rdp — an iterator-based recursive
descent parser generator with tree
promotion operators

Adrian Johnstone
A.Johnstone@rhbnc.ac.uk

Elizabeth Scott
E.Scott@rhbnc.ac.uk

Department of Computer Science,
Royal Holloway, University of London,
Egham, Surrey, TW20 0EX, UK

Abstract

rdp is a parser generator which accepts Itera-
tor Backus Naur Form productions decorated
with attributes and ANSI-C actions and pro-
duces recursive descent parsers. It has special
support for the generation of tree-based inter-
mediate forms, built-in symbol table handling
for the implementation of context-sensitive
components of the language syntax and a sup-
port library that includes a generalised graph
handling module that can output graphs in a
form suitable for use with well known visuali-
sation tools.

Keywords: Parser generator, EBNF, iterator, derivation
tree, tree promotion operator, LL(1) grammar

Introduction

rdp is a parser generator that accepts context-free
grammar specifications written in Iterator Backus
Naur Form (IBNF) and outputs recursive descent
parsers written in ANSI-C. rdp is targeted at neo-
phyte users but includes the following features that
make it a powerful tool in the hands of the more
experienced:

¢ a grammar specification language that com-
prises standard BNF extended by a single con-
struct (called an iterator) that subsumes as
special cases the optional phrase, Kleene clo-
sure and positive closure found in traditional
extensions to BNF,

¢ automatic construction of derivation trees,

o a set of promotion operators which may be used
to produce reduced derivation trees that con-
form to common Abstract Syntax Tree forms,

¢ a built-in graph-handling library with an in-
terface to the VCG [San95] graph visualisation
tool,

¢ a paramaterisable scanner which supports run-
time extension of the keyword set of the lan-
guage to be parsed,

¢ built-in handling of multiple symbol tables,

o straightforward handling of named synthesised
and inherited attributes that may be accessed
by semantic actions written in ANSI-C or
C++, and

¢ special semantic rules that are instantiated in-
line using ANSI-C macros.

rdp itself, and the language processors it gener-
ates, use standard library modules to manage sym-
bol tables, sets, graphs, memory allocation, text
buffering, command line argument processing and
scanning. The rdp scanner is programmed by load-
ing tokens into a symbol table at the start of each
run. In this way, the rdp scanner can be used to
support runtime extensible language features, such
as user defined operators in Algol-68.

rdp offers a high level of integration between its
component parts. An unusual feature of rdp is that
it produces complete runnable programs with built-
in help information and command line switches that
are specified as part of the IBNF file. In this sense
rdp output is far more shrink-wrapped than the
usual parser generators which can be a great help
to new users. rdp also provides integrated I/0: the
text buffering routines and built-in scanner work
together to automatically handle nested files, error
message reporting and text data buffering.

rdp generates itself from an IBNF file which de-
scribes the syntax of rdp’s IBNF source language
and specifies semantic actions. This demonstrates
the bootstrapping technique used for porting com-
pilers to new architectures. The rdp distribution
comes with extensive documentation which includes
a tutorial manual for new users and a large case

study in which a family of interpreters and compil-
ers are developed.

Iterator BNF

rdp language specifications use the standard no-
tions of context-free grammar rules first employed
in the Algol-60 report [Bac60]. Rule names are un-
quoted alphanumeric identifiers and keywords are
delimited by single quotes. In addition to the usual
notions of sequencing and alternation from BNF
rdp provides a generalised iterator operator. The
construction

(’body’) 2 @ 4 ’separator’
matches the following strings

body separator body
body separator body separator body
body separator body separator body separator body

that is, between two and four instances of body sep-
arated by the token separator. The general form
of the iterator is

(valid subproduction) lo @ hi token

which specifies that the rdp-generated parser should
match the body represented by wvalid subproduction
between lo and high times interspersing each in-
stance with one instance of the separating token.
A hi value of zero means ‘without limit’, that is the
iteration will continue arbitrarily.

Either, or both, of hi and lo may be absent in
which case they default to zero. The separating
token may be set to the special token # which rep-
resents ‘nothing’ or the empty string (sometimes
represented by €). In this case no separating token
is looked for.

Traditional EBNF forms rdp supports the tradi-
tional Wirth-style EBNF constructs [Wir77] for op-
tional, do-first and Kleene closure brackets as short-
hands for special cases of the iterator construct. We
have extended Wirth’s set with a positive closure
operator. The correspondences are shown in Ta-
ble 1. None of them carries a separating token, and
all of them have lower bounds of zero or one and
upper bounds of one or zero (without limit).

Using iterators to implement lists Delimited lists
are common in high level languages. Consider, for
instance, a function call in C made up of a paren-
thesised comma-delimited list of identifiers:

func(paraml, param2, param3)

If we have an rdp rule ID which matches a C-style
identifier, one way of writing an rdp specification of
a function call is:

func_call ::= ID ’(’ param_list ’)’.
param_list ::= [ID param_tail].
param_tail ::= [’,’” ID param_tail].

which uses recursion to match an arbitrary number
of parameters. We can use the { ... } iterator
brackets and give a more compact description:

func_call ::=
param_list :

ID ’(’ param_list ’)’.
:= [ID {°>,> ID }].

Here the recursion has been replaced by iteration.
Using the iterator operator with the optional de-
limiter token we can further compact this to

func_call ::= ID ’(’ param_list ’)’.

param_list ::= [(ID) @ ’,’ 1].
or just
func_call ::=ID ’C’ [(ID) @ ’>,>] ?)’.

Attributes and semantic actions

Table driven parsers usually maintain an attribute
stack which may be accessed by semantic actions in
the running parser to synthesize run-time attribute
values. Careful use of the attribute stack may also
allow implementation of inherited attributes. One
of the key advantages of recursive descent parsers is
that inherited and synthesized attribute passing be-
tween grammar rules maps naturally onto the func-
tion parameter and function return value mecha-
nisms in conventional programming languages. The
rdp tutorial and case study manuals [JS97f, JS97a]
show how this mapping is exploited to provide in-
dividual named (rather than numbered) attributes
along with strongly type checked inherited and syn-
thesized attribute handling without requiring a sep-
arate attribute stack.

rdp rules may have a return type which is used
to pass the value of a synthesized attribute up the

do-first

positive closure (one-or-many)
optional (zero-or-one)

Kleene closure (zero-or-many)

C...) — () 101 #
< > = () 100 #
[...1T — () oel #
{... > = () 000 #

Table 1 Iterator:bracket correspondences

derivation tree. Inherited attributes are defined us-
ing typed parameters. All types refer to type names
defined in the underlying ANSI-C implementation
which may include user defined type names (includ-
ing the use of aggregates). Semantic actions are
ANSI-C fragments enclosed in [* *] brackets that
are simply copied into the generated parser verba-
tim. For instance, the rule

a_rule(xl:integer x2:integer):integer::=
‘a’ [* result = x1; *]
{ ’b? [* result = x2; *]
.

matches a single a followed by zero or more b’s. If
no b’s are seen then a_rule returns the value of the
x1 parameter, otherwise the value of x2 is returned.
The rule maps to the following ANSI-C skeleton:

integer a_rule(integer x1, integer x2)

{
/* ..code to match a.. */
result = x1;

if (current is b)

{
/* ..code to match multiple b’s.. */
result = x2;

}

return result;

The value returned by a_rule may be accessed in
a rule that calls a_rule by appending an attribute
name to the call:

upper_rule ::= a_rule(0 1): saw_b.

Here, the synthesized attribute saw_b will be set to
1 if rule a_rule matched any b’s, otherwise saw_b
will be set to 0.

Default actions For iterators with a lower bound
of zero (which include [] and { }) it is often
convenient to have a semantic action that is exe-
cuted only if the iterator matches e, that is a default
action that is executed if the syntax matched by the
iterator is not found. Such actions are defined by
following the iterator with a colon and an action:

rule_with_default ::=
') [
’b? [* printf("Found a ’b’\n"); *]
] : [* printf("No ’b’ found\n"); x]

This rule matches the strings ab and a, printing
appropriate messages.

Integrated library features

rdp-generated parsers use a set of general purpose
support modules known collectively as rdp_supp.
There are seven parts to rdp_supp: a hash coded
symbol table handler which allows multiple tables
to be managed with arbitrary user data fields; a
set handler which supports dynamically resizable
sets; a graph manager which allows arbitrary di-
rected graphs to be constructed and manipulated,
with a facility to output any graph in a form that
may be read and visualised by the VCG [San95]
tool on Windows and Unix/X-windows systems; a
memory manager which wraps fatal error handling
around the standard ANSI C heap allocation rou-
tines; a text handler which provides line buffering
and string management without imposing arbitrary
limits on input line length; a command line argu-
ment parsing package that allows Unix style options
to be implemented in a standardised way; and scan-
ner support routines for handling tokens in recursive
descent parsers.

Symbol tables Symbol tables are fundamental to
the implementation of almost all useful translators

since in practice the language accepting power of
context free grammars must be augmented with
context sensitive type checks. In addition, inter-
preters require storage space for their run-time vari-
ables and associated attributes, and an efficient
symbol table organisation is critical to the perfor-
mance of such tools. The rdp_supp library includes
a hash-coded symbol table handler interfaced to the
rdp source language via the SYMBOL_TABLE declara-
tion. An arbitrary number of symbol tables may be
declared, each with user defined data fields and a
user defined record comparison function. An arbi-
trary number of nested scope levels are supported.

Generalised graph handling The rdp graph han-
dling package provides a general framework for
building graph data structures that may then be
output in a form suitable for display with the
VCG (Visualisation of Compiler Graphs) tool.
rdp generated parsers can be set to automat-
ically build derivation trees in a form suitable
for human viewing. VCG runs on Windows 3.1,
Windows-95 and Unix/X-windows systems. We
are grateful to the author of VCG for permis-
sion to supply VCG with rdp: you can fetch a
copy of VCG from the home FTP site for rdp
(ftp://ftp.dcs.rhbnc.ac.uk/pub/rdp)

Scanning The rdp scanner uses the same compiled
constructs as the generated parser functions rather
than employing traditional Finite Automata based
techniques. Alphanumeric keywords and punctua-
tion are recognised wvia longest-match comparisons
with the contents of the scanner’s symbol table
which is loaded at startup with the tokens refer-
enced in the associated IBNF grammar. This dy-
namically organised scanner allows new operators
and keywords to be added to the scanner’s set dur-
ing translation, a feature designed to support the
use of Algol-68 style operator definitions (as op-
posed to the more restricted overloading of oper-
ators allowed in C++). The scanner is tightly inte-
grated with a text buffering package that manages
the flow of source text through the translator and
provides a range of messaging and text handling
services.

Help and command line processing functions
One of the aims of rdp is to allow neophyte users
to get a complete translator up and running in
the minimum of time by producing a complete,
runnable program that includes built-in help pro-
cessing at command line level and customisable
handling of command line switches. The generated
parsers automatically include processing for a set
of standard command line arguments and the user
may additionally specify command line switch us-
ing directives in the IBNF source file. The results of
command line processing are available as attributes
within the running translator.

Derivation tree construction and ma-
nipulation

rdp-generated parsers can automatically build com-
plete derivation trees which can be used as the basis
of an intermediate form suitable for input to tree-
walking code generators and optimisers. The trees
are constructed using the graph library, and there-
fore can also be output to a text file and displayed
using the VCG graph visualisation tool.

Full derivation trees consume a lot of space, and
often contain nodes that are of little use in subse-
quent language processing. In practice, translation
tools use simpler Abstract Syntax Trees (ASTs) but
there is rather little agreement on the formal defini-
tion of an AST, and in practice most language tool
designers design an ad hoc representation which is
built on the fly during the parsing phase. By em-
bedding semantic actions in the specification it is,
of course, possible to adopt this approach with rdp-
generated parsers, but rdp provides a set of pro-
motion operators which allow common AST forms
to be automatically generated from the derivation
tree. The advantage of this approach is that the
grammar directly dictates the shape of the modified
derivation tree whereas traditional AST’s are only
loosely related to the actual derivation tree. As a
result, maintaining a language processor based on
the traditional twin-track grammar and AST struc-
tures requires two independent tree-like forms to be
described whereas in rdp the grammar itself fulfills
both functions.

TREE

program ::= { statement ’;’" }.
statement ::= ID ’=’"" el.
el ::= 27" { OO+’°7" | ?=2""") e2 }. (%
e2 ::=e3° " { Ox>""" | ?/""7) e8 F. (%
e3 ::=e4"~" | P+ | 7=7"") e3. (*
ed ::=eb ["*%x’"" ed]:7". (*
eb::= ID"" (*
[7(7* (el)@’," ;);*] |
INTEGER"" I (*
7(7* el™" 7)7*. (*

(*x ...

Add or subtract (LA) *)
Multiply or divide (LA) x)
Monadic positive or negative *)

Exponentiate (RA) *)
Variable or ... *)

function call *)
Numeric literal *)

Bracketed subexpression *)

Figure 1 An rdp expression grammar showing tree promotion operators

Modifying tree construction with promotion op-
erators There are four promotion operators. The
~ (promote underneath) operator forces the node
to be promoted to the parent node but the par-
ent node’s fields overwrite those of the node being
promoted. The resulting node becomes the current
parent for subsequent operations. The =~ (promote
on top of) operator forces the node to be promoted
to the parent node and the parent node’s fields are
overwritten by those of the node being promoted.
The resulting node becomes the current parent for
subsequent operations. The ~~~ (promote above)
operator forces the node to be promoted so as to
become the parent of the current parent, that is it
is inserted above the current parent rather than as
a child of the current parent. The resulting inserted
node becomes the current parent for subsequent op-
erations. The ~_ (no promotion) operator is used to
apply the normal behaviour to a nonterminal whose
default behaviour has been overridden.

Each grammar element (terminal or nonterminal)
in an rdp grammar has an attached promotion oper-
ator which specifies the way that the corresponding
tree nodes will be built into the tree during a parse.
The default operation is ~_, so in effect any gram-
mar element without an explicit promotion operator
will be inserted into the derivation tree as a child
of the current parent. The grammar shown in Fig-
ure 1 describes a small operator language with both
left and right associative operators. Figure 2 shows
the full derivation tree that results from using this
grammar to parse the string

=2;
a-1-2x% (4 - 3) *x
4 xx 5 xx 6 / ——+- T;

Figure 3 shows the reduced derivation tree that
is produced when the promotion operators in the
grammar are enabled.

Documentation

Four manuals describe the rdp system and its ap-
plications. The user guide [JS97d] describes the
rdp source language, command switches and error
messages. Serious usage of rdp-generated parsers
requires an understanding of the support library
rdp_supp which is documented in a companion re-
port [JS97e]. A third, tutorial, report assumes no
knowledge of parsing, grammars or language de-
sign and shows how to use rdp to develop a small
calculator-like language [JS97f]. The emphasis in
the tutorial guide is on learning to use the basic
rdp features and command line options. A large
case study is documented in [JS97a] which extends
the language described in the tutorial guide with
details of a syntax checker, an interpreter and a
compiler along with an assembler and simulator for
a synthetic architecture which is used as the com-
piler target machine.

Availability

The rdp source code is public domain and has been
successfully built using Borland C++ version 3.1
and Microsoft C++ version 7 on MS-DOS, Borland
C++ version 5.1 on Windows-95 and Windows-NT,
GNU gcc and g++ running on OSF/1, Ultrix, MS-
DOS, Linux and SunOS, and Sun’s own acc running
on Solaris. Users have also reported straightforward
ports to the Amiga, Macintosh and Archimedes sys-
tems. rdp has been in use at a variety of indus-

Cprogram>

e e
B >

A ET O B

[e [@[] €

& @[@ [€ [~] @ [/] €

Q)))) S] €

© [& [e] €] e [~ e [&

o] (| e 1 [7] [C] € & 7] & [7] &

€2 € [wtEGER: 4] €3 =] @) €

@[@ weeer: 5] €9 [| @9

¢ € R e 6]
©0 I

INTEGER: 4| |INTEGER: 3

Figure 2 Full derivation tree for expression grammar

7 ek ?

INTEGER: 4| IINTEGER: 3| IINTEGER: 4|

|INTEGER: 5| |INTEGER: 5| |INTEGER: 7

Figure 3 A reduced derivation tree

trial and academic sites since 1994 for both teach-
ing and the generation of production translators.
The current version (1.5) is the sixth functional-
ity release and the authors would like to acknowl-
edge the many suggestions for features and improve-
ments that have been provided by our users.

rdp may be fetched using anonymous ftp to
ftp.dcs.rhbnc.ac.uk. Unix users should down-
load the file pub/rdp/rdp1_5.tar. MS-DOS, Win-
dows 3.1 and Windows-95 users should down-
load pub/rdp/rdpl_5.zip. The rdp distribu-
tion may also be accessed via the rdp Web page

http://www.dcs.rhbnc.ac.uk/research/languages

Future work

The rdp iterator and tree construction features have
lead to further work on generalised backtracking
parsers that will form the basis of a new tool cur-
rently under development provisionally called the
Permutation Grammar Toolbox (PGT). We have
reported elsewhere on the theoretical and prac-
tical aspects of our generalised recursive descent
parsers [JS97b, JS97c, JS98] and the Web site hosts
reports and prototype versions of the generalised
parser generator.

References

[Bac60] J. W. Backus. The syntax and semantics of
the proposed International Algebraic Lan-
guage of the Zurich ACM-GAMM confer-
ence. In R. Oldenburg, editor, Proc. Inter-
nat’l Conf. Information Processing, UN-
ESCO, Paris, 1959, pages 125-132, Lon-
don, 1960. Butterworths.

Adrian Johnstone and Elizabeth Scott. De-
signing and implementing language trans-
lators with rdp—a case study. Technical
Report TR-97-27, Royal Holloway, Univer-
sity of London, Computer Science Depart-
ment, December 1997.

[1S97a]

[JS97b] Adrian Johnstone and Elizabeth Scott.
Generalised recursive descent. Part 1: lan-
guage design and parsing. Technical Re-

port TR-97-18, Royal Holloway, University

[1S97¢]

[1S97d]

[1S97¢]

[JS97f]

[1598]

[San95]

[Wir77]

of London, Computer Science Department,
October 1997.

Adrian Johnstone and Elizabeth Scott.
Generalised recursive descent. Part 2:
some underlying theory. Technical Re-
port TR-97-19, Royal Holloway, University
of London, Computer Science Department,
October 1997.

Adrian Johnstone and Elizabeth Scott.
rdp—a recursive descent compiler com-
piler. User manual for version 1.5. Techni-
cal Report TR-97-25, Royal Holloway, Uni-
versity of London, Computer Science De-
partment, December 1997.

Adrian Johnstone and Elizabeth Scott.
rdp- supp—support routines for the rdp
compiler compiler version 1.5. Technical
Report TR-97-26, Royal Holloway, Univer-
sity of London, Computer Science Depart-
ment, December 1997.

Adrian Johnstone and Elizabeth Scott. A
tutorial guide to rdp for new users. Techni-
cal Report TR-97-24, Royal Holloway, Uni-
versity of London, Computer Science De-
partment, December 1997.

Adrian Johnstone and Elizabeth Scott.
Generalised recursive descent parsing and
follow determinism. In Kai Koskimies, ed-
itor, Proc. 7th Intnl. Conf. Compiler Con-
struction (CC’98), Lecture notes in Com-
puter Science 1383, pages 16-30, Berlin,
1998. Springer.

Georg Sander. VCG Visualisation of Com-
piler Graphs. Universitat des Saarlan-
des, 66041 Saarbriicken, Germany, Febru-
ary 1995.

Niklaus Wirth. What can we do about the
unnecessary diversity of notation for syn-

tactic definitions. Communications of the
ACM, 20(11), November 1977.

