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Abstract. In this paper we describe our participation in the third edi-
tion of the BioASQ biomedical semantic indexing challenge. Unlike our
participation in previous editions, we have chosen to follow an approach
based solely on conventional information retrieval tools. We have eval-
uated various alternatives for creating textual representations of MED-
LINE articles to be stored in an Apache Lucene textual index. Those
indexed representations are queried using the contents of the article to
be annotated and a ranked list of candidate descriptors is created from
the retrieved similar articles. Several strategies to post-process those lists
of candidate descriptors were evaluated. Performance in the official runs
were far from the most competitive systems, but taking into account
that our approach in the performed runs did not employ any external
knowledge sources, we think that the proposed method could benefit
from richer representations for MEDLINE contents.

1 Introduction

This article describes the joint participation of a group from the University
of Vigo and another group from the University of Granada in the biomedical
semantic indexing task of the 2015 BioASQ challenge. Participants in this task
are asked to classify new MEDLINE articles, labeling those documents with
descriptors taken from MeSH hierarchy.

Both groups (CoLe 4 from University of Vigo and UTAI 5 from University of
Granada) have participated in the previous BioASQ editions. Our previous par-
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ticipations assessed the use of two different machine learning based techniques: a
top-down arrangement of local classifiers and a Bayesian network induced by the
thesaurus structure. Both approaches modelled the task of assigning descriptors
from the MeSH hierarchy to MEDLINE documents as a hierarchical multilabel
classification problem.

In this year participation we have changed the basic approach of our systems,
following a similarity based strategy, where the final list of MESH descriptors
assigned to a given article is created from the set of most similar MEDLINE ar-
ticles stored in a textual index created from the training dataset. This neighbor
based strategy was partially explored in our previous participations in BioASQ
challenge, where a sort of k nearest neighbor was employed as a guide in the top-
down traversal of local classifiers approach and also in the selection of submodels
(one per MeSH subhierarchy) in the Bayesian network based method. The em-
ployment of this k nearest neighbor filtering was mainly due to performance and
scalability reasons, but it also had some positive effects on overall annotation
quality. For the third BioASQ challenge we have concentrated our efforts on test-
ing the suitability of this similarity based approach and on evaluating several
strategies to improve the final ranked list of descriptors.

The rest of the paper is organized as follows. Section 2 briefly describes the
main ideas behind the proposed similarity based approach for MEDLINE article
annotation and also describes the text processing being applied. Section 3 gives
details about the strategies for improving the final list of ranked descriptors by
means of several post-processing methods. Finally, section 4 discusses our official
runs in the BioASQ challenge and details the most relevant conclusions of our
participation.

2 Similarity based descriptor selection

Approaches based on k nearest neighbors (k-NN) have been widely used in
the context of large scale multilabel categorization, even with MEDLINE docu-
ments [1]. The choosing of k-NN based methods is mainly due to its scalability,
minimum parameter tuning requirements and, despite its simplicity, its ability
to deliver acceptable results in cases where large amounts of examples are avail-
able. The approach we have followed in our BioASQ challenge participation is
essentially a large k-NN classifier, backed by an Apache Lucene 6 index, with
some optimizations due to MeSH usage recommendations on MEDLINE articles
annotation. In the case of MEDLINE annotation with MeSH descriptors, despite
of being a complex problem, with more than 25,000 possible classes, arranged
in a directed acyclic graph (DAG), the availability of a huge training set labeled
by human experts supposes an a priori favorable scenario for labeling estimates
based on k-NN.

In our case we have tried to take advantage of certain aspects of semantic
indexing process with the MeSH thesaurus to improve the labeling process based
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A Pregn D011247 Pregnancy
B Inf New (to 1 mo) D007231 Infant, Newborn
C Inf (1 to 23 mo) D007223 Infant
D Child Pre (2-5) D002675 Child, Preschool
E Child (6-12) D002648 Child
F Adolesc (13-18) D000293 Adolescent
R Young Adult (19-24) D055815 Young Adult
G Adult (19-44) D000328 Adult
H Mid Age (45-64) D008875 Middle Aged
I Aged (65-79) D000368 Aged
N Aged (80+) D000369 Aged, 80 and over

U Animal D000818 Animals
V Human D006801 Humans
W Male D008297 Male
X Female D005260 Female

Y In Vitro (PT) D066298 In Vitro Techniques
b Comp Study (PT) D003160 Comparative Study

J Cats D002415 Cats
K Cattle D002417 Cattle
L Chick Embryo D002642 Chick Embryo
M Dogs D004285 Dogs
O Guinea Pigs D006168 Guinea Pigs
P Hamsters D006224 Cricetinae
Q Mice D051379 Mice
S Rabbits D011817 Rabbits
T Rats D051381 Rats

c Ancient D049690 History, Ancient
d Medieval D049691 History, Medieval
f 15th Cent D049668 History, 15th Century
g 16th Cent D049669 History, 16th Century
h 17th Cent D049670 History, 17th Century
i 18th Cent D049671 History, 18th Century
j 19th Cent D049672 History, 19th Century
k 20th Cent D049673 History, 20th Century
o 21st Cent D049674 History, 21st Century

Fig. 1. Check Tag list according to MeSH annotation guidelines

on similarity. Following MeSH annotation guidelines [5] we propose a differenti-
ated treatment for Check Tags. According to MeSH guidelines, Check Tags are
widely used descriptors, shown in Figure 1, which describe some of the broader
aspects of the MEDLINE articles. MeSH annotators can assign an arbitrary
number of these Check Tags without any restriction regarding their location in
the thesaurus hierarchy.

To try to exploit this singularity, our system separates the processing of
Check Tags and the processing of regular MeSH descriptors. In this way, our
annotation scheme starts by indexing the contents of the MEDLINE training
articles. For each new article to annotate that index is queried using its contents
as query terms. The list of similar articles returned by the indexing engine and
their corresponding similarity measures are exploited to determine the following
results:

– predicted number of Check Tags to be assigned
– predicted number of regular descriptors to be assigned
– ranked list of predicted Check Tags
– ranked list of predicted regular descriptors

The first two aspects conform a regression problem, which aims to predict the
number of Check Tags and descriptors to be included in the final list, depending
on the number of Check Tags and descriptors assigned to the most similar arti-
cles identified by the indexing engine and on their respective scores. The other
two tasks are multilabel classification problems, which aim to predict a Check
Tags list and a regular descriptors list based on the descriptors and Check Tags
manually assigned to the most similar MEDLINE articles. In both cases, regres-
sion and multilabel classification based on k-NN, similarity scores calculated by
the indexing engine are exploited. These scores are computed during the query
processing phase. Query terms employed to retrieve the similar articles are ex-
tracted from the original article contents and linked using a global OR operator
to conform the final query sent to the indexing engine.



In our case, the scores provided by the indexing engine are similarity measures
resulting from the engine internal computations and the weighting scheme being
employed, which do not have an uniform and predictable upper bound. In order
to get those similarity scores behave like a real distance metric we have applied
the following normalization procedure:

1. Articles to be annotated are preprocessed in the same way than the training
articles and are indexed by the Lucene engine

2. In classification time, all of the relevant index terms from the article being
annotated are joined by an OR operator to create the search query

3. In the similar articles ranking returned by the indexing engine the top result
will be the same article used to query the index, this result is discarded but
its score value (scoremax) is recorded for future normalization

4. For each element on the remaining articles set the number of Check Tags and
regular descriptors are recorded and it is also recorded the list of real Check
Tags and the list of real descriptors, assigning to each of them an estimated

distance to the article being annotated, equals to
(

1 − score
scoremax

)
, which will

be employed in the weighted voting scheme of the k-NN classification.

With this information the number of Check Tags and the number of regular
descriptors to be assigned to the article being annotated is predicted using a
weighted average scheme, where the weight of each similar article is the inverse
of the square of the estimated distance to the article being annotated, that is,

1

(1− score
scoremax

)
2 .

To create the ranked list of Check Tags and the ranked list of regular de-
scriptors a distance weighted voting scheme is employed, associating the same
weight values (the inverse of squared estimated distances) to the respective sim-
ilar article. Since this is actually a multilabel categorization task, there are as
many vote tasks as candidate Check Tags or candidate regular descriptors were
extracted from the articles retrieved by the indexing engine. For each candidate,
positive votes come from similar articles annotated with it and negative votes
come from articles not including it.

2.1 Evaluation of article representations

In our preliminary experiments we have tested several approaches to extract
the set of index terms to represent MEDLINE articles in the indexing process.
We have also evaluated the effects in annotation performance of the different
weighting schemes available in the Apache Lucene indexing engine.

Regarding article representation, we have employed three index term extrac-
tion approaches. In this experiment and also in the official BioASQ runs we have
worked only with MEDLINE articles from year 2000 onwards, indexing a total
amount of 6,697,747 articles. Index terms which occurred in 5 or less articles
were discarded and terms which were present in more than 50 % of training
documents were also removed.



Table 1. Evaluation of term extraction approaches

iria-1: n-grams from noun phrase chunks
weighting k MiF MiP MiR MaF MaP MaR LCA-F LCA-P LCA-R HiF HiP HiR

tfidf 5 0,4662 0,4853 0,4485 0,3289 0,4316 0,3339 0,4098 0,4376 0,4108 0,6125 0,6522 0,6183
10 0,4884 0,5170 0,4628 0,3400 0,4865 0,3413 0,4211 0,4578 0,4146 0,6276 0,6789 0,6225
20 0,4937 0,5297 0,4624 0,3302 0,5057 0,3297 0,4231 0,4664 0,4119 0,6284 0,6881 0,6169
25 0,4940 0,5321 0,4609 0,3294 0,5150 0,3274 0,4220 0,4678 0,4094 0,6276 0,6893 0,6149
30 0,4946 0,5341 0,4606 0,3256 0,5173 0,3235 0,4229 0,4700 0,4090 0,6277 0,6909 0,6136

bm25 5 0,4667 0,4849 0,4497 0,3291 0,4302 0,3354 0,4105 0,4374 0,4117 0,6133 0,6516 0,6191
10 0,4871 0,5154 0,4618 0,3390 0,4824 0,3412 0,4203 0,4574 0,4136 0,6252 0,6753 0,6209
20 0,4922 0,5280 0,4610 0,3315 0,5071 0,3317 0,4209 0,4635 0,4104 0,6268 0,6852 0,6162
25 0,4921 0,5297 0,4595 0,3272 0,5103 0,3265 0,4211 0,4655 0,4089 0,6263 0,6866 0,6141
30 0,4918 0,5304 0,4584 0,3246 0,5133 0,3235 0,4195 0,4657 0,4064 0,6255 0,6883 0,6115

iria-2: stemming and stop-word removal
weighting k MiF MiP MiR MaF MaP MaR LCA-F LCA-P LCA-R HiF HiP HiR

tfidf 5 0,4746 0,4929 0,4576 0,3410 0,4323 0,3496 0,4168 0,4446 0,4188 0,6199 0,6586 0,6267
10 0,4959 0,5240 0,4706 0,3548 0,4899 0,3588 0,4287 0,4660 0,4228 0,6363 0,6876 0,6311
20 0,5043 0,5401 0,4729 0,3531 0,5249 0,3547 0,4322 0,4762 0,4214 0,6403 0,6998 0,6293
25 0,5036 0,5413 0,4708 0,3485 0,5290 0,3493 0,4310 0,4761 0,4192 0,6394 0,7013 0,6262
30 0,5038 0,5432 0,4697 0,3453 0,5301 0,3456 0,4301 0,4775 0,4168 0,6392 0,7032 0,6246

bm25 5 0,4760 0,4935 0,4597 0,3456 0,4332 0,3555 0,4186 0,4449 0,4214 0,6231 0,6594 0,6316
10 0,4983 0,5259 0,4734 0,3578 0,4912 0,3629 0,4311 0,4677 0,4260 0,6395 0,6898 0,6343
20 0,5061 0,5413 0,4752 0,3530 0,5212 0,3554 0,4330 0,4760 0,4229 0,6409 0,6998 0,6302
25 0,5073 0,5444 0,4750 0,3509 0,5291 0,3534 0,4329 0,4778 0,4214 0,6410 0,7025 0,6283
30 0,5060 0,5446 0,4724 0,3472 0,5290 0,3488 0,4315 0,4776 0,4185 0,6407 0,7040 0,6264

iria-3 lemmatization and PoS tags filtering
weighting k MiF MiP MiR MaF MaP MaR LCA-F LCA-P LCA-R HiF HiP HiR

tfidf 5 0,4765 0,4932 0,4609 0,3409 0,4346 0,3503 0,4188 0,4445 0,4215 0,6265 0,6610 0,6354
10 0,4982 0,5251 0,4740 0,3561 0,4952 0,3600 0,4304 0,4655 0,4256 0,6408 0,6888 0,6383
20 0,5061 0,5404 0,4758 0,3522 0,5292 0,3531 0,4327 0,4754 0,4221 0,6461 0,7022 0,6364
25 0,5060 0,5429 0,4737 0,3477 0,5328 0,3481 0,4314 0,4758 0,4195 0,6427 0,7029 0,6306
30 0,5062 0,5436 0,4735 0,3458 0,5358 0,3466 0,4314 0,4765 0,4194 0,6430 0,7024 0,6314

bm25 5 0,4792 0,4948 0,4646 0,3465 0,4343 0,3566 0,4203 0,4453 0,4239 0,6283 0,6619 0,6386
10 0,5016 0,5274 0,4782 0,3594 0,4976 0,3650 0,4324 0,4658 0,4292 0,6450 0,6914 0,6435
20 0,5082 0,5416 0,4787 0,3561 0,5261 0,3587 0,4347 0,4761 0,4248 0,6457 0,7019 0,6368
25 0,5090 0,5444 0,4779 0,3528 0,5336 0,3548 0,4345 0,4784 0,4231 0,6456 0,7019 0,6360
30 0,5087 0,5453 0,4767 0,3486 0,5335 0,3496 0,4335 0,4784 0,4217 0,6453 0,7036 0,6350

Our aim with these experiments was to determine whether linguistic moti-
vated index term extraction could help to improve annotation performance in
the k-NN based method we have described. We employed the following methods:

Stemming based representation. This was the simplest approach which em-
ploys stop-word removal, using a standard stop-word list for English, and the
default English stemmer from the Snowball project7.

Some additional post-processing was done using regular expression pat-
terns to remove the most frequent ill-formed stems, like tokens starting with
numbers or non-alphabetic characters, which did not resemble chemical com-
pound names and similar cases.

Morphosyntactic based representation. To try to deal with the effects of
morphosyntactic variation we have employed a lemmatizer to identify lexical
roots instead of using word stems and we also replaced stop-word removal
with a content-word selection procedure based on part-of-speech (PoS) tags.

7 http://snowball.tartarus.org



We have delegated the linguistic processing tasks to the tools provided
by the ClearNLP project 8. ClearNLP project offers a set of state-of-the-
art components written in the Java programming language, together with a
collection of pre-trained models, ready to be used in typical natural language
processing tasks, like dependence parsing, semantic role labeling, PoS tagging
and morphological analysis.

In our case we have employed the PoS tagger [4] from the ClearNLP
project to tokenize and assign PoS tags to the MEDLINE articles contents.
We employed the biomedical tagging models available on ClearNLP reposi-
tory to feed this PoS tagger, since those pre-trained resources offered fairly
good results with no need of additional training.

In order to filter the content-words from the processed MEDLINE ab-
stracts, we have applied a simple selection criteria based on the employment
of the PoS that are considered to carry the sentence meaning. Only tokens
tagged as a noun, verb, adjective or as unknown words are taken into ac-
count to constitute the final article representation. In case of ambiguous PoS
tag assignment, if the second most probable PoS tag is included in the list
of acceptable tags, that token is also taken into account.

After PoS filtering, the ClearNLP lemmatizer is applied on the surviving
tokens in order to extract the canonical form of those words. This way we
have a method to normalize the considered word forms that is slightly more
consistent than simple stemming. Like in the previous case, we have cus-
tomized the lemmatization process using the biomedical dictionary model
available at the ClearNLP project repositories.

Noun phrases based representation. In order to evaluate the contribution
of more powerful Natural Language Processing tools, we have employed a
surface parsing approach to identify syntactic motivated noun phrases from
which meaningful multi-word index terms could be extracted.

We have employed a chunker from the Genia Tagger project 9 to process
MEDLINE abstracts and to identify chunks of words tagged as noun phrases.
Genia Tagger employs a maximum entropy cyclic dependency network [6] to
model the PoS tagging process and its PoS tagger is specifically trained and
tuned for biomedical text such as MEDLINE abstracts. Once the input text
has been tokenized and PoS tagged by Genia Tagger, a simple surface parser
searches for specific PoS patterns in order to detect the boundaries of the
different chunks which can constitute a syntactical unit of interest (nominal
phrases, prepositional phrases, verbal phrases and other).

In our processing of MEDLINE articles, from each noun phrase chunk
identified in the Genia Tagger output we extract the set of word unigrams
(lemmas) and all possible overlapping word bigrams and word trigrams,
which will constitute the final list of index terms that will represent the
given MEDLINE article in the generated Lucene index.

The reason to limit this multi-word index term extraction process to
only word bigrams and trigrams was to try to get a balance between repre-

8 Available at http://www.clearnlp.com/
9 Available at http://www.nactem.ac.uk/tsujii/GENIA/tagger/.



sentation power and flexibility and generalization capabilities. The chunks
identified by Genia Tagger use to be fairly correct and consistent, even when
detecting large noun phrases, but employing as index terms the chunker out-
put without some kind of generalization could lead to poor results during
the search phase of the k-NN based annotation. With no generalization this
approach could degenerate in being able to find similar articles only when
an exact match occurs in large multi-word terms.

All these representation methods shared a common preprocessing phase,
where local abbreviation and acronyms were identified and expanded employing
a slightly adapted version of the local abbreviation identification method de-
scribed in [3]. This method 10 scans the input texts searching for <short-form,
long-form> pair candidates, using several heuristics to identify the correct long
forms in the ambiguous cases.

Table 1 summarizes the results obtained in our preliminary tests. To get
the performance measures of the different configurations we have employed the
BioASQ Project Oracle and as evaluation data we used the MEDLINE articles
included in test set number 2 in the second batch of the 2014 edition of BioASQ
challenge, which were removed from the training collection the three Lucene
indexes were built from.

We have evaluated the three index term generation methods using different
values for k, the number of similar articles to be used (1) in the estimation of the
number of Check Tags and regular descriptors to be assigned and (2) in the set
of vote procedures that will construct the final list of Check Tags and descriptors
to attach to a given article. We have also evaluated the effect of two index term
weighting methods available in version 4.10 of Apache Lucene: a classical tf-idf
weighting scheme [9] and a more complex one inspired by the Okapi BM25 family
of scoring formulae [8]. These weighting schemes are employed by the Lucene
engine to compute the similarity scores used to create the ranking of documents
relevant to a given query. In our case, the query terms are all of the index terms
extracted from the article to be annotated using one of the methods described
before.

As can be seen in table 1 and also in the results of our official BioASQ runs,
the best results are obtained with stemming and lemmatization with very similar
performance values in both cases. There was a marginal gain in flat measures
in favor of stemming based representation and with the hierarchical measures in
the case of lemmatization. The representation using multi-word terms extracted
from noun phrase chunks had poor performance, probably because of the use
of overlapping word trigrams. capabilities of our k-NN method and also in the
scoring functions of Lucene engine. Very infrequent index terms can have the
undesired effect of boosting internal scores in schemes where inverse document
frequencies are taken into account.

10 Source code provided by original authors is available at
http://biotext.berkeley.edu/software.html



Finally, regarding the effect of taking into account different number of nearest
neighbors, the best results are obtained when using values of k around 20, which
was the default value in our official runs in BioASQ challenge.

3 Candidate descriptors post-processing

In order to improve the results obtained by the Lucene based k-NN approach
depicted in previous sections, we have evaluated several alternatives to try to
get better annotation performance. We have followed two different lines of work
to improve the prediction accuracy out k-NN based system.

The first weak point in the proposed k-NN based method is related with
the fairly simple local decisions performed by our k-NN annotator, given that
the performed generalization is just a weighted average and an inverse distance
weighted vote. We have tested a couple of approaches employing more sophisti-
cated decision making. In both cases a two-steps procedure is applied.

In a first step an expanded list with a larger amount of candidate Check Tags
and candidate regular descriptors is created. Those expanded sets of descriptors
will be filtered and refined during the second step. In order to add diversity
to these expanded candidates lists, the size of both lists (expanded candidates
Check Tags and expanded candidate regular descriptors) is twice the size previ-
ously predicted by the weighted average procedure described in section 2. Two
methods were tested to perform the filtering step:

Training a per-article multilabel classifier. In this approach, after creat-
ing the expanded list of candidate Check Tags and the expanded list of reg-
ular descriptors for the MEDLINE article being annotated, two multilabel
classifiers, on per expanded list, are trained. The label set for these clas-
sifiers are the two lists of expanded candidates, and the training instances
comprises up to 1000 most similar articles extracted by the indexing engine.
Once the training of both classifiers is completed, the contents of the article
being annotated are used as input to those models in order to extract the
final ranked list of Check Tags and the final list of regular descriptors, using
the cut off limits identified by the weighted average estimator.

In our preliminary evaluation we have employed as multilabel catego-
rization strategy a custom implementation of Classifier Chains [11], using
as base classifiers instances of Support Vector Machines trained using the
LibSVM project [2] tools. This evaluation was done with a reduced test set
and the obtained results were slightly better than the basic k-NN, but still
far from the most competitive teams in BioASQ challenge.

Unfortunately, we were unable to use this method effectively in our offi-
cial runs of BioASQ challenge. Due to the time restrictions imposed in the
challenge and the large training times required by this approach, we were
unable to finish any submission on time.

Iterative k-NN vote. Instead of employing a multilabel classifier to support
the second step we tested the use of another k-NN method backed by the
same Lucene index to post-process the expanded lists of candidates.



For each candidate (both Check Tag or regular descriptor) in each ex-
panded list a new query is sent to the index engine. Our index is queried
using the representation of the article being annotated in order to get the
list of similar articles which have among their respective extended candidate
list the candidate descriptor being evaluated at this moment.

This new list of similar articles, with their normalized distances, is em-
ployed in a second voting process. In this case, similar articles where the
candidate descriptor was actually assigned as a relevant descriptor are con-
sidered as positive votes. Whereas, similar articles where the candidate de-
scriptor would have been a wrong assignment are treated as negative votes.

What this second step does with the extended candidate lists can be seen
as a sort of ”learning to discard” procedure. We are evaluating the actual
usage of every candidate descriptor in a similar document which also had it
as one of its own extended candidates. So, extended candidates that have not
been considered as relevant descriptors in the weighted majority of similar
documents retrieved during this second phase are discarded.

Although this approach imposes an extreme use of the Lucene index and
implies large disk reading loads, we were able to make it suitable to fulfill
the BioASQ challenge time restrictions.

Another weak point of our basic k-NN method when applied in the context of
MeSH annotation is that it does not exploit the hierarchical information carried
by the thesaurus structure, whose usage is explicitly described in official MeSH
annotation guidelines. To try to overcome this limitation we evaluated the use of
semantic similarity measures among MeSH descriptors as a method to expand
and rearrange the ranked list of regular descriptor assigned by the basic k-NN
method described in previous sections.

Descriptor expansion with hierarchical similarity measures. We have em-
ployed D. Lin’s semantic similarity measure [7], a well known semantic mea-
sure suitable to capture and summarize in a number between 0 and 1 the
proximity of two concepts belonging to a common concept taxonomy.

sim(si, sj) =
2 × logP (LCA(si, sj))

logP (si) + logP (sj)
(1)

We have followed the original formula (1), where si and sj are concepts
in a taxonomy, LCA(si, sj) represents the lowest common ancestor of both
concepts and P (sk) is an estimation of the probability assigned to concept
sk. In our case this probability is computed as the ratio between the number
of MeSH descriptors belonging to the subtree rooted at descriptor sk and
the total number of descriptor in the MeSH thesaurus.

In our preliminary tests we applied Lin’s measure in a very simple fashion.
The ranked list of candidate regular descriptors returned by the basic k-NN
based method is expanded adding all MeSH descriptors in a radio of 3 hops,
according to the thesaurus hierarchical relationships. The score of those new



added descriptors is computed by multiplying the score of the original can-
didate descriptor with the value of Lin’s similarity between it and the added
descriptor. For a given descriptor (original or expanded), combined scores
coming from the expansion process of different initial candidate descriptors
are accumulated.

Once the expanded list of descriptors is created and ranked according
to the new scores, two simple heuristics derived from MeSH annotation
guidelines [5] are employed to remove redundant annotations. These removal
heuristics are applied iteratively and limited to a window of the top-most
n+ 3 descriptors, where n is the number of regular descriptors predicted by
our k-NN based scheme.
– when tree or more siblings appear in the descriptor window, all of them

are replaced by their common parent
– more specific descriptors (descendants) are preferred over more general

ones (ancestors) occurring inside the considered window, and replace
them
The surviving descriptors are cut off at the number of descriptor predicted

by the weighted average predictor, using the combined scores to rank the list.
A priori this approach seemed to be a promising and effective way to add

hierarchical information from the MeSH thesaurus to the k-NN prediction.
However, the results we obtained were very disappointing, even worse than
the vanilla k-NN approach, and lead us to not submit the results obtained
with this method in our official runs.

4 Official BioASQ runs and discussion

Even we have tested several alternatives to try to improve the results obtained
by the basic Lucene based k-NN method, only the most simple ones have been
submitted to the official batches of BioASQ challenge. Our original objective
was to try to approximate to the performance values obtained by the two NLM
Medical Text Indexer (MTI) [10] baselines (”Default MTI” and ”MTI First Line
Indexer”), since this is the reference tool employed by MEDLINE indexers.

In table 2 the official performance measures obtained by our runs in the Test
Batch number 3 are shown. The name of our runs (”iria”) originally stood for
Information Retrieval based Iterative Annotator since the initial aim of this par-
ticipation at BioASQ challenge was to evaluate different approaches to improve
the initial ranked list of candidate descriptors retrieved by the indexing engine.
The official runs sent by our group during our participation in the Test Batch
number 3 were created using the following configurations.

iria1. Representation of MEDLINE articles using unigrams, bigrams and tri-
grams extracted from noun phrase chunks identified by means of Genia Tag-
ger.

As described at the end of section 2.1 only articles from year 2000 onwards
were indexed, discarding terms appearing in 5 or less abstracts and term used
in more than 50% of total documents.



The predicted number of Check Tags and regular descriptors to be re-
turned is increased a 10% in order to ensure slightly better values in recall
related measures.

iria2. Representation of MEDLINE articles using terms extracted using stan-
dard English stop-words removal and stemming. All other parameter are
identical to iria1.

iria3. Representation of MEDLINE articles using lemmas extracted with ClearNLP
tools after PoS tag filtering. All other parameter are identical to iria1

iria4. Using the Lucene index created for iria2 this set of runs employs the
Iterative k-NN vote approach described in section 3, using a two step k-NN
method.

iria-mix. This was a ”control” set of runs employed to measure how close were
our methods to MTI baselines.

In test sets 1,2,3 and 4 iria-mix was simply a weighted mix of our re-
sults in iria-2 run with the MTI-DEF and MTI-FLI results distributed by
BioASQ organization each week. Weight assigned to each one of these three
lists was the respective official MiF values obtained in the previous week.
Every descriptor in iria-2, MTI-DEF and MTI-FLI accumulates the weight
of the descriptors list where it was included. The final list of descriptors is
ranked according to these accumulated scores and the n top-most descriptors
are returned as candidates, being n the number of Check Tags and regular
descriptors originally predicted by iria-2 run.

In test set 5, iria-mix used the Lucene index created for iria-2 to test
a different k-NN search. In this case, a more complex type of query to find
similar documents was evaluated. This query was constituted by the index
terms extracted from the abstract to be annotated, like in iria-2 case, but
it also included the descriptors assigned in the MTI-DEF results distributed
by BioASQ organization that week. That is, in this case the similarity query
searches for articles sharing index terms with the abstract being annotated
and also with real MeSH descriptors included in the MTI-DEF prediction.

The results of our participation in the third edition of the BioASQ biomedical
semantic indexing challenge are far from the results of the most competitive
teams and our particular objective, try to reach performance levels similar to
MTI baselines, was not achieved. As positive aspects of our participation, we
have shown that k-NN methods backed by conventional textual indexers like
Lucene are a viable alternative for this kind of large scale problems, with minimal
computational requirements and not so bad results. We also have performed an
exhaustive evaluation of the performance of several alternatives to index term
extraction, ranging from simple ones, based on stemming rules, to more complex
ones were natural language processing is required.

Our a priori main contribution, the proposed methods to improve initial
k-NN predictions, has not obtained real performance improvements, except in
the case of training a per-article multilabel classifier. More work needs to be
done in this case and also in the use of taxonomy based similarity measures,
like Lin’s measure, since we still think that is a promising alternative to include
hierarchical information on flat categorization approaches.
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Table 2. Official results for BioASQ batch 3.

week 1, labeled documents: 2530/3902
flat hier.

system rank MiF EBP EBR EBF MaP MaR MaF MiP MiR Acc. rank LCA-F HiP HiR HiF LCA-P LCA-R
best 1/35 0.6320 0.6910 0.6041 0.6247 0.6430 0.5025 0.5000 0.6909 0.5824 0.4693 1/35 0.5181 0.8091 0.7081 0.7316 0.5773 0.4978

def. MTI 13/35 0.5805 0.6002 0.5836 0.5732 0.5536 0.5292 0.4962 0.5957 0.5661 0.4164 13/35 0.4916 0.7546 0.7107 0.7098 0.5265 0.4891
iria-2 19/35 0.4869 0.4275 0.5756 0.4780 0.3961 0.4346 0.3853 0.4311 0.5593 0.3260 19/35 0.4306 0.6033 0.7301 0.6430 0.4031 0.4896
iria-3 20/35 0.4868 0.4256 0.5770 0.4773 0.3926 0.4302 0.3796 0.4295 0.5618 0.3253 20/35 0.4297 0.6002 0.7343 0.6428 0.4007 0.4919
iria-1 21/35 0.4727 0.5024 0.4695 0.4673 0.4113 0.3096 0.3014 0.5024 0.4463 0.3184 21/35 0.4149 0.6814 0.6042 0.6150 0.4612 0.4045
iria-4 23/35 0.4164 0.3730 0.5038 0.4117 0.2738 0.4065 0.3435 0.3617 0.4905 0.2699 22/35 0.3887 0.5460 0.7075 0.5942 0.3574 0.4611

iria-mix - - - - - - - - - - - - - - - - - -

week 2, labeled documents: 2256/4027
flat hier.

system rank MiF EBP EBR EBF MaP MaR MaF MiP MiR Acc. rank LCA-F HiP HiR HiF LCA-P LCA-R
best 1/39 0.6397 0.6847 0.6222 0.6331 0.6284 0.5144 0.5060 0.6820 0.6023 0.4783 1/29 0.5250 0.7960 0.7172 0.7318 0.5745 0.5127

def. MTI 18/39 0.5822 0.6056 0.5842 0.5743 0.5452 0.5128 0.4792 0.6002 0.5653 0.4184 18/39 0.4914 0.7464 0.7039 0.6997 0.5288 0.4895
iria-mix 20/39 0.5730 0.5527 0.6057 0.5636 0.5125 0.5315 0.4854 0.5617 0.5847 0.4061 19/39 0.4862 0.6968 0.7392 0.6977 0.4919 0.5076

iria-2 25/39 0.4922 0.4442 0.5636 0.4833 0.4056 0.4070 0.3693 0.4490 0.5446 0.3310 25/39 0.4330 0.6136 0.7100 0.6381 0.4145 0.4812
iria-3 26/39 0.4871 0.4256 0.5788 0.4776 0.3855 0.4199 0.3723 0.4301 0.5614 0.3257 26/39 0.4296 0.5948 0.7282 0.6353 0.4000 0.4923
iria-4 27/39 0.4700 0.5675 0.4235 0.4635 0.4271 0.3147 0.3089 0.5588 0.4056 0.3167 27/39 0.3988 0.7053 0.5484 0.5853 0.4814 0.3681
iria-1 - - - - - - - - - - - - - - - - - -

week 3, labeled documents: 1519/3162
flat hier.

system rank MiF EBP EBR EBF MaP MaR MaF MiP MiR Acc. rank LCA-F HiP HiR HiF LCA-P LCA-R
best 1/42 0.6496 0.6919 0.6313 0.6420 0.6429 0.5293 0.5228 0.6892 0.6144 0.4875 1/42 0.5363 0.8082 0.7266 0.7439 0.5850 0.5235

def. MTI 17/42 0.5970 0.6202 0.5994 0.5897 0.5644 0.5346 0.5049 0.6123 0.5824 0.4329 15/42 0.5039 0.7651 0.7249 0.7202 0.5407 0.5029
iria-mix 20/42 0.5826 0.5609 0.6151 0.5727 0.5264 0.5466 0.5049 0.5679 0.5981 0.4147 17/42 0.4966 0.7098 0.7529 0.7115 0.4995 0.5205

iria-2 24/42 0.5011 0.4524 0.5726 0.4927 0.4163 0.4122 0.3771 0.4557 0.5566 0.3394 24/42 0.4396 0.6229 0.7226 0.6501 0.4218 0.4861
iria-3 27/42 0.4894 0.4277 0.5814 0.4806 0.3965 0.4214 0.3779 0.4309 0.5662 0.3283 27/42 0.4331 0.5965 0.7355 0.6402 0.4029 0.4964
iria-4 28/42 0.4868 0.7394 0.3754 0.4771 0.6789 0.2560 0.2733 0.7408 0.3625 0.3285 30/42 0.3874 0.8561 0.4581 0.5674 0.5832 0.3095
iria-1 29/42 0.4811 0.4359 0.5455 0.4721 0.3978 0.3817 0.3515 0.4402 0.5304 0.3217 28/42 0.4242 0.6094 0.6978 0.6314 0.4095 0.4667

week 4, labeled documents: 1097/3621
flat hier.

system rank MiF EBP EBR EBF MaP MaR MaF MiP MiR Acc. rank LCA-F HiP HiR HiF LCA-P LCA-R
best 1/40 0.6190 0.6758 0.5961 0.6139 0.6272 0.5108 0.5024 0.6716 0.5739 0.4577 1/40 0.5128 0.8045 0.6998 0.7259 0.5657 0.4963

def. MTI 17/40 0.5662 0.5959 0.5674 0.5612 0.5422 0.5129 0.4830 0.5875 0.5464 0.4049 16/40 0.4854 0.7586 0.6947 0.7024 0.5247 0.4807
iria-mix 19/40 0.5577 0.5487 0.5828 0.5509 0.5169 0.5190 0.4823 0.5543 0.5610 0.3940 18/40 0.4817 0.7149 0.7262 0.7019 0.4940 0.4956

iria-3 23/40 0.4837 0.4390 0.5468 0.4745 0.4065 0.4146 0.3772 0.4425 0.5334 0.3232 24/40 0.4304 0.6254 0.7044 0.6442 0.4154 0.4725
iria-2 24/40 0.4831 0.4397 0.5461 0.4746 0.4065 0.4122 0.3760 0.4433 0.5308 0.3232 23/40 0.4305 0.6303 0.7044 0.6472 0.4158 0.4715
iria-1 25/40 0.4647 0.4263 0.5201 0.4559 0.3942 0.3893 0.3582 0.4297 0.5059 0.3075 25/40 0.4170 0.6186 0.6797 0.6282 0.4073 0.4511
iria-4 26/40 0.4453 0.4757 0.4468 0.4401 0.3477 0.3476 0.3258 0.4625 0.4293 0.2952 26/40 0.3954 0.6440 0.6124 0.6006 0.4229 0.4022

week 5, labeled documents: 896/3842
flat hier.

system rank MiF EBP EBR EBF MaP MaR MaF MiP MiR Acc. rank LCA-F HiP HiR HiF LCA-P LCA-R
best 1/43 0.6512 0.6861 0.6405 0.6444 0.6326 0.5564 0.5464 0.6822 0.6229 0.4893 1/43 0.5367 0.8015 0.7363 0.7461 0.5759 0.5305

def. MTI 19/43 0.5985 0.6121 0.6079 0.5908 0.5519 0.5649 0.5313 0.6048 0.5922 0.4342 18/43 0.5069 0.7607 0.7352 0.7238 0.5353 0.5104
iria-2 23/43 0.5221 0.5369 0.5190 0.5121 0.5080 0.3811 0.3738 0.5451 0.5009 0.3588 25/43 0.4465 0.7019 0.6467 0.6510 0.4830 0.4399
iria-3 24/43 0.5217 0.5353 0.5186 0.5114 0.5017 0.3760 0.3688 0.5438 0.5013 0.3575 24/43 0.4469 0.7098 0.6501 0.6563 0.4824 0.4414

iria-mix 25/43 0.5134 0.4552 0.6033 0.5052 0.4134 0.4804 0.4370 0.4576 0.5847 0.3508 23/43 0.4494 0.6223 0.7480 0.6605 0.4217 0.5101
iria-1 26/43 0.4905 0.4348 0.5761 0.4824 0.3918 0.4385 0.3977 0.4367 0.5595 0.3312 26/43 0.4337 0.6045 0.7270 0.6412 0.4070 0.4927
iria-4 27/43 0.4834 0.5125 0.4860 0.4794 0.3620 0.3839 0.3585 0.5002 0.4678 0.3297 27/43 0.4177 0.6506 0.6301 0.6135 0.4449 0.4249


