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Abstract

We propose a simple Bayesian network-based
text classifier, which may be considered as
a discriminative counterpart of the genera-
tive multinomial naive Bayes classifier. The
method relies on the use of a fixed net-
work topology with the arcs going form term
nodes to class nodes, and also on a network
parametrization based on noisy or gates.
Comparative experiments of the proposed
method with naive Bayes and Rocchio algo-
rithms are carried out using three standard
document collections.

Keywords: Bayesian network, noisy or gate,
multinomial naive Bayes, text classification

1 Introduction: Probabilistic Methods

for Text Classification

The classical approach to probabilistic text classifica-
tion may be stated as follows: We have a class variable
C taking values in the set {c1, c2, . . . , cn} and, given a
document dj to be classified (described by a set of at-
tribute variables, which usually are the terms appear-
ing in the document), the posterior probability of each
class, p(ci|dj), is computed in some way, and the doc-
ument is assigned to the class having the greatest pos-
terior probability. Learning methods for probabilis-
tic classifiers are often characterized as being gener-
ative or discriminative. Generative methods estimate
the joint probabilities of all the variables, p(ci, dj), and
p(ci|dj) is computed according to the Bayes formula:

p(ci|dj) =
p(ci, dj)

p(dj)
=

p(ci)p(dj |ci)

p(dj)
∝ p(ci)p(dj |ci) .

(1)
The problem in this case is how to estimate the prob-
abilities p(ci) and p(dj |ci). In contrast, discriminative

probabilistic classifiers model the posterior probabili-
ties p(ci|dj) directly.

The naive Bayes classifier is the simplest genera-
tive probabilistic classification model that, despite its
strong and often unrealistic assumptions, performs fre-
quently surprisingly well. It assumes that all the at-
tribute variables are conditionally independent on each
other given the class variable. In fact, the naive Bayes
classifier can be considered as a Bayesian network-
based classifier [1], where the network structure is fixed
and contains only arcs from the class variable to the
attribute variables, as shown in Figure 1.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Ci

Figure 1: Network structure of the naive Bayes classi-
fier.

In this paper we are going to propose another simple
Bayesian network-based classifier, which may be con-
sidered as a discriminative counterpart of naive Bayes,
in the following senses: (1) it is based on a type of
Bayesian network similar to that of naive Bayes, but
with the arcs in the network going in the opposite di-
rection; (2) it requires the same set of simple sufficient
statistics than naive Bayes, so that the complexity of
the training step in both methods is the same, namely
linear with the number of attribute variables; the com-
plexity of the classification step is also identical.

The rest of the paper is organized in the following way:
in Sections 2 and 3 we describe the two probabilistic
text classifiers we are considering, naive Bayes and the
proposed new model, respectively. Section 4 is focused
on the experimental results. Finally, Section 5 con-
tains the concluding remarks and some proposals for
future work.
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2 The Multinomial Naive Bayes

Classifier

In the context of text classification, there exist two
different models called naive Bayes, the multivariate
Bernoulli naive Bayes model [2, 4, 8] and the multi-
nomial naive Bayes model [5, 6]. In this paper we
shall only consider the multinomial model. In this
model a document is an ordered sequence of words or
terms drawn from the same vocabulary, and the naive
Bayes assumption here means that the occurrences of
the terms in a document are conditionally indepen-
dent given the class, and the positions of these terms
in the document are also independent given the class1.
Thus, each document dj is drawn from a multinomial
distribution of words with as many independent trials
as the length of dj . Then,

p(dj |ci) = p(|dj |)
|dj |!

∏

tk∈dj
njk!

∏

tk∈dj

p(tk|ci)
njk , (2)

where tk are the distinct words in dj , njk is the number
of times the word tk appears in the document dj and
|dj | =

∑

tk∈dj
njk is the number of words in dj . As

p(|dj |)
|dj |!

∏

t
k
∈dj

njk!
does not depend on the class, we can

omit it from the computations, so that we only need
to calculate

p(dj |ci) ∝
∏

tk∈dj

p(tk|ci)
njk . (3)

The estimation of the term probabilities given the
class, p̂(tk|ci), is usually carried out by means of the
Laplace estimation:

p̂(tk|ci) =
Nik + 1

Ni• + M
, (4)

where Nik is the number of times the term tk appears
in documents of class ci, Ni• is the total number of
words in documents of class ci, i.e. Ni• =

∑

tk
Nik,

and M is the size of the vocabulary (the number of
distinct words in the documents of the training set).

The estimation of the prior probabilities of the classes,
p̂(ci), is usually done by maximum likelihood, i.e.:

p̂(ci) =
Ni,doc

Ndoc

, (5)

where Ndoc is the number of documents in the train-
ing set and Ni,doc is the number of documents in the
training set which are assigned to class ci.

The multinomial naive Bayes model can also be used
in another way: instead of considering only one class

1The length of the documents is also assumed to be
independent on the class.

variable C having n values, we can decompose the
problem using n binary class variables Ci taking its
values in the sets {ci, ci}. This is a quite common
transformation in text classification [9], especially for
multilabel problems, where a document may be as-
sociated to several classes. In this case n naive
Bayes classifiers are built, each one giving a poste-
rior probability pi(ci|dj) for each document. In the
case that each document may be assigned to only
one class (single-label problems), the class c∗(dj) such
that c∗(dj) = argmaxci

{pi(ci|dj)} is selected. Notice
that in this case, as the term pi(dj) in the expression
pi(ci|dj) = pi(dj |ci)pi(ci)/pi(dj) is not necessarily the
same for all the class values, we need to compute it
explicitly through

pi(dj) = pi(dj |ci)pi(ci) + pi(dj |ci)(1 − pi(ci)) .

This means that we have also to compute pi(dj |ci).
This value is estimated using the corresponding coun-
terparts of eqs. (3) and (4), where

p̂(tk|ci) =
N

•k − Nik + 1

N − Ni• + M
. (6)

N
•k is the numbers of times that the term tk appears

in the training documents, i.e. N
•k =

∑

ci
Nik, and N

is the total number of words in the training documents.

3 The OR Gate Bayesian Network

Classifier

The document classification method that we are go-
ing to propose is based on another restricted type of
Bayesian network with the following topology: Each
term tk appearing in the training documents (or a sub-
set of these terms in the case of using some method
for feature selection) is associated to a binary variable
Tk taking its values in the set {tk, tk}, which in turn is
represented in the network by the corresponding node.
There are also n binary variables Ci taking its values
in the sets {ci, ci} (as in the previous binary version
of the naive Bayes model) and the corresponding class
nodes. The network structure is fixed, having an arc
going from each term node Tk to the class node Ci if
the term tk appears in training documents which are
of class ci. Let nti be the number of different terms
appearing in documents of class ci. In this way we
have a network topology with two layers, where the
term nodes are the “causes” and the class nodes are
the “effects”, having a total of

∑n

i=1
nti arcs. An ex-

ample of this network topology is displayed in Figure
2. It should be noticed that the proposed topology,
with arcs going from attribute nodes to class nodes, is
the opposite of the one associated to the naive Bayes
model.
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Figure 2: The OR gate classifier.

It should also be noticed that this network topology
explicitly requires modeling the “discriminative” con-
ditional probabilities p(ci|pa(Ci)), where Pa(Ci) is the
set of parents of node Ci in the network (the set of
terms appearing in documents of class ci) and pa(Ci)
is any configuration of the parent set (any assignment
of values to the variables in this set). As the number
of configurations is exponential with the size of the
parent set2, we use a canonical model to define these
probabilities, which reduce the number of required nu-
merical values from exponential to linear size. More
precisely, we use a noisy OR Gate model [7].

The conditional probabilities in a noisy OR gate are
defined in the following way:

p(ci|pa(Ci)) = 1 −
∏

Tk∈R(pa(Ci))

(1 − w(Tk, Ci)) , (7)

p(ci|pa(Ci)) = 1 − p(ci|pa(Ci)) , (8)

where R(pa(Ci)) = {Tk ∈ Pa(Ci) | tk ∈ pa(Ci)}, i.e.
R(pa(Ci)) is the subset of parents of Ci which are in-
stantiated to its tk value in the configuration pa(Ci).
w(Tk, Ci) is a weight representing the probability that
the occurrence of the “cause” Tk alone (Tk being in-
stantiated to tk and all the other parents Th instanti-
ated to th) makes the “effect” true (i.e., forces class ci

to occur).

3.1 Classification as Inference

Once the weights w(Tk, Ci) have been estimated, and
given a document dj to be classified, we instantiate
in the network each of the variables Tk correspond-
ing to the terms appearing in dj to the value tk (i.e.
p(tk|dj) = 1 if tk ∈ dj), and all the other variables Th

(those associated to terms that do not appear in dj)
to the value th (i.e. p(th|dj) = 0 ∀th 6∈ dj). Then, we
compute for each class node Ci the posterior probabil-
ities p(ci|dj). As in the case of the naive Bayes model,
we would assign to dj the class (or classes) having the
greatest posterior probability.

The combination of network topology and numerical
values represented by OR gates allows us to compute
very efficiently and in an exact way the posterior prob-
abilities:

2Notice that |Pa(Ci)| = nti.

p(ci|dj) = 1 −
∏

Tk∈Pa(Ci)

(1 − w(Tk, Ci) × p(tk|dj))

= 1 −
∏

Tk∈Pa(Ci)∩dj

(1 − w(Tk, Ci)) . (9)

In order to take into account the number of times a
word tk occurs in a document dj , njk, we can replicate
each node Tk njk times, so that the posterior proba-
bilities then become

p(ci|dj) = 1 −
∏

Tk∈Pa(Ci)∩dj

(1 − w(Tk, Ci))
njk . (10)

3.2 Training as Weight Estimation

The estimation of the weights in the OR gates,
w(Tk, Ci), can be done in several ways. The simplest
one is to compute w(Tk, Ci) as p̂(ci|tk), the estimated
conditional probability of class ci given that the term
tk is present. We can do it by maximum likelihood:

w(Tk, Ci) =
Nik

N
•k

, (11)

or using Laplace:

w(Tk, Ci) =
Nik + 1

N
•k + 2

. (12)

Another, more accurate way of estimating w(Tk, Ci) is
directly as p̂(ci|tk, th ∀Th ∈ Pa(Ci), Th 6= Tk). How-
ever, this probability cannot be reliably estimated, so
that we are going to compute an approximation in the
following way:

p̂(ci|tk, th ∀h 6= k) = p(ci|tk)
∏

h 6=k

p(ci|th)

p(ci)
(13)

This approximation results from assuming a condi-
tional independence statement similar to that of the
naive Bayes classifier, namely

p(tk, th ∀h 6= k|ci) = p(tk|ci)
∏

h 6=k

p(th|ci). (14)

In that case

p(ci|tk, th ∀h 6= k) =
p(tk, th ∀h 6= k|ci)p(ci)

p(tk, th ∀h 6= k)

=
p(tk|ci)

(

∏

h 6=k
p(th|ci)

)

p(ci)

p(tk)
∏

h 6=k
p(th ∀h 6= k)

= p(ci|tk)
∏

h 6=k

p(ci|th)

p(ci)
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The values of p(ci|tk) and p(ci|th)/p(ci) in eq. (13) are
also estimated using maximum likelihood. Then, the
weights w(Tk, Ci) are in this case:

w(Tk, Ci) =
Nik

N
•k

×
∏

h 6=k

(Ni• − Nih)N

(N − N
•h)Ni•

(15)

Another option is to relax the independence assump-
tion in the following way:

p(tk, th ∀h 6= k|ci) =
p(tk|ci)

nti

∏

h 6=k

p(th|ci). (16)

We are assuming that the joint probability of the
events [tk, th ∀h 6= k] is smaller than the pure in-
dependence assumption would dictate. The weights
w(Tk, Ci) would be in this case

w(Tk, Ci) =
Nik

ntiN•k

×
∏

h 6=k

(Ni• − Nih)N

(N − N
•h)Ni•

(17)

In any case, the set of sufficient statistics necessary to
compute the weights are Nik ∀tk, ∀ci, i.e. the number
of times each term tk appears in documents of each
class ci, the same required by multinomial naive Bayes.

4 Experimentation

For the evaluation of the proposed model we have
used three document test collections: Reuters-
21578, Ohsumed and 20 Newsgroups. Reuters-21578
(ModApte split) contains 12,902 documents (9603 for
training and 3299 for testing) and 90 categories (with
at least 1 training and 1 test documents). Ohsumed,
including 20000 medical abstracts from the MeSH cat-
egories (10000 for training and 10000 for testing) of the
year 1991, and 23 categories. 20 Newsgroups corpus
contains 19997 articles for 20 categories taken from the
Usenet newsgroups collection, where only the subject
and the body of each message were used. Note that
there is no fixed literature split for this collection. All
the three collections were preprocessed in the same
way using stemming (Porter’s algorithm) and stop-
word removal (SMART’s system 571 stopword list).
No term selection was carried out.

The evaluation takes into account that the classifica-
tion process will generate an ordered list of possible
categories, in decreasing order of probability3, instead

3We are therefore using an instance of the so-called
category-ranking classifiers [9].

of a definite assignment of categories to each docu-
ment. Then, as performance measures, we have firstly
selected the typical measures used in multi-label cat-
egorization problems (as they are Reuters-21578 and
Ohsumed): breakeven point4 (BEP) and the average

11-point precision5 (Av-11). Another measure com-
monly used is F1

6. However F1 requires a precise as-
signment of classes to each document, so that we shall
use instead F1 at one (F1@1) and also F1 at three and
five (F1@3, F1@5) document level: the F1 value ob-
tained by assuming that the system assigns to each
document either the first or the first three or five most
probable classes. Both breakeven and F1 values will be
computed in micro-average (micr.) and macro-average
(macr.). In all the measures, a higher value means a
better performance of the model.

We have executed experiments using naive Bayes and
the proposed OR gate classifier, although we have
also included another non probabilistic classifier in the
comparison, namely the well-known Rocchio method
[3], used as a perspective. Tables 1, 2 and 3 display
the values of the performance measures obtained. We
do not display the results of the OR gate classifier
using all the different parameter estimation methods
commented in Subsection 3.2. Instead, some prelimi-
nary experimentation showed that the best performing
methods were those based on equation 12 (for estima-
tion based on p̂(ci|tk)) and equation 17 (for estimation
based on p̂(ci|tk, th ∀h 6= k)).

Several conclusions can be drawn from these exper-
iments: the proposed OR gate model is quite com-
petitive, frequently outperforming Rocchio and naive
Bayes. Particularly, this new model seems to perform
quite well in terms of macro averages: it gives a more
balanced treatment to all the classes, and this is espe-
cially evident in those problems where the class distri-
bution is quite unbalanced, as Reuters and Ohsumed.
At the same time, the OR gate model (the one based
on eq. 17) performs generally well also in terms of
micro averages.

5 Concluding Remarks

We have described a new approach for document clas-
sification, the so called “OR Gate classifier”, with dif-
ferent variants based on several parameter estimation
methods. It is based on a Bayesian network represen-
tation which is, in some sense, the opposite that the

4The point where precision equals recall, by moving a
threshold.

5The precision values are interpolated at 11 points at
which the recall values are 0.0, 0.1,. . ., 1.0, and then
averaged.

6The harmonic mean of precision and recall.
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micr.BEP macr.BEP Av-11
Reuters

NBayes 0.73485 0.26407 0.84501
Rocchio 0.47183 0.42185 0.84501
OR-eq12 0.66649 0.55917 0.81736
OR-eq17 0.76555 0.54370 0.89725

Ohsumed
NBayes 0.58643 0.49830 0.76601
Rocchio 0.42315 0.44791 0.68194
OR-eq12 0.48017 0.58792 0.64739
OR-eq17 0.53122 0.56450 0.72925

20Newsgroups
NBayes 0.71778 0.73629 0.88834
Rocchio 0.60940 0.63875 0.86583
OR-eq12 0.80732 0.81333 0.87889
OR-eq17 0.77689 0.79779 0.86208

Table 1: Micro and macro breakeven points and aver-
age 11-point precision.

micr.F1@1 micr.F1@3 micr.F1@5
Reuters

NBayes 0.75931 0.49195 0.35170
Rocchio 0.70047 0.47399 0.34979
OR-eq12 0.67297 0.45352 0.33493
OR-eq17 0.75369 0.51461 0.36825

Ohsumed
NBayes 0.53553 0.53979 0.42718
Rocchio 0.46064 0.46313 0.40912
OR-eq12 0.41676 0.46329 0.40292
OR-eq17 0.49048 0.50883 0.42773

20Newsgroups
NBayes 0.80881 0.48705 0.33212
Rocchio 0.77233 0.48323 0.33153
OR-eq12 0.81000 0.47266 0.32614
OR-eq17 0.77858 0.47284 0.32695

Table 2: Micro F1 values.

one associated to the naive Bayes classifier. The com-
plexity of the training and classification steps for the
proposed model is equivalent to that of the naive Bayes
too. In fact we can think of the OR gate model as a
kind of discriminative version of naive Bayes, which is
not a discriminative but a generative method.

According to the results of the experimental compari-
son carried out using several standard text collections,
we found that the new model can compete with naive
Bayes, especially in terms of macro averages and in
those cases where the class distribution is unbalanced.

We believe that the OR gate model could greatly ben-
efit from a term/feature selection preprocessing, and
we plan to test this assertion in the future.

macr.F1@1 macr.F1@3 macr.F1@5
Reuters

NBayes 0.39148 0.28935 0.23116
Rocchio 0.39148 0.28935 0.23116
OR-eq12 0.11263 0.20092 0.26404
OR-eq17 0.45762 0.39169 0.30959

Ohsumed
NBayes 0.40627 0.47260 0.40732
Rocchio 0.45421 0.50604 0.44945
OR-eq12 0.19980 0.42017 0.45870
OR-eq17 0.43602 0.53615 0.50103

20Newsgroups
NBayes 0.80985 0.54983 0.39048
Rocchio 0.77095 0.54086 0.39113
OR-eq12 0.80880 0.58083 0.44502
OR-eq17 0.78682 0.59099 0.44722

Table 3: Macro F1 values.
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