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Abstract. We present a knowledge representation framework that allows an agent
situated in an environment to recognise complex activities, reason about their
progress and take action to avoid or support their successful completion. Ac-
tivities are understood as parameterised templates whose parameters consist of
a unique name labelling the activity to be recognised, a set of participants co-
involved in the carrying out of the activity and a goal revealing the desired out-
come the participants seek to bring about. The novelty of the work is the identi-
fication of an activity lifecycle where activities are temporal fluents that can be
started, interrupted, suspended, resumed, or completed over time. The framework
also specifies activity goals and their associated lifecycle, as with activities, and
shows how the state of such goals aids the recognition of significant transitions
within and between activities. We implement the resulting recognition capability
in the Event Calculus and we illustrate how an agent using this capability recog-
nises activities in a personal health system monitoring diabetic patients.

1 Introduction

We study the problem of how to develop an activity recognition capability as part of
a healthcare application with the aim of assisting a patient in the monitoring and man-
agement of his diabetes. This problem is important because the possibility of delegating
parts of the monitoring and management of a diabetic’s activity to a software application
has the advantage of simplifying the patient’s lifestyle. Amongst other things, a patient
would not have to worry about where to systematically record regular measurements of
his blood glucose, or how to distinguish trends that may determine his well-being and,
in the ultimate analysis, his health. This is, however, a complex task because the appli-
cation must be in position to recognise the patient’s activities using sensor technology,
relate these activities to medical guidelines that must be reasoned upon and interpreted
in conjunction to medical expertise, as well as make suggestions that do not overwhelm
the patient with notifications or requests for input information.

We argue that such a challenging application can be naturally developed as a multi-
agent system for the following reasons. The problem of monitoring requires a contin-
uous and dedicated software process that observes the condition of the patient. First,
this process must also encapsulate its own state, to store information such as glucose



Fig. 1. Continuous Glucose Monitoring (CGM) Agent in COMMODITY12 [12].

measurements or patient profile information. In addition, the process must be both re-
active, in order for example to alert the patient about significant events that are relevant
to his condition, but also proactive, to evaluate the significance of certain events, rea-
son about their effects and choose appropriate action that will be to the benefit of the
patient. Furthermore, the process must be also in position to access and influence the
environment via state-of-the art sensor/actuation technologies, for instance, to measure
glucose values or administer insulin respectively. Most importantly, the process should
be able to interact and communicate with other similar processes representing the inter-
ests of doctors, hospitals, or family members of patients, to inform and alert of critical
situations as they arise, and by using specific protocols, sometimes formal and strict,
while other times informal and flexible.

From our involvement in the FP7 COMMODITY12 project, we have been particu-
larly preoccupied with developing a monitoring agent that is a specialised version of the
KGP model [15]. Such an agent diagnoses [12], ontologically reasons about [14] and to-
gether with specialised agents predict [13] medical emergencies such as hypoglycemia.
According to the International Classification of Diseases (ICD), hypoglycemia is de-
fined as the patient’s glucose level being below a certain threshold value. When it arises,
it can produce a variety of symptoms and effects but the principal problems is an inade-
quate supply of glucose to the brain, resulting in impairment of function and, eventually,
to permanent brain damage or death. According to the severity level of hypoglycemia,
a series of actions may need to be taken immediately, including informing the doctor of
the patient as soon as possible, to require advice, or to start an emergency protocol.

To address conditions such as hypoglycemia we have developed an agent prototype
that monitors blood glucose levels of a diabetic patient as shown in Figure 1. The mon-
itoring knowledge and guidelines required for conditions such as hypoglycemia, have
been specified using a symbolic, computational logic approach combined with temporal
reasoning of the kind supported by the Event Calculus [18]. This approach is particu-
larly suitable for reasoning about observations according to medical guidelines and has
been combined with diagnostic reasoning to provide the patient with suitable recom-
mendations and explanation, even in the light of incomplete information. However, the
current monitoring capability cannot cope with information that refers to lifestyle ac-
tivities of the patient, which are key to diabetes management, especially activities about
the patient’s physical exercise and diet.
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The contribution of this work is the specification of an activity recognition capa-
bility that is integrated within the logic-based agent architecture discussed in [12] to
support reasoning about complex activities from the recognition of basic ones. The ca-
pability relies on the identification of an activity lifecycle that treats activities as special
temporal fluents that can be started, interrupted, suspended, resumed, or completed over
time. Such information is related with a similar lifecycle about the patient’s goals and
is amalgamated with a monitoring capability to improve the advice and explanation of-
fered to the patient, as well as corroborate hypotheses about conclusions that require
further action.

The rest of the paper is structured as follows. We motivate our work in Section 2, by
presenting a specific scenario that will provide the rest of the paper a grounding for the
ideas presented later. Section 3 reviews the relevant background on activity recognition
and the type of approaches followed in a number of applications, not necessarily dia-
betes. In Section 4, we describe the components that make up our proposal. Section 5
presents the case study and reports performance results. Finally, we conclude the paper
with Section 6, where we point out a discussion and possible extensions.

2 The Smart Street Scenario

Consider the following scenario.

John, a type 1 diabetic, is returning home after having spent an evening to the
movies with friends. The bus that he took to go home does not reach John’s
street directly, so John needs to walk back to his place. Once he alights from
the bus, John’s mobile phone app that monitors his diabetes recognised that
he has started walking, so it asks John to confirm that he is going back home.
After John’s confirmation, the app estimates that the walk will be roughly 20-
minutes. Halfway, however, John receives an alert informing him that the con-
tent of glucose in his blood is abnormally low (a hypoglycemia medical emer-
gency). John did not have enough time to respond to this alert as he passed
out and fell on the pavement. Immediately after John falling on the pavement,
his doctor and family were informed, an ambulance was called and the near-
est street light started flashing to attract attention of passers-by and help the
ambulance locate John.

To support such a scenario we will assume that John’s mobile app is developed as
a software agent that monitors John’s glucose with an insuline pump and recognises
John’s activities in relation to his diabetes. The insuline pump is a device that can mea-
sure blood glucose, holds an insulin cartridge and can deliver a continuous flow (basal
rate) of insulin to the body in the press of button. In regular intervals, it can commu-
nicate with the mobile app about the patient’s glucose measurements, so that the agent
can detect abnormally high/low glucose readings.

The scenario above requires that when the glucose level was low the agent has
taken a number of important steps. Immediately after sending the hypoglycemia alert,
the agent also sent a message on the app’s display asking whether John was feeling ok.
As John did not respond to this message because he fainted. This was recognised by
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the agent because the person had fallen while he was suffering a hypoglycemia attack.
As a result, the agent alerted first John’s doctor, then John’s family and an ambulance
giving John’s location. The scenario assuming further a neighbourhood e-infrastructure
of the kind envisaged in Smart Cities [24]. Using such an e-infrastructure, the agent
can observe the closest street light, also represented electronically as a software agent,
requesting it to flash about John’s medical emergency.

3 Activity Recognition

Activity recognition can be defined, in broad terms, as the task of automatically detect-
ing different human behaviours from certain given input data. In the last years, many
computational approaches have been proposed to solve this problem (see [25, 4, 1] and
references therein). From the point of view of the type of input data received, an activity
recognition usually belongs to one of these two main groups: video-based [1, 25], where
a computer is used to recognise a sequence of images with one or more persons per-
forming a certain activity, and sensor-based activity recognition (often called “motion
analysis”), which deals with data coming from sensors like accelerometers, gyroscopes
and, in general, any readings which could be produced by a mobile or wearable device
(mobile telephone, activity tracker, medical sensor, etc.) In this work we will mainly
focus on the latter.

It can be noted that the definition of activity recognition given above is essentially
too abstract and not many attempts to formalise this problem can be found. In this
manner, the task of Activity Recognition is even treated as a “subproblem of computer
vision” or of the field where it is applied, and it is not treated in itself. Apart of the lack
of formal definitions of the task itself, activities are taken as primitive concepts, not
dealing the majority of the available references with a proper definition of them, and
just focusing on the computational solution of the problem. The definition of activity,
in the general sense, remains an open question which we try to partially address in this
work.

Despite this lack of formalisation, links with activity theory have been established
mostly within the field of human computer interaction [16]. On the other hand, the
contribution of Chen et al. [5] presents a formal framework of activities, which are
modelled as concepts of an ontology, having specific relations among them, and which
are later used to include semantic information into the model of activity recognition
proposed.

From an operational perspective, most of the current approaches to activity recog-
nition work follow a hierarchical scheme. This scheme is summarised in Figure 2: first,
a stream of data coming from mobile sensors and other sources is available (in our
previous example, Jonh’s smartphone and the CGM). Second, this raw data is prepro-
cessed in a standard manner to obtain usable features for the following stages. Then,
using these features, computational models recognise a set of low-level primitive events
(also known as actions in the literature [25]). These events for our example would cor-
respond to simple physical actions such as walk, stand, lie. Finally, the primitive events
together with the context (such as historical information and user conformations) are
used to recognise (more complex) activities, represented in terms of the events which
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Fig. 2. General data flow for activity recognition.

were captured in the previous level. For our concrete case, these are activities which are
suitable for being monitored or treated by doctors (like for instance, the case that John
has fainted). In this work we will mainly focus on the last step, represented in Figure 2
with a double box.

The methods for preprocessing raw data are highly dependent on the device type
and its parameters, and we will not deal with them here. In order to detect basic events
many alternatives techniques have been used: mainly supervised learning methods over
tagged data (such as Hidden Markov Models, decision trees, neural networks). This
subproblem has been successfully address by the previously mention techniques, re-
sulting in very high values of accuracy (an exhaustive list is collected in [1] showing
performances from 85% to 95%).

Next, we will review more carefully the methods for complex activity recognition,
fundamentally those dealing with symbolic approaches. Apart from statistical models,
two main solutions for this task has been proposed: syntactic methods and description-
based methods. In syntactic methods, activities are defined as production rules of a
grammar, reducing the problem of recognition to the one of parsing. In order to attain
for uncertainty methods such as stochastic context grammars have often been used [20].
Joo and Chellappa propose a framework for recognition of events using attribute gram-
mars [11]. They represent sequence of events as grammar rules as well as assigning
attributes to each event. Primitive events are represented with terminal symbols. Using
this representation, they look for patterns in video sequences that match corresponding
rules. Each rule is associated with a probability telling how probable that sequence of
events leads to the subject activity. They evaluate their approach with video data from
two different domains: casing vehicles in a parking lot and departure of aircrafts. While
their framework can successfully recognise such activities, it’s not equipped to deal
with the types of scenarios we have discussed in this paper, where the duration of an
event and other contextual information are significant to recognition.

Ontologies are also utilised to represent and recognise events. In [8], the authors
present an ontology based on the video event representation language (VERL). They
use a logic-based markup language to represent composite events as sequences of prim-
itive events as well using interval logic to capture temporal relations among events.
They present a scenario where people are recognised while tailgating through a door.
However, their rules are not as representative as ours and do not take into account con-
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textual information. Nevatia et al. [21] define an ontology and a language to annotate
video and describe complex activities as a function of simple activities. A very similar
approach is taken in [26] where a symbolic approach to recognise temporal scenarios
by specifying all its elements (e.g., characters, sub-scenarios, constraints) is presented.

Artikis et al. [3] study a variant of the Event Calculus for recognising composite
events at run-rime using a stream of time-stamped simple derived events. In this system
recognition of higher-level activities are treated as recognition of composite events but
an activity (composite event) lifecycle as the one specified in section 4.2 is missing.
So we can think of our framework as being more methodological for a specific class
of applications where the goal achieved by an activity is an important requirement for
the background knowledge of the recognition process. Knowing in advance the goals
of participants in activities is an important consideration for applications such as the
one we consider here, as they provide important contextual information in support of
recognition. However, we do not recognise goals (or more generally the intentions of
participants, as in [23]). Instead, we monitor an activity given the activity’s goal and,
where possible, we check that there are no activities or events that may interfere with
the achievement of that goal.

There is also an important number of publications dealing with activity recognition
and healthcare. For instance, a comparative of machine learning predictors for low-level
activity recognition using body sensors is presented in [17]. In this study a lot of effort
is made on the recognition of low-level events (which is done using different machine
learning methods such as decision trees or Bayesian networks) and little is shown about
the possible extension of recognising higher-level (complex) activities. Given the in-
herent risk of the application, most of the literature in this sub-field (and, in general, in
sensor-based human activity recognition [19]) actually deals with recognition of low-
level events, trying to find models achieving the minimum error.

For the specific case of diabetes not much work has been reported in the literature.
One related work, where a system for monitoring diabetic patients (with an activity-
recognition module) is presented in [10]. While there is an important description of
the architecture of the system (e.g., the context of a smart home), there is not much
discussion about the list of possible activities that could be recognised for this case of a
diabetic patient, or about the different alternatives for activity recognition. The authors
base their approach on Hidden Markov Models. Another interesting contribution is done
by Han et al. [9], where the concept of “Disease Influenced Activity” is presented. Like
many others, this contribution is also focused on monitoring uncommon patters (e.g.,
“frequent drinking” for diabetes) and presenting them to the doctor. In their approach
they also make use of a Machine learning algorithm.

4 The Activity Recognition Framework

4.1 Architecture

Figure 3 shows how our agent framework, presented in the introduction, is extended
with activity recognition to support the smart street scenario. We use dark font to repre-
sent the currently supported features of the monitoring agent within the personal health
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Fig. 3. Diabetes Monitoring and Management in our system. Components shown in red are the
extended features for the Continuous Monitoring Agent.

system (as shown in Figure 1). We extend this original framework with a new set of fea-
tures relevant to complex activity recognition. The agent is situated in the smart phone
of the user and interacts with the application that receives input such as glucose and
activity data from the sensors on the user. The agent’s knowledge-base is also extended
with logic rules regarding activity recognition to process activity data (see Sections 4.2
and 5) as well as contextual information about the user’s environment (e.g., the user’s
current goal). The application also allows the agent to interact with the user’s surround-
ings. In case of an emergency, the agent can call an ambulance and flash the street lights
to attract attention as well as alerting the user’s doctor.

4.2 Recognising activities and their lifecycle transitions in the Event Calculus

We are now ready to describe our activity recognition framework. In this framework an
activity is understood as a parameterised template whose parameters consist of a label
naming the activity, a set of participants co-involved in the carrying out of the activity
and a goal revealing the desired outcome of the participants participating in it. The
framework identifies an activity lifecycle that treats activities as temporal fluents that
can be started, interrupted, suspended, resumed, or completed in time. The framework
also proposes a template for activity goals and their associated lifecycle, similar to that
of activities. Both lifecycles are presented in Fig.4.

We assume the notion of primitive events (e.g., walks, stands, lies), which are rep-
resented as input from the low level recognition system (see Fig.2). The framework dif-
ferentiates between events, activities and activity transitions, caused by special events
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Predicate Description
happens at(E, T ) Event E happens at time T
initially(F = V ) Fluent F has value V at time 0
holds at(F = V, T ) Fluent F has value V at time T
holds for(F = V, [Ts, Te]) Fluent F continuously has value V from time Ts to time Te
broken during(F = V, [Ts, Te]) Fluent F has changed value V from time Ts to time Te
initiates at(E,F = V, T ) Event E initiates value V for fluent F at time T
terminates at(E,F = V, T ) Event E terminates value V for fluent F at time T

Table 1. Domain-independent axioms of the Event Calculus.

Active

Suspended

Interrupted
Completed

start

suspend

resume

interrupt complete

(a) Activity lifecycle

Active

Deactivated

Dropped
Achieved

adopt

deactivate

reactivate

drop achieve

(b) Goal lifecycle

Fig. 4. Lifecycle of an activity and a goal. Double ellipses represent terminal states.

within an activity and according to the activity’s lifecycle, or changes between activities.
For example, the primitive event that a person stands provided as an input observation
from a sensor, terminates the status of the activity of walking from active to suspended,
and initiates standing.

To interpret and reason about events and activities we use the Event Calculus [18].
Table 1 summarises the domain-independent axioms used of the Event Calculus; these
axioms assume multi-valued fluents as discussed in [2]. On top of the domain-independent
axioms, our framework consists of the following additional components:

– an activity theory that regulates the activity lifecycle;
– a goal theory that regulates the goal lifecycle;
– a domain model that describes the recognition domain;
– an event narrative that contains the events that happened in the system.

We start with the generic components of the event recognition framework, i.e., the
activity theory and the goal theory (see Section 5 for the domain model and the event
narrative). Figure 4 describes the lifecycle of an activity (a) and a goal (b). The recogni-
tion of activities is driven by the goals of the user, which we represent as a modification
of the goal lifecycle presented in [22] for our purposes. An activity is first activated due
to a goal being adopted by the user and a low-level event happening to start the activ-
ity. While the activity is being performed, if the user’s goal changes, then the activity
is no longer required (e.g., the goal is dropped), then the activity is interrupted. If the
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goal remains, but another goal supersedes it temporarily (e.g., the goal is deactivated),
then the activity is suspended. When the user reactivates the goal again, the activity is
resumed. The activity completes successfully when the user achieves the goal, in which
case the activity is completed.

Listing 1 presents the Event Calculus axioms specifying the domain independent ac-
tivity theory. Lines (1-5) describe the events that happen when an activity is recognised
to have been started (started at/2), suspended (suspended at/2), resumed
(resumed at/2), interrupted (interrupted at/2), or eventually been completed
(completed at/2) at a specific time. Lines (7-11) describe how the recognised
events initiate different values for the activity fluents; termination of these fluents are
handled automatically by a generic terminates at/2 definition, see [2] (axiom 19).� �

1 happens_at(start(Activity), T):- started_at(Activity, T).
2 happens_at(suspend(Activity), T):- suspended_at(Activity, T).
3 happens_at(resume(Activity, T):- resumed_at(Activity, T).
4 happens_at(interrupt(Activity, T):- interrupted_at(Activity, T).
5 happens_at(complete(Activity), T):- completed_at(Activity, T).

7 initiates_at(start(A), A=active, T).
8 initiates_at(suspend(A), A=suspended, T).
9 initiates_at(resume(A), A=active, T).

10 initiates_at(interrupt(A), A=interrupted, T).
11 initiates_at(complete(A), A=completed, T).� �

Listing 1. Domain independent activity theory in RETRACT.

Similar to the activity theory, Listing 2 presents the Event Calculus axioms for
the goal theory. Lines (1-5) describe the events that happen when a goal is said to
have been adopted (adopted at/2), deactivated (deactivated at/2), reacti-
vated (reactivated at/2), dropped (dropped at/2), or eventually been achieved
(achieved at/2) at a specific time. Lines (7-11) describe now describe how the goal
events initiate different values for the goal fluents.� �

1 happens_at(adopt(Goal), T):- adopted_at(Goal, T).
2 happens_at(deactivate(Goal), T):- deactivated_at(Goal, T).
3 happens_at(reactivate(Goal, T):- reactivated_at(Goal, T).
4 happens_at(drop(Goal, T):- dropped_at(Goal, T).
5 happens_at(achieve(Goal), T):- achieved_at(Goal, T).

7 initiates_at(adopt(G), G=active, T).
8 initiates_at(deactivate(G), G=deactivated, T).
9 initiates_at(reactivate(G), G=active, T).

10 initiates_at(drop(G), G=dropped, T).
11 initiates_at(achieve(G), G=achieved, T).� �

Listing 2. Domain independent goal theory in RETRACT.

We show next how to develop the domain dependent part of our framework in order
to support the activity recognition we envisage for our scenario. We represent an activity
fluent as activity(Name, Participants,Goal) = State. The Name is an atom (e.g.,
walking), the Participants is either a list of atomic identifiers (e.g. [john, peter] or
a single such identifier (e.g. john), and Goal is the name of a goal that specifies what
the activity is seeking to achieve (e.g., at home) with the possibility of a null value.
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The State represents the current value of the fluent, drawn from the set of possible
values active, suspended, interrupted and completed. We represent similarly a goal
fluent as goal(Name, Participants) = State. The Name (e.g. at home) and the
Participants (e.g. [john, peter]) are defined like those of the activity fluent, what
changes now is the current value of the State, drawn from the set of possible values
active, deactivated, dropped and achieved.� �

1 started_at(activity(walking, P, G), T):-
2 holds_at(goal(G, P)=active, T),
3 happens_at(walks(P), T).

5 suspended_at(activity(walking, P, G)), T):-
6 happens_at(stands(P), T),
7 holds_at(activity(walking, P, G)=active, T).

9 resumed_at(activity(walking, P, G), T):-
10 holds_at(activity(walking, P, G)=suspended, T),
11 happens_at(walks(P), T).
12 ...

14 interrupted_at(activity(A, P, G)), T):- happens_at(drop(goal(G, P)), T).

16 completed_at(activity(A, P, G)), T):- happens_at(achieved(goal(G, P)), T).� �
Listing 3. An example of domain dependent activity theory.

� �
1 adopted_at(goal(G, P), T):- happens_at(adopt_goal_fromGUI(P, G), T).

3 deactivated_at(goal(G, P), T):- happens_at(deactivate_goal_fromGUI(P, G), T).

5 reactivated_at(goal(G, P), T):- happens_at(reactivate_goal_fromGUI(P, G), T).

7 dropped_at(goal(G, P), T):- happens_at(drop_goal_fromGUI(P, G), T).

9 achieved_at(goal(at_home, P), T):-
10 holds_at(location_of(P, L)=true, T),
11 holds_at(home_of(P, H)=true, T),
12 holds_at(location_of(H, L)=true, T).� �

Listing 4. An example of domain dependent goal theory.

Listing 3 shows an extract of the domain dependent activity theory exemplified,
in part, by the activity of walking. This is started once a low-level event walks(P )
happens (stating that the participant P walks, see lines 1-3). We assume that the low-
level activity recognition module will not send us more low-level walk(P ) events, only
when it recognises that walking has stopped and something else has happened. When a
new (different) event is recognised by the low-level module, it will be communicated to
the high-level one, which will in turn suspend the current activity. Lines (5-7) show how
standing suspends walking. The walking activity is resumed (becomes active again)
when a low-level walks(P ) event happens (Lines 9-11). Any activity is interrupted
when that activity’s goal is dropped (Line 14), and, any activity is completed when that
activity’s goal has been achieved (Line 16).

Listing 4 shows an extract of a domain dependent goal theory exemplified, in part,
by the goal of at home. In this domain, we assume that the user manages directly the
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timeline (mins)3 15 18

Fig. 5. John’s activities.

goal from the graphical user interface (GUI) of the application. For any goal, actions of
the user at the GUI are interpreted as internal events that cause the adoption of a new
goal (Line 1) or the deactivation/reactivation/dropping of an existing goal (Lines 3, 5,
and 7 respectively). Only the achievement of a goal is specified case by case; Line 9-12
shows an example of when the at home goal is achieved.

5 Case Study

We now focus on the scenario described in Section 2. Let us first see the primitive events
that lead to John falling on the street due to a hypoglycemia episode. Figure 5 shows
the timeline of John’s activities after he gets off the bus and heads home. We capture
the temporal intervals of such activities using the predicate holds for/2, implemented
in our Event Calculus representation (see Table 1). It represents the validity period for
activities that are in active or suspended state. This is shown in Listing 5.

� �
happens_at(adopt_goal_fromGUI(john, at_home), 1).
happens_at(walks(john), 3).
happens_at(stands(john), 16).
happens_at(lies(john), 19).

holds_for(activity(walking, john, at_home)=active, [3,16]).
holds_for(activity(standing, john, null)=active, [16,19]).
holds_for(activity(lying, john, null)=active, [19,infPlus]).

holds_for(activity(walking, john, at_home)=suspended, [16,infPlus]).
holds_for(activity(standing, john, null)=suspended, [19,infPlus]).� �

Listing 5. Recognition of intervals for primitive activities.

Using this knowledge only, we can recognise if someone is falling. Listing 6 de-
scribes the recognition of the composite event falls. The person must go from walking
to standing, and then to lying in a short period of time in order to be recognised as a
fall event. Note that this rule does not take into account the activity theory described
in Section 4.2, and thus requires explicit temporal interval reasoning (i.e., the predicate
immediately before/2) to check the order of activities.
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� �
happens_at(falls(Person), T):-

holds_for(activity(walking, Person, _)=active, [_,T1]),
holds_for(activity(standing, Person, _)=active, [T2,T3]),
holds_for(activity(lying, Person, _)=active, [T,_]),
immediately_before(T1,T2),
immediately_before(T3,T).

immediately_before(T1,T2):-
T is T2-T1,
T < 2.� �

Listing 6. Recognition of a fall event without the activity theory.

Listing 7 improves the previous rule with the use of the activity theory. Here, since
the states of the activities are handled by the activity theory, the rule does not need
to check explicitly the validity periods of the activities as previously done with the
immediately before/2 predicate shown in Listing 6.� �

happens_at(falls(Person), T):-
holds_for(activity(lying, Person, _)=active, [T,_]),
holds_for(activity(standing, Person, _)=suspended, [T,_]),
holds_at(activity(walking, Person, _)=suspended, T).� �

Listing 7. Recognition of a fall event using the activity theory.

In order to recognise that John has fainted, we must have additional knowledge
about the environment as well as the intentions of John. Listing 8 describes this domain
knowledge relevant to our scenario. John’s goal is to walk home after watching the
movie. As he starts walking home after he gets off the bus, he receives a hypoglycemia
alert and stops to look at his smartphone. Unfortunately, he fell down soon after check-
ing the alert. The agent running on his smartphone asks for John’s status immediately
after he fell.� �

happens_at(adopt_goal_fromGUI(john, at_home), 1).
happens_at(measurement(john, glucose, 2.8), 14).
happens_at(requests(john, confirm_status), 20).� �

Listing 8. Contextual information significant to recognising event interruption.

Now we can combine this knowledge together with the formalisation of the fall
event to conclude that John has fainted. Listing 9 describes these rules. We capture
fainting as a special case of the fall event (e.g., the interruption of walking). In order
to recognise that walking is interrupted (by an emergency) rather than just suspended
for a period of time, we need additional contextual information as well as the fact that
John has fallen. More specifically, the agent distinguishes fainting from falling if the
following happens:

– John has the goal of walking and it has not been achieved yet;
– the agent has sent an alert to John following a hypoglycemia before he fell;
– the agent has asked John to confirm his status soon after he fell, and it has not

received a response.
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� �
happens_at(faints(Person), T):-

happens_at(raises_alert(Person, hypoglycemia), T1),
happens_at(falls(Person), T2),
happens_at(requests(Person, confirm_status), T),
\+ happens_at(response(Person, status_ok), _),
holds_at(goal(at_home, Person)=active, T),
T1 < T2,
T2 < T.� �

Listing 9. Recognition of a faint event.

After the agent detects there is something wrong with John, it has to take appropriate
action to make sure John is safe. Listing 10 describes the events that connects the agent
with the environment. It can alert his doctor and call an ambulance as well as interacting
with the street lights (provided a suitable infrastructure).� �

alert(doctor). %via the smartphone
alert(ambulance). %via the smartphone
alert(street_light). %via the smart city infrastructure� �

Listing 10. Ambient assisting during a faint event.

Implementation and supported queries
We have implemented a prototype of the framework for the domain described in

Section 5. We have used tuProlog for the implementation of the Event Calculus and
Java to read the datasets generated for testing purposes.� �

Query 1
happens_at(falls(Person), T). --> yes.
Person / john T / 19

Query 2
happens_at(falls(john), 15). --> no.

Query 3
happens_at(faints(john), T). --> yes.
T / 20

Query 4
happens_at(faints(Person), 20). --> yes.
Person / john� �

Listing 11. Supported queries.

Listing 11 reports the different types of queries for falls and faints events. We have
evaluated the framework with both grounded queries and queries involving variables.
Our implementation of the Event Calculus allows fast query times and is able to answer
queries with time given as a variable, e.g., happens at(faints(john), T).

6 Conclusions

We have presented an activity recognition capability that is integrated within a logic-
based agent architecture to recognise complex activities related to diabetes monitoring.
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The approach makes use of an activity lifecycle, in which activities are treated as tem-
poral fluents that can change state according to events that occur through time. The
framework also proposes a goal lifecycle for activity goals, similar to that of activities.
The activity recognition capability then supports the monitoring agent to reason upon
the link between the patient’s activities and goals using their corresponding lifecycles,
and provides advice and explanation to the patient, as well as detecting emergency sit-
uations.

We have motivated the work with a specific scenario illustrating how monitoring and
recognising activities of a diabetic patient can be naturally conceived as a multi-agent
systems problem. The approach we have developed is particularly suitable for sym-
bolic reasoning agents that use monitoring observations according to medical guide-
lines, even in the light of incomplete information, and can take into account information
that refers to the lifestyle of the patient.

The main emphasis of the work has been on motivating and conceptually organising
the knowledge representation of the recognition in terms of activity and goal lifecycles.
In this context, we have evaluated our proposed framework by outlining different ways
to carry out the recognition of significant events for a case study with and without
these lifecycles. We have also compared our work in the context of existing activity
recognition frameworks and we have discussed how the key aspects of our framework
extend the most relevant existing work.

As we have concentrated on the knowledge representation of complex activities
we have decided not to carry out any performance evaluation of our Event Calculus
implementation. The main reason for this choice is that Event Calculus performance is
not an obstacle in the development of practical applications, since we could have used
an off-the-shelf approach, for example see [3, 6, 7]. However, we believe that our version
of the Event Calculus has merits, especially if combined with our recognition and agent
monitoring framework, but this discussion is beyond the limited space of this paper. As
part of future work, we plan to compare the performance of our implementation of the
Event Calculus with similar approaches such as RTEC [3] and REC [6].

We have connected the lifecycle of an activity and a goal using one direction only,
viz., our framework recognises activities first and then obtains knowledge of goals as
part of the context provided by the patient (user). The other direction is also interesting,
e.g., recognise goals from performed activities as described in [23]. This is particularly
significant when agents are performing collaborative activities to achieve a common
goal. Here, we have presented a simple goal structure. We will investigate how this can
be extended and generalised with the integration of domain ontologies showing how
our approach can be extended to other domains where run-time continuous monitoring
is essential.
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