
rdp supp { support routines forthe rdp compiler compilerUser manual for version 1.5Adrian Johnstone Elizabeth ScottTechnical ReportCSD {TR { 97 { 26December 20, 1997
!()+,-./0123456Department of Computer ScienceEgham, Surrey TW20 0EX, England

Abstractrdp is a system for implementing language processors. It accepts a gram-mar written in an extended Backus-Naur Form annotated with inherited andsynthesized attributes and C-language semantic actions. rdp checks that thegrammar is LL(1), providing detailed error messages pinpointing the source ofany problems. A parser written in ANSI C may then be output. rdp is par-ticularly suited to student use because it constructs ready to run parsers andinterpreters and provides detailed diagnostics.This report describes the user accessible parts of the rdp support library|rdp supp for short. rdp supp comprises seven packages to manage memory(memalloc.c), sets (set.c), graphs (graph.c), scanners (scan.c), text bu�ers(textio.c), command line arguments (arg.c) and symbol tables (symbol.c).These packages are designed to be useful for general purpose programming andmay be used independently of the rdp system. The internal operation of thepackages is not documented here, but the rdp distribution pack does includecommented source code for all parts of the system.The rdp source code is public domain and has been successfully built usingBorland C++ 3.1 and Microsoft C++ version 7 on MS-DOS, GNU gcc andg++ running on OSF/1, Ultrix, MS-DOS, Linux and SunOS, and a variety ofvendor's own compilers running on many avours of Unix. rdp has also beenbuilt for the Macintosh using a console support library, and a version modi�edto take account of the unusual �lenaming conventions on the Acorn Archimedesis available on request.This document is cAdrian Johnstone and Elizabeth Scott 1997.Permission is given to freely distribute this document electronically andon paper. You may not change this document or incorporate parts of itin other documents: it must be distributed intact.The rdp system itself is cAdrian Johnstone but may be freely copiedand modi�ed on condition that details of the modi�cations are sent tothe copyright holder with permission to include such modi�cations infuture versions and to discuss them (with acknowledgement) in futurepublications.The version of rdp described here is version 1.50 dated 20 December1997.Please send bug reports and copies of modi�cations to the author at theaddress on the title page or electronically to A.Johnstone@rhbnc.ac.uk.

Contents1 Introduction 12 arg { command line argument services 32.1 Command line format 32.2 The help message 42.3 arg boolean 42.4 arg help 42.5 arg message 42.6 arg numeric 42.7 arg process 52.8 arg string 52.9 An example program 52.10 Limitations 53 graph { a graph data structure handler 93.1 Internal structure of a graph 103.2 Graph data and handles 103.3 graph compare double 123.4 graph compare long 123.5 graph compare mem 123.6 graph compare string 123.7 graph delete edge 133.8 graph delete graph 133.9 graph delete node 133.10 graph get atom number 133.11 graph get next edge 133.12 graph get edge target 133.13 graph get final edge 143.14 graph get final node 143.15 graph hash double 143.16 graph hash long 143.17 graph hash mem 143.18 graph hash string 143.19 graph insert edge 153.20 graph insert graph 153.21 graph insert node 153.22 graph insert node child 15

ii CONTENTS3.23 graph insert node parent 153.24 graph vcg 163.25 graph vcg atoms 164 memalloc { memory management routines 174.1 mem calloc 174.2 mem free 174.3 mem malloc 174.4 mem print statistics 184.5 mem realloc 185 scan { scanner support routines 195.1 scan column number 195.2 scan init 195.3 scan line number 205.4 scan load keyword 205.5 scan prune tree 205.6 scan test 205.7 scan test set 215.8 scan vcg print node 216 set { a dynamic set handler 236.1 set array 246.2 set cardinality 246.3 set assign element 256.4 set assign list 256.5 set assign set 256.6 set compare 256.7 set difference element 256.8 set difference list 256.9 set difference set 266.10 set free 266.11 set grow 266.12 set includes element 266.13 set includes list 266.14 set includes set 266.15 set intersect element 266.16 set intersect list 276.17 set intersect set 276.18 set complement 276.19 set minimum size 276.20 set normalise 276.21 set print element 276.22 set print set 286.23 set unite element 286.24 set unite list 286.25 set unite set 28

CONTENTS iii7 symbol { a hash coded symbol table manager 297.1 Data structures 297.2 symbol compare double 317.3 symbol compare double reverse 317.4 symbol compare long 327.5 symbol compare long reverse 327.6 symbol compare string 327.7 symbol compare string reverse 327.8 symbol find 327.9 symbol free scope 337.10 symbol free symbol 337.11 symbol free table 337.12 symbol get scope 337.13 symbol hash double 337.14 symbol hash long 337.15 symbol hash mem 337.16 symbol hash string 347.17 symbol insert key 347.18 symbol insert symbol 347.19 symbol lookup key 347.20 symbol new scope 347.21 symbol new symbol 347.22 symbol new table 357.23 symbol next symbol 357.24 symbol next symbol in scope 357.25 symbol print all table 357.26 symbol print all table statistics 357.27 symbol print double 367.28 symbol print long 367.29 symbol print string 367.30 symbol print scope 367.31 symbol print symbol 367.32 symbol print table 367.33 symbol print table statistics 367.34 symbol set scope 377.35 symbol sort table 377.36 symbol sort scope 377.37 symbol unlink scope 377.38 symbol unlink symbol 377.39 symbol unlink table 378 textio { text bu�ering and messaging services 398.1 Global variables 398.1.1 *text bot 398.1.2 *text top 398.1.3 int text char 398.1.4 void *text scan data 40

CONTENTS8.2 text capitalise string 408.3 text default filetype 408.4 text dump 408.5 text echo 408.6 text extract filename 418.7 text find ASCII element 418.8 text force filetype 418.9 text free 418.10 text get char 418.11 text init 418.12 text insert char 418.13 text insert characters 428.14 text insert integer 428.15 text insert string 428.16 text insert substring 428.17 long text is valid C id 428.18 long text line number 428.19 text lowercase string 438.20 text make C identifier 438.21 text message 438.22 text open 438.23 text print C char 448.24 text print C char file 448.25 text print C string 448.26 text print C string file 448.27 text print statistics 448.28 text print time 448.29 text printf 448.30 text print total errors 458.31 text redirect 458.32 text total errors 458.33 text total warnings 458.34 text uppercase string 45A Acquiring and installing rdp 47A.1 Installation 47A.2 Build log 49

Chapter 1Introductionrdp is a system for implementing language processors. Compilers, assemblersand interpreters may all be written in the rdp source language (an extendedBackus-Naur Form) and then processed by the rdp command to produce aprogram written in ANSI C which may then be compiled and run.rdp generated parsers use a set of general purpose support modules collec-tively known as rdp_supp. There are seven parts to rdp supp:� a hash coded symbol table handler which allows multiple tables to bemanaged with arbitrary user data �elds (symbol.c),� a set handler which supports dynamically resizable sets (set.c),� a set of routines for creating and manipulating general graph data struc-tures which can also output graphs in a form that may be displayed on-screen by the VCG tool (graph.c),� a memory manager which wraps fatal error handling around the standardANSI C heap allocation routines (memalloc.c),� a text handler which provides line bu�ering and string management with-out imposing arbitrary limits on input line length (textio.c),� a set of routines for processing command line arguments and automati-cally building help routines (arg.c),� scanner support routines for testing tokens in recursive descent parsers(scan.c).Writing e�ective language processors in rdp requires a detailed understand-ing of these modules. This report documents the user accessible functions in therdp supp library. Implementation details are hidden except where a knowledgeof the underlying data structures is required for e�cient exploitation of the li-brary. The full source code of the rdp supp library is available in directoryrdp_supp of the rdp distribution, and the various rdp tools provide examplesof the use of rdp supp routines.This manual is part of a four manual series. In addition to this supportlibrary manual, the user manual [JS97b] describes the rdp source language,

2 INTRODUCTIONcommand switches and error messages.A third, tutorial, report assumes noknowledge of parsing, grammars or language design and shows how to use rdpto develop a small calculator-like language [JS97c]. The emphasis in the tutorialguide is on learning to use the basic rdp features and command line options. Alarge case study is documented in [JS97a] which extends the language describedin the tutorial guide with details of a syntax checker, an interpreter and acompiler along with an assembler and simulator for a synthetic architecturewhich is used as the compiler target machine.

Chapter 2arg { command line argument servicesThe arg library provides automatic processing for Unix style command linearguments. The library is used to implement rdp's ARG_... directives in whichcommand line switches are associated with variables in the parser called switchvariables. When the command line is processed, the switch variables are loadedwith values from the command line switches supplied by the user.The arg library is set up at run time by calling one of a family of routines todeclare command line switches. When all of the switches have been set up, thecommand line can be processed by passing the normal argc (argument count)and argv (argument vector) parameters from the ANSI-C main() function tothe library. Each command line switch has an associated switch variable whichwill be updated during command line processing and a description string whichgives a short summary message describing the switch's function. The librarycreates a help message by concatenating these descriptions which may be issuedalong with a fatal error message if an invalid command line is detected.2.1 Command line formatThe model supported by the library is that of a command line made up of �learguments and switches separated by spaces made up of space or tab characters.Switches are distinguished by a leading minus sign (-). Any space delimited�eld beginning with a - character is a switch and anything else is a �le argument.Switches are distinguished one from another by their key character whichimmediately follows the - character. Switches are processed in strict left-to-right order as they appear on the command line and may be of three types.1. Boolean switches declared using the function arg_boolean which takean integer switch variable that is initialised to false (integer 0). Eachinstance of the boolean switch in the command line toggles the state ofthe switch variable by exclusive or-ing its value with logical true.2. Numeric switches declared using the function arg_numeric which take anunsigned long switch variable that is initialised to zero. Each instance ofthe numeric switch in the command line must be immediately followedby a decimal integer without any intervening spaces. The ASCII coded

4 ARG { COMMAND LINE ARGUMENT SERVICESnumber on the command line is converted to binary and loaded into theswitch variable, overwriting any previous value.3. String switches declared using the function arg_string which take astring (char *) switch variable that is initialised to NULL. Each instanceof the numeric switch in the command line must be followed by a stringof characters which will be collected and loaded into the switch variable,overwriting any previous value. No intervening spaces are allowed be-tween the switch key and the actual string: a string switch key followedby a space will be interpreted as an empty (zero length) string parameter.2.2 The help messageIt is usual to provide a summary help message that can be issued by a programif it receives invalid command parameters. The arg library automatically con-structs such a message by concatenating the description lines from the declaredcommand line switches. The routine arg_help() may be called to issue thismessage.2.3 arg booleanvoid arg_boolean(char key, char* description, int *intvalue)Declare a boolean switch with key character key, help message descriptionand switch variable intvalue.2.4 arg helpvoid arg_help(char *msg)Issue a fatal error message msg followed by the help message formed by con-catenating the description lines from each declared command line switch. Theprogram exits after calling this function with exit status EXIT_FAILURE.2.5 arg messagevoid arg_message(char* description)Declare a line to be added to the help message without an associated commandline switch. This function is useful for adding blank spacing lines or titles andother general information to the help message.2.6 arg numericvoid arg_numeric(char key, char* description, unsigned long *unsignedvalue)Declare a numeric switch with key character key, help message descriptionand switch variable unsignedvalue.

arg process 52.7 arg processchar ** arg_process(int argc, char *argv[])Process the command line parameters held in argv according to the switchesdeclared using the switch de�nition functions. All the non-switch (�lename)arguments are collected into an array of pointers to strings (a char ** variable)which is returned by the function. If no �lename arguments are seen, then NULLis returned.2.8 arg stringvoid arg_string(char key, char* description, char **str)Declare a string switch with key character key, help message description andswitch variable str.2.9 An example programThe example shown in Figure 2.1 is an extract from the source of the rdp toolwhich illustrates the use of most of the arg routines. The output producedby the arg_help() function when rdp is called with no source �le is shown inFigure 2.2.2.10 LimitationsUnix commands use a wide variety of conventions for command line switches,not all of which are supported by the arg library. Here is a list of such limita-tions.1. Command line switches can only be of the three kinds described above:there is no built-in facility for real number switches, for instance, althougha string switch could be used to collect the characters for later processing.2. There is no straightforwardway to allow embedded spaces in string switches.This is a side-e�ect of the way in which the ANSI-C standard commandline handler parses the �elds in a command line.3. Command line switch keys can only be made up of a single character.4. No spaces are allowed between a key and its argument.5. There is no way to associate command line switches with particular �leparameters. Consider, for instance a switch -l which is intended to switchon the listing for a source �le. It would be reasonable to interpret acommand line of the formmytool first_file -l second_file third_file -l

6 ARG { COMMAND LINE ARGUMENT SERVICES
arg_message("Recursive descent parser generator V1.50 (c) Adrian Johnstone 1997\n\n""Usage: rdp [options] source[.bnf]");arg_message(""); /* Add a blank line to the help message */arg_boolean('f', "Filter mode (read from stdin and write to stdout)", &rdp_filter);arg_boolean('l', "Make a listing", &rdp_line_echo);arg_string ('o', "Write output to filename", &rdp_outputfilename);arg_boolean('s', "Echo each scanner symbol as it is read", &rdp_symbol_echo);arg_boolean('S', "Print summary symbol table statistics", &rdp_symbol_statistics);arg_numeric('t', "Tab expansion width (default 8)", &rdp_tabwidth);arg_numeric('T', "Text buffer size in bytes for scanner (default 20000)", &rdp_textsize);arg_boolean('v', "Set verbose mode", &rdp_verbose);arg_string ('V', "Write derivation tree to filename in VCG format", &rdp_vcg_filename);arg_message("");arg_boolean('e', "Write out expanded BNF along with first and follow sets", &rdp_expanded);arg_boolean('E', "Add rule name to error messages in generated parser", &rdp_error_production_name);arg_boolean('F', "Force creation of output files", &rdp_force);arg_boolean('p', "Make parser only (omit semantic actions from generated code)", &rdp_parser_only);arg_boolean('R', "Add rule entry and exit messages", &rdp_trace);arg_message("");arg_message("You can contact the author (Adrian Johnstone) at:");arg_message("");arg_message("Computer Science Department, Royal Holloway, University of London");arg_message("Egham, Surrey, TW20 0EX UK. Email: A.Johnstone@rhbnc.ac.uk");rdp_sourcefilename = *arg_process(argc, argv);if (rdp_sourcefilename == NULL)arg_help("No source file specified");Figure 2.1 Example usage of the arg library

Limitations 7
Fatal - No source file specifiedRecursive descent parser generator V1.50 (c) Adrian Johnstone 1997Generated on Dec 20 1997 12:04:45 and compiled on Dec 20 1997 at 12:02:49Usage: rdp [options] source[.bnf]-f Filter mode (read from stdin and write to stdout)-l Make a listing-o <s> Write output to filename-s Echo each scanner symbol as it is read-S Print summary symbol table statistics-t <n> Tab expansion width (default 8)-T <n> Text buffer size in bytes for scanner (default 20000)-v Set verbose mode-V <s> Write derivation tree to filename in VCG format-e Write out expanded BNF along with first and follow sets-E Add rule name to error messages in generated parser-F Force creation of output files-p Make parser only (omit semantic actions from generated code)-R Add rule entry and exit messagesYou can contact the author (Adrian Johnstone) at:Computer Science Department, Royal Holloway, University of LondonEgham, Surrey, TW20 0EX UK. Email: A.Johnstone@rhbnc.ac.ukFigure 2.2 Output from the arg help() function

8 ARG { COMMAND LINE ARGUMENT SERVICESas an instruction to process �les the three �les first_file, second_fileand third_file with the source listing being switched on for the �rstand third �les but switched o� for the second �le. However, the arglibrary processes all command line switches in left to right order and thenreturns the �le parameters in a block, so the interleaving of command linearguments and �le parameters is not preserved.

Chapter 3graph { a graph data structure handlerA graph is a collection of nodes and edges, often drawn as a collection of roundnodes and arrows representing the edges. There may or may not be data as-sociated with individual nodes and edges. In a general graph, there is no limitto the number of edges leaving or entering a node, and there is no limit of thenumber of nodes in a graph.Graphs are fundamental objects in computing, being used to represent rela-tionships between objects. Special cases of graphs, such as linked lists or treeshave restrictions on the number of edges that may enter or leave nodes and thekinds of paths that may be traced through the graph. A singly linked list, forinstance is a collection of nodes each with either one or zero edges entering andone or zero edges leaving. Every node in the list has exactly one edge enteringit and one edge leaving it except for one node (called the head) which has noedge entering it and one node (called the tail) which has no edge leaving it.These special cases along with the properties of more general graphs are de-scribed in most standard books on data structures. The graph library describedin this chapter provides a completely general mechanism for implementing unre-stricted graphs in an e�cient manner. It is possible to provide more space (andtime) e�cient implementations of some important special cases such as treesof �xed order, queues and circular bu�ers but the implementation used here isthe cheapest simple method we know of for handling completely unconstrainedgraphs.Graphs can be very complex, and debugging a program which is basedon graph structures can be hard because tracing through the edges using aconventional ANSI-C debugger is confusing and time consuming. A majoradvantage of the rdp graph library is that any graph can be output as a text�le written in the language of the VCG graph visualisation tool. VCG can displaya graph at various resolutions, trace graphically through the nodes and edgesof a graph and format the graph for printing on a wide variety of devices. Thevarious tree diagrams shown in the rdpmanuals were produced in this way: rdpuses the graph library to build parse trees and rdp generated parsers provide a-V command line switch which is used to output the tree in VCG compatibleformat. The VCG tool is not a part of the rdp distribution but the authorof VCG has kindly given his permission for VCG to be distributed alongsiderdp|you will �nd versions for Windows or Unix in the rdp FTP server as

10 GRAPH { A GRAPH DATA STRUCTURE HANDLERdescribed in Appendix A.3.1 Internal structure of a graphThe graph library uses a hierarchy of linked lists of graph atoms to representgraphs that may be manipulated using a family of routines for inserting anddeleting nodes and edges. A graph atom may be used to represent1. a graph header,2. a graph node, or3. a graph edge.Each atom has a predecessor and a successor pointer which are used to formdoubly-linked lists of atoms representing the same kind of atom and an ancillarypointer which is used to point to atoms of another type. Each atom also has aunique number which may be displayed as part of a graph dump. The numberis only present to aid debugging: it is not used by any graph routine and maynot be changed during a run.The library maintains a single doubly-linked list of graph headers, oneheader for each graph in use by the program. Graphs may be added or deletedduring program execution and the graph list may be empty. The ancillarypointer of each graph header points to a doubly-linked list of graph nodes,which may be empty. Each graph node represents a single, unique, node in thegraph represented by the parent header. The ancillary pointer of each graphnode points to a doubly-linked list of graph edges, which may be empty. Therewill be one graph edge in the list for each edge leaving that node. The ancillarypointer for each edge points to the node that the edge is directed towards. Inthis representation, edges are inherently unidirectional: an undirected graphmay be represented inserting both forward and reverse edges between each re-lated pair of nodes.Figure 3.1 shows an example of a small derivation tree generated by theminitree compiler and its internal representation using graph atoms is shownin Figure 3.2. In these examples, no data is associated with the edges. Forgraph atoms without data, the VCG representation shows the type of the atomfollowed by a colon and the unique number of the atom. Hence, in Figure 3.2the graph header node is labeled Graph:1 and the edges are labeled as Edge:5and so on. The nodes in the graph do have user supplied labels (in this case,the minitree compiler that produced the derivation tree has labeled the nodeswith the scanner lexeme for terminals or the rule name for non-terminals) andthese are used as VCG node labels where they exist.3.2 Graph data and handlesAll graph atoms can carry data, be they graph headers, nodes or edges. Whena graph, node or edge atom is inserted into the current set, extra space can bereserved for the user data in that atom. It is not possible to change the size of

Graph data and handles 11

Figure 3.1 A small tree built using the graph library

Figure 3.2 A small tree showing the internal graph structure

12 GRAPH { A GRAPH DATA STRUCTURE HANDLERthe data space in a graph atom once it is created, so although di�erent graphnodes and edges can contain di�erent amounts of data each node must stay thesame size throughout their life.The functions to insert atoms into graphs return a handle to the atom thathas been created. In detail, it turns out that the handle is a void pointer to thestart of the user data area in the atom, or (equivalently) a void pointer to thelocation one past the atom's internal pointer data block. These handles maynot be manipulated but they are used to refer to individual atoms and can bepassed into other functions to cause atoms to be printed out, set as the targetof an edge, deleted and so on. User data is accessed by casting the handle of anatom to a pointer to the user datatype. The �elds in the user data block canthen be accessed using the usual ANSI-C -> operator.3.3 graph compare doubleint graph_compare_double(void *left, void *right)Compare double precision real �elds for equality. The �rst element of the userdata structure must be a double. Return 0 if they are equal, +1 if left >right or �1 if right < left, just like the ANSI routine strcmp().3.4 graph compare longint graph_compare_long(void *left, void *right)Compare long unsigned integer �elds for equality. The �rst element of the userdata structure must be a long unsigned int. Return 0 if they are equal, +1if left > right or �1 if right < left, just like the ANSI routine strcmp().3.5 graph compare memint graph_compare_mem(void *left, void *right, size_t size)Compare memory blocks for equality. The �rst element of the user data struc-ture must be a pointer and the two memory blocks are compared for stringequality over the �rst size bytes. Return 0 if they are equal, +1 if left >right or �1 if right < left, just like the ANSI routine strncmp().3.6 graph compare stringint graph_compare_string(void *left, void *right)Compare string �elds for equality. The �rst element of the user data structuremust be a char *. Return 0 if they are equal, +1 if left > right or �1 ifright < left, just like the ANSI routine strcmp().

graph delete edge 133.7 graph delete edgevoid graph_delete_edge(void *edge)Remove edge from its parent graph. The parent and target nodes for edge areunchanged.3.8 graph delete graphvoid graph_delete_graph(void *graph)Remove graph from the list of graphs. All of the nodes and edges in graph arealso deleted and the memory returned to the free list.3.9 graph delete nodevoid graph_delete_node(void *node)Remove node from its parent graph. All of the edges emanating from node arealso deleted and the memory returned to the free list. The nodes pointed to bythose edges are unchanged.3.10 graph get atom numberunsigned long graph_get_atom_number(const void *graph_or_node_or_edge)Return the unique atom number for a graph atom. Atom numbers are allo-cated in an ascending sequence starting from 1 in the order in which atoms areinserted. Atom numbers are never reused, even after atoms have been deleted.3.11 graph get next edgevoid *graph_get_next_edge(const void* node_or_edge)Get the next member of the edge list emanating from a node or an edge. Ifthis routine is passed an atom that corresponds to a node, then the returnededge will be the �rst edge in that node's list. If the routine is passed an atomthat corresponds to an edge, then the successor to that edge will be returned.If there is no next edge, then NULL is returned.3.12 graph get edge targetvoid * graph_get_edge_target(const void * edge)Return a handle to the node atom pointed to by the edge, that is the value ofthe ancillary pointer for atom edge.

14 GRAPH { A GRAPH DATA STRUCTURE HANDLER3.13 graph get final edgevoid * graph_get_final_edge(const void * node_or_edge)Get the �nal member of the edge list emanating from a node or an edge. If thisroutine is passed an atom that corresponds to a node, then the returned edgewill be the last edge in that node's list. If the routine is passed an atom thatcorresponds to an edge, then the last element of that atoms's successor list willbe returned. If the edge list is empty, then NULL is returned.3.14 graph get final nodevoid * graph_get_final_node(const void * node_or_edge)Get the �nal member of the node list emanating from a graph atom or a nodeatom. If this routine is passed an atom that corresponds to a graph, then thereturned node will be the last node in that graph's list. If the routine is passedan atom that corresponds to an node, then the last element of that atoms'ssuccessor list will be returned. If the node list is empty, then NULL is returned.3.15 graph hash doubleunsigned graph_hash_double(unsigned hash_prime, void *data)Hash a double precision real number. See Chapter 7 on symbol tables for moreinformation on hashing.3.16 graph hash longunsigned graph_hash_long(unsigned hash_prime, void *data)Hash an unsigned long integer. See Chapter 7 on symbol tables for more infor-mation on hashing.3.17 graph hash memunsigned graph_hash_mem(unsigned hash_prime, void *data)Hash a length encoded block of memory. See Chapter 7 on symbol tables formore information on hashing.3.18 graph hash stringunsigned graph_hash_string(unsigned hash_prime, void *data)Hash a zero terminated string. See Chapter 7 on symbol tables for more infor-mation on hashing.

graph insert edge 153.19 graph insert edgevoid *graph_insert_edge(size_t size, void* target_node, void* node_or_edge)Insert an edge into a graph, allocating size bytes for user data and settingtarget_node as the destination of the edge. If parameter node_or_edge ispassed a node atom then the new edge is inserted at the �rst element of thatnode's edge list with the original list as the successor to the new edge. Ifparameter node_or_edge is passed an edge atom then the new edge is insertedat the successor to that edge.3.20 graph insert graphvoid *graph_insert_graph(char *id)Insert a new graph into the library's graph list, allocating space for a characterpointer which is set to id.3.21 graph insert nodevoid *graph_insert_node(size_t size, void* node_or_graph)Insert a node into a graph, allocating size bytes for user data. If parameternode_or_graph is passed a graph atom then the new node is inserted at the�rst element of that graph's node list with the original list as the successor tothe new node. If parameter node_or_graph is passed a node atom then thenew node is inserted at the successor to that node.3.22 graph insert node childvoid *graph_insert_node_child(size_t node_size, size_t edge_size,void* parent_node)Insert a new node and an edge from parent_node to the new node, reservingnode_size bytes of space in the new node atom and edge_size bytes of spacein the new edge atom.3.23 graph insert node parentvoid *graph_insert_node_parent(size_t node_size, size_t edge_size,void* child_node)Insert a new node and an edge from it to child_node, reserving node_sizebytes of space in the new node atom and edge_size bytes of space in the newedge atom.

16 GRAPH { A GRAPH DATA STRUCTURE HANDLER3.24 graph vcgvoid graph_vcg(void *graph,void (*graph_action)(const void *graph),void (*node_action) (const void *node),void (*edge_action) (const void *edge))Output graph in VCG format to the current textio output stream which bydefault is the screen. See Chapter 8 for information on how to redirect the textiooutput stream. The three function pointers graph_action, node_action andedge_action are callback functions that will be called once for each graph, nodeand edge atom respectively in the graph with the handle of the graph atom asa parameter. These callback functions can be used to output VCG speci�c tagsso as to, for instance, change the colour and shape of a node or the size of thearrowhead on an edge. Figure 3.1 was produced using this function.3.25 graph vcg atomsvoid graph_vcg_atoms(void *graph,void(* graph_action)(const void * graph),void (*node_action) (const void *node),void (*edge_action) (const void *edge))Output the atoms in graph in VCG format to the current textio output streamwhich by default is the screen. See Chapter 8 for information on how to redi-rect the textio output stream. The three function pointers graph_action,node_action and edge_action are callback functions that will be called oncefor each graph, node and edge atom respectively in the graph with the handleof the graph atom as a parameter. These callback functions can be used tooutput VCG speci�c tags so as to, for instance, change the colour and shape ofa node or the size of the arrowhead on an edge. Figure 3.2 was produced usingthis function.

Chapter 4memalloc { memory management routinesThe memalloc routines replicate the ANSI standard memory management rou-tines but issue a fatal error message if an error occurs. They all return avoid pointer which in general will need to be cast to the required pointer type.Several of these routines use parameters of type size_t: ANSI C translatorsprovide an implementation dependent de�nition of size_t which is guaranteedto be able to represent the largest data object that may be created using thattranslator. Most often it will be either an unsigned int or an unsigned long.4.1 mem callocvoid *mem_calloc(size_t nitems, size_t size)Allocate a block of memory large enough to hold nitems of size size and thenclear the contents to zero. Return a void pointer to the �rst location in theblock. Exit with a fatal error if insu�cient memory is available to allocate therequested block size.4.2 mem freevoid mem_free(void *block)Free a block previously allocated by a call to one of the other mem_ routines.Exit with a fatal error if block is null. Attempting to a free a pointer that isnot referring to a previously allocated block results in unpredictable behaviour.4.3 mem mallocvoid *mem_malloc(size_t size)Allocate a block of memory of size size. Return a void pointer to the �rstlocation in the block. The memory block is not initialised. Exit with a fatalerror if insu�cient memory is available to allocate the requested block size.

18 MEMALLOC { MEMORY MANAGEMENT ROUTINES4.4 mem print statisticsvoid mem_print_statistics(void)Print out the number of bytes of memory allocated using mem_malloc, mem_callocand mem_realloc since the program started running.4.5 mem reallocvoid *mem_realloc(void *block, size_t size)Change the size of a previously allocated memory block to size. If necessary,a completely new memory block will be created and the necessary copyingof data between old and new blocks performed automatically. Return a voidpointer to the �rst location in the block. Any new memory area beyond theend of the old block memory block is not initialised, and will therefore containunpredictable data immediately after a call to mem realloc. Exit with a fatalerror if insu�cient memory is available to allocate the requested block size.

Chapter 5scan { scanner support routinesThe scanner is such an integral part of the rdp system that is unlikely to everbe used as a general purpose package: all rdp generated parsers automaticallycontain the necessary calls to these routines. They are documented here forcompleteness.5.1 scan column numberunsigned long scan_column_number(void)Return the start column number for the most recently scanned lexeme.5.2 scan initvoid scan_init(const int case_insensitive,const int newline_visible,const int show_skips,const int symbol_echo,char *token_names)Initialise the scanner subsystem. This routine must be called before calling anyother scanner routines. It is an error to call this routine twice. As well ascreating a symbol table to hold the scanner keywords,scan_initaccepts parameters that control the overall behaviour of the scanner as follows:� case_insensitive If true, then convert uppercase alphabetic charactersto lowercase before lexical analysis except in extended tokens such asstrings and comments.� newline_visible If true, then pass newline characters to the parser astoken EOLN, otherwise discard newlines in the scanner.� show_skips If true, issue a skipping to ... message during error re-covery.

20 SCAN { SCANNER SUPPORT ROUTINES� symbol_echo If true, print the token value of each symbol as it is scanned.� token_names A string containing the token names in ASCII, each nameterminated by a null character (\0). If null then error messages will onlyreport the token number in decimal. If there are fewer strings than tokensde�ned, unexpected error messages will cause unpredictable behaviour.5.3 scan line numberunsigned long scan_line_number(void)Return the current line number of the �le being scanned. The line numberreported is the line number at the start of the most recently parsed token.Visible comment tokens can be many lines long, so the line numbers reportedduring a scan may not be contiguous.5.4 scan load keywordvoid scan_load_keyword(char *id1, const char *id2, const int token,const int extended)Load the keyword id1 into the scanner's symbol table and mark it as tokennumber token. Extended tokens such as STRING_ESC and COMMENT use the id2parameter to specify a supplementary token. The class of an extended token isspeci�ed using the extended parameter.The scanner recognises keywords and punctuation symbols by comparingthe input with the contents of its own symbol table. It is sometimes usefulto add elements to the scanner table during program parsing. In particular,the C language typedef statement creates new names for types which may beindistinguishable from variable names without lookahead in certain contexts.Indeed, rather remarkably it is legal in C to have a type name and a variablename which are identical, that is the names must inhabit separate name space.In situations like these it is sometimes useful to be able to create new keywordsduring execution.5.5 scan prune treevoid scan_prune_tree(scan_data * rdp_tree)Prune empty (epsilon) nodes from the derivation tree.5.6 scan testint scan_test(const char *production, const int valid,set_ * stop)

scan test set 21Test to see if the current token number equals valid and return a 1 if the testsucceeds or else a 0 if the test fails. If the current token is not equal to validand stop is not NULL then generate an error message and skip until a token instop is detected. If production is not NULL, then preface the error messagewith the production name. RDP uses this parameter when the -E switch isused during parser generation.5.7 scan test setint scan_test_set(const char *production, set_ * valid,set_ * stop)Test to see if the current token number is a member of set valid and returna 1 if the test succeeds or else a 0 if the test fails. If the current token is notin valid and stop is not NULL then generate an error message and skip untila token in stop is detected. If production is not NULL, then preface the errormessage with the production name. RDP uses this parameter when the -Eswitch is used during parser generation.5.8 scan vcg print nodevoid scan_vcg_print_node(const void* node)RDP generated parsers can automatically build derivation trees during a parsewhich show how the productions in a grammar are activated: essentially thederivation tree is a trace of the path taken by the parser. These derivationtrees can be written to a text �le in a form suitable for input to the VCG(Visualisation of Compiler Graphs) tool [San95], which can then display thetree under MS-Windows, Windows-95 or X-windows. The derivation trees arebuilt using the graph library. This routine is called once for each node in thetree during the last pass of the parser, and produces scanner speci�c labels inthe displayed tree.

Chapter 6set { a dynamic set handlerSet manipulation is central to many parsing algorithms, and a space e�cientset representation is an important part of the rdp supp library. Sets are rep-resented as variable length bit strings, and the common operations such as setunion are implemented as bitwise logical operations.The set handler can handle sets of integers or enum elements (which inC are really integers in disguise) in the range 0 to (MAX_UNSIGNED � 1) whereMAX_UNSIGNED is the ANSI standard Cmacro that expands to the largest encod-able unsigned number. Each set is represented by a structure which containsan unsigned integer called size, and a pointer to a block of memory on the heapas shown in Figure 6.1. When initially created a set contains a null pointer, thatis its total memory consumption is (sizeof(unsigned) + sizeof(void *)).As elements are added to a set, the set package automatically grows the setby allocating extra storage. Sets can only grow in multiples of a byte, so setsize is always rounded up to the nearest eight bits.Simply clearing bits in a set is not enough to release the memory. The onlyroutines that can cause a set to shrink are set_free() which clears the set andreturns allocated memory to the heap, and set_normalise() which removesempty bytes from the end of a set.To reduce the number of reallocation calls made to the memory manager itis possible to de�ne a minimum size for a set below which it will not shrink.By default the minimum set size is zero bytes.Set names are always passed by address since C passes structures by valuenot name.The basic set operations such as union and intersection are implemented inthree di�erent forms| so-called element, list and set forms. Each form takesthe address of a set as the destination parameter, but the source might beeither a single integer (the element form), a list of integers (the list form) oranother set (the set form). A list is terminated by the constant SET_END whichis de�ned in set.h to be MAX_UNSIGNED. This extract illustrates the use of thethree di�erent forms:set_unite_element(&first, 5)set_unite_list(&first, 8, 1, 3, SET_END)set_unite_set(&first, &second)

24 SET { A DYNAMIC SET HANDLER
0 NULL1 10010000����������3 @@@@@@@@R 11000111 01011010 00000010The null setThe set f0, 3gThe set f0, 1, 5, 6, 7, 9, 11, 12, 14, 22g

Figure 6.1 Set data structure6.1 set arrayunsigned *set_array(const set_ * src)When iterating over the contents of a set it is ine�cient to test each bit indi-vidually. This routine takes a set and returns an array of unsigned integers,one for each element of the set. A �nal element is set to SET_END. Once thisarray has been created, set iterations may be implemented by iterating over theelements of the array:set_ srcunsigned *elements = set_array(src)while (*elements != SET_END){ ...elements++}When you have �nished using the array created by calling set_array, youcan free the memory by simply calling mem_free():mem_free(elements)6.2 set cardinalityunsigned set_cardinality(const set_ * src)Return the number of elements in set src.

set assign element 256.3 set assign elementvoid set_assign_element(set_ * dst, const unsigned element)Clear dst and then assign the single element to it.6.4 set assign listvoid set_assign_list(set_ * dst,...)Clear dst and then assign the list of elements to it.6.5 set assign setvoid set_assign_set(set_ * dst, const set_ * src)Copy src to dst.6.6 set compareint set_compare(set_ * dst, set_ * src)Return 0 if src and dst are each subsets of each other (i.e. they contain exactlythe same elements). It is not necessary for the sets to be the same length forthis test to succeed. The routine returns �1 if src is `less than' dst and +1 ifsrc is `greater than' dst. The exact de�nition of greater than and less than isnot signi�cant: the existence of a collation sequence allows sets to be used assymbol table keys.6.7 set difference elementvoid set_difference_element(set_ * dst, const unsigned element)Remove element from dst. It is not an error to remove an element that is notin a set.6.8 set difference listvoid set_difference_list(set_ * dst,...)Remove each member of the list of elements from dst. It is not an error toremove an element that is not in a set.

26 SET { A DYNAMIC SET HANDLER6.9 set difference setvoid set_difference_set(const set_ * dst, const set_ * src)Remove every element in src from dst. It is not an error to remove an elementthat is not in a set.6.10 set freevoid set_free(set_ * dst)Clear dst and return the bit vector storage to the heap.6.11 set growvoid set_grow(set_ * dst, const unsigned length)Expand dst so that it is length bytes long and therefore capable of holdingelements in the range 0 . . . (length�8)� 1.6.12 set includes elementint set_includes_element(set_ * dst, const unsigned element)Return 1 if set dst contains element otherwise 0.6.13 set includes listint set_includes_list(set_ * dst,...)Return 1 if set dst contains every element in the list otherwise 0.6.14 set includes setint set_includes_set(const set_ * dst, const set_ * src)Return 1 if set dst contains every element in src otherwise 0.6.15 set intersect elementvoid set_intersect_element(set_ * dst, const unsigned element)Remove every element in dst apart from element.

set intersect list 276.16 set intersect listvoid set_intersect_list(set_ * dst,...)Remove every element in dst that is not in the list.6.17 set intersect setvoid set_intersect_set(set_ * dst, const set_ * src)Remove every element in dst that is not in src.6.18 set complementvoid set_invert(set_ * dst, const unsigned universe)Form the complement of dst in universe 0, . . . , universe by complementing allbits in the vector and then clearing bits corresponding to universe and above.6.19 set minimum sizeunsigned set_minimum_size(const unsigned minimum_size)Set a minimum length below which set_normalise() will not shrink any set.6.20 set normalisevoid set_normalise(set_ * dst)Delete zero bytes from the end of a bit vector and update the size �eld, i.e.reduce a set to its minimum storage requirement. Do not shrink to less thanthe value set by the last call to set_minimum_size.6.21 set print elementvoid set_print_element(const unsigned element, const char *element_names)Print a single set element. If element_names is NULL then simply print thedecimal representation of the element number. If element_names is non-null,it is assumed to be an ASCII string made up of null delimited substrings, oneper element. The routine counts substrings from the left until it �nds the nameof the set element and prints that instead of the decimal number.

28 SET { A DYNAMIC SET HANDLER6.22 set print setvoid set_print_set(const set_ * src, const char *element_names,unsigned line_length)Print all elements in src. If element_names is NULL then simply print thedecimal representation of the element numbers. If element_names is non-null,it is assumed to be an ASCII string made up of null delimited substrings, oneper element. The routine �nds counts substrings from the left until it �nds thename of the set element and prints that instead of the decimal number.Whenever the routine starts to print out a new set element, it checks tosee whether the length of the current output line exceeds line_length. If so,it prints a newline before proceeding. This parameter can be used to avoidprinting very long lines by setting an upper bound on the start column of a setelement. Note that this does not have the e�ect of limiting line length to theset value because the actual line lengths will depend on the length of the setelement names.This routine is used by rdp to build the error messages when a parser syntaxerror occurs. See the routine scan_test_set().6.23 set unite elementvoid set_unite_element(set_ * dst, const unsigned element)Add element to dst.6.24 set unite listvoid set_unite_list(set_ * dst,...)Add a list of elements to dst.6.25 set unite setvoid set_unite_set(set_ * dst, const set_ * src)Add each element in src to dst.

Chapter 7symbol { a hash coded symbol tablemanager7.1 Data structuresAn e�cient symbol table manager is crucial to the performance of any trans-lator. Many languages require symbol table access during scanning simply toresolve grammatical ambiguities, and semantic analysis usually requires symboltable manipulation if the underlying grammar is to remain context free. Therdp symbol table manager is particularly exible, allowing multiple symbol ta-bles to be managed. The user data associated with each symbol can be de�nedwith complete freedom, and the internal links used to maintain the hash ta-ble are hidden. There is no inherent reason why symbols in a particular tableshould not carry di�erent user data as long as the key �elds are in the sameplace in each record. The rdp EBNF provides a SYMBOL_TABLE directive whichautomatically creates and initialises symbol tables. See the �le rdp.bnf for aparticularly complicated example of its use.rdp maintains a linked list of symbol tables. Each symbol table is describedby a header record that contains pointers to a hash table, a scope list, vari-ous maintenance functions and some book keeping data. The basic layout isillustrated in Figure 7.1.Whenever a symbol is to be inserted into the table, its key �elds are hashedgenerating a random number in the range 0 . . . size. This hash number isthen used to index into the hash table, selecting one of the linked lists. Thesymbol is then added to the head of the list. A lookup is performed by hashingthe test symbol and then searching down the list for a match. Since the mostrecent additions are always examined �rst, the structure directly implementsnested scope rules in that a new symbol will hide any symbols with the samekey deeper in the table.The hash lists are in fact doubly linked so that symbols can be quicklyunlinked from the chain.Whenever a symbol is added to a hash list, it is also added to the head ofthe current scope chain. New scope regions may be declared, in which case anew scope record is created and added to the head of the scope list. The scopepointers are represented in Figure 7.1 by curved arrows. Although not shown

30 SYMBOL { A HASH CODED SYMBOL TABLE MANAGER

data data-data data- - data - datadata--- data data- - data - data- scope scope- - scope- 666] j6 6]�
� jbucket[hashsize-1]bucket[hashsize-2]bucket[hashsize-3]bucket[1]bucket[0]scopescurrent

�� ����� ���� ��� Figure 7.1 Symbol table data structure

symbol compare double 31on the diagram, each symbol maintains a back link to its scope record allowinge�cient checking of the scope level for a particular symbol. The current scopemay be reset to a previously declared scope.Di�erent kinds of user data record are allowed for by parameterising thefunctions that hash, compare and print symbols. These are supplied as func-tion pointers when the symbol table is declared. Most symbol tables (certainlyall those in the distributed grammars) simply use a single string as the key �eld.The library provides standard hash and compare functions for the special (al-though common) case of a symbol in which the �rst �eld is a character string (i.e.a pointer to char) which acts as the key �eld. Functions are also provided for aninitial set_ key �eld. If you need to do something more baroque, such as hash-ing on both a string and a numeric name space, then you will have to write yourown functions. Try looking at the source code for symbol_compare_string(),symbol_hash_string() and symbol_print_string() for ideas.All of the pointers embedded in the symbols are hidden from the user, andsymbols are manipulated via void pointers to the �rst location in the user datablock. rdp de�nes casting macros for each symbol table to make user data �eldaccess less verbose. See the �le miniplus.bnf for examples.The symbol table package was originally developed along the lines describedin the `Dragon Book' [ASU86]. The idea of hiding the pointers and usingfunction pointers in a sort of poor man's object oriented programmingwas takenfrom Holub's book on compilers [Hol90] although I have implemented thingsrather di�erently and provided a more complete set of routines. I also took theidea of storing a symbol's hash number within it to allow fast lookup from thesymbol table module that Terence Parr supplies with PCCTS compiler-compilersuite.7.2 symbol compare doubleint symbol_compare_double(void *left, void *right)Compare double precision real keys for equality. The �rst element of the userdata structure must be a double. Return 0 if they are equal, +1 if left> right or �1 if right < left, just like the ANSI routine strcmp(). Forsymbols that are keyed on a single double, this routine may be used as thecompare parameter to symbol_init() and the rdp directive SYMBOL_TABLE.7.3 symbol compare double reverseint symbol_compare_double_reverse(void *left, void *right)Compare double precision real keys for equality with reverse polarity. The �rstelement of the user data structure must be a double. Return 0 if they areequal, +1 if left < right or �1 if right > left. For symbols that are keyedon a single double, this routine may be used as the compare parameter tosymbol_init() and the rdp directive SYMBOL_TABLE.

32 SYMBOL { A HASH CODED SYMBOL TABLE MANAGER7.4 symbol compare longint symbol_compare_long(void *left, void *right)Compare long integer keys for equality. The �rst element of the user datastructure must be a long int. Return 0 if they are equal, +1 if left > rightor �1 if right < left, just like the ANSI routine strcmp(). For symbols thatare keyed on a single long integer, this routine may be used as the compareparameter to symbol_init() and the rdp directive SYMBOL_TABLE.7.5 symbol compare long reverseint symbol_compare_long_reverse(void *left, void *right)Compare long integer keys for equality with reverse polarity. The �rst elementof the user data structure must be a long int. Return 0 if they are equal, +1if left < right or �1 if right > left, just like the ANSI routine strcmp().For symbols that are keyed on a single long integer, this routine may be used asthe compare parameter to symbol_init() and the rdp directive SYMBOL_TABLE.7.6 symbol compare stringint symbol_compare_string(void *left, void *right)Compare string keys for equality. The �rst element of the user data structuremust be a char*. Return 0 if they are equal, +1 if left > right or �1 ifright < left, just like the ANSI routine strcmp(). For symbols that arekeyed on a single string, this routine may be used as the compare parameter tosymbol_init() and the rdp directive SYMBOL_TABLE.7.7 symbol compare string reverseint symbol_compare_string_reverse(void *left, void *right)Compare string keys for equality with reverse polarity. The �rst element ofthe user data structure must be a char*. Return 0 if they are equal, +1 ifleft < right or �1 if right > left, just like the ANSI routine strcmp().For symbols that are keyed on a single string, this routine may be used as thecompare parameter to symbol_init() and the rdp directive SYMBOL_TABLE.7.8 symbol findvoid symbol_find(const void *table, void *key, size_t key_size,size_t symbol_size, void* scope,enum SYMBOL_FIND_OP op)enum SYMBOL_FIND_OP {SYMBOL_NEW, SYMBOL_OLD, SYMBOL_ANY}

symbol free scope 337.9 symbol free scopevoid symbol_free_scope(const void *scope)Unlink all symbols in a scope chain and then free all memory associated withthem. Unlink the scope record from the scope chain and free the memoryassociated with it.7.10 symbol free symbolvoid symbol_free_symbol(void *symbol)Free the memory associated with a symbol. Unpredictable behaviour will occurif a symbol is freed before unlinking it from the symbol table.7.11 symbol free tablevoid symbol_free_table(void *table)Free all memory associated with a table and all symbols and scope recordswithin it.7.12 symbol get scopevoid *symbol_get_scope(const void *table)Return a pointer to the scope record for the current scope level.7.13 symbol hash doubleunsigned symbol_hash_double(unsigned hash_prime, void *data)7.14 symbol hash longunsigned symbol_hash_long(unsigned hash_prime, void *data)7.15 symbol hash memunsigned symbol_hash_mem(unsigned hash_prime, void *data)Hash a length encoded string. For symbols that are keyed on a single length en-coded string, this routine may be used as the hash parameter to symbol_init()and the rdp directive SYMBOL_TABLE.

34 SYMBOL { A HASH CODED SYMBOL TABLE MANAGER7.16 symbol hash stringunsigned symbol_hash_string(unsigned hash_prime, void *data)Hash a zero terminated string. For symbols that are keyed on a single string,this routine may be used as the hash parameter to symbol_init() and the rdpdirective SYMBOL_TABLE.7.17 symbol insert keyvoid *symbol_insert_key(const void *table, char *str, size_t size)Make a new symbol with a user data area size bytes long. Put a pointer tostr in the user �rst user data �eld. Hash the symbol and insert in the table.7.18 symbol insert symbolvoid *symbol_insert_symbol(const void *table, void *symbol)Hash an existing symbol and insert it in the table.7.19 symbol lookup keyvoid * symbol_lookup_key(const void * table, void * key, void * scope)Hash the key and lookup up the symbol. Return NULL if not found, otherwisea pointer to the base of the user data in the found symbol. Parameter scoperestricts the search to scope level scope. If scope is NULL, then all scopes aresearched.7.20 symbol new scopevoid *symbol_new_scope(void *table, char *str)Create a new named scope and add it to the head of the scope list. Make thenew scope current.7.21 symbol new symbolvoid *symbol_new_symbol(size_t size)Allocate enough memory for the symbol table pointers plus size bytes of userdata. Return a pointer to the base of the user data.

symbol new table 357.22 symbol new tablevoid *symbol_new_table(char *name,const unsigned symbol_hashsize,const unsigned symbol_hashprime,int (*compare) (void *left_symbol, void *right_symbol),unsigned (*hash) (unsigned hash_prime, void *data),void (*print) (const void *symbol))Create a new symbol table and add it to the head of the linked list of tables.Return a pointer to the table which may be used to name the table in subsequentcalls. The table will have size hash buckets. See rdp.c for examples of use.7.23 symbol next symbolvoid *symbol_next_symbol(void *table, void *symbol)Sometimes it is necessary to look down a hash chain beyond a found symbol, forinstance to locate instances of symbols with the same key that were insertedpreviously. This routine takes a pointer to a symbol and then continues tosearch down the same chain until it �nds another match or reaches the end ofthe list. Return NULL if no other matching symbol is found, otherwise a pointerto the base of the user data.7.24 symbol next symbol in scopevoid *symbol_next_symbol_in_scope(void *symbol)This routine returns the next symbol in a scope chain. Prior to any sorting,symbols will be returned in the reverse order to that in which they were inserted.7.25 symbol print all tablevoid symbol_print_all_table(void)Print a diagnostic dump of all symbol tables currently active.7.26 symbol print all table statisticsvoid symbol_print_all_table_statistics(const int histogram_size)Print summary statistics for all symbol tables currently active. rdp generatedparsers call this routine when the -S command line option is active.

36 SYMBOL { A HASH CODED SYMBOL TABLE MANAGER7.27 symbol print doublevoid symbol_print_double(const void *symbol)Print the �rst element in the user data as a double precision real. For symbolsthat are keyed on a single real, this routine may be used as the print parameterto symbol_init() and the rdp directive SYMBOL_TABLE.7.28 symbol print longvoid symbol_print_long(const void *symbol)Print the �rst element in the user data as a long integer. For symbols that arekeyed on a single long integer, this routine may be used as the print parameterto symbol_init() and the rdp directive SYMBOL_TABLE.7.29 symbol print stringvoid symbol_print_string(const void *symbol)Print the �rst element in the user data as a pointer to string. For symbols thatare keyed on a single string, this routine may be used as the print parameterto symbol_init() and the rdp directive SYMBOL_TABLE.7.30 symbol print scopevoid symbol_print_scope(const void *table, void *scope)Print all symbols in the scope chain pointed to by scope.7.31 symbol print symbolvoid symbol_print_symbol(const void *table, const void *symbol)Print a single symbol.7.32 symbol print tablevoid symbol_print_table(const void *table)Print the entire contents of the symbol table pointed to by table.7.33 symbol print table statisticsvoid symbol_print_table_statistics(const void *table,const int histogram_size)Print summary statistics for the symbol table pointed to by table.

symbol set scope 377.34 symbol set scopevoid symbol_set_scope(void *table, void *scope)Set the current scope to scope, which must be a pointer returned by a previouscall to symbol_new_scope() or symbol_get_scope().7.35 symbol sort tablevoid symbol_sort_table(void *table)Sort all scope chains in a table using the ordering de�ned by compare function.7.36 symbol sort scopevoid symbol_sort_scope(void *table, void *scope)Sort a scope chain using the ordering de�ned by compare function. rdp usesthis function to alphabetically sort token and production names.7.37 symbol unlink scopevoid symbol_unlink_scope(void *data)Unlink all symbols in a scope chain from their hash chains. The symbols them-selves (and the scope chain data) are preserved. This function is usually calledat the exit from a scope block.7.38 symbol unlink symbolvoid symbol_unlink_symbol(void *data)Unlink a single symbol from its hash chain. The symbol itself (and the scopechain data) are preserved.7.39 symbol unlink tablevoid symbol_unlink_table(void *table)Unlink all symbols in a table from their hash chains. The symbols themselves(and the scope chain data) are preserved.

Chapter 8textio { text bu�ering and messagingservicesText bu�ering is a surprisingly troubling part of lexical analyser design. Sup-porting nested include �les, source echoing and synchronised error messagesrequires careful design. The rdp text bu�er manager maintains a single largearea of memory. New strings can be inserted at low addresses and grow up-wards.The top of the region is used as a pushdown stack of line bu�ers for the setof included �les. As each nested include �le is opened, a record containing theprevious state of the text manager is pushed onto a linked list and a new linebu�er opened up. At the end of the included �le, the bu�er is released, therecord list popped and scanning continue where it left o�. End of �le is notreturned to the caller until the outermost �le is completely consumed.This arrangement allows arbitrary strings of arbitrary lengths to be stored,and �les with arbitrarily long lines to be read. As each new line is read in, itis stored backwards at the top of the bu�er. rdp does not run out of memoryuntil the strings meet the line bu�ers, so memory can always be fully used.This data arrangement is illustrated in Figure 8.1.As well as these text input routines, messaging routines are provided tocentralise the production of error messages.8.1 Global variables8.1.1 *text botA pointer to the �rst location in the text bu�er.8.1.2 *text topA pointer to the �rst free location above the string base.8.1.3 int text charThe last character read by textio.

40 TEXTIO { TEXT BUFFERING AND MESSAGING SERVICES
text bu�ers1 s2 s3 s4 -

�outer line bu�erinner line bu�er
Figure 8.1 Text bu�er structure8.1.4 void *text scan dataA pointer to the last scanner symbol read by the scanner.8.2 text capitalise stringchar *text_capitalise_string(char *str)Capitalise the �rst character of each space delimited word in string str.8.3 text default filetypechar *text_default_filetype(char *fname, const char *ftype)If fname has no �letype then add a period and the string ftype to it.8.4 text dumpvoid text_dump(void)Print out (in order of creation time) all the inserted strings in the text bu�er.8.5 text echovoid text_echo(const int i)Enable listing for all lines.

text extract filename 418.6 text extract filenamechar * text_extract_filename(char * fname)Return the �le name part of a path, after stripping o� leading directories andthe trailing �le type.8.7 text find ASCII elementchar * text_find_ASCII_element(int c)Return a string representing the ASCII code for c. Non-printing charactercodes return a three digit mnemonic code.8.8 text force filetypechar *text_force_filetype(char *fname, const char *ftype)Force fname to have �letype ftype even if it already has one.8.9 text freevoid text_free(void)Release all memory held by the textio package. It is an error to access anytextio functions after calling text_free.8.10 text get charvoid text_get_char(void)Get a single character from the line bu�er into text_char.8.11 text initvoid text_init(const long max_text,const unsigned max_errors,const unsigned max_warnings,const unsigned tab_width)Initialise the text subsystem with a bu�er of max_text bytes.8.12 text insert charchar *text_insert_char(const char c)Insert a single character into the string bu�er. Return a pointer to the insertedcharacter.

42 TEXTIO { TEXT BUFFERING AND MESSAGING SERVICES8.13 text insert characterschar *text_insert_characters(const char *str)Insert the string str into the string bu�er, but omit the terminating null char-acter. Return a pointer to the �rst character.8.14 text insert integerchar *text_insert_integer(const unsigned n)Insert the ASCII decimal representation of an unsigned integer into the textbu�er. Return a pointer to the start of the string.8.15 text insert stringchar *text_insert_string(const char *str)Insert the string str into the string bu�er and include the terminating nullcharacter. Return a pointer to the start of the string.8.16 text insert substringchar *text_insert_substring(const char * prefix, const char *str,const unsigned n)Insert the string prefix into th string bu�er followed by the string str followedby an underscore and then insert the ASCII decimal representation of unsignedinteger n with a terminating null character. Return a pointer to the start ofthe string. This routine is used to construct sub-production names in the rdpgrammar checking routines.8.17 long text is valid C idint text_is_valid_C_id(char * s)Return true (integer 1) if s conforms to the rules for valid ANSI-C identi�ers,otherwise return false (integer 0).8.18 long text line numberunsigned long text_line_number(void)Return the current line number in the current �le.

text lowercase string 438.19 text lowercase stringchar *text_lowercase_string(char *str)Go through string str, converting all upper case letters to lower case and returnthat string.8.20 text make C identifierchar *text_make_C_identifier(char * str)Use text_find_ASCII_element to construct a valid C identi�er from the namesof the characters in str.8.21 text messageint text_message(const enum text_message_type type, const char *fmt, ...)Generate an error message. type is one of� TEXT_INFO print the current �lename and the message.� TEXT_WARNING print Warning, the current �lename and the message.� TEXT_ERROR print Error, the current �lename and the message.� TEXT_FATAL print Fatal, the current �lename and the message. Exit tothe operating system after issuing the message.� TEXT_INFO_ECHO echo the current source line, print the current �lenameand the message.� TEXT_WARNING_ECHO echo the current source line, print Warning, the cur-rent �lename and the message.� TEXT_ERROR_ECHOecho the current source line, print Warning, the current�lename and the message.� TEXT_FATAL_ECHO echo the current source line, print Warning, the current�lename and the message. Exit to the operating system after issuing themessage.Any valid printf() parameters may be supplied after type.8.22 text openFILE *text_open(char *s)Open a �le. s is an ASCII string containing the �le name. An error messagewill be issued if the �le cannot be opened. There is no corresponding closefunction because �les are automatically closed by the handler when an EOF isencountered.

44 TEXTIO { TEXT BUFFERING AND MESSAGING SERVICES8.23 text print C charint text_print_C_char(char * string)Print the contents of string as an ANSI-C character literal, using escape se-quences where necessary.8.24 text print C char fileint text_print_C_char_file(FILE * file, char * string)Print the contents of string as an ANSI-C character literal to �le stream file,using escape sequences where necessary.8.25 text print C stringint text_print_C_string(char * string)Print the contents of string as an ANSI-C string literal, using escape sequenceswhere necessary.8.26 text print C string fileint text_print_C_string_file(FILE * file, char * string)Print the contents of string as an ANSI-C string literal to �le stream file,using escape sequences where necessary.8.27 text print statisticsvoid text_print_statistics(void)Print summary text bu�er statistics. Use this routine to �nd out how muchfree space is left in the text bu�er.8.28 text print timevoid text_print_time(void)Print the currently consumed CPU time for this run.8.29 text printfint text_printf(const char *fmt, ...)Send a formatted message to the message stream. Any valid printf() param-eters are valid here.

text print total errors 458.30 text print total errorsint text_print_total_errors(void)Print the total number of errors across all input �les.8.31 text redirectvoid text_redirect(FILE* file)At startup, messages are sent to the stream named in the TEXT_MESSAGESmacrode�ned in textio.h, which is usually stderr. Output can be redirected to anyother text �le with this routine. filemust be an initialised �le variable pointer.8.32 text total errorsunsigned text_total_errors(void)Return the total number of errors across all input �les.8.33 text total warningsunsigned text_total_warnings(void)Return the total number of warnings across all input �les.8.34 text uppercase stringvoid text_uppercase_string(char *str)Go through string str, converting all lower case letters to upper case and returnthat string.

Appendix AAcquiring and installing rdprdp may be fetched using anonymous ftp to ftp.dcs.rhbnc.ac.uk. If youare a Unix user download pub/rdp/rdpx_y.tar or if you are an MS-DOS userdownload pub/rdp/rdpx_y.zip. In each case x_y should be the highest numberin the directory. You can also access the rdp distribution via the rdp Webpage at http://www.dcs.rhbnc.ac.uk/research/languages/rdp.shmtl. Ifall else fails, try mailing directly to A.Johnstone@rhbnc.ac.uk and a tape ordisk will be sent to you.A.1 Installation1. Unpack the distribution kit. You should have the �les listed in Table A.1.2. The make�le can be used with many di�erent operating systems andcompilers.Edit it to make sure that it is con�gured for your needs by uncommentingone of the blocks of macro de�nitions at the top of the �le.3. To build everything, go to the directory containing the make�le and typemake. The default target in the make�le builds rdp, the mini_syn syn-tax analyser, the minicalc interpreter, the minicond interpreter, theminiloop compiler, the minitree compiler an assembler called mvmasmand its accompanying simulator mvmsim, a parser for the Pascal languageand a pretty printer for ANSI-C. The tools are run on various test �les.None of these should generate any errors, except for LL(1) errors causedby the mini and Pascal if statements and warnings from rdp about un-used comment() rules, which are normal.make then builds rdp1, a machine generated version of rdp. rdp1 is thenused to reproduce itself, creating a �le called rdp2. The two machinegenerated versions are compared with each other to make sure that thebootstrap has been successful. Finally the machine generated versions aredeleted.4. If you type make clean all the object �les and the machine generatedrdp versions will be deleted, leaving the distribution �les plus the new

48 ACQUIRING AND INSTALLING RDP00readme.1_5 An overview of rdpmakefile Main rdp make�leminicalc.bnf rdp speci�cation for the minicalc interpreterminicond.bnf rdp speci�cation for the minicond interpreterminiloop.bnf rdp speci�cation for the miniloop compilerminitree.bnf rdp speci�cation for the minitree compilermini_syn.bnf rdp speci�cation for the mini syntax checkerml_aux.c miniloop auxiliary �leml_aux.h miniloop auxiliary header �lemt_aux.c minitree auxiliary �lemt_aux.h minitree auxiliary header �lemvmasm.bnf rdp speci�cation of the mvmasm assemblermvmsim.c source code for the mvmsim simulatormvm_aux.c auxiliary �le for mvmasmmvm_aux.h auxiliary header �le for mvmasmmvm_def.h op-code de�nitions for MVMpascal.bnf rdp speci�cation for Pascalpretty_c.bnf rdp speci�cation for the ANSI-C pretty printerpr_c_aux.c auxiliary �le for pretty_cpr_c_aux.h auxiliary header �le for pretty_crdp.bnf rdp speci�cation for rdp itselfrdp.c rdp main source �le generated from rdp.bnfrdp.exe 32-bit rdp executable for Win-32 (.zip �le only)rdp.h rdp main header �le generated from rdp.bnfrdp_aux.c rdp auxiliary �lerdp_aux.h rdp auxiliary header �lerdp_gram.c grammar checking routines for rdprdp_gram.h grammar checking routines header for rdprdp_prnt.c parser printing routines for rdprdp_prnt.h parser printing routines header for rdptest.c ANSI-C pretty printer test source �letest.pas Pascal test source �letestcalc.m minicalc test source �letestcond.m minicond test source �letestloop.m miniloop test source �letesttree.m minitree test source �lerdp_doc\rdp_case.dvi case study TEX dvi �lerdp_doc\rdp_case.ps case study Postscript sourcerdp_doc\rdp_supp.dvi support manual TEX dvi �lerdp_doc\rdp_supp.ps support manual Postscript sourcerdp_doc\rdp_tut.dvi tutorial manual TEX dvi �lerdp_doc\rdp_tut.ps tutorial manual Postscript sourcerdp_doc\rdp_user.dvi user manual TEX dvi �lerdp_doc\rdp_user.ps user manual Postscript sourcerdp_supp\arg.c argument handling routinesrdp_supp\arg.h argument handling headerrdp_supp\graph.c graph handling routinesrdp_supp\graph.h graph handling headerrdp_supp\memalloc.c memory management routinesrdp_supp\memalloc.h memory management headerrdp_supp\scan.c scanner support routinesrdp_supp\scan.h scanner support headerrdp_supp\scanner.c the rdp scannerrdp_supp\set.c set handling routinesrdp_supp\set.h set handling headerrdp_supp\symbol.c symbol handling routinesrdp_supp\symbol.h symbol handling headerrdp_supp\textio.c text bu�er handling routinesrdp_supp\textio.h text bu�er handling headerexamples\... examples from manualsTable A.1 Distribution �le list

Build log 49executables. If you type make veryclean then the directory is cleanedand the executables are also deleted.A.2 Build logThe output of a successful make�le build on MS-DOS is shown below. Notethe warning messages from rdp on some commands: these are quite normal.cc -Irdp_supp\ -c rdp.crdp.c: cc -Irdp_supp\ -c rdp_aux.crdp_aux.c:cc -Irdp_supp\ -c rdp_gram.crdp_gram.c:cc -Irdp_supp\ -c rdp_prnt.crdp_prnt.c:cc -Irdp_supp\ -c rdp_supp\arg.crdp_supp\arg.c:cc -Irdp_supp\ -c rdp_supp\graph.crdp_supp\graph.c:cc -Irdp_supp\ -c rdp_supp\memalloc.crdp_supp\memalloc.c:cc -Irdp_supp\ -c rdp_supp\scan.crdp_supp\scan.c:cc -Irdp_supp\ -c rdp_supp\scanner.crdp_supp\scanner.c:cc -Irdp_supp\ -c rdp_supp\set.crdp_supp\set.c:cc -Irdp_supp\ -c rdp_supp\symbol.crdp_supp\symbol.c:cc -Irdp_supp\ -c rdp_supp\textio.crdp_supp\textio.c:cc -erdp.exe rdp.obj rdp_*.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objrdp -F -omini_syn mini_syncc -Irdp_supp\ -c mini_syn.cmini_syn.c:cc -emini_syn.exe mini_syn.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objmini_syn testcalcrdp -F -ominicalc minicalccc -Irdp_supp\ -c minicalc.cminicalc.c:cc -eminicalc.exe minicalc.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objminicalc testcalca is 7b is 14, -b is -147 cubed is 343rdp -F -ominicond minicond******: Error - LL(1) violation - rulerdp_statement_2 ::= ['else' _and_not statement] .

50 ACQUIRING AND INSTALLING RDPcontains null but first and follow sets both include: 'else'******: Warning - Grammar is not LL(1) but -F set: writing files******: 1 error and 1 warningcc -Irdp_supp\ -c minicond.cminicond.c:cc -eminicond.exe minicond.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objminicond testconda is 7b is 14, -b is -147 cubed is 343z equals az does not equal ardp -F -ominiloop miniloop******: Error - LL(1) violation - rulerdp_statement_2 ::= ['else' statement] .contains null but first and follow sets both include: 'else'******: Warning - Grammar is not LL(1) but -F set: writing files******: 1 error and 1 warningcc -Irdp_supp\ -c miniloop.cminiloop.c:cc -Irdp_supp\ -c ml_aux.cml_aux.c:cc -eminiloop.exe miniloop.obj ml_aux.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objrdp -F -omvmasm mvmasmcc -Irdp_supp\ -c mvmasm.cmvmasm.c:cc -Irdp_supp\ -c mvm_aux.cmvm_aux.c:cc -emvmasm.exe mvmasm.obj mvm_aux.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objcc -Irdp_supp\ -c mvmsim.cmvmsim.c:cc -emvmsim.exe mvmsim.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objminiloop -otestloop.mvm testloopmvmasm -otestloop.sim testloop******: Transfer address 00001000mvmsim testloop.sima is 7b is 14, -b is -147 cubed is 343z equals az does not equal aa is 3a is 2a is 1-- Halted --rdp -F -ominitree minitree******: Error - LL(1) violation - rulerdp_statement_2 ::= ['else' statement] .contains null but first and follow sets both include: 'else'

Build log 51******: Warning - Grammar is not LL(1) but -F set: writing files******: 1 error and 1 warningcc -Irdp_supp\ -c minitree.cminitree.c:cc -Irdp_supp\ -c mt_aux.cmt_aux.c:cc -eminitree.exe minitree.obj m*_aux.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objminitree -otesttree.mvm testtreemvmasm -otesttree.sim testtree******: Transfer address 00001000mvmsim testtree.sima is 7b is 14, -b is -147 cubed is 343z equals az does not equal aa is 3a is 2a is 1-- Halted --rdp -opascal -F pascal******: Error - LL(1) violation - rulerdp_statement_9 ::= ['else' statement] .contains null but first and follow sets both include: 'else'******: Warning - Grammar is not LL(1) but -F set: writing files******: 1 error and 1 warningcc -Irdp_supp\ -c pascal.cpascal.c:cc -epascal.exe pascal.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objpascal testrdp -opretty_c pretty_ccc -Irdp_supp\ -c pretty_c.cpretty_c.c:cc -Irdp_supp\ -c pr_c_aux.cpr_c_aux.c:cc -epretty_c.exe pretty_c.obj pr_c_aux.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objpretty_c testtest.c,2133,12267,5.75fc test.c test.bakComparing files test.c and test.bakFC: no differences encountereddel test.bakrdp -F -ordp1 rdpcc -Irdp_supp\ -c rdp1.crdp1.c: cc -erdp1.exe rdp1.obj rdp_*.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objcopy rdp1.c rdp2.crdp1 -F -ordp1 rdp

52 ACQUIRING AND INSTALLING RDPfc rdp1.c rdp2.cComparing files rdp1.c and rdp2.c****** rdp1.c** Parser generated by RDP on Dec 20 1997 21:05:05 from rdp.bnf******* rdp2.c** Parser generated by RDP on Dec 20 1997 21:05:02 from rdp.bnf*******

Bibliography[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: prin-ciples techniques and tools. Addison-Wesley, 1986.[Hol90] Allen I. Holub. Compiler design in C. Prentice Hall, 1990.[JS97a] Adrian Johnstone and Elizabeth Scott. Designing and implement-ing language translators with rdp { a case study. Technical ReportTR-97-27, Royal Holloway, University of London, Computer ScienceDepartment, December 1997.[JS97b] Adrian Johnstone and Elizabeth Scott. rdp - a recursive descent com-piler compiler. user manual for version 1.5. Technical Report TR-97-25, Royal Holloway, University of London, Computer Science Depart-ment, December 1997.[JS97c] Adrian Johnstone and Elizabeth Scott. A tutorial guide to rdp fornew users. Technical Report TR-97-24, Royal Holloway, University ofLondon, Computer Science Department, December 1997.[San95] Georg Sander. VCG Visualisation of Compiler Graphs. Universit�atdes Saarlandes, 66041 Saarbr�ucken, Germany, February 1995.

