Optimal on-line bin packing with two item sizes

Gregory Gutin, Tommy Jensen and Anders Yeo*

Department of Computer Science
Royal Holloway, University of London
Egham, Surrey, TW20 0EX, UK
gutin(tommy,anders)@cs.rhul.ac.uk

December 10, 2004

Abstract

The problem of on-line bin packing restricted to instances with only two item sizes
(known in advance) has a well-known lower bound of 4/3 for its asymptotic competitive
ratio. We present an algorithm which shows that this lower bound is also an upper
bound. Hence the asymptotic competitive ratio for this on-line problem is equal to 4/3.

Our result extends the corresponding result of Faigle, Kern and Turan (1989) for item

sizes restricted to % —e€ and % + € for any fixed nonnegative € < é.
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1 Introduction

In this paper we study the classical on-line bin packing problem (BPP), which is one of
the oldest and most well-studied problems in optimization. In BPP, we are given a set B
of items aj,as,...,a, and a sequence of their sizes (si,s2,...,s,) (each size s; € (0,1])
and are required to pack the items into a minimum number of unit-capacity bins. In other
words, we need to partition B into a minimum number m of subsets By, Bo, ..., B, so that
YaeB; si < 1 for each j =1,2,...,m. For surveys of BPP, see (3, 4, 5].

For any S C (0, 1], we let B(S) denote the set of all sequences B with all item sizes s; € S,
i=1,2,...,n. For a given sequence L and an on-line algorithm A, let A(L) be the number
of bins required for L by algorithm A; let OPT(L) be the minimum number of bins needed
to pack the items of L off-line, that is, when they are all available at once. The asymptotic
competitive ratio R ¢ of A on B(S) is

: A(L)
limsup o maX{OT(L) : L eB(S), OPT(L) = N}.

With S = (0, 1] we note that Ry’ ¢ = RY is the usual asymptotic competitive ratio of an
on-line bin packing algorithm A. ,

We say that almost all bins of a set S satisfy a certain property if all or all except one
bin in S satisfy this property.

Ullman [11] was the first to investigate the on-line bin packing problem. He proved
that the FIRST FIT algorithm has asymptotic competitive ratio 1.7. This result was then
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published in [7]. Yao [12] showed that REVISED FIRST FIT has asymptotic competitive ratio
% and proved that every on-line BPP algorithm has asymptotic competitive ratio at least
1.5. Yao’s upper bound was improved by Seiden [9] to 1.58889, which is currently the best
result. Brown [1] and Liang [8] independently improved Yao’s lower bound to 1.53635. This
was further improved by van Vliet [10] to 1.54014. Chandra [2] showed that the preceding
lower bounds also apply to randomized algorithms. So, currently no optimal on-line BPP
algorithm is known.

In many applications of BPP, there is only a small number of item sizes and, thus, it
makes sense to study on-line algorithms specialized to pack inputs from B(S), where S is a
small set of item sizes.

In this paper, we study R}’ {0} for any on-line algorithm A with inputs from B({«, 5}),

where «, 3 € (0,1]. The easy lower bound

R > 4/3

(e¢]
A’{a7ﬁ}
for the case a > 1/2 and a+ 3 = 1 was proved in [8, 12]. We show that there exists a linear
time algorithm A with

for all «, 8 € (0,1]. Thus, A is an optimal on-line algorithm for BPP on B({«, 5}), o, 5 €
(0,1]. Our result extends the result of Faigle, Kern and Turan [6] that R T 4/3 for

item sizes 3 = 3 — € and @ = 3 + € for every fixed nonnegative € < % (see Theorem 9 in [6]).

We stress that for on-line BPP with inputs from B({«a, 3}) we do not give special purpose
algorithms suited to the particular values of «, 5 and aiming for optimal performance ratio
for each pair of values separately. Instead we present a smaller selection of algorithms which
together cover the range of all possible values, and each of which suffices to ensure an overall
performance ratio of at most 4/3.

For ¢t > 3 and BPP on B(S) with |S| < ¢, it seems much more difficult to design an
optimal on-line algorithm.

2 Results

Let a and ( denote the two item sizes, where 0 < 8 < a < 1. For simplicity we will denote
items of size a by a-items, and items of size 8 by [-items. We assume that all bins have
capacity 1. Let x; denote the largest integer such that z;5 + iav < 1 (i.e. at most z; items
of size § will fit in a bin together with i items of size «). Let Rf {8} denote the optimal
asymptotic performance ratio for the above on-line bin packing problem.

Lemma 2.1 provides an upper bound for Riﬁ o5y I the case @ > 1/2, and its proof consists
in exhibiting an algorithm for this problem and a suitable upper bound for its asymptotic
performance ratio. The difficulty to overcome when packing items of sizes o > 1/2 and
B < 1/2 on-line is to keep a proper balance between the numbers of those bins which become
packed full solely with g-items, and those bins which are packed so as to have enough room
left for an a-item in addition to any (-items. Accumulating too many bins of the former
type during the packing procedure will be harmful if subsequent input items turn out to be
all a-items, each of which will need to be put in an additional bin, thus leaving the solution
far from optimal. Whereas a surplus of bins of the latter type leaves the solution suboptimal
in the event that no new input items arrive. Thus throughout execution of the algorithm
described in the following proof, the primary objective is to distribute the arriving (-items
so as to keep close to a certain ratio () between the two types of bins at all times, where @



depends on the sizes o and 3. With this exception, the decisions made in all steps of the
algorithm are the obvious ones.
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Proof: If x1 = 0 then it is not difficult to obtain Rj'f{a g = 1, so assume that x; > 0.
Clearly we also have xg > x.

Let Q = xo’fxl, and consider the following on-line algorithm.

Our algorithm will maintain four sets of bins, Ay, A1, By and By. They will have the
following properties.

Ag consists of bins with 0 a-items and at least 1 §-item
A; consists of bins with 1 a-item and at least 1 S-item
By consists of bins with 0 a-items and at most x1 (-items
B consists of bins with 1 a-item and 0 §-items

The bins in Ay are committed to being filled entirely with S-items. All other (-items
that arrive will be distributed in bins from A; and By, where they, respectively, either join
an already packed a-item, or wait for an a-item to arrive and be packed into the same bin.
The bins in By are used only in case of a momentary surplus of a-items.

Let ag, a1, bg and by denote the number of bins in Ag, A1, By and Bj, respectively. The
algorithm proceeds by the following guidelines:

e If the next item is an a-item, and by > 0, then add the item to a bin in By, and move
the resulting bin from By to A;. If by = 0 then put the a-item in a new bin, and add
it to Bl.

e If the next item is a (-item, then apply one of the following rules, listed in order of
priority:

— If a bin in A; does not contain x; G-items, then add the S-item to this bin.

If a bin in Ay does not contain xg G-items, then add the S-item to this bin.

— If a bin in By does not contain x1 (-items, then add the g-item to this bin.

— If by > 0, then add the S-item to a bin in By, and move the bin to Aj.
Otherwise add the 3-item to a new bin. If 2% < @ then add the new bin to By,

ap+1
and if % > ( then add the new bin to Ag.

Observe that ag = by = a1 = 0 if and only if the input does not have g-items, in which
case the algorithm produces the optimal solution. Thus, in the rest of the proof, we may
assume that at least one (-item is present in the input, so max{ag, bo, a1} > 0.

During the entire execution of the algorithm, the following properties hold.

(a): Almost all bins in Ay contain g [-items.
(b): Almost all bins in A; and By contain x; [-items.

(c): bp =0 or by = 0. This is clearly true in the beginning of the algorithm and one can see
from the algorithm description that b; becomes positive only if b;_; =0 for ¢ =0, 1.



(d): boaJrT‘“ > Q (for ag = 0, lm;rTm = oo since max{ag, bp,a1} > 0, so we may assume that
ap > 0). Indeed, the operations of the algorithm, except the very last one, do not

decrease the value of bO;FT‘“. The last operation only decreases the value of I’O:[T‘“ by

botay
ap+1

, it remains at least ). Moreover, just after ag turns from zero to one,

increasing the value of ag by 1 if

bo+ay
ag

> (. So even after decreasing the value of the

fraction
bojio‘“ > @ by the corresponding condition of the last operation of the algorithm.
(e): Yotal O This is the case as the fraction % equals —1 in the beginning of
the algorithm and can only increase in the last two operations. However, since the
most recent increase of by (in the last operation), the second last operation is no longer
performed. And at the time when by was last increased we had IZ’JT‘? < Q.
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Let r = xg—am(;o—wl)'
(f): If by > 0, then a;(r — 1) + ao(% — 1) > 0. This holds by the following:
ar(r = 1) +ao( U5 = 1) =ao(r = D[t + (52 — 1))
xolxo—2T I271' xro—x
> ag(r — 1)[Q +2x(1)§x8713 - QOII(;E,OII)I)]
= ap(r — 1)[x1(:col—r1) 501(»’00—1961)]
0

Since we are only considering asymptotic ratios, we may by (a) and (b) assume that all
bins in By and A; contain x; [-items, and all bins in Ay contain xy [-items. By (d) and (e),
% <Q@< 1’0:70“1. Define a} = a1 —e, ay =ag+ e, and f(e) = (bp + a})/ay for e € [0,1].

We have

-1
:b0+a1 gf(e)§b0+a1
ag+1 agp

f(1) = £(0).

Since f(e) is a continuous function, for some value of e € [0, 1), bo;al = Q. Let us fix these
0

values of af, and af.

Let opt denote the size of the optimal solution. We are now ready to prove that r x opt —
(ap + a1 + bp + b1) > 0, which would complete the proof. Before considering the following
four cases, let us estimate the value of opt. Since each a-item requires a separate bin, the
optimum equals a1 + b plus v, the minimum number of bins required to accommodate the
[B-items not in Ay or B;j. Taking into consideration that a; 4+ b; bins with a-items in them
may accommodate up to (a; + by)z; [-items,

v < maX{O, (alxl + apxo + boxr1 — (a1 + bl)xl)/acg}.

Thus,
opt > aj + by + max{0, (apzo + box1 — b1x1)/z0}. (1)

Case 1. by > 0: By (c), we observe that by = 0 and, by (1) and ag + a1 = aj, + a}, we get
the following:



r X opt — (a0+a1—|—bg)>r(aﬁ—%)—ao—a1—bo

= (r—1ag+ (rgt — )b0+(rl—1)a1
> apl(r = 1) + (5t = 1) x 2]

)

— - L4+ (2 - ) x @

— {1 — (1 — By |z (g o)) x o
= apr [Pl — Cosplt o onc)

_ a6r[x1(:1:0 z1) Il(x;gxl)]

=0

This completes the proof of Case 1.

Case 2. b; > 0 and agzg > bixz1: Observe that by (c¢) bp = 0 and by (1) opt > b1 + a1 +
a1x1+a0z0 (hi+a)21  Note that r— 1 —rx1/r0 < 0,88 1—1/1r = z1(20 — 21) /73 < T1/70-
This 1mphes the followmg (by (f) and agzg > bix1):

r x opt — (ag + a1 + b1) > r(by + a1 + ap — x1§1) agp — a1 — by
(r—=1)(ao+ar) +bi(r —rt —1)
A R

1(r—1) + ag (m,l)

AV

a
0

AVAI

Case 3. b; > 0 and apzo < biz1: By (1), b1 + a1 = opt, which implies the following (by (f)
and agxg < byxy):

rxopt—(a0+a1+b1) (r—1)ai + (r—1)by — ag
> (r—1)ay + (r — 1)a0w—1 —ap
= ay(r — 1) + ap("2H% 1)
>0

Case 4. by = 0 and b; = 0: Observe that our solution ag + a1 is optimal in this case, so we
are done.

This completes the proof. O
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Proof: When xo+xg > 2z there exists an optimal solution with the following properties.
Almost all bins contain either two a-items or no a-items, as if two bins contain one a-item
each, then they can be rearranged so that one bin contains two a-items and the other contains
no a-item.

We now use the algorithm given in Lemma 2.1, with item sizes § and 2«, by always
placing either zero or two a-items in a bin (except possibly one bin). By the comment above
on the optimal solution we get the desired bound from Lemma 2.1. O

Lemma 2.3 If1/3 < a <1/2 and x5 + x9 < 221, then Rf’f{aﬁ} < %.

Proof: Before we describe the desired algorithm we prove a few claims, where k = |«a/3].

Claim A. z1 =29+ k+1and xg =29 +2k+1 =221 — 29 — 1.



Note that 1 —a— (k+1)3 <1—2a <1—a— kf. So since exactly xo [-items will fit in
a space of 1 — 2a, we will be able to fit at least x9 + k (-items in 1 — a;, but not more than
xo+k+1 f-items. Therefore x1 = xo+k+1i1, where iy € {0,1}. Analogously z¢ = x1+k+1ia2,
where iy € {0,1}. However x9 + 29 < 2x; implies that xo + (21 +k +i2) < 21 + (22 + k +11),
which in turn implies that ¢5 < ¢1. Therefore i; = 1 and io = 0, which proves the claim.

Claim B. xl <3 7 and 72 < L
xo 3

As a > (3, we observe that £k > 1. Furthermore k£ > =z, since otherwise 1 — 2«
Bxra > B(k + 1) > «, a contradiction against @ > 1/3. Since xzg + 1 + (4k + 322 + 3)
k+k + (4k + 322 + 3), we get the following:

4y = 4(k 4+ 29 +1) < 3(2k + 29+ 1) = 3¢

This proves the first part of the claim. The second part follows from the fact that 3xo <
2k + x9 = g — 1 < xg. This completes the proof of claim B.

Now consider the algorithm that greedily places all items in bins, without ever putting
an a-item and a (-item in the same bin. All bins, except at most two, will either contain xq
[B-items or two a-items. Assume that our algorithm produces a bins containing two a-items
and b bins containing xg §-items. Note that there exists an optimal solution where either
there is no bin containing two a-items or no bin containing zero a-items, as a bin with two
a-items and a bin with zero a-items can be rearranged so that we get two bins each with
one a-item and z3 + x9 < 2x;. We aim to show (a+b)/opt < 4/3. The following three cases
exhaust all possibilities.

Case 1. bxrg > 2x1a: The optimal solution in this case must contain 2a bins each with
one a-item (and z; (-items) and a further [%] bins containing no a-items. As we
are considering the optimal asymptotic performance ratio, we may assume that the optimal
solution uses exactly opt = 2a + Im);% bins. By Claim B and b > 2xja/x¢, this implies
the following:

opt =2a+b—2a7l — b/5+b/52%b+2a72a%+2x—1“

5z

:§b+a( —%)_4b+a< gii):%qu%a
<

The above implies (a + b)/opt < 2

% which completes the proof of Case 1.

Case 2. brg < 2x1a and bzrg > rsa: The optimal solution in this case must contain either
one or two a-items in each bin. Assume that ¢ bins contain exactly two a-items in an optimal
solution. Note that 2c+ (opt — ¢) = 2a and xoc+ x1(opt — ¢) = bzg. By inserting ¢ = 2a — opt
(from the first equation) into the second equation, we get x2(2a — opt) + m1(20pt —2a) = bxy,
and hence opt(2x1 — z2) = bxg + 2ax1 — 2axs. It follows, using b > a%2, g + 1 = 221 — 29
and zg > 3 (by Claim A), and 22 < 3 % (by Claim B) that

x )

_ brot+2a(xi—x2) _ 3 2x1—2x0 3
opt = 73 S, —a3 » sb+a | 3+ b(go-i-l Z) o )
ro—x2Tl x2 o __ O o —T2 T2 T2
> b+a o +1 + (x0+1 ) b+a zo+1 a4x0
>

3b +a—af =30 + a)
This completes the proof of Case 2.

Case 3. bxg < zoa: In this case the optimal solution is opt = a > %a—i—% X b;—zo > %(a+b),
which completes the proof. a



Lemma 2.4 If a <1/3 then R}, 5 <4/3

Proof: We simply fill every bin greedily, without placing items of sizes a and 3 in the
same bin. Note that almost all bins containing a-items ((-items) do not fit an additional
item of size a ().

Now consider a bin containing only a-items, which does not fit an additional item of size
«a. Let z denote the space left in the bin, and note that z < « and z < 1 — 3a. Thus,
z < 1—3a < 1— 3z This implies z < 1/4. Analogously for every bin that contains only
B-items and does not fit an additional item of size (3, the space left in the bin is at most
1/4. As all bins except possibly two are at least 75% full, we get the desired asymptotic
performance ratio. a

Theorem 2.5 Let 0 < < a < 1. Then Riﬁ{aﬁ} <4/3.
Proof: If a > 1/2, then by Lemma 2.1 and z1(zo — z1) < (%)? we have

z} z} 1 4

R®, . < < _ _4
MO = af —ay(wo —a1) T 2 - ()2 1-1 3

If 1/3 < a <1/2 and z9 + xg > 2x1, then by Lemma 2.2 we have
i

— za(x0 — 2)

Ritan = 32

Similarly to the previous argument, we can now prove that R {8} < %.
If1/3 < a<1/2 and z2 + z¢ < 2x1, then Lemma 2.3 implies the desired result. We are
now done by Lemma 2.4. a
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