part and k (usually an integer) is the parameter.
- Π is fixed-parameter tractable (FPT) if membership of (I, k) in Π can be decided in time $O\left(f(k)|I|^{c}\right)$, where $|I|$ is the size of $I, c=O(1)$ and $f(k)$ is a computable function.
- The idea: for small values of $k, O\left(f(k) \mid \|^{c}\right)$ is not too large.

Fixed-parameter Tractability

- Π is fixed-parameter tractable (FPT) if membership of (I, k) in Π can be decided in time $O\left(f(k)|I|^{c}\right)$, where $|I|$ is the size of $I, c=O(1)$ and $f(k)$ is a computable function.
- Examples of FPT problems:
- Does a graph G have a vertex cover of size $\leq k$? An algorithm of runtime $O\left(1.2852^{k}+k n\right)$ (Chen, Kanj and Jia, 2001) instead of an $O\left(n^{k} m\right)$-algorithm.
- Does a digraph D have a spanning out-tree with $\leq k$ leaves? Algorithms of runtime $4^{k} n^{O(1)}$ (Kneis, Langer and Rossmanith, 2008) and $3.72^{k} n^{O(1)}$ (Daligault, Gutin, Kim and Yeo, 2009) instead of an $O\left(n^{k} m\right)$-algorithm.

Kernelization

- A kernelization of Π polynomial-time algorithm that maps an instance $(x, k) \in \Pi$ to an instance $\left(x^{\prime}, k^{\prime}\right) \in \Pi$ (the kernel) such that
- (x, k) is YES iff $\left(x^{\prime}, k^{\prime}\right)$ is Yes
- $k^{\prime} \leq f(k)$ and $\left|x^{\prime}\right| \leq g(k)$ for some functions f and g.
- The function $g(k)$ is called the size of the kernel.
- A parameterized problem is FPT if and only if it is decidable and admits a kernelization.
- Wanted: low degree polynomial-size kernels (for preprocessing).

Parameterized Algorithms Monographs

- R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer Verlag, 1999.
- J. Flum and M. Grohe. Parameterized Complexity Theory. Springer Verlag, 2006.
- R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.

Outline

(1) Introduction

(2) Various Parameterizations
(3) Strictly Above/Below Expectation Method
(4) Linear Ordering Problem AA
(3) Exact r-SAT AA
(6) Betweenness AA
(7) $\operatorname{Lin}-2$ A A

Various Parameterizations

- Above we considered standard parameterizations: the parameter is the size of a set to optimize.
- Parameterizations using structural parameters such as treewidth, cliquewidth, the number of vertices to delete to make G bipartite, etc.
- Parameterizations above and below tight bounds.

Acyclic Subgraphs of Digraphs: Standard Parameterization

- Given a digraph $D=(V, A)$, find an acyclic subgraph $H=(V, B)$ of D with the maximum number of arcs.
- Standard parameterization: $k=|B|$. Namely, does D have an acyclic subgraph with at least k arcs?
- Standard parameterization is FPT as $|B| \geq|A| / 2$: if $k \leq|A| / 2$ the answer is YES otherwise $|V| \leq|A|+1 \leq 2 k$ and we use a brute-force algorithm of running time $|A|^{O(1)}(2 k)$! to check whether the answer is YES.
- k is supposed to be small (for $|A|^{O(1)}(2 k)$! to be tractable), but $k>|A| / 2$ is large when $|A|$ is large.

Acyclic Subgraphs of Digraphs: Parameterization above the Average

- Parameterization Above Tight Lower Bound: Does $D=(V, A)$ have an acyclic subgraph with at least $|A| / 2+k$ arcs? [Acyclic AA]
- The bound is tight: For symmetric digraphs, $k=0$: a digraph D is symmetric if $x y \in A$ implies $y x \in A$.
- Mahajan, Raman and Sikdar (2009): Is Acyclic AA fixed-parameter tractable?

Outline

(1) Introduction
(2) Various Parameterizations
(3) Strictly Above/Below Expectation Method
(4) Linear Ordering Problem AA
(5) Exact r-SAT AA
(8) Betweenness AA
(7) Lin-2 AA

Strictly Above/Below Expectation Method (SABEM): Symmetric Case

- SABEM was recently introduced by GG, Kim, Szeider and Yeo [IWPEC'09].
- Apply some reduction rules to reduce the problem to its special case.
- Introduce a random variable X such that if $\operatorname{Prob}(X \geq k)>0$ then the answer to the problem AA is YES.
- If X is symmetric, then $\operatorname{Prob}\left(X \geq \sqrt{\mathbb{E}\left(X^{2}\right)}\right)>0$.
- If $k \leq \sqrt{\mathbb{E}\left(X^{2}\right)}$ then YES. Otherwise, $\sqrt{\mathbb{E}\left(X^{2}\right)}<k$ and we can often solve the problem using a brute force algorithm.

Strictly Above/Below Expectation Method: Asymmetric Case

Lemma (Alon, GG, Krivelevich, 2004; Alon, GG, Kim, Szeider, Yeo, SODA'2010)

Let X be a real random variable and suppose that its first, second and forth moments satisfy $\mathbb{E}(X)=0, \mathbb{E}\left(X^{2}\right)=\sigma^{2}>0$ and $\mathbb{E}\left(X^{4}\right) \leq b\left(\mathbb{E}\left(X^{2}\right)\right)^{2}$, respectively. Then $\operatorname{Prob}\left(X>\frac{\sigma}{2 \sqrt{b}}\right)>0$.

Lemma (Hypercontractive Inequality, Bonami, Gross, 1970s)

Let $f=f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial of degree r in n variables x_{1}, \ldots, x_{n}. Define a random variable X by choosing a vector $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{-1,1\}^{n}$ uniformly at random and setting $X=f\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$. Then $\mathbb{E}\left(X^{4}\right) \leq 9^{r}\left(\mathbb{E}\left(X^{2}\right)\right)^{2}$.

Outline

(1) Introduction

(2) Various Parameterizations
(3) Strictly Above/Below Expectation Method
(4) Linear Ordering Problem AA
(5) Exact r-SAT AA
(6) Betweenness AA
(7) $\operatorname{Lin}-2$ AA

Reduction Rule for Linear Ordering Problem AA

- Linear Ordering AA: each arc ij has positive integral weight $w_{i j}$, does $D=(V, A)$ have an acyclic subgraph of weight at least $W / 2+k$, where $W=\sum_{i j \in A} w_{i j}$?
- Reduction rule: Assume D has a directed 2-cycle iji;
- if $w_{i j}=w_{j i}$ delete the cycle,
- if $w_{i j}>w_{j i}$ delete the arc $j i$ and replace $w_{i j}$ by $w_{i j}-w_{j i}$,
- if $w_{j i}>w_{i j}$ delete the arc $i j$ and replace $w_{j i}$ by $w_{j i}-w_{i j}$.
- Thus, we've reduced Linear Ordering AA to the one on oriented graphs.

SABEM for Linear Ordering AA-1

- Let $D=(V, A)$ be an oriented graph, let $n=|V|$.
- Consider a random bijection: $\alpha: V \rightarrow\{1, \ldots, n\}$ and a random variable $X(\alpha)=\frac{1}{2} \sum_{i j \in A} \varepsilon_{i j}(\alpha)$, where $\varepsilon_{i j}(\alpha)=w_{i j}$ if $\alpha(i)<\alpha(j)$ and $\varepsilon_{i j}(\alpha)=-w_{i j}$, otherwise.
- $X(\alpha)=\sum\left\{w_{i j}: i j \in A, \alpha(i)<\alpha(j)\right\}-W / 2$. Thus, the answer is YES iff there is an $\alpha: V \rightarrow\{1, \ldots, n\}$ such that $X(\alpha) \geq k$.
- Since $\mathbb{E}\left(\varepsilon_{i j}\right)=0$, we have $\mathbb{E}(X)=0$.

SABEM for Linear Ordering AA-2

Lemma

$\mathbb{E}\left(X^{2}\right) \geq W^{(2)} / 12$, where $W^{(2)}=\sum_{i j \in A} w_{i j}^{2}$.
Since X is symmetric, we have $\operatorname{Prob}\left(X \geq \sqrt{W^{(2)} / 12}\right)>0$. Hence, if $\sqrt{W^{(2)} / 12} \geq k$, there is an $\alpha: V \rightarrow\{1, \ldots, n\}$ such that $X(\alpha) \geq k$ and, thus, the answer is YES. Otherwise, $|A| \leq W^{(2)}<12 \cdot k^{2}$. Thus, we have:

Theorem (GG, Kim, Szeider, Yeo, IWPEC'09)

Linear Ordering AA is fixed-parameter tractable.

Outline

(1) Introduction

(2) Various Parameterizations
(3) Strictly Above/Below Expectation Method
a Linear Ordering Problem A^
(5) Exact r-SAT AA
(6) Betweenness AA
(7) Lin-2 AA

Exact r-SAT

- Exact r-SAT: A CNF formula \mathcal{F} which contains m clauses each with r literals. Is there a truth assignment satisfying all m clauses of \mathcal{F} ?
- Max Exact r-SAT: Find a truth assignment satisfying the max number of clauses.
- The prob. of a clause to be satisfied: $1-2^{-r}$.
- The average number of satisfied clauses: $\left(1-2^{-r}\right) m$. This lower bound is tight.

Exact r-SAT AA-1

- Exact r-SAT AA: Is there a truth assignment satisfying $\geq\left(1-2^{-r}\right) m+k 2^{-r}$ clauses?
- Mahajan, Raman and Sikdar (2009): What is the parameterized complexity of ExACT r-SAT AA for each fixed r ?
- Alon, GG, Kim, Szeider and Yeo (SODA 2010): Exact r-SAT AA is FPT for each fixed r.

Exact r-SAT AA-2

- $-1=$ true.
- $X=\sum_{C \in \mathcal{F}}\left[1-\prod_{x_{i} \in \operatorname{var}(C)}\left(1+\varepsilon_{i} x_{i}\right)\right]$, where $\varepsilon_{i} \in\{-1,1\}$ and $\varepsilon_{i}=1$ iff x_{i} is in C.
- For a truth assignment τ, we have $X=2^{r}\left(\operatorname{sat}(\tau, F)-\left(1-2^{-r}\right) m\right)$.
- The answer to Exact r-SAT AA is Yes iff $X \geq k$.

Exact r-SAT AA-3

- After algebraic simplification $X=X\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ can be written as $X=\sum_{I \in \mathcal{S}} X_{I}$, where $X_{I}=c_{l} \prod_{i \in I} x_{i}$, each c_{l} is a nonzero integer and \mathcal{S} is a family of nonempty subsets of $\{1, \ldots, n\}$ each with at most r elements. [This is a Fourier expansion of X.]
- $\mathbb{E}(X)=0$ [Condition 1 of the Alon et al. inequality]
- $\mathbb{E}\left(X^{2}\right)=\sum_{l \in \mathcal{S}} c_{l}^{2}>0$ [by Parseval's Theorem]
- By Hypercontractive Inequality, $\mathbb{E}\left(X^{4}\right) \leq 9^{r} \mathbb{E}\left(X^{2}\right)^{2}$. [Condition 2 of the Alon et al. inequality]

Exact r-SAT AA-4

- By the Alon et. al. inequality, $\operatorname{Prob}\left(X \geq \frac{\sqrt{\mathbb{E}\left(X^{2}\right)}}{2 \cdot 3^{r}}\right)>0$.
- $\mathbb{E}\left(X^{2}\right)=\sum_{I \in \mathcal{S}} c_{I}^{2} \geq|\mathcal{S}|>0$
- If $k \leq \frac{\sqrt{|\mathcal{S}|}}{2 \cdot 3^{r}}$ then YES.
- Otherwise $n^{\prime} \leq r|\mathcal{S}| \leq 4 r 9^{r} k^{2}=O\left(k^{2}\right)\left(n^{\prime}\right.$ is the number of variables in the Fourier expansion of X).
- Thus, an $m^{O(1)} 2^{O\left(k^{2}\right)}$-time algorithm.
- More work gives: $O\left(k^{2}\right)$-size kernel.

Outline

(1) Introduction

(2) Various Parameterizations
(3) Strictly Above/Below Expectation Method
a Linear Ordering Problem A A
(5) Exact r-SAT AA
(6) Betweenness AA
(7) Lin-2 AA

Betweenness AA

- Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of variables and let \mathcal{C} be a set of m betweenness constraints of the form $\left(v_{i},\left\{v_{j}, v_{k}\right\}\right)$.
- Given a bijection $\alpha: V \rightarrow\{1, \ldots, n\}$, we say that a constraint $\left(v_{i},\left\{v_{j}, v_{k}\right\}\right)$ is satisfied if either $\alpha\left(v_{j}\right)<\alpha\left(v_{i}\right)<\alpha\left(v_{k}\right)$ or $\alpha\left(v_{k}\right)<\alpha\left(v_{i}\right)<\alpha\left(v_{j}\right)$.
- Betweenness: find a bijection α satisfying the max number of constraints in \mathcal{C}.
- Tight Lower Bound: $m / 3$, the expectation number of satisfied constraints is $m / 3$.
- Betweenness AA: Is there α that satisfies $\geq m / 3+\kappa$ constraints? (κ is the parameter)

Difficulties

- Benny Chor's question in Niedermeier's book (2006): What is the parameterized complexity of BETWEENNESS AA?
- Difficult to estimate $\mathbb{E}\left(X^{2}\right)$, practically impossible to do $\mathbb{E}\left(X^{4}\right)$, but we cannot use Hypercontractive Inequality as X is not a polynomial of constant-bounded degree.
- What to do?

Way Around Difficulties-1

- Gutin, Kim, Mnich and Yeo: Betweenness AA is FPT.
- An instance (V, \mathcal{C}), where V is the set of variables and $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ is the set of betweenness constraints.
- A random function $\phi: V \rightarrow\{0,1,2,3\}$.
- ϕ-compatible bijections α : if $\phi\left(v_{i}\right)<\phi\left(v_{j}\right)$ then $\alpha\left(v_{i}\right)<\alpha\left(v_{j}\right)$.

Way Around Difficulties-2

- Let α be a random ϕ-compatible bijection and $\nu_{p}(\alpha)=1$ if C_{p} is satisfied and 0 , otherwise.
- Let the weights $w\left(C_{p}, \phi\right)=\mathbb{E}\left(\nu_{p}(\alpha)\right)-1 / 3$ and $w(\mathcal{C}, \phi)=\sum_{p=1}^{m} w\left(C_{p}, \phi\right)$.

Lemma

If $w(\mathcal{C}, \phi) \geq \kappa$ then (V, \mathcal{C}) is a Yes-instance of Betweenness AA.

- Thus, to solve Betweenness AA, it suffices to find ϕ for which $w(\mathcal{C}, \phi) \geq \kappa$.
- We may forget about bijections α !

Outline

(1) Introduction

(2) Various Parameterizations
(3) Strictly Above/Below Expectation Method
a Linear Ordering Problem AA
(5) Exact r-SAT AA
(4) Betweentiess AA
(7) Lin-2 AA

Lin-2 AA

- A system of linear equations over $\mathrm{GF}(2): \sum_{i \in I_{j}} z_{i}=b_{j}$, $\iota_{j} \subseteq\{1, \ldots, n\}, j=1, \ldots, m$. Equation j has weight $w_{j} \in \mathbb{Z}_{+}$.
- The problem Max Lin-2 asks for an assignment of values to the variables that maximizes the total weight of the satisfied equations.

Lin-2 AA

- Let $W=w_{1}+\cdots+w_{m}$. A greedy-type algorithm guarantees a solution of weight $\geq W / 2$.
- Lin-2 AA: Does the system have a solution of weight $\geq W / 2+k$?
- Mahajan, Raman and Sikdar (2009): What is the parameterized complexity of LiN-2 AA?

Lin-2 AA

- $X=\sum_{j=1}^{m} X_{j}$, where $X_{j}=(-1)^{b_{j}} w_{j} \prod_{i \in I_{j}} x_{i}, x_{i} \in\{-1,1\}$.
- Observe that $X_{j}=w_{j}$ if equation j is satisfied and $X_{j}=-w_{j}$, otherwise.
- The answer to Lin-2 AA is Yes iff $X \geq 2 k$.
- Difficulty: in general $\left|I_{j}\right|$ is not bounded from above [we cannot apply Hypercontractive Inequality].

Lin-2 AA

- Not proved to be FPT yet, but proved FPT [GG, Kim, Szeider, Yeo, IWPEC'09] in three cases:
- Case 1: There exists a set U of variables such that each equation of S contains an odd number of variables from U. [Symmetric X]
- Case 2: $\leq O(1)$ variables in each equation. [Alon et al. inequality + Hypercontractive Inequality]
- Case 3: Every variable in $\leq O(1)$ equations. [Alon et al. inequality $+\mathbb{E}\left(X^{4}\right)$ bounded without Hypercontractive Inequality]

Thank you!

- Questions?
- Comments?

