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Abstract—Diabetes is both heavily affected by the patients’
lifestyle, and it affects their lifestyle. Most diabetic patients can
manage the disease without technological assistance, so we should
not burden them with technology unnecessarily, but lifestyle-
monitoring technology can still be beneficial both for patients
and their physicians. Because of that we developed an approach
to lifestyle monitoring that uses the smartphone, which most
patients already have. The approach consists of three steps. First,
a number of features are extracted from the data acquired by
smartphone sensors, such as the user’s location from GPS coor-
dinates and visible wi-fi access points, and the physical activity
from accelerometer data. Second, several classifiers trained by
machine learning are used to recognise the user’s activity, such
as work, exercise or eating. And third, these activities are refined
by symbolic reasoning encoded in Event Calculus. The approach
was trained and tested on five people who recorded their activities
for two weeks each. Its classification accuracy was 0.88.
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I. INTRODUCTION

According to International Diabetes Federation, 5.6 % of
the global population suffer from diabetes, and this figure
is increasing [1]. In diabetic patients, the pancreas does not
produce enough insulin to absorb glucose from the blood, or
the cells in the body do not respond appropriately to the insulin
produced. Since diabetes cannot be cured, it has to be managed
through appropriate lifestyle and medication, often involving
injections of insulin. Key activities for diabetic patients are
eating and exercise — the former because it puts glucose in
the blood and the latter because it speeds up its absorption.
Therefore they have to monitor and manage these activities
very carefully.

Lifestyle management can be assisted by technology —
either to help the patients track their activities and offer advice,
or by providing their physicians a better insight into the
patients’ lifestyle through telemonitoring. However, since most
patients can manage diabetes reasonably well on their own, any
technology used must not place undue burden on them, other-
wise it will do more harm than good. In the COMMODITY ;5
project [2], we are developing a personal health system for
continuous multi-parametric analysis of diabetes intended both
for the patients and their physicians. In order not to burden the
patients with unnecessary devices, we are primarily relying on
a smartphone for lifestyle monitoring.
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In this paper we describe an approach to recognise basic
lifestyle activities with the sensors built into the smartphone.
The phone can be augmented with an optional ECG monitor,
which was introduced for the management of cardiovascular
co-morbidities [3]. The key features extracted from sensor
data are the user’s location, physical activity and ambient
sound. These are fed into a number of classifiers trained with
machine learning that output the user’s activity. The recognised
activities are refined by rules encoded in Event Calculus [4].
The approach was trained and tested on five people who
recorded their activities for two weeks each.

The rest of the paper is organised as follows. Section II
provides an overview of related work. Section III presents
first the machine-learning and then the rule-based symbolic
approach to activity recognition. Section IV describes the
experimental evaluation and its results. Section V concludes
the paper.

II. RELATED WORK

Activity recognition from sensor data is common in tele-
monitoring and personal health systems, because the patients’
lifestyle plays an important role in many diseases, and because
it provides the context for other health-related observations.

A. Machine-learning Approaches

Machine learning is often used for activity recognition from
sensor data because it can easily deal with large amounts of
data that are difficult to comprehend for humans. Wearable
sensing devices are commonly utilised, but mostly to recognise
elementary activities such as walking, sitting and lying. We
have done the same in our previous work [5], and such
elementary activities are among the features used as inputs to
the approach described in this paper. The recognition of high-
level lifestyle activities is less common. For example, Huynh
et al. [6] proposed the use of two accelerometers to recognise
daily activities such as eating, sleep and washing dishes, as
well as to provide higher-level activity descriptions, such as
morning activities, housework and shopping. Automatic activ-
ity recognition can also be based on ambient sensors. Helal et
al. [7] developed a platform for monitoring diabetic patients
using ambient sensors in a smart home. They used a Hidden
Markov Model to recognise five daily activities: (1) look up a
number in the phone book, dial the number, and write down the
cooking instructions heard on the recording, (2) wash hands in



the kitchen sink, (3) cook a pot of oatmeal as specified from the
phone directions, (4) eat the oatmeal while taking medicine,
and (5) clean the dishes. In addition, they proposed automatic
chewing detection by analysing the mouth region of video
sequences. The recognition of eating is of particular interest to
this paper due to its importance for diabetic patients. Several
authors tackled automatic food-intake monitoring [8]. Their
approaches involved monitoring the movement of the body
while eating (with inertial, EMG and other sensors), recording
chewing sounds and body temperature. These approaches can
be fairly reliable, but they require rather specific sensors and
could be physically uncomfortable.

B. Symbolic Approaches

An advantage of symbolic approaches for activity recog-
nition is being able to specify activities in an intuitive way,
only by using logical constraints, abstracting from the very
low-level and irrelevant events, and therefore being more
interpretable. There are several rule-based approaches for
activity recognition [9], mainly dealing with problems related
to video surveillance. Examples include an approach based on
CSP (Constraint Satisfaction Problems) for vandalism moni-
toring [10], and an approach based on hierarchical scenarios
(defined recursively as properties of the mobile objects shown
in the scenario) for vehicle-tracking applications [11]. In order
to allow for uncertain representations, approaches based on
Markov-logic networks were presented by Hongeng et al. [12],
where events were considered as compositions of different
threads later recognised with the networks. Finally, Shet et
al. [13] proposed an approach similar to the one used in
this paper, with a low-level set of features and high-level
Prolog rules to recognise the activities. It should be noted
that several of the previously-mentioned approaches were not
necessarily designed to work in real time. For instance, a
video-surveillance method could be used to detect potentially
interesting activities in a long video tape, and extract relevant
segments to send to a human. In the case of health monitoring,
the processing should be done in real time, as activity recogni-
tion can be crucial for the detection of a health problem while
it is happening, allowing for immediate action. We thus used
a framework built on Event Calculus [4], and optimized for
speed and real-time purposes.

III. ACTIVITY-RECOGNITION APPROACH

Our activity-recognition approach has three main steps
described in the following three subsections: feature extraction,
machine learning and symbolic reasoning. Feature extraction
uses a range of methods to transforms raw sensor data into
features that can be used for machine learning and symbolic
reasoning about activities. The extraction of some features
already requires machine learning, such as the recognition of
elementary activities, while others are extracted using simple
aggregation functions or heuristics. We still have a lot of data
after feature extraction, not all of which is readily under-
standable by humans, so the next step is machine learning
to recognise high-level lifestyle activities. Finally, we apply
symbolic reasoning to the outputs of the previous two steps to
refine the activities recognised using machine learning.

A. Features for Activity Recognition

Features are computed over one-minute windows and be-
long to six groups: sound (from the phone’s microphone), wi-
fi (from the phone’s wi-fi module), GPS (from the phone’s
GPS receiver), acceleration (from the accelerometers in the
phone and optionally in the ECG monitor), heart-rate (from
the optional ECG monitor) and respiration-rate (from a sensor
in the optional ECG monitor).

Sound features: To preserve the user’s privacy, the sound
from the smartphone microphone is recorded for 100 ms out
of every second. To reduce the amount of data, after each
minute of sound recording there is a five-minute pause. Sound
features are computed in windows of size 20 ms within each
one-minute window. We compute the spectral-centroid, zero-
crossing, mel-frequency-cepstral-coefficient (MFCC), linear-
predictive-coding (LPC) and method-of-moments values for
each window within a minute (where recording is available).
The sound features are averages of these values.

Wi-fi features: The wi-fi signal is used for extracting location
identifiers. The location identifiers are obtained through hier-
archical clustering on a training subset. The clustering uses
the similarity with respect to visible wi-fi access points as the
distance between pairs of one-minute windows — if they are
similar, we consider that they are at the same location. As
input, the function takes the signal strength (in dBm) of each
basic service set identifier (BSSID, access-point identifier) for
two time intervals — instancel and instance2. The length of
these instances equals the number of BSSIDs scanned in the
training data. The strength of a BSSID that was not scanned
during a particular interval is set to the minimum value of
the float data type in Java. The computation of the distance
between two instances is performed as follows:

1: Create vector visiblel of length(instancel);
2: Create vector visible2 of length(instance2);

3: for el from 1 to length(instancel) increment 1 do
4:  if instancel[el] < —500 then
5 visiblel[el] = false;

6: instancel[el] = —500;

7. else

8 visiblel[el] = true;

9: end if

10.  if instance2[el] < —500 then
11: visible2[el] = false;

12: instance2[el] = —500;

13:  else

14: visible2[el] = true;

15:  end if

16: end for

17: if no_common_element(visiblel, visible2) then

18:  return max_value;

19: else

20:  return euclidean_distance(instancel, instance2);
21: end if

LINES 1-16: The set of visible BSSIDs in both instances is
determined and stored in the vectors visiblel and visible2.
Typically, the wi-fi signal strength is in the range between
—100 dBm and —20 dBm, where the first value indicates a
weak signal and the second a strong signal. Considering the



typical signal strength range and our convention for annotating
BSSIDs that were not scanned during a time interval, we con-
sider a BSSID visible if its signal strength is above —500 dBm.
In addition to this, the signal strength of the BSSIDs which are
not visible is set to —500 dBm. With this we assign appropriate
weights to differences in BSSID visibility and differences in
signal strength in the distance function.

LINES 17-20: If the instances do not have a common BSSID,
the maximum value of the float data type is returned. Otherwise
the Euclidean distance between the vectors instancel and
instance? is returned.

With the distance defined, we can proceed to the actual
clustering. As input, the hierarchical clusterer obtains a stream
of BSSID signal strengths in the training data annotated with
a timestamp. It outputs a set of wi-fi location identifiers, as
follows:

1: Create a vector training_bssids with all BSSIDs scanned
in the training data;

2: Create an empty set dataset;

3: for all minute m in the training data do

4:  Create a vector instance of length(training_bssids);
5. for all bssid in training_bssids do

6: if bssid scanned in minute m then

7: instance[bssid] = average_signal_strength(bssid);
8: else

9: instance[bssid] = min_value;

10: end if

11:  end for

12:  add instance to dataset;

13: end for

14:

15: Create a hierarchical clusterer clusterer;
16: wifi_clusters = clusterer.cluster(dataset);

18: Create an empty set locations;

19: Create an empty set loc_unknown;

20: for all cluster in wifi_clusters do

21:  if num_instances(cluster) > 20 then

22: add cluster to locations;

23:  else

24: add all instances in cluster to loc_unknown;
25 end if

26: end for

27: add loc_unknown to locations;

28:

29: return locations;

LINE 1: The set of all distinct BSSIDs scanned in the training
period is extracted — training_bssids.

LINES 2-13: The clustering dataset is created. One instance
is created for each one-minute window in the training data.
The instance length equals the size of fraining_bssids. The
elements in each instance represent the average signal strength
of each BSSID. If a BSSID was not scanned in a particular
time interval, the minimum value of the float data type in Java
is assigned.

LINES 15-16: The hierarchical clusterer using the previously
defined distance function is created. The dataset is clustered,
outputting a set of clusters wifi_clusters.

LINES 18-27: The set of wi-fi location identifiers locations
is determined. All clusters whose size is over 20 instances
are kept as location identifiers, while the clusters with size
less than or equal to 20 instances are merged into a single
unknown location.

LINE 33: The set of wi-fi location identifiers is returned.

GPS features: Three features are extracted from the GPS
signal: (1) GPS location identifier, (2) velocity and (3) category
of the nearest place.

GPS location identifiers are again obtained through hierar-
chical clustering on a training subset. The clustering uses the
Euclidean distance between GPS coordinates between pairs of
one-minute windows — if they are small, we consider that they
are at the same location. As input, the hierarchical clusterer
obtains a stream of GPS coordinates sensed in the training data
annotated with a timestamp. It outputs a set of GPS location
identifiers, as follows:

Create an empty set dataset;

for all minute m in the training data do
Create a vector instance of length 2;
instance[0] = average(latitude);
instance[1] = average(longitude);
add instance to dataset;

end for

Create a hierarchical clusterer clusterer;
gps_clusters = clusterer.cluster(dataset);

_ =
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12: Create an empty set locations;

13: Create an empty set loc_unknown;

14: for all cluster in gps_clusters do

15:  if num_instances(cluster) > 20 then

16: add cluster to locations;

17:  else

18: add all instances in cluster to loc_unknown;
19:  end if

20: end for

21: add loc_unknown to locations;

22:

23: return locations;

LINES 1-7: The clustering dataset is created. One instance
is created for each one-minute window in the training data.
The instance length equals 2 — the first element represents the
average latitude, while the second the average longitude.

LINES 9-10: The hierarchical clusterer is created using the
Euclidean distance between GPS coordinates. The dataset is
clustered, outputting a set of clusters gps_clusters.

LINES 12-21: The set of GPS locations locations is deter-
mined. All clusters whose size is over 20 instances are kept,
while the rest are merged into a single unknown location.

LINE 23: The set of GPS location identifiers is returned.

The velocity is computed simply as the distance between
the last and first GPS coordinates in a one-minute window,
divided by difference in the times these two coordinates were
obtained. The category of the nearest place is obtained from
the Foursquare geolocation database using their API [14].



Acceleration features: Two features are extracted from the
acceleration signal: elementary activity and energy-expenditure
estimate. The methods for elementary activity recognition
and energy-expenditure estimation are presented in our earlier
work [5].

Heart-rate features: Three features are extracted: (1) min-
imum, (2) maximum and (3) average heart-rate within each
one-minute window.

Respiration-rate features: Three features are extracted: (1)
minimum, (2) maximum and (3) average respiration-rate
within each one-minute window.

B. Machine Learning

Figure 1 shows the procedure for recognising lifestyle
activities using machine learning. The following activities
were intended to be recognised: sleep, home—chores, home-
leisure, food preparation, eating, work, exercise, out-leisure,
out—errands and transport. However, since some proved almost
impossible to distinguish, the set was reduced to: sleep, home,
eating, work, exercise, out and transport.

The procedure first determines when the user is at home
and at work by comparing the wi-fi location to a set of wi-fi
location values classified as home or work using the training
data. A wi-fi location is added to the home set if at least 25 %
of instances at that wi-fi location are during the weekend or at
least 25 % of them are in the period 0:00—10:00 or 16:00-24:00
during work days. A wi-fi location is added to the work set if
at least 25 % of instances at that wi-fi location are 10:00-16:00
during work days.

If not otherwise specified, the procedure uses majority-vote
classifiers consisting of eight base classifiers: Naive Bayes,
Logistic Regression, Support Vector Machine, C4.5, Random
Forest, RIPPER, AdaBoost and Bagging, as implemented in
the Weka machine-learning suite [15].

The procedure for the recognition of daily activities con-
sists of 11 steps:

1) If only time features are available, return unknown
as the final output, since these features alone are not
enough for accurate activity recognition.

2)  If only wi-fi location and time features are available,
return the majority class for the current wi-fi location
during the day (i.e., 8:00-24:00) or during the night
(i.e., 0:00-8:00). For this purpose we use a C4.5
classifiers with only one node that separates the
instances based on the wi-fi location.

3) If the velocity is greater than 10 km/h, check if the
activity is transport. For this purpose we use a binary
classifier created on a training dataset with only sound
features and velocity containing only two classes:
transport and other (other includes all classes except
transport). If this classifier outputs transport, return
transport as the final output.

4) If the estimated energy expenditure is greater than 2
metabolic equivalents of a task (MET) or the velocity
is between 5 km/h and 25 km/h, check if the activity
is exercise. This step aims at recognising running and
cycling outdoors. For this purpose we use a binary

classifier created on a training dataset with heart-rate,
respiration-rate and acceleration features, as well as
with wi-fi and GPS location, which contains only two
classes: exercise and other. If this classifier outputs
exercise, return exercise as the final output.

5) Check eating at home. For this purpose we use a
binary classifier created on a subset of the training
instances whose wi-fi locations belong in the home
group. The instances contain only sound features and
wi-fi location, and belong to two classes: eating and
other. Resampling is performed in order to bring
the eating—other class ratio to 1:2 (fewer than 10 %
of training instances are annotated as eating in the
original training data). If the classifier outputs eating,
return eating as the final output.

6) Check eating at work. For this purpose we again use
a binary classifier created on a subset of the training
instances whose wi-fi locations belong in the work
group. The instances contain only sound features and
wi-fi location and belong to two classes: eating and
other. Resampling is performed in order to bring the
eating—other class ratio to 1:2. If the classifier outputs
eating, return eating as the final output.

7)  Check eating. For this purpose we use a binary classi-
fier created on a training dataset with sound features,
wi-fi and GPS location containing only two classes:
eating or other. If this classifier outputs eating, return
eating as the final output.

8) Classify home activities. A classifier is built on a
subset of the training dataset whose wi-fi locations
belong in the home group and which do not have
a GPS signal. The features are: sound, heart rate,
respiration rate, wi-fi location, acceleration and time.
Return the output of this classifier as the final one.

9) Classify work activities. A classifier is again built on
a subset of the training dataset whose wi-fi locations
belong in the work group and which do not have
a GPS signal. The features are: sound, heart rate,
respiration rate, wi-fi location, acceleration and time.
Return the output of this classifier as the final one.

10)  Classify outdoor activities. A classifier is built on
a subset of the training dataset containing only in-
stances that have a GPS signal. The features are
sound, heart rate, respiration rate, wi-fi and GPS lo-
cation, acceleration and time. If the classifier predicts
out—leisure or out—errands, return the output of this
classifier as the final one.

11)  Return unknown.

C. Symbolic Reasoning

Symbolic reasoning can take advantage of human knowl-
edge and understanding of a domain, which makes it com-
plementary to machine learning. While machine learning is
very good at finding patterns in data, it is limited to what
is contained in the data. Furthermore, symbolic reasoning is
also suitable for interpreting recognised activities and acting on
them. In the COMMODITY, activity recognition approach,
we address both of these points.

Activities recognised from sensors are not always of high
quality because sensor data can be noisy or missing, because
sensors needed to recognise them reliably are not available,
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Fig. 1: The procedure for recognizing

and simply because activity recognition is not always an easy
task. This can be addressed to a degree by symbolic reasoning.
Event Calculus [4] can do reasoning considering ongoing
activities and the previously recognised activities. Here, we
will focus on the eating activity. Detecting when a person is
eating is a crucial task for diabetes management and is not
necessarily an easy problem. While some persons could have
a regular habit of eating at a distinctive location, other could
instead eat at various locations, or even in at the workplace,
making the distinction between the activities eating and work
difficult.

Example: Suppose we have a set of consecutive
recognitions for an eating activity, followed by a
gap in the recognitions. We apply Event Calculus
to extend those recognitions assuming a certain con-
tinuity in the activities of the user. In other words,
if eating is true for times 7' = t4,ts + 1...,¢t, and
we do not have any recognised activities for times
T=t+1,t4+2,...t., we can also assume that the
user was eating from 1" = t+1 to T' = t. (assuming

lifestyle activities using machine learning.

t.—ts is a reasonable amount of time). If t,+n > ¢,
where n is the maximum time in which we want to
propagate existing recognitions, the method can be
conservative, therefore leaving an unknown for the
activities ranging 1" = n + 1 onwards.

possible_at (activity(eating, P, _)=active, T):—
started_at (activity(eating, P, _), Ts),
max_time (eating, Ts, Te),

T < Te.

We also use our symbolic approach to detect unexpected
transitions in the recognised activities. For example, it is very
unlikely that a person is at home at time 7' = ¢ — 1, then
at work for time T t, and then go back to work in
T = t + 1. Following the same principle of continuity, we
change “orphan” recognitions, that is, those lasting a single
time event, into their neighbouring predictions. Similarly, it is
very unlikely for a person to be eating for just a single unit of
time. It is reasonable that any isolated eating activity in time
T = t surrounded by another activity a predicted for times



T =t—1and T =t+ 1 should be changed into the activity
a. In other words, at a very high level, symbolic approaches
can correct past recognitions if they do not show a reasonable
behavior.

We develop these ideas on top of our knowledge-
representation framework that allows an agent situated in an
environment to recognise complex activities, reason about their
progress and take action to avoid or support their successful
completion [16]. Activities are understood as parameterised
templates whose parameters consist of a unique name labelling
the activity to be recognised, a set of participants co-involved
in carrying out of the activity and a goal revealing the desired
outcome the participants seek to bring about. The novelty of
the work is the identification of an activity lifecycle where
activities are temporal fluents that can be started, interrupted,
suspended, resumed, or completed over time. The framework
also specifies activity goals and their associated lifecycle, as
with activities, and shows how the state of such goals aids
the recognition of significant transitions within and between
activities. We have the following components of the framework
(for more details of this logic framework, see [16]):

e an activity theory that regulates the activity lifecycle,
e a goal theory that regulates the goal lifecycle,
e adomain model that describes the recognition domain,

e an event narrative that contains the events that hap-
pened in the system (dataset).

Figure 2 describes the lifecycle of an activity (a) and a
goal (b). The recognition of activities is driven by the goals
of the user, which we represent as a modification of the goal
lifecycle presented in [17] for our purposes. An activity is
first activated due to a goal being adopted by the user and
a low-level event happening to start the activity. While the
activity is being performed, if the user’s goal changes, then
the activity is no longer required (e.g., the goal is dropped),
then the activity is interrupted. If the goal remains, but another
goal supersedes it temporarily (e.g., the goal is deactivated),
then the activity is suspended. When the user reactivates the
goal again, the activity is resumed. The activity completes
successfully when the user achieves the goal, in which case
the activity is completed.

IV. EXPERIMENTAL EVALUATION

Our activity-recognition approach was trained and evalu-
ated on the recordings of five volunteers (four male and one
female), who wore the smartphone and the ECG monitor for
two weeks. The volunteers manually labeled the 10 lifestyle
activities of interest through a phone application. On average,
we have 7.5 hours of recordings per day with the ECG monitor
and 11 hours with the phone. The experiments were performed
in a user-dependent manner, which means that each user’s first
recording week was used for training and the second week for
testing.

A. Results of Machine Learning

We evaluated the accuracy of nine machine-learning al-
gorithms: eight standard algorithms as implemented in the
Weka machine-learning suite [15], and Vote, which outputs

TABLE I: Classification accuracy of recognizing lifestyle
activities using simple machine learning

Algorithm | Ten classes  Seven classes
Naive Bayes 0.57 0.68
C4.5 0.56 0.66
RIPPER 0.62 0.72
SVM 0.64 0.72
Random Forest 0.61 0.71
Bagging 0.60 0.69
AdaBoost 0.44 0.56
Vote 0.65 0.77

TABLE II: Confusion matrix of the Vote classifier on the ten
lifestyle activities
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Sleep | 678 0 0o 0 O 0 0 0 0 0
Home—chores | 92 1064 612 22 86 120 12 480 O 4
Home-leisure | 146 527 708 0 37 187 4 148 0 140
Food preparation | 14 88 47 12 23 4 0 0o 0 0
Eating | 20 187 94 8 213 137 21 35 0 102
Work | 2 1 1 0 45 6891 5 51 22 280
Exercise | 1 65 4 0 1 118 233 90 11 20
Outleisure | 3 20 6 0 23 113 80 452 10 1023
Out—errands | 0 52 7 0 95 221 100 268 77 54
Transport | 0 7 4 0 206 84 43 8 12 1134

the class voted for by the majority of these eight. The results
using the full ten activity classes are shown in the second
column of Table I. The Vote classifier performed best, but
after examining its confusion matrix (Table II), we realised that
the activities home—chores, home-leisure and food preparation
were mutually misclassified so often that we merged them
into the activity home. Likewise, out-leisure and out—errands
were merged into out, resulting in seven activity classes. The
results for the reduced number of classes are shown in the
third column of Table I.

The results in the third column of Table I show that with the
reduced number of classes, the Vote classifier still performed
best. We then examined the instances where it made mistakes,
and found ways that could be used to improve the classification
accuracy. For example, when the velocity is above 10 km/h,
the user is probably running, riding bicycle or in a vehicle.
Therefore, if the velocity is above 10 km/h, we should check if
user’s activity is transport. If the estimated energy expenditure
is above 2 MET (moderate and vigorous activities are above 3
MET) or the velocity is between 5 km/h and 25 km/h (velocity
range encompassing running and riding a bicycle), the user
may be exercising. Therefore, we should check for exercise in
these circumstances. In this way we created the final machine-
learning approach shown in Figure 1.

The classification accuracy of the final machine-learning
approach was 0.88. However, it should be noted that it did
not classify 23 % of the instances, mainly because of missing
sensor data, which precluded reliable recognition. Table III
presents the confusion matrix of the final approach. The
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Fig. 2: Lifecycle of an activity and a goal. Double ellipses represent terminal states.

TABLE III: Confusion matrix of the final machine-learning
approach on the seven daily activities

s ¢ 2 ¢ £ 5 &
P 5 & ;8 ¢
Sleeping 670 8 0 0 0 0 0
Home 48 3203 23 9 70 24 1
Eating 5 338 118 54 7 30 2
Work 1 9 30 6468 8 137 5
Exercise 0 54 1 3 240 49 51
Out 0 60 18 124 157 304 70
Transport 3 27 1 16 8 30 872

activities sleep, home, work and transport are recognised quite
accurately. Out is not recognised as well, probably because
the location varied during this activity and was thus not a
very useful clue. Exercise, a particularly important activity
for diabetic patients, was recognised correctly in 60 % of the
cases, or misclassified as home (in approximately 14 % of the
cases), out (12 %) and transport (13 %). The instances where
it was misclassified as transport represent cycling faster than
20 km/h. 70 instances of the activity home were misclassified
as exercise, mainly those for which energy-expenditure esti-
mation was missing. 157 instances of the activity out were
also misclassified as exercise, mainly those with the energy
expenditure estimated over 2.5 MET. Eating, the other impor-
tant activity for diabetic patients, was unfortunately recognised
correctly only in 21 % of the cases. These were mainly in the
canteen at work or in a restaurant, while eating at home proved
too difficult to recognise.

B. Improvements with Symbolic Reasoning

We briefly describe several preliminary results we obtained
by applying the symbolic approach to the aforementioned
dataset. To show the validity of our approach, we tried to
improve the eating activity recognised by machine learning,
as it is important for diabetics. A quick analysis of the dataset
gives the results shown in Table IV. A first look at the table
shows two facts: i) The level of false negatives is rather high
(harming recall), and ii) The level of true positives is average
(which makes precision behave in a relatively decent manner).

Improving recall by extending predictions: We decided
to improve the recall by trying to cover “null" activities
(i.e. those instances which have no recognised activity). Our
improvement makes use of the following rule: if at a given time
T = t0 the recognition was eating and there are null activities

TABLE IV: Detailed evaluation of the eating activity

Person ‘ TP  FP FN N Precision Recall
Person I | 34 39 147 3911 04657  0.1870
Person2 | 57 15 82 1888 07917  0.4101
Person3 | 21 15 55 4697 05833 02763
Person4 | 5 3 226 4039 06250  0.0216
Person 5 | 1 1 189 2484 05000  0.0055
at times t0 + 1,t0 4+ 2, ..., recognise eating for those times

if the elementary activity is not walking, running or cycling,
and the maximum number of filled gaps is 2. After applying
this rule we obtained the following results:

e Person 1: precision dropped from 0.4657 to 0.4415,
recall unchanged (we introduced 4 new FP).

e  Person 2: precision increased from 0.7917 to 0.8023,
recall increased from 0.4101 to 0.4964 (12 new TP, 2
new FP).

e Person 3: precision dropped from 0.5833 to 0.575,
recall increased from 0.2763 to 0.3026 (2 new TP,
2 new FP).

e  Person 4: precision unchanged, recall unchanged.

e  Person 5: precision increased from 0.5000 to 0.6667,
recall increased from 0.0055 to 0.011 (1 new TP).

Overall, we obtained 15 new true positives predictions, but
we also added 8 false positives. We argue that this result is
encouraging as we are interested in increasing recall, which
happened in three out of five cases.

Removing false positives by smoothing predictions: False
positives can be removed if we find orphan eating recognitions,
i.e. an isolated eating surrounded by two other different activ-
ities. By applying this simple rule we obtained the following
changes:

e  Person 1: precision increased from 0.4657 to 0.4722,
recall unchanged (1 FP removed).

e  Person 2: precision increased from 0.7916 to 0.8260,
recall unchanged (2 FP removed).

e  Person 3: precision unchanged, recall unchanged (no
changes at all).

e  Person 4: precision dropped from 0.6250 to 0.5715,
recall dropped from 0.0216 to 0.0173 (1 TP removed).



e  Person 5: precision increased from 0.5000 to 1.000 (1
FP removed).

Except for person 4, the method seems to work well,
increasing the quality of the recognition of eating. Note that
this method does not depend on the activity and could be easily
applied on the rest of activities as well.

V. CONCLUSION

In this paper we presented an approach that combines
machine learning and symbolic reasoning to recognise lifestyle
activities of diabetic patients using sensor data obtained pri-
marily from the patients’ smartphone. Machine learning was
used to deal with the large quantity of difficult-to-interpret sen-
sor data. Domain knowledge was used to structure the machine
learning procedure so that multiple classifiers were invoked
in the appropriate order, as well as to craft symbolic rules to
refine the activities recognised by machine learning. The use of
domain knowledge in the machine-learning approach increased
the classification accuracy from 0.77 to 0.88 at the expense of
not classifying 23 % of the instances. The symbolic approach
further improved the recall for the eating activity by applying
several heuristics.

As the overall accuracy indicates, most of the activities
were recognised quite well. Of the two activities that are
particularly important for diabetic patients — eating, which
puts glucose in the blood, and exercise, which speeds up
its absorption — the latter was also recognised reasonably
well. Many instances of exercise that were misclassified as
other activities were probably when the user had a break or
was exercising less vigorously, while many instances of other
activities that were misclassified as exercise involved relatively
vigorous movement. Eating, however, was not classified well:
while it was possible to recognise some instances based on
the location (canteen, restaurant), recognising eating at home
proved virtually impossible. This is probably because it cannot
be recognised based on the patient’s physical activity or
location (sitting at the dining table — if this location can
even be distinguished from others based on the wi-fi signal
— is quite normal even when the patient does not eat), so
the only possible clue is the ambient sound. The sound can
be distinctive in some cases, but is nevertheless difficult to
recognise, particularly with the privacy-preserving measures
and the sound being muffled by the phone being in the user’s
pocket. The most effective solution to improve the recognition
of eating would probably be to put a sensing device on the
patient’s wrist, but unfortunately this is out of scope of our
work in the COMMODITY 2 project.

We plan to pursue the following directions for future work:

e  We will attempt to improve the recognition of eating,
primarily by employing better sound processing.

e We will develop a machine-learning approach that
does not have to be trained on recordings of the patient
for whom it is used, or that at least does not require
each patient to label all the activities. We may require
him/her to label only those activities that cannot be
recognised in a patient-independent fashion (perhaps
eating will prove to be such an activity).

e  We will enhance the symbolic reasoning by applying
more heuristics depending on the activity type.

e We will use the proposed activity-recognition ap-
proach as an input to the diagnostic reason-
ing in the personal health system developed in
COMMODITY 2.
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