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Abstract 

A new algorithm and web server, mutation3D (http://mutation3d.org), proposes driver genes 

in cancer by identifying clusters of amino acid substitutions within tertiary protein structures. 

We demonstrate the feasibility of using a 3D clustering approach to implicate proteins in 

cancer based on explorations of single proteins using the mutation3D web interface. On a 

large scale, we show that clustering with mutation3D is able to separate functional from non-

functional mutations by analyzing a combination of 8,869 known inherited disease mutations 

and 2,004 SNPs overlaid together upon the same sets of crystal structures and homology 

models. Further, we present a systematic analysis of whole-genome and whole-exome cancer 

datasets to demonstrate that mutation3D identifies many known cancer genes as well as 

previously underexplored target genes. The mutation3D web interface allows users to analyze 

their own mutation data in a variety of popular formats and provides seamless access to 

explore mutation clusters derived from over 975,000 somatic mutations reported by 6,811 

mailto:haiyuan.yu@cornell.edu
http://mutation3d.org/
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cancer sequencing studies. The mutation3D web interface is freely available with all major 

browsers supported. 

 

Keywords: cancer, clustering, protein structures, web tool, somatic mutations 

 

Introduction 

A hallmark of the genomic era has been the application of whole-genome and whole-exome 

sequencing to the study of genetic disease, especially cancer. This effort has led to the 

development of new statistical methods (Hodis, et al., 2012; Lawrence, et al., 2013; Sjöblom, 

et al., 2006), which have identified many potential genomic targets of interest by combing the 

deluge of data produced by large cohort studies. While these methods have been largely 

successful in identifying genes with previously unknown roles in tumorigenesis, we have yet 

to fully realize the promised boon to therapeutic development—although the list of potential 

disease-causing and driver mutations has grown, the list of approved therapeutics has 

remained largely static (Das, et al., 2014a). 

Although the underlying causes of this lag are complex, they can at least be partially 

attributed to the level of resolution of current methods, which typically identify potentially 

functional genes based on mutation frequencies at the level of whole genes (Cancer Genome 

Atlas, 2012; Lawrence, et al., 2014; Vucic, et al., 2012; Wood, et al., 2007). However, many 

genes carry out a diverse set of functions (pleiotropy), the derangement of any one of which 

may be sufficient to cause cancer. Further, disruption of different functions of the same gene 

often lead to clinically distinct types of cancer (Hanahan and Weinberg, 2011; Muller and 

Vousden, 2013). Finally, even when a specific gene has been identified as being potentially 

involved in tumorigenesis, researchers may have little idea as to which of its functions has 
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been disrupted. All of these challenges facing current methodologies make it difficult to 

develop targeted therapeutic strategies. 

Here we present mutation3D, an algorithm and web server (http://mutation3d.org) 

designed to identify somatic cancer-causing genes by leveraging the structure-function 

relationships inherent in their protein products. In tumorigenesis, mutations are selected that 

confer a competitive advantage to pre-cancerous cells. Since many mechanisms of 

tumorigenesis involve alterations to protein function, and protein function is determined by 

protein structure, tumorigenically selected driver mutations may localize to positions that will 

affect protein structures. Therefore, mutations causing the same cancer type in a cohort of 

patients may form clusters (or hotspots) in regions of protein structures wherein alterations 

confer a competitive advantage to tumor cells by disrupting specific protein functions. For 

instance, mutations localized at interaction interfaces may disrupt protein complexes or 

transient interactions (Wang, et al., 2012; Wei, et al., 2014), and mutations localized in the 

hydrophobic core may destabilize the protein entirely (Das, et al., 2014b; Kucukkal, et al., 

2015; Nishi, et al., 2013; Petukh, et al., 2015).  

Recent studies have begun to leverage structure-function relationships in proteins to 

predict cancer gene targets by searching for nonrandom distributions of mutations in protein 

crystal structures (Kamburov, et al., 2015) and enrichment across protein domains (Miller, et 

al., 2015). We present the first tool to identify and visualize individual clusters within protein 

structures. Furthermore, we also provide an option to search for clusters in homology models, 

expanding our coverage of the human proteome more than three-fold (Supp. Note S1). 

Through an intuitive, freely available web interface, researchers can use mutation3D to 

inspect clusters of amino acid substitutions in an interactive molecular viewer to determine 

whether to follow up with the target based on its structural features. Furthermore, mutation3D 

can analyze data from whole-genome  sequencing (WGS; throughout used to also include 

http://mutation3d.org/
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whole-exome) studies to perform cluster analysis of variants at the level of the structural 

proteome. 

 

 

Methods 

mutation3D clustering algorithm 

The algorithm underlying the mutation3D web interface is complete-linkage (CL) clustering 

(Sørensen, 1948), a hierarchical clustering method in which clusters first comprise single 

elements and are then merged with nearest neighboring clusters or unassigned elements until 

a single cluster comprises all elements. Notably, the clusters found by complete-linkage 

clustering, as opposed to single-linkage clustering (Sneath, 1957), are assured to have a 

diameter less than or equal to a specified linkage distance, which results in tight well-defined 

clusters. Because of this property, this method can also be referred to as furthest-neighbor 

clustering, since the dissimilarity of elements within a cluster is determined by the distance 

between the two elements furthest from each other in n-dimensional space. 

In our implementation of this classic machine learning algorithm, we cluster the three-

dimensional locations of the α-carbons of those amino acids whose codons contain missense 

mutations. The coordinates of all atoms within proteins were derived from both PDB 

structures and structural models (Pieper, et al., 2011) based on PDB entries covering proteins 

either in part or in full. For any given protein, many overlapping models may be available 

from either or both sources. mutation3D will invariably use entries from the PDB when they 

are available, as these experimentally determined crystal structures are considered to be a 

‘gold standard’ in structural biology. To increase structural coverage of the proteome, the 

user may also select a subset of homology-based models to include, based upon several 
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quality metrics available via the Advanced Query page (Supp. Note S2). Once a set of PDB 

structures and structural models has been established for a single protein, mutation3D 

attempts to cluster amino acid substitutions on all models separately, and reports any model 

or experimentally determined structure in which a cluster has been found. In our analyses we 

consider it sufficient to implicate a protein in cancer if any of its models are found to contain 

a cluster. 

Some whole proteins or regions of proteins may not have been crystallized or modeled to-

date. Owing to the lack of structural coordinates in these regions, we would be unable to 

identify clusters of mutations. There are some cases in which a single genomic mutation may 

give rise to defects in distinct proteins, in which case mutation3D will attempt to find clusters 

across all proteins and models for which this mutation has an effect on protein products. 

Users may elect to set the CL-distance, or the maximum allowable distance between α-

carbons in a cluster of substituted amino acids. We refer to this as the maximum cluster 

diameter as this is equivalent to the maximum allowable diameter in Angstroms of a sphere 

encapsulating all α-carbons in a cluster. With regard to the complete linkage clustering 

algorithm, the CL-distance is the maximal dissimilarity between elements, after which, no 

new merging of elements and groups of elements occurs. In mutation3D, we call this 

parameter the Maximum Clustering Diameter, which is measured in Angstroms, and 

represents the maximum distance between amino acid substitutions after which no further 

merging of single mutations with clusters occurs and clusters are assigned based on current 

hierarchical groupings of mutations. For more information on all algorithm parameters and 

their default values, see Supp. Notes S2 and S3. 

 

Statistical significance of clusters 



 

 

 
This article is protected by copyright. All rights reserved. 

7 
 

In order to calculate the statistical significance of clusters found by complete-linkage 

clustering, mutation3D performs an iterative bootstrapping method to calculate a background 

distribution of cluster sizes arising from a random placement of an equivalent number of 

substitutions in a given protein structure. By default, mutation3D will randomly rearrange all 

amino acid substitutions 15,000 times in a given structure and calculate the minimum CL-

distance at which a cluster of size n (where n is all cluster sizes found in the original data) is 

observed in the randomized data. For each cluster in the original data, P-values are computed 

empirically as the percentile rank of its CL-distance among all CL-distances for randomized 

clusters containing the same number of amino acid substitutions. The clustering 

algorithm/statistical significance calculator is implemented in C++ and is available for 

download as a command-line tool. 

There is precedent, even within cancer gene detection, for the use of iterative 

bootstrapping methods when the background distributions are unclear or complicated (Hodis, 

et al., 2012; Lawrence, et al., 2014). Here we use bootstrapping to account for vastly different 

configurations of the protein backbone in different protein structures. 

 

Compiling a protein structure and model set 

In order to build a repository of protein structures and models, we curated experimentally-

determined crystal structures from the PDB and homology models from ModBase by 

searching for canonical isoforms of Swiss-Prot structures or chains in both. Since many PDB 

structures provide too little coverage of their target protein to be useful for clustering, we 

retained only those structures that cover at least 250 amino acids or 40% of their target 

protein. We only retained ModBase models that have an MPQS score ≥ 0.5, and maintain a 

default cutoff of MPQS ≥ 1.1 in the mutation3D interface and in our analyses. All structures 

and models were compared against each other to remove redundancies (i.e. a ModBase model 
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that is of higher quality than and whose range of amino acids is entirely contained within a 

second ModBase model derived from the same PDB structure was considered not to add any 

novel structural information to our repository). Furthermore, the amino acid indices of all 

models and structures were realigned using SIFTS (Velankar, et al., 2013) to match the 

amino acid indices of the Swiss-Prot protein they represent. 

 

mutation3D web interface 

To build the mutation3D web interface, we leveraged the power and flexibility of several 

well known JavaScript packages, such as JQuery and Bootstrap, in addition to a package 

designed to draw static two-dimensional figures (KineticJS). The cornerstone of our display 

system is an entirely JavaScript-based molecular viewer, GLmol, which allows users to view 

interactive 3D protein structures natively in modern web browsers supporting the new 

WebGL standard, without downloading any additional software. We have made 

modifications to these software packages to allow triggering of events by the user, such as 

highlighting mutations and mutation clusters simultaneously in the 3D and 2D 

representations of proteins. 

To speed up web accession for both single and batch queries, mutation3D runs on a multi-

core web server and the calculation of clusters is distributed among available computing 

cores using multithreaded CGI programs. 

 

Compiling mutations and variants affecting aromatase  

We compiled a list of all inherited missense mutations from the Human Gene Mutation 

Database (Stenson, et al., 2014) (HGMD) that (i) occurred within the exons of the CYP19A1 

gene [MIM# 107910] encoding the protein aromatase and (ii) have been shown in the 

primary literature to cause aromatase deficiency [MIM# 613546] (Supp. Table S1). We also 
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compiled a set of all missense SNPs with total minor allele frequency (MAF) ≥ 1% 

(combined African and European ancestry) from the Exome Sequencing Project (Fu, et al., 

2013) (ESP) that give rise to amino acid substitutions in aromatase (Supp. Table S2). Please 

note that nucleotides are indexed in coding sequences, using the A of the ATG translation 

initiation start site as nucleotide 1. Visual inspection was performed by highlighting Cα 

positions in aromatase (PDB: 3S79) using PyMol (Schrodinger, 2010). 

 

Segregating disease mutations from SNPs  

For each Swiss-Prot protein from UniProt, a set of pathogenic inherited mutations from 

HGMD (Stenson, et al., 2014) was assembled for the catalogued disease with the greatest 

number of associated mutations in that protein. Proteins with fewer than three pathogenic 

mutations (two of which were required to occur at unique amino acid positions) associated 

with any one disease were not considered as this is the minimum requirement for identifying 

a cluster with default mutation3D parameters (Supp. Notes S2 and S3). Separately, we 

assembled non-synonymous SNPs (nsSNPs) with MAF ≥ 1% from the ESP 6500 set, only 

retaining proteins if there were at least three SNPs in the protein, two of which caused amino 

acid substitutions at unique amino acid positions. We intersected these two sets and only 

retained proteins that occurred in both sets as meeting the individual criteria of three 

mutations from each set, two of which must have been at unique amino acid positions, for a 

total of six or more variants per protein. In total, we retained 8,869 inherited disease-

associated mutations from HGMD and 2,004 nsSNPs from ESP 6500 in 336 proteins. 

We used mutation3D to identify clusters in the resulting proteins, employing a fairly strict 

definition of a cluster whereby a cluster was identified if three or more substitutions were 

found within the complete linkage clustering distance of 15 Å, with at least two substitutions 

occurring at unique amino acid locations. 3D model sets were derived from PDB structures 
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and ModBase models indicated to be of high quality by an MPQS ≥ 1.1 (full details on 

default parameters for mutation3D are available in Supp. Notes S2 and S3). We report the 

average per-protein clustering rates across all proteins for which models from the correct set 

were available. P-values were calculated using a U test. 

 

Measuring the overlap between mutation3D-implicated genes and the Cancer Gene 

Census 

To assess whether mutation3D is able to report known cancer genes, we ran mutation3D with 

default parameters (Supp. Notes S2 and S3) on all WGS screens in COSMIC v75 (285 

studies). We varied the maximum cluster diameter from 5 Å to 25 Å and identified the 

fraction of proteins implicated (as having one or more clusters of amino acid substitutions) 

that are known cancer genes. We define known cancer genes to be the union of genes 

included in the Cancer Gene Census (Futreal, et al., 2004) and MutSig drivers list (Lawrence, 

et al., 2014). Overlaps between mutation3D-identified genes and known cancer genes were 

computed as the number of known cancer genes identified by mutation3D divided by the total 

number of genes implicated by mutation3D in each tissue category and overall (this is also 

known as the precision or positive predictive value (PPV)):  

 

PPV = TP / ( TP + FP ) 

 

where TP is the number of true positives and FP is the number of false positives predicted by 

mutation3D. It should be noted that since the our set of known cancer genes is far from 

complete, this estimation is likely to represent the lower bound of the true precision of our 

method. Furthermore, we acknowledge that even genes in the set of known cancer genes may 

not be drivers in all cancer types. However, the overlap between our results and the known 
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cancer genes is likely to correlate with the underlying precision of our method and there is no 

reason to believe that the overlap will be biased in certain cancer types. Therefore, this 

measurement can be used to estimate the lower bound of the precision of our method in 

comparing its performance across different cancer types. Calculation of sensitivity and 

specificity is inappropriate in this instance because no method could re-capitulate all known 

cancer genes as no data set (single WGS study or a group of WGS) can be assumed to harbor 

all mechanisms underlying tumorigenesis. We also computed the overlap of all genes in these 

285 COSMIC studies with known cancer genes for each tissue category and across all tissues, 

to show that performing 3D clustering at any maximum cluster diameter increases precision 

over random expectation for this data set. P-values were calculated using a Z test to compare 

each fraction of identified genes by clustering at different diameter thresholds to the fraction 

of identified genes without clustering. 

 

Assessing the likelihood of mutations clustered with mutation3D to be causal 

In addition to predicting driver genes based on those found to contain clusters, mutation3D 

has the ability to predict those mutations likely to drive cancer phenotypes by their inclusion 

in clusters. Here, we used two proxies for causal driver mutations: that they should be more 

likely to be damaging and they should be more frequently observed in WGS studies. 

We determined PolyPhen-2 scores (using the HumVar-trained model for assigning 

categories) of those mutations likely to be most deleterious biochemically based on a 

Grantham score (Grantham, 1974) in the top 25%. This shows how a combined biochemical 

and evolutionary genetics approach could lead to the discovery of new driver mutations. 

PolyPhen-2 scores were accessed using the Ensembl Variant Effect Predictor, assembly 

GRCh38.p5 (http://www.ensembl.org/Tools/VEP) (McLaren, et al., 2010). 

http://www.ensembl.org/Tools/VEP
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We further determined the fraction of mutations from WGS studies found in clusters that 

are observed at high frequencies (in the top 2%) throughout COSMIC WGS studies. 

 

 

Results 

Single-protein spatial mutation case studies 

The specific relationship between 3D regions of protein structure and their functions can be 

illustrated by the proximity of amino acid substitutions arising from known disease-causing 

and cancer-associated mutations in tertiary protein structures. We searched the Human Gene 

Mutation Database (Stenson, et al., 2014) (HGMD), a large-scale disease database of gene 

mutations causing human inherited disease, and the Catalogue of Somatic Mutations in 

Cancer (Forbes, et al., 2011) (COSMIC), a somatic cancer mutation database, for examples of 

spatially specific disruptions that might explain disease phenotypes. This is intended as a 

proof-of-principle, showing that there is a plausible connection between the spatial 

arrangement of mutations and disruptions of function, and that this relationship can be 

quickly captured through visual inspection. 

 

Disease mutations and nsSNPs segregate in aromatase 

According to HGMD, aromatase deficiency is known to be caused by at least 9 unique 

missense mutations in the cytochrome P450, family 19, subfamily A, polypeptide 1 

(CYP19A1) gene leading to amino acid substitutions at 8 positions along the aromatase 

protein backbone (Supp. Table S1). The Exome Sequencing Project (ESP) 6500 data set (Fu, 

et al., 2013) contains two common non-synonymous SNPs (nsSNPs) with MAF ≥ 1% in this 

gene, which we consider likely to be benign given their high frequency of occurrence (Supp. 
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Table S2). Based on the primary sequence alone, no clear pattern or separation can be 

detected between the disease mutations and nsSNPs (Figure 1a). However, when we inspect 

the locations of these two classes of mutation on an experimentally-determined crystal 

structure of aromatase (PDB: 3S79 in Figure 1a), it is evident that the verified disease 

mutations and common nsSNPs are localized in quite different regions of the protein, 

suggesting somewhat different functional consequences depending upon the location of a 

mutation within the tertiary structure of the protein.  

 

Commonly observed cancer mutations form a tight cluster in GTPase KRas 

Cancer mutations may also aggregate within clusters in protein structures, and this 

aggregation is likely to have profound implications for our ability to differentiate functional 

driver mutations from neutral passenger mutations. Consider the canonical oncogenic protein 

GTPase KRas: the tight clustering of commonly mutated amino acid substitutions in codons 

12, 13 and 61 suggests that these mutations cause similar structural perturbations that may 

lead to many types of cancer (Figure 1b). In fact, it has long been known that substitutions in 

these codons confer tumorigenesis, and several mechanisms have been proposed (Pylayeva-

Gupta, et al., 2011) (Supp. Note S4, Supp. Table S3). Interestingly, another amino acid 

substitution E49K has only been reported once in a single patient (Guedes, et al., 2013) and is 

predicted to be benign by PolyPhen-2 (Adzhubei, et al., 2010). The clear spatial separation of 

the known driver mutations from the putatively benign mutation indicates a highly specific 

correlation between protein structure and function in cancer. Owing to its very high mutation 

frequency in many different types of cancer, KRAS [MIM# 190070] is readily identifiable as 

tumorigenic by many methods; however, mutation3D is uniquely positioned to be able to 

detect similar cases of spatially specific disruption in proteins currently unknown for their 
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roles in tumorigenesis by relating cancer sequencing data to aberrations in the structural 

proteome. 

 

 

Coordinating mutations and structural data into a tool for whole-genome inference 

mutation3D identifies mutations that group together to form statistically significant clusters 

on the folded protein backbone based on atomic coordinates derived from experimentally 

determined crystal structures and homology models. Cluster significance is measured by an 

iterative bootstrapping model, in which observed mutations are randomly rearranged on a 

protein structure, and the size of the observed cluster is ranked compared to all randomly 

derived clusters to compute an empirical P-value (see Methods for details). The 

accompanying web interface provides visualization of these clusters as well as the ability to 

rapidly switch views between all available structures. Figure 2 describes the curation of 

structural and mutation data, and user accession and download procedures. 

 

Structural data underlying mutation3D 

In assembling a set of protein structures and models for use with mutation3D, we relied on 

the huge advances made in structural proteomics over the past decade. Alongside the 

explosion of genomic sequencing data, the availability of structural proteomic data, including 

crystal structures and homology models, has increased dramatically. In 2003, there were 

25,864 crystal structures in the Protein Data Bank (Berman, 2000) (PDB), covering 6.7% of 

the human proteome. Now, with the number of entries in the PDB exceeding 100,000, we can 

visualize nearly 90% (with reasonable accuracy and coverage—see Supp. Figure S1) of the 

human proteome through a combination of experimentally-determined crystal structures and 

structural models based on shared structural elements among homologous proteins. 
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mutation3D curates both crystal structures from the PDB and high-quality homology models 

from ModBase (Pieper, et al., 2011) to populate its repository of over 135,000 protein 

structures (Figure 2a). This significant underpinning of structural proteomic data ensures that 

mutation3D is useful for large-scale sequencing projects, as nearly all DNA mutations of 

interest within coding regions will be mappable to 3D locations in protein structures. 

 

Seamless access to large-scale somatic cancer mutation sets 

Perhaps the richest large-scale source of missense mutation data derives from WGS studies of 

cancer patient cohorts. According to COSMIC, in the year 2003, 187 peer-reviewed articles 

were published reporting on average a single gene with protein-altering somatic mutations in 

tumor-normal sequencing studies. In 2012, 572 studies reporting an average of 144 mutated 

genes were published. With the growing ease of sequencing, the scientific community has 

largely embraced the wholesale sequencing of tumor samples, and an accompanying class of 

statistical methods to identify genes characterized by elevated mutation rates across large 

patient cohorts (Cancer Genome Atlas, 2012; Hodis, et al., 2012; Lawrence, et al., 2014; 

Lawrence, et al., 2013; Sjöblom, et al., 2006; Wood, et al., 2007). These methods have been 

largely successful, and have led to the discovery of many genes previously not known to be 

involved in tumorigenesis. However, studying cancer at the level of whole genes ignores the 

fact that many genes and their protein products perform multiple cellular functions 

(pleiotropy). By incorporating available protein structures and models into cancer gene 

detection, we can harness the inherent structure-function relationship in proteins to identify 

more specific tumorigenic etiologies based on specific spatial disruptions that could become 

therapeutic targets. 

The mutation3D web interface allows users to rapidly analyze pre-processed missense 

mutation data from the most recent build of COSMIC through intuitive web forms on the 
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Advanced query page (http://mutation3d.org/advanced_form.shtml, click the COSMIC tab 

under Data Source). Currently, we have catalogued over 975,000 missense mutations in 

6,811 primary cancer sequencing studies that users can search for by author, journal, PMID, 

and size of dataset (Figure 2b). Additionally, users may choose to tune the default clustering 

parameters (Supp. Note S3) and protein structural model set (Supp. Note S2) based on the 

types of evidence needed to support clusters for their specific application. A list of 

candidates, with links to 3D views of the mutations overlaid onto structural models (Figure 

2c), are retrieved within seconds, even for the largest WGS studies in COSMIC. 

 

mutation3D identifies well-validated gene candidates and plausible new targets 

We ran mutation3D on large sets of known inherited disease and cancer mutations to 

demonstrate the power of clustering to reveal shared etiologies in the structural proteome. 

Here, and in all following large-scale analyses, mutations associated with each distinct 

disease phenotype are considered separately from mutations associated with unrelated 

phenotypes so that a correspondence can be made between clusters in functionally relevant 

parts of protein structures and potential defects in molecular function that may cause one 

specific disease or type of cancer. We demonstrate the ability of mutation3D to distinguish 

functional from non-functional mutations in disease and to re-discover many known cancer-

causing genes as well as discovering several new putative targets. Parameters for all tests 

performed are available in Methods and in Supp. Table S4. 

 

mutation3D distinguishes disease mutations from common variants 

To illustrate the efficacy of mutation3D in distinguishing functional from non-functional 

variants, we considered all proteins harboring at least 3 mutations associated with a single 

disease (according to HGMD) and all missense population variants (SNPs) from the ESP 

http://mutation3d.org/advanced_form.shtml
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6500 data set for this same set of proteins (see Methods for details). We were able to show 

that the resulting set of 8,869 disease-causing amino acid substitutions are more likely to be 

clustered by mutation3D than are 2,004 putatively benign substitutions arising from missense 

SNPs when considering only those mutations associated with a single disease at a time mixed 

together with SNPs in the same proteins (Figure 3a-b). This trend is apparent irrespective of 

whether the protein structure set is confined to known PDB structures, homology models 

from ModBase, or a combination of the two. 

This analysis illustrates mutation3D’s ability to distinguish functional from non-

functional variants when all functional variants share an associated phenotypic consequence. 

Because it is often difficult to determine which cancer mutations are drivers and which are 

passengers, mutation3D’s ability to distinguish functional disease mutations from non-

functional SNPs serves as a proxy measure of its ability to separate functional driver 

mutations from a background of largely non-functional passenger mutations. 

 

 

 

mutation3D identifies both new and well-known cancer genes 

To confirm that mutation3D identifies plausible driver gene candidates in cancer (as judged 

by the existence of one or more clusters of substitutions in structures of their protein 

products), we computed statistically significant clusters from mutations in all WGS studies 

cataloged by COSMIC. First, we calculated the proportion of the identified cancer candidates 

that have been previously proposed as cancer drivers based on a combination of the Cancer 

Gene Census database (Futreal, et al., 2004) and the MutSig driver list (Lawrence, et al., 

2014). This is likely to be correlated with the lower bound of precision, or positive predictive 

value, of our method (see Methods). Figure 3c illustrates the calculated proportion values for 
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all publications analyzed and for specific tissues within these studies, plotted over several 

cluster sizes. The results concur with our expectation that tighter mutation clusters should 

exhibit high precision for known cancer genes since substitutions in close physical proximity 

will be more likely than distant substitutions to be contained within the same interface 

domain or within the hydrophobic protein core. As expected, we also observe lower precision 

in the identification of genes involved in cancers of the skin, which are characterized by very 

high mutation rates (Alexandrov, et al., 2013). By contrast, cancers of the breast are known to 

harbor driver mutations in a relatively small number of genes and contain a relatively low 

proportion of passenger mutations (Kan, et al., 2010), thereby allowing mutation3D to 

precisely identify known cancer genes irrespective of cluster size. 

To confirm that our statistical model yields plausible measures of cluster significance, we 

computed the statistical significance of clusters found in COSMIC WGS data. We find that 

our iterative bootstrapping model (See Methods) produces P-values that are highly correlated 

with the likelihood of a gene to be a known cancer genes (Figure 3d). We repeated both this 

and the study in Figure 3c using the Cancer Gene Census and MutSig cancer gene list 

separately to define a list of known cancer genes. We find the relative observed trends remain 

the same, confirming the robustness of our analyses (Supp. Figure S2). 

We also find that the somatic mutations within these clusters are predicted to be more 

deleterious by PolyPhen-2 when found in smaller, more specific clusters (Figure 3e). 

Furthermore, mutations within clusters are observed at much higher frequencies within WGS 

studies, suggesting they are likely to be driver mutations (Figure 3f). Overall, these analyses 

suggest a tendency for functionally important mutations to form clusters in cancer patient 

cohorts, whereas less important passenger mutations are more likely to fall outside these 

clusters. 
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We next investigated whether mutation3D preferentially reports potential oncogenes or 

tumor suppressors. We find that of genes annotated in either class based on the Cancer Gene 

Census, there is not a significant difference in the likelihood mutation3D will find clusters 

within  their protein products (Supp. Note S5, Supp. Figure S3). This suggests that 

mutation3D is equally robust in its ability to detect oncogenes and tumor suppressors. 

Finally, we produced a list of the genes whose protein products most commonly exhibit 

clusters of mutations within the same set of COSMIC WGS publications. We find that 

mutation3D implicates many well-known cancer genes (TP53, KRAS, EGFR, BRAF, etc.) as 

well as some genes that are missing from the Cancer Gene Census (Figure 4a). Visual 

inspection of the most significant clusters for each of these proposed genes demonstrates the 

power of 3D clustering (Figure 4b).  A list of all genes found in at least 4 studies across 

COSMIC is available in Supp. Table S5. 

 

 

 

Discussion 

Researchers have already begun to acknowledge the added benefit of linear clustering 

approaches to the detection of driver mutations in two recently proposed methods (Lawrence, 

et al., 2014; Tamborero, et al., 2013). However, these methods do not take into account the 

3D positions of mutations within protein products, disregarding information available due to 

structure-function relationships in proteins. Two other recent methods (Ryslik, et al., 2012; 

Ryslik, et al., 2014) perform 1D clustering of mutations after a projection of 3D structural 

coordinates into 1D, potentially resulting in loss of information (Supp. Note S6, Supp. Figure 

S4). Clustering methods have also been used to detect signatures of positive selection 



 

 

 
This article is protected by copyright. All rights reserved. 

20 
 

(Tusche, et al., 2012; Wagner, 2007; Zhou, et al., 2008); however, the goals and assumptions 

of these methods and mutation3D are quite different (Supp. Note S7, Supp. Figure S5). 

Another recent method detects non-random distributions of mutations in protein crystal 

structures (Kamburov, et al., 2015). Although this method shows in principle that 3D 

structural information is valuable for identifying target genes, it does not distinguish 

individual clusters and its analysis is limited to PDB structures.  

Compared to the standard class of methods that do not search for clusters of amino acid 

substitutions, but instead employ measures of mutation frequency at the gene level to detect 

drivers of cancer, the added value of mutation3D lies in its orthogonal use of protein 

structures to make a more direct connection between alterations of structure and disruptions 

of function. We do not intend that mutation3D should replace these methods (Hodis, et al., 

2012; Lawrence, et al., 2013; Sjöblom, et al., 2006). Instead, mutation3D gives scientists the 

ability to inspect their data through an additional lens—to visualize and form hypotheses 

about functional gene and protein candidates proposed by any method of cancer gene 

detection, and to find cases in which directly searching for structural disruptions may provide 

insights not available by other means. Even beyond its potential to improve candidate gene 

identification, mutation3D is valuable simply in terms of its ability to display mutations on all 

available high-quality structures and models, a task that requires significant effort on any 

scale without mutation3D, and can be accomplished on massive scales with mutation3D.  

Throughout this study, we have evaluated the ability of mutation3D to identify whether or 

not a gene is involved in cancer because this is a standard for the cancer gene detection 

methods of today. However, such a metric may underrate the true ability of mutation3D, 

which can propose specific tumorigenic etiologies based on the structural localization of 

mutations. Even in cases where mutation3D identifies the same gene as another method, 
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analyzing and viewing the mutations using mutation3D may present a specific hypothesis 

supported by both statistical and structural evidence, which may be more likely to inspire 

follow-up studies. 

In addition to providing structural evidence for single proteins, the mutation3D web 

interface (http://mutation3d.org) allows users to rapidly search for clusters of mutations in the 

proteome (by inputting their data in a variety of popular genomic and proteomic formats), 

view, and download clustering reports. Through the Advanced Query interface, users may 

adjust the clustering parameters and build structure and model sets for custom analysis of 

their own data or to seamlessly access pre-analysis of over 975,000 missense mutations in 

6,811 primary cancer studies catalogued by COSMIC. Owing to the amount of data already 

available via the mutation3D web interface and the continual accumulation of cancer 

sequencing and protein structural data, mutation3D is likely to produce future insights based 

on structural localization of mutations in the human proteome. 
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Figure Legends 

 

Figure 1. Missense mutations in both Mendelian disorders and cancer form clusters in 

tertiary protein structures. Linear protein models are given below each structure to illustrate 

the importance of studying 3D crystal structures. (a) Protein substitutions arising from 

mutations known to cause aromatase deficiency (in red) are shown overlaid upon an 

experimentally determined crystal structure of aromatase. Protein substitutions arising from 

common missense SNPs with MAF ≥ 1% (in blue) are shown to aggregate within regions of 

the protein structure distinct and spatially separated from those harboring the pathogenic 

substitutions, suggesting a strong relationship between the position of a substitution in the 

protein and its functional consequence(s). (b) Mutations causing amino acid substitutions in 

codons 12, 13 and 61 account for over 99% of the mutations in GTPase KRas reported by 

COSMIC. The three most common amino acid substitutions at these positions (shown in red) 

form a tight cluster in a crystal structure of GTPase KRas, whereas a substitution (E49K) 

only observed once in COSMIC (shown in blue), is likely to be a passenger mutation and 

falls outside the 3D mutation cluster even though it appears to be in close proximity in the 

linear model.  
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Figure 2. An overview of the mutation3D clustering and web accession procedures. (a) 

Sources of 3D protein structures and models and missense mutations in cancer. Pre-

computation of clusters of amino acid substitutions for large data sets occurs with each 

COSMIC update. (b) There are three options for users to determine clusterings: by inputting 

their own data as substitutions in single proteins (or nucleotide mutations in genes), by 

uploading a file of mutations, or by analyzing missense mutations from one of the 6,811 

publications curated by COSMIC. (c) The mutation3D web interface shows clusters on both 

linear models and interactive 3D models. Users may select among available models and 

structures. Individual queries will lead directly to this page, while batch queries will first lead 

to a table of proteins and clusters (shown below). 
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Figure 3. (a-b) Known inherited disease-associated missense mutations from HGMD and 

missense SNPs from ESP 6500 with MAF ≥ 1% were clustered using mutation3D, with the 

percentage of variants within proteins containing clusters reported. (a) The combined set of 

resulting amino acid substitutions was plotted onto 3D protein models derived from the PDB 

alone, ModBase alone, and a combination of the two. (b) Fractions of clustered mutations 

were recalculated only for those mutations that reside within protein regions for which a 3D 

structure or model exists. (c-e) mutation3D was run on 285 WGS somatic tissue screens in 

COSMIC. (c) A higher fraction of protein candidates identified are known cancer genes at 

smaller values of cluster size (maximum cluster diameter). (d) A higher fraction of protein 

candidates identified are known cancer genes at smaller clustering P-values. (e) Mutations in 

tighter clusters are predicted by PolyPhen-2 to be more damaging than those in sparser 

clusters and in all WGS studies. (f) Mutations in tighter clusters are more likely to be 

observed at high frequency across COSMIC WGS studies. For all panels, * indicates P < 

0.01 comparing categories marked with bars (in a and b), or to the final category of the plot 

(“Without clustering” in c and f; ” >10
-1

” in d). 
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Figure 4. (a) The top 20 genes implicated in WGS studies by mutation3D ranked by the 

number of publications in which clusters were observed for each. (b) The most significant 

cluster for each of the top 20 implicated genes is shown in 3D. 
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