
On-line bin packing with two item sizes

Gregory Gutin, Tommy Jensen and Anders Yeo∗

Department of Computer Science
Royal Holloway, University of London

Egham, Surrey, TW20 0EX, UK
gutin(tommy,anders)@cs.rhul.ac.uk

June 10, 2005

Abstract

We study the on-line bin packing problem (BPP). In BPP, we are given a sequence B
of items a1, a2, . . . , an and a sequence of their sizes (s1, s2, . . . , sn) (each size si ∈ (0, 1])
and are required to pack the items into a minimum number of unit-capacity bins. Let
R∞{α,β} be the minimal asymptotic competitive ratio of an on-line algorithm in the case
when all items are only of two different sizes α and β. We prove that max{R∞{α,β} : α, β ∈
(0, 1]} = 4/3. We also obtain an exact formula for R∞{α,β} when max{α, β} > 1

2 . This
result extends the result of Faigle, Kern and Turan (1989) that R∞{α,β} = 4

3 for β = 1
2 − ε

and α = 1
2 + ε for any fixed nonnegative ε < 1

6 .
Keywords: On-line algorithms, bin packing, competitive ratio.

1 Introduction

In this paper we study the classical on-line bin packing problem (BPP), which is one of the
oldest and most well-studied problems in optimization. In BPP, we are given a sequence
B of items a1, a2, . . . , an and a sequence of their sizes (s1, s2, . . . , sn) (each size si ∈ (0, 1])
and are required to pack the items into a minimum number of unit-capacity bins. In other
words, we need to partition B into a minimum number m of subsets B1, B2, . . . , Bm so that∑

ai∈Bj
si ≤ 1 for each j = 1, 2, . . . ,m. For surveys of BPP, see [3, 4, 5].

For any S ⊆ (0, 1], we let B(S) denote the set of all sequences B with all item sizes si ∈ S,
i = 1, 2, . . . , n. For a given sequence L and an on-line algorithm A, let A(L) be the number
of bins required for L by algorithm A; let OPT(L) be the minimum number of bins needed
to pack the items of L off-line, that is, when they are all available at once. The asymptotic
competitive ratio R∞

S (A) of A on B(S) is

limsupN→∞max{ A(L)
OPT(L)

: L ∈ B(S), OPT(L) = N}.

With S = (0, 1] we note that R∞
S (A) = R∞(A) is the usual asymptotic competitive

ratio of an on-line bin packing algorithm A. Let R∞
S be the minimum possible asymptotic

competitive ratio of an algorithm for the bin packing problem on B(S). An on-line algorithm
A with R∞

S (A) = R∞
S is called an optimal algorithm.

∗This research of all authors was partially supported by a Leverhulme Trust grant. We thank Gerhard
Woeginger for drawing our attention to [6]. Correspondence to: GG.

1

Ullman [11] was the first to investigate the on-line bin packing problem. He proved
that the First Fit algorithm has asymptotic competitive ratio 1.7. This result was then
published in [7]. Yao [12] showed that Revised First Fit has asymptotic competitive ratio
5
3 and proved that every on-line BPP algorithm has asymptotic competitive ratio at least
1.5. Yao’s upper bound was improved by Seiden [9] to 1.58889, which is currently the best
result. Brown [1] and Liang [8] independently improved Yao’s lower bound to 1.53635. This
was further improved by van Vliet [10] to 1.54014. Chandra [2] showed that the preceding
lower bounds also apply to randomized algorithms. So, currently no optimal on-line BPP
algorithm is known.

In many applications of BPP, there is only a small number of item sizes and, thus, it
makes sense to study on-line algorithms specialized to pack inputs from B(S), where S is a
small set of item sizes.

In this paper, we study R∞
{α,β}, where α, β ∈ (0, 1]. Our main result is that max{R∞

{α,β} :
α, β ∈ (0, 1]} = 4/3 (see Theorem 3.5). The easy lower bound max{R∞

{α,β} : α, β ∈ (0, 1]} ≥
4/3 was shown in [8, 12] (see also Lemma 2.1 in this paper) and we prove the matching upper
bound is a series of lemmas.

We also study R∞
{α,β} in more detail for the case max{α, β} > 1

2 . In Theorem 2.3, we
obtain R∞

{α,β} for all values of α and β provided max{α, β} > 1
2 . Our result extends the result

of Faigle, Kern and Turan [6] that R∞
{α,β} = 4/3 for β = 1

2 − ε and α = 1
2 + ε for every fixed

nonnegative ε < 1
6 (see Theorem 9 in [6]).

It seems much harder to obtain an exact formula for R∞
{α,β} for all values of α and β.

Also, for t ≥ 3 and BPP on B(S) with |S| ≤ t, it seems much more difficult to design optimal
on-line algorithms. We believe that these problems are worth studying from both theoretical
and practical points of view.

In what follows, let α and β denote the two item sizes, where 0 < β ≤ α ≤ 1. For
simplicity we will denote items of size α by α-items, and items of size β by β-items. We
assume that all bins have capacity 1. Let xi denote the largest integer such that xiβ + iα ≤ 1
(i.e. at most xi items of size β will fit in a bin together with i items of size α). We say that
almost all bins of a set S satisfy a certain property if all or all except one bin in S satisfy
this property.

2 When α > 1
2

We start by proving a lower bound for R∞
{α,β}.

Lemma 2.1 If α > 1/2, then R∞
{α,β} ≥

x2
0

x2
0−x1(x0−x1)

≥ 4
3 .

Proof: If x1 = 0 then the lemma clearly holds as in this case x2
0

x2
0−x1(x0−x1)

= 1, so we
may assume that x1 > 0. Clearly we also have x0 > x1.

Let A be an optimal algorithm for the given α and β, and assume that the input starts
of with k β-items. Let Bfull be the number of bins produced by A, which do not have space
for an additional α-item, and let Bα be the number of bins where an α-item would still fit.
Since A has asymptotic competitive ratio R∞

{α,β}, the following holds, for some constant c∗,
not depending on k.

Bfull + Bα − c∗ ≤ R∞
{α,β}

k

x0

2

Furthermore if another k
x1

α-items arrive after the k β-items, then the following must also
hold.

Bfull +
k

x1
− c∗ ≤ R∞

{α,β}
k

x1

Observe that the above two inequalities are equivalent to the following:

x0
Bfull+Bα

k ≤ R∞
{α,β} + c∗x0

k , x1
Bfull

k + 1 ≤ R∞
{α,β} + c∗x1

k

Let r′k = R∞
{α,β} + c∗x0

k and observe that r′k tends to R∞
{α,β} when k goes to infinity, as c∗

and x0 do not depend on k. Furthermore, since k ≤ x0Bfull +x1Bα and x0 > x1 we conclude
that the following must hold.

x0
Bfull+Bα

x0Bfull+x1Bα
≤ r′k, x1

Bfull

x0Bfull+x1Bα
+ 1 ≤ r′k

Let B = Bfull

Bα
and let γ = x1

x0
. The above inequalities can be rewritten as follows:

f(B) ≤ r′k, where f(t) = t+1
t+γ

g(B) ≤ r′k, where g(t) = γt
t+γ + 1

Since γ is a constant and 0 < γ < 1, observe that f(t) is a decreasing function and g(t)
is an increasing function. Thus, if f(t0) = g(t0), then f(t0) ≤ max{f(B), g(B)} ≤ r′k.

This implies the following:

r′k ≥ g(1−γ
γ) = f(1−γ

γ) = (1−γ)/γ+1
(1−γ)/γ+γ = 1

1−γ(1−γ) = 1
1−x1

x0
(1−x1

x0
)

= x2
0

x2
0−x1(x0−x1)

As mentioned earlier r′k tends to R∞
{α,β} when k goes to infinity, which implies that

R∞
{α,β} ≥

x2
0

x2
0−x1(x0−x1)

. By (x0 − 2x1)2 ≥ 0, we have x2
0

x2
0−x1(x0−x1)

≥ 4
3 . 2

Lemma 2.2 provides the matching upper bound for R∞
{α,β}, and its proof consists in

exhibiting an algorithm for this problem and a suitable upper bound for its asymptotic
performance ratio. The difficulty to overcome when packing items of sizes α > 1/2 and
β < 1/2 on-line is to keep a proper balance between the numbers of those bins which become
packed full solely with β-items, and those bins which are packed so as to have enough room
left for an α-item in addition to any β-items. Accumulating too many bins of the former
type during the packing procedure will be harmful if subsequent input items turn out to be
all α-items, each of which will need to be put in an additional bin, thus leaving the solution
far from optimal. Whereas a surplus of bins of the latter type leaves the solution suboptimal
in the event that no new input items arrive. Thus throughout execution of the algorithm
described in the following proof, the primary objective is to distribute the arriving β-items
so as to keep close to a certain ratio Q between the two types of bins at all times, where Q
depends on the sizes α and β. With this in mind, the algorithm is fairly straightforward.

Lemma 2.2 If α > 1/2, then R∞
{α,β} ≤

x2
0

x2
0−x1(x0−x1)

.

3

Proof: If x1 = 0 then it is not difficult to obtain R∞
{α,β} = 1, so assume that x1 > 0.

Clearly we also have x0 > x1.
Let Q = x1

x0−x1
, and consider the following on-line algorithm.

Our algorithm will maintain four sets of bins, A0, A1, B0 and B1. They will have the
following properties.

A0 consists of bins with 0 α-items and at least 1 β-item
A1 consists of bins with 1 α-item and at least 1 β-item
B0 consists of bins with 0 α-items and at most x1 β-items
B1 consists of bins with 1 α-item and 0 β-items

The bins in A0 are committed to being filled entirely with β-items. All other β-items
that arrive will be distributed in bins from A1 and B0, where they, respectively, either join
an already packed α-item, or wait for an α-item to arrive and be packed into the same bin.
The bins in B1 are used only in case of a momentary surplus of α-items.

Let a0, a1, b0 and b1 denote the number of bins in A0, A1, B0 and B1, respectively. The
algorithm proceeds by the following guidelines:

• If the next item is an α-item, and b0 > 0, then add the item to a bin in B0, and move
the resulting bin from B0 to A1. If b0 = 0 then put the α-item in a new bin, and add
it to B1.

• If the next item is a β-item, then apply one of the following rules, listed in order of
priority:

– If a bin in A1 does not contain x1 β-items, then add the β-item to this bin.

– If a bin in A0 does not contain x0 β-items, then add the β-item to this bin.

– If a bin in B0 does not contain x1 β-items, then add the β-item to this bin.

– If b1 > 0, then add the β-item to a bin in B1, and move the bin to A1.

– Otherwise add the β-item to a new bin. If b0+a1
a0+1 < Q then add the new bin to B0,

and if b0+a1
a0+1 ≥ Q then add the new bin to A0.

Observe that a0 = b0 = a1 = 0 if and only if the input does not have β-items, in which
case the algorithm produces the optimal solution. Thus, in the rest of the proof, we may
assume that at least one β-item is present in the input, so max{a0, b0, a1} > 0.

During the entire execution of the algorithm, the following properties hold.

(a): Almost all bins in A0 contain x0 β-items.

(b): Almost all bins in A1 and B0 contain x1 β-items.

(c): b0 = 0 or b1 = 0. This is clearly true in the beginning of the algorithm and one can see
from the algorithm description that bi becomes positive only if b1−i = 0 for i = 0, 1.

(d): b0+a1
a0

≥ Q (for a0 = 0, b0+a1
a0

= ∞ since max{a0, b0, a1} > 0, so we may assume that
a0 > 0). Indeed, the operations of the algorithm, except the very last one, do not
decrease the value of b0+a1

a0
. The last operation only decreases the value of b0+a1

a0
by

increasing the value of a0 by 1 if b0+a1
a0+1 ≥ Q. So even after decreasing the value of the

fraction b0+a1
a0

, it remains at least Q. Moreover, just after a0 turns from zero to one,
b0+a1

a0
≥ Q by the corresponding condition of the last operation of the algorithm.

4

(e): b0+a1−1
a0+1 < Q. This is the case as the fraction b0+a1−1

a0+1 equals −1 in the beginning of
the algorithm and can only increase if a β-item arrives and one of the last two rules
is applied. However, by (c), since the most recent increase of b0 (using the last rule),
the second last operation is no longer used. Notice that at the time when b0 was last
increased we had b0+a1

a0+1 < Q.

Let r = x2
0

x2
0−x1(x0−x1)

.

(f): If b1 > 0, then a1(r − 1) + a0(
(r−1)x0

x1
− 1) ≥ 0. This holds by the following:

a1(r − 1) + a0(
(r−1)x0

x1
− 1) = a0(r − 1)[a1

a0
+ (x0

x1
− 1

r−1)]

≥ a0(r − 1)[Q + x0(x0−x1)
x1(x0−x1) −

x2
0−x1(x0−x1)
x1(x0−x1)]

= a0(r − 1)[x2
1

x1(x0−x1) + −x2
1

x1(x0−x1)]
= 0

In the above argument, we use the inequality Q ≤ a1/a0, which holds due to (c) and (d).

Since we are only considering asymptotic ratios, we may by (a) and (b) assume that all
bins in B0 and A1 contain x1 β-items, and all bins in A0 contain x0 β-items. By (d) and (e),
b0+a1−1

a0+1 < Q ≤ b0+a1
a0

. Define a′1 = a1 − e, a′0 = a0 + e, and f(e) = (b0 + a′1)/a′0 for e ∈ [0, 1].
We have

f(1) =
b0 + a1 − 1

a0 + 1
≤ f(e) ≤ b0 + a1

a0
= f(0).

Since f(e) is a continuous function, for some value of e ∈ [0, 1), b0+a′1
a′0

= Q. Let us fix these
values of a′0 and a′1.

Let opt denote the size of the optimal solution. We are now ready to prove that r · opt−
(a0 + a1 + b0 + b1) ≥ 0, which would complete the proof. Before considering the following
four cases, let us estimate the value of opt. Since each α-item requires a separate bin, the
optimum equals a1 + b1 plus γ, the minimum number of bins required to accommodate the
β-items not fitting into the bins from A1 and B1. Taking into consideration that a1 + b1 bins
with α-items in them may accommodate up to (a1 + b1)x1 β-items,

γ ≤ max{0, (a1x1 + a0x0 + b0x1 − (a1 + b1)x1)/x0}.
Thus,

opt ≥ a1 + b1 + max{0, (a0x0 + b0x1 − b1x1)/x0}. (1)

Case 1. b0 > 0: By (c), we observe that b1 = 0 and, by (1) and a0 + a1 = a′0 + a′1, we get
the following:

r · opt− (a0 + a1 + b0) ≥ r(a1 + x0a0+x1b0
x0

)− a0 − a1 − b0

= (r − 1)a′0 + (r x1
x0
− 1)b0 + (r − 1)a′1

≥ a′0[(r − 1) + (r x1
x0
− 1) · b0+a′1

a′0
]

= a′0r[1− 1
r + (x1

x0
− 1

r) ·Q]
= a′0r[1− (1− x1(x0−x1)

x2
0

) + (x1
x0
− (1− x1(x0−x1)

x2
0

)) · x1
x0−x1

]

= a′0r[
x1(x0−x1)

x2
0

− (x0−x1)2

x2
0

· x1
x0−x1

]

= a′0r[
x1(x0−x1)

x2
0

− x1(x0−x1)
x2
0

]

= 0
This completes the proof of Case 1.

5

Case 2. b1 > 0 and a0x0 ≥ b1x1: Observe that by (c) b0 = 0 and by (1) opt ≥ b1 + a1 +
a1x1+a0x0−(b1+a1)x1

x0
. Note that r−1−rx1/x0 < 0, as 1−1/r = x1(x0−x1)/x2

0 < x1/x0.
This implies the following (by (f) and a0x0 ≥ b1x1):

r · opt− (a0 + a1 + b1) ≥ r(b1 + a1 + a0 − x1b1
x0

)− a0 − a1 − b1

= (r − 1)(a0 + a1) + b1(r − r x1
x0
− 1)

≥ (r − 1)(a0 + a1) + a0x0
x1

· (r − r x1
x0
− 1)

= a1(r − 1) + a0(
(r−1)x0

x1
− 1)

≥ 0

Case 3. b1 > 0 and a0x0 < b1x1: By (1), b1 + a1 = opt, which implies the following (by (f)
and a0x0 < b1x1):

r · opt− (a0 + a1 + b1) = (r − 1)a1 + (r − 1)b1 − a0

≥ (r − 1)a1 + (r − 1)a0
x0
x1
− a0

= a1(r − 1) + a0(
(r−1)x0

x1
− 1)

≥ 0

Case 4. b0 = 0 and b1 = 0: Observe that our solution a0 + a1 is optimal in this case, so we
are done.

This completes the proof. 2

The above two lemmas immediately imply the following:

Theorem 2.3 If α > 1/2, then R∞
{α,β} = x2

0

x2
0−x1(x0−x1)

.

Corollary 2.4 [6] We have R∞
{α,β} = 4

3 for β = 1
2−ε and α = 1

2 +ε for any fixed nonnegative
ε < 1

6 .

Proof: Observe that x0 = 2 and x1 = 1, and apply the formula in Theorem 2.3. 2

3 When α ≤ 1
2

Lemma 3.1 If 1/3 < α ≤ 1/2 and x2 + x0 ≥ 2x1, then R∞
{α,β} ≤

x2
0

x2
0−x2(x0−x2)

.

Proof: When x2+x0 ≥ 2x1 there exists an optimal solution with the following properties.
Almost all bins contain either two α-items or no α-items, as if two bins contain one α-item
each, then they can be rearranged so that one bin contains two α-items and the other contains
no α-item.

We now use the algorithm given in Lemma 2.2, with item sizes β and 2α, by always
placing either zero or two α-items in a bin (except possibly one bin). By the comment above
on the optimal solution we get the desired bound from Lemma 2.2. 2

Lemma 3.2 If 1/3 < α ≤ 1/2 and x2 + x0 < 2x1, then R∞
{α,β} ≤ 4

3 .

6

Proof: Before we describe the desired algorithm we prove a few claims, where k = bα/βc.
Claim A. x1 = x2 + k + 1 and x0 = x2 + 2k + 1 = 2x1 − x2 − 1.

Note that 1− α− (k + 1)β ≤ 1− 2α ≤ 1− α− kβ. So since exactly x2 β-items will fit in
a space of 1− 2α, we will be able to fit at least x2 + k β-items in 1− α, but not more than
x2+k+1 β-items. Therefore x1 = x2+k+i1, where i1 ∈ {0, 1}. Analogously x0 = x1+k+i2,
where i2 ∈ {0, 1}. However x2 +x0 < 2x1 implies that x2 +(x1 + k + i2) < x1 +(x2 + k + i1),
which in turn implies that i2 < i1. Therefore i1 = 1 and i2 = 0, which proves the claim.

Claim B. x1
x0
≤ 3

4 and x2
x0

< 1
3 .

As α ≥ β, we observe that k ≥ 1. Furthermore k ≥ x2, since otherwise 1 − 2α ≥
βx2 ≥ β(k + 1) > α, a contradiction against α > 1/3. Since x2 + 1 + (4k + 3x2 + 3) ≤
k + k + (4k + 3x2 + 3), we get the following:

4x1 = 4(k + x2 + 1) ≤ 3(2k + x2 + 1) = 3x0

This proves the first part of the claim. The second part follows from the fact that 3x2 ≤
2k + x2 = x0 − 1 < x0. This completes the proof of claim B.

Now consider the algorithm that greedily places all items in bins, without ever putting
an α-item and a β-item in the same bin. All bins, except at most two, will either contain x0

β-items or two α-items. Assume that our algorithm produces a bins containing two α-items
and b bins containing x0 β-items. Note that there exists an optimal solution where either
there is no bin containing two α-items or no bin containing zero α-items, as a bin with two
α-items and a bin with zero α-items can be rearranged so that we get two bins each with
one α-item and x2 + x0 ≤ 2x1. We aim to show (a + b)/opt ≤ 4/3. The following three cases
exhaust all possibilities.

Case 1. bx0 ≥ 2x1a: The optimal solution in this case must contain 2a bins each with
one α-item (and x1 β-items) and a further d bx0−2ax1

x0
e bins containing no α-items. As we

are considering the optimal asymptotic performance ratio, we may assume that the optimal
solution uses exactly opt = 2a + bx0−2ax1

x0
bins. By Claim B and b ≥ 2x1a/x0, this implies

the following:

opt = 2a + b− 2ax1
x0
− b/5 + b/5 ≥ 4

5b + 2a− 2ax1
x0

+ 2x1a
5x0

= 4
5b + a

(
2− 8x1

5x0

)
≥ 4

5b + a
(
2− 8·3

5·4
)

= 4
5b + 4

5a

The above implies (a + b)/opt ≤ 5
4 ≤ 4

3 , which completes the proof of Case 1.

Case 2. bx0 < 2x1a and bx0 ≥ x2a: The optimal solution in this case must contain either
one or two α-items in each bin. Assume that c bins contain exactly two α-items in an optimal
solution. Note that 2c+(opt− c) = 2a and x2c+x1(opt− c) = bx0. By inserting c = 2a−opt
(from the first equation) into the second equation, we get x2(2a− opt)+x1(2opt− 2a) = bx0,
and hence opt(2x1 − x2) = bx0 + 2ax1 − 2ax2. It follows, using b ≥ ax2

x0
, x0 + 1 = 2x1 − x2

and x2
x0

< 1
3 (by Claim B) that

opt = bx0+2a(x1−x2)
2x1−x2

= 3
4b + a2x1−2x2

x0+1 + b(x0
x0+1 − 3

4)
≥ 3

4b + ax0−x2+1
x0+1 + ax2

x0
(x0

x0+1 − 3
4) = 3

4b + ax0−x2+1+x2
x0+1 − a3x2

4x0

≥ 3
4b + a− a1

4 = 3
4(b + a)

This completes the proof of Case 2.

7

Case 3. bx0 < x2a: In this case the optimal solution is opt = a ≥ 3
4a+ 1

4 · bx0
x2
≥ 3

4(a+ b),
which completes the proof. 2

Lemma 3.3 If α ≤ 1/3, then R∞
{α,β} ≤ 4/3.

Proof: We simply fill every bin greedily, without placing items of sizes α and β in the
same bin. Note that almost all bins containing α-items (β-items) do not fit an additional
item of size α (β).

Now consider a bin containing only α-items, which does not fit an additional item of size
α. Let z denote the space left in the bin, and note that z < α and z ≤ 1 − 3α. Thus,
z ≤ 1 − 3α < 1 − 3z. This implies z < 1/4. Analogously for every bin that contains only
β-items and does not fit an additional item of size β, the space left in the bin is at most
1/4. As all bins except possibly two are at least 75% full, we get the desired asymptotic
performance ratio. 2

Lemma 3.4 If 0 < β ≤ α ≤ 1, then R∞
{α,β} ≤ 4/3.

Proof: If α > 1/2, then by Lemma 2.2 and x1(x0 − x1) ≤ (x0
2)2 (this follows from

(x0 − 2x1)2 ≥ 0) we have

R∞
{α,β} ≤

x2
0

x2
0 − x1(x0 − x1)

≤ x2
0

x2
0 − (x0

2)2
=

1
1− 1

4

=
4
3

If 1/3 < α ≤ 1/2 and x2 + x0 ≥ 2x1, then by Lemma 3.1 we have

R∞
{α,β} ≤

x2
0

x2
0 − x2(x0 − x2)

.

Similarly to the previous argument, we can now prove that R∞
{α,β} ≤ 4

3 .

If 1/3 < α ≤ 1/2 and x2 + x0 < 2x1, then Lemma 3.2 implies the desired result. We are
now done by Lemma 3.3. 2

Lemmas 2.1 and 3.4 imply immediately the following:

Theorem 3.5 We have max{R∞
{α,β} : α, β ∈ (0, 1]} = 4/3.

References

[1] D.J. Brown, A lower bound for on-line one-dimensional bin packing algorithms. Tech.
report R-864, Coordinated Science Laboratory, Urbana, IL, 1979.

[2] B. Chandra, Does randomization help in on-line bin packing? Inform. Process. Lett. 43
(1992) 15-19.

[3] E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson, Approximation Algorithms for Bin
Packing: A Survey. Approximation Algorithms for NP-Hard Problems, D. Hochbaum
(editor), PWS Publishing, Boston (1996), 46-93.

8

[4] E. G. Coffman, Jr., G. Galambos, S. Martello and D. Vigo, Bin Packing Approxima-
tion Algorithms: Combinatorial Analysis. Handbook of Combinatorial Optimization,
Supplement Volume A, D.-Z. Du and P.M. Pardalos (editors), Kluwer (1999) 151-208.

[5] J. Csirik and G. Woeginger, On-line packing and covering problems. On-line Algorithms
- the State of the Art, Lect. Notes In Comput. Sci. 1442, A. Fiat and G. Woeginger
(editors), Springer, New York (1998), 147-177.

[6] U. Faigle, W. Kern and G. Turan, On the performance of on-line algorithms for partition
problems. Acta Cybernetica 9 (1989), 107-119.

[7] M. R. Garey, R.L. Graham and J.D. Ullman, Worst-case analysis of memory allocation
algorithms. In Proc. 4th ACM Symp. Theory Comput. (1972) ACM, 143-150.

[8] F.M. Liang, A lower bound for online bin packing. Inform. Process. Lett. 10 (1980) 76-79.

[9] S. Seiden, On the online bin packing problem. J. ACM 49 (2002) 640-671.

[10] A. van Vliet, An improved lower bound for online bin packing algorithms. Inform.
Process. Lett. 43 (1992) 277-284.

[11] J.D. Ullman, The performance of a memory allocation algorithm. Tech. Report 100,
Princeton Univ., Princeton, NJ, 1971.

[12] A.C.C. Yao, New algorithms for bin packing. J. ACM 27 (1980) 207-227.

9

