
rdp { an iterator-based re
ursivedes
ent parser generator with treepromotion operatorsAdrian JohnstoneA.Johnstone�rhbn
.a
.ukElizabeth S
ottE.S
ott�rhbn
.a
.ukDepartment of Computer S
ien
e,Royal Holloway, University of London,Egham, Surrey, TW20 0EX, UKAbstra
trdp is a parser generator whi
h a

epts Itera-tor Ba
kus Naur Form produ
tions de
oratedwith attributes and ANSI-C a
tions and pro-du
es re
ursive des
ent parsers. It has spe
ialsupport for the generation of tree-based inter-mediate forms, built-in symbol table handlingfor the implementation of
ontext-sensitive
omponents of the language syntax and a sup-port library that in
ludes a generalised graphhandling module that
an output graphs in aform suitable for use with well known visuali-sation tools.Keywords: Parser generator, EBNF, iterator, derivationtree, tree promotion operator, LL(1) grammarIntrodu
tionrdp is a parser generator that a

epts
ontext-freegrammar spe
i�
ations written in Iterator Ba
kusNaur Form (IBNF) and outputs re
ursive des
entparsers written in ANSI-C. rdp is targeted at neo-phyte users but in
ludes the following features thatmake it a powerful tool in the hands of the moreexperien
ed:� a grammar spe
i�
ation language that
om-prises standard BNF extended by a single
on-stru
t (
alled an iterator) that subsumes asspe
ial
ases the optional phrase, Kleene
lo-sure and positive
losure found in traditionalextensions to BNF,

� automati

onstru
tion of derivation trees,� a set of promotion operators whi
h may be usedto produ
e redu
ed derivation trees that
on-form to
ommon Abstra
t Syntax Tree forms,� a built-in graph-handling library with an in-terfa
e to the VCG [San95℄ graph visualisationtool,� a paramaterisable s
anner whi
h supports run-time extension of the keyword set of the lan-guage to be parsed,� built-in handling of multiple symbol tables,� straightforward handling of named synthesisedand inherited attributes that may be a

essedby semanti
 a
tions written in ANSI-C orC++, and� spe
ial semanti
 rules that are instantiated in-line using ANSI-C ma
ros.rdp itself, and the language pro
essors it gener-ates, use standard library modules to manage sym-bol tables, sets, graphs, memory allo
ation, textbu�ering,
ommand line argument pro
essing ands
anning. The rdp s
anner is programmed by load-ing tokens into a symbol table at the start of ea
hrun. In this way, the rdp s
anner
an be used tosupport runtime extensible language features, su
has user de�ned operators in Algol-68.rdp o�ers a high level of integration between its
omponent parts. An unusual feature of rdp is thatit produ
es
omplete runnable programs with built-in help information and
ommand line swit
hes thatare spe
i�ed as part of the IBNF �le. In this senserdp output is far more shrink-wrapped than theusual parser generators whi
h
an be a great helpto new users. rdp also provides integrated I/O: thetext bu�ering routines and built-in s
anner worktogether to automati
ally handle nested �les, errormessage reporting and text data bu�ering.rdp generates itself from an IBNF �le whi
h de-s
ribes the syntax of rdp's IBNF sour
e languageand spe
i�es semanti
 a
tions. This demonstratesthe bootstrapping te
hnique used for porting
om-pilers to new ar
hite
tures. The rdp distribution
omes with extensive do
umentation whi
h in
ludesa tutorial manual for new users and a large
ase

study in whi
h a family of interpreters and
ompil-ers are developed.Iterator BNFrdp language spe
i�
ations use the standard no-tions of
ontext-free grammar rules �rst employedin the Algol-60 report [Ba
60℄. Rule names are un-quoted alphanumeri
 identi�ers and keywords aredelimited by single quotes. In addition to the usualnotions of sequen
ing and alternation from BNFrdp provides a generalised iterator operator. The
onstru
tion('body') 2 � 4 'separator'mat
hes the following stringsbody separator bodybody separator body separator bodybody separator body separator body separator bodythat is, between two and four instan
es of body sep-arated by the token separator. The general formof the iterator is(valid subprodu
tion) lo � hi tokenwhi
h spe
i�es that the rdp-generated parser shouldmat
h the body represented by valid subprodu
tionbetween lo and high times interspersing ea
h in-stan
e with one instan
e of the separating token.A hi value of zero means `without limit', that is theiteration will
ontinue arbitrarily.Either, or both, of hi and lo may be absent inwhi
h
ase they default to zero. The separatingtoken may be set to the spe
ial token # whi
h rep-resents `nothing' or the empty string (sometimesrepresented by �). In this
ase no separating tokenis looked for.Traditional EBNF forms rdp supports the tradi-tional Wirth-style EBNF
onstru
ts [Wir77℄ for op-tional, do-�rst and Kleene
losure bra
kets as short-hands for spe
ial
ases of the iterator
onstru
t. Wehave extended Wirth's set with a positive
losureoperator. The
orresponden
es are shown in Ta-ble 1. None of them
arries a separating token, andall of them have lower bounds of zero or one andupper bounds of one or zero (without limit).

Using iterators to implement lists Delimited listsare
ommon in high level languages. Consider, forinstan
e, a fun
tion
all in C made up of a paren-thesised
omma-delimited list of identi�ers:fun
(param1, param2, param3)If we have an rdp rule ID whi
h mat
hes a C-styleidenti�er, one way of writing an rdp spe
i�
ation ofa fun
tion
all is:fun
_
all ::= ID '(' param_list ')'.param_list ::= [ID param_tail ℄.param_tail ::= [',' ID param_tail ℄.whi
h uses re
ursion to mat
h an arbitrary numberof parameters. We
an use the { ... } iteratorbra
kets and give a more
ompa
t des
ription:fun
_
all ::= ID '(' param_list ')'.param_list ::= [ID {',' ID } ℄.Here the re
ursion has been repla
ed by iteration.Using the iterator operator with the optional de-limiter token we
an further
ompa
t this tofun
_
all ::= ID '(' param_list ')'.param_list ::= [(ID) � ',' ℄.or justfun
_
all ::= ID '(' [(ID) � ',' ℄ ')'.Attributes and semanti
 a
tionsTable driven parsers usually maintain an attributesta
k whi
h may be a

essed by semanti
 a
tions inthe running parser to synthesize run-time attributevalues. Careful use of the attribute sta
k may alsoallow implementation of inherited attributes. Oneof the key advantages of re
ursive des
ent parsers isthat inherited and synthesized attribute passing be-tween grammar rules maps naturally onto the fun
-tion parameter and fun
tion return value me
ha-nisms in
onventional programming languages. Therdp tutorial and
ase study manuals [JS97f, JS97a℄show how this mapping is exploited to provide in-dividual named (rather than numbered) attributesalong with strongly type
he
ked inherited and syn-thesized attribute handling without requiring a sep-arate attribute sta
k.rdp rules may have a return type whi
h is usedto pass the value of a synthesized attribute up the

do-�rst (...) ! (...) 1�1 #positive
losure (one-or-many) < ... > ! (...) 1�0 #optional (zero-or-one) [... ℄ ! (...) 0�1 #Kleene
losure (zero-or-many) { ... } ! (...) 0�0 #Table 1 Iterator:bra
ket
orresponden
esderivation tree. Inherited attributes are de�ned us-ing typed parameters. All types refer to type namesde�ned in the underlying ANSI-C implementationwhi
h may in
lude user de�ned type names (in
lud-ing the use of aggregates). Semanti
 a
tions areANSI-C fragments en
losed in [* *℄ bra
kets thatare simply
opied into the generated parser verba-tim. For instan
e, the rulea_rule(x1:integer x2:integer):integer::='a' [* result = x1; *℄{ 'b' [* result = x2; *℄}.mat
hes a single a followed by zero or more b's. Ifno b's are seen then a_rule returns the value of thex1 parameter, otherwise the value of x2 is returned.The rule maps to the following ANSI-C skeleton:integer a_rule(integer x1, integer x2){ /* ..
ode to mat
h a.. */result = x1;if (
urrent is b){ /* ..
ode to mat
h multiple b's.. */result = x2;}return result;}The value returned by a_rulemay be a

essed ina rule that
alls a_rule by appending an attributename to the
all:upper_rule ::= a_rule(0 1): saw_b.Here, the synthesized attribute saw_b will be set to1 if rule a_rule mat
hed any b's, otherwise saw_bwill be set to 0.

Default a
tions For iterators with a lower boundof zero (whi
h in
lude [℄ and { }) it is often
onvenient to have a semanti
 a
tion that is exe-
uted only if the iterator mat
hes �, that is a defaulta
tion that is exe
uted if the syntax mat
hed by theiterator is not found. Su
h a
tions are de�ned byfollowing the iterator with a
olon and an a
tion:rule_with_default ::='a' ['b' [* printf("Found a 'b'\n"); *℄℄ : [* printf("No 'b' found\n"); *℄This rule mat
hes the strings ab and a, printingappropriate messages.Integrated library featuresrdp-generated parsers use a set of general purposesupport modules known
olle
tively as rdp_supp.There are seven parts to rdp supp: a hash
odedsymbol table handler whi
h allows multiple tablesto be managed with arbitrary user data �elds; aset handler whi
h supports dynami
ally resizablesets; a graph manager whi
h allows arbitrary di-re
ted graphs to be
onstru
ted and manipulated,with a fa
ility to output any graph in a form thatmay be read and visualised by the VCG [San95℄tool on Windows and Unix/X-windows systems; amemory manager whi
h wraps fatal error handlingaround the standard ANSI C heap allo
ation rou-tines; a text handler whi
h provides line bu�eringand string management without imposing arbitrarylimits on input line length; a
ommand line argu-ment parsing pa
kage that allows Unix style optionsto be implemented in a standardised way; and s
an-ner support routines for handling tokens in re
ursivedes
ent parsers.Symbol tables Symbol tables are fundamental tothe implementation of almost all useful translators

sin
e in pra
ti
e the language a

epting power of
ontext free grammars must be augmented with
ontext sensitive type
he
ks. In addition, inter-preters require storage spa
e for their run-time vari-ables and asso
iated attributes, and an eÆ
ientsymbol table organisation is
riti
al to the perfor-man
e of su
h tools. The rdp_supp library in
ludesa hash-
oded symbol table handler interfa
ed to therdp sour
e language via the SYMBOL_TABLE de
lara-tion. An arbitrary number of symbol tables may bede
lared, ea
h with user de�ned data �elds and auser de�ned re
ord
omparison fun
tion. An arbi-trary number of nested s
ope levels are supported.Generalised graph handling The rdp graph han-dling pa
kage provides a general framework forbuilding graph data stru
tures that may then beoutput in a form suitable for display with theVCG (Visualisation of Compiler Graphs) tool.rdp generated parsers
an be set to automat-i
ally build derivation trees in a form suitablefor human viewing. VCG runs on Windows 3.1,Windows-95 and Unix/X-windows systems. Weare grateful to the author of VCG for permis-sion to supply VCG with rdp: you
an fet
h a
opy of VCG from the home FTP site for rdp(ftp://ftp.d
s.rhbn
.a
.uk/pub/rdp)S
anning The rdp s
anner uses the same
ompiled
onstru
ts as the generated parser fun
tions ratherthan employing traditional Finite Automata basedte
hniques. Alphanumeri
 keywords and pun
tua-tion are re
ognised via longest-mat
h
omparisonswith the
ontents of the s
anner's symbol tablewhi
h is loaded at startup with the tokens refer-en
ed in the asso
iated IBNF grammar. This dy-nami
ally organised s
anner allows new operatorsand keywords to be added to the s
anner's set dur-ing translation, a feature designed to support theuse of Algol-68 style operator de�nitions (as op-posed to the more restri
ted overloading of oper-ators allowed in C++). The s
anner is tightly inte-grated with a text bu�ering pa
kage that managesthe
ow of sour
e text through the translator andprovides a range of messaging and text handlingservi
es.

Help and
ommand line pro
essing fun
tionsOne of the aims of rdp is to allow neophyte usersto get a
omplete translator up and running inthe minimum of time by produ
ing a
omplete,runnable program that in
ludes built-in help pro-
essing at
ommand line level and
ustomisablehandling of
ommand line swit
hes. The generatedparsers automati
ally in
lude pro
essing for a setof standard
ommand line arguments and the usermay additionally spe
ify
ommand line swit
h us-ing dire
tives in the IBNF sour
e �le. The results of
ommand line pro
essing are available as attributeswithin the running translator.Derivation tree
onstru
tion and ma-nipulationrdp-generated parsers
an automati
ally build
om-plete derivation trees whi
h
an be used as the basisof an intermediate form suitable for input to tree-walking
ode generators and optimisers. The treesare
onstru
ted using the graph library, and there-fore
an also be output to a text �le and displayedusing the VCG graph visualisation tool.Full derivation trees
onsume a lot of spa
e, andoften
ontain nodes that are of little use in subse-quent language pro
essing. In pra
ti
e, translationtools use simpler Abstra
t Syntax Trees (ASTs) butthere is rather little agreement on the formal de�ni-tion of an AST, and in pra
ti
e most language tooldesigners design an ad ho
 representation whi
h isbuilt on the
y during the parsing phase. By em-bedding semanti
 a
tions in the spe
i�
ation it is,of
ourse, possible to adopt this approa
h with rdp-generated parsers, but rdp provides a set of pro-motion operators whi
h allow
ommon AST formsto be automati
ally generated from the derivationtree. The advantage of this approa
h is that thegrammar dire
tly di
tates the shape of the modi�edderivation tree whereas traditional AST's are onlyloosely related to the a
tual derivation tree. As aresult, maintaining a language pro
essor based onthe traditional twin-tra
k grammar and AST stru
-tures requires two independent tree-like forms to bedes
ribed whereas in rdp the grammar itself ful�llsboth fun
tions.

TREEprogram ::= { statement ';'^ }.statement ::= ID '='^^ e1.e1 ::= e2^^ { ('+'^^^ | '-'^^^) e2 }. (* Add or subtra
t (LA) *)e2 ::= e3^^ { ('*'^^^ | '/'^^^) e3 }. (* Multiply or divide (LA) *)e3 ::= e4^^ | ('+'^^ | '-'^^) e3. (* Monadi
 positive or negative *)e4 ::= e5 ['**'^^ e4 ℄:^^. (* Exponentiate (RA) *)e5::= ID^^ (* Variable or ... *)['('^ (e1)�','^ ')'^ ℄ | (* ... fun
tion
all *)INTEGER^^ | (* Numeri
 literal *)'('^ e1^^ ')'^. (* Bra
keted subexpression *)Figure 1 An rdp expression grammar showing tree promotion operatorsModifying tree
onstru
tion with promotion op-erators There are four promotion operators. The^ (promote underneath) operator for
es the nodeto be promoted to the parent node but the par-ent node's �elds overwrite those of the node beingpromoted. The resulting node be
omes the
urrentparent for subsequent operations. The ^^ (promoteon top of) operator for
es the node to be promotedto the parent node and the parent node's �elds areoverwritten by those of the node being promoted.The resulting node be
omes the
urrent parent forsubsequent operations. The ^^^ (promote above)operator for
es the node to be promoted so as tobe
ome the parent of the
urrent parent, that is itis inserted above the
urrent parent rather than asa
hild of the
urrent parent. The resulting insertednode be
omes the
urrent parent for subsequent op-erations. The ^_ (no promotion) operator is used toapply the normal behaviour to a nonterminal whosedefault behaviour has been overridden.Ea
h grammar element (terminal or nonterminal)in an rdp grammar has an atta
hed promotion oper-ator whi
h spe
i�es the way that the
orrespondingtree nodes will be built into the tree during a parse.The default operation is ^_, so in e�e
t any gram-mar element without an expli
it promotion operatorwill be inserted into the derivation tree as a
hildof the
urrent parent. The grammar shown in Fig-ure 1 des
ribes a small operator language with bothleft and right asso
iative operators. Figure 2 showsthe full derivation tree that results from using thisgrammar to parse the stringa = 2;b = a - 1 - 2 * (4 - 3) **4 ** 5 ** 6 / --+- 7;

Figure 3 shows the redu
ed derivation tree thatis produ
ed when the promotion operators in thegrammar are enabled.Do
umentationFour manuals des
ribe the rdp system and its ap-pli
ations. The user guide [JS97d℄ des
ribes therdp sour
e language,
ommand swit
hes and errormessages. Serious usage of rdp-generated parsersrequires an understanding of the support libraryrdp_supp whi
h is do
umented in a
ompanion re-port [JS97e℄. A third, tutorial, report assumes noknowledge of parsing, grammars or language de-sign and shows how to use rdp to develop a small
al
ulator-like language [JS97f℄. The emphasis inthe tutorial guide is on learning to use the basi
rdp features and
ommand line options. A large
ase study is do
umented in [JS97a℄ whi
h extendsthe language des
ribed in the tutorial guide withdetails of a syntax
he
ker, an interpreter and a
ompiler along with an assembler and simulator fora syntheti
 ar
hite
ture whi
h is used as the
om-piler target ma
hine.AvailabilityThe rdp sour
e
ode is publi
 domain and has beensu

essfully built using Borland C++ version 3.1and Mi
rosoft C++ version 7 on MS-DOS, BorlandC++ version 5.1 on Windows-95 and Windows-NT,GNU g

 and g++ running on OSF/1, Ultrix, MS-DOS, Linux and SunOS, and Sun's own a

 runningon Solaris. Users have also reported straightforwardports to the Amiga, Ma
intosh and Ar
himedes sys-tems. rdp has been in use at a variety of indus-

Figure 2 Full derivation tree for expression grammar

Figure 3 A redu
ed derivation tree

trial and a
ademi
 sites sin
e 1994 for both tea
h-ing and the generation of produ
tion translators.The
urrent version (1.5) is the sixth fun
tional-ity release and the authors would like to a
knowl-edge the many suggestions for features and improve-ments that have been provided by our users.rdp may be fet
hed using anonymous ftp toftp.d
s.rhbn
.a
.uk. Unix users should down-load the �le pub/rdp/rdp1_5.tar. MS-DOS, Win-dows 3.1 and Windows-95 users should down-load pub/rdp/rdp1_5.zip. The rdp distribu-tion may also be a

essed via the rdp Web pagehttp://www.d
s.rhbn
.a
.uk/resear
h/languages.Future workThe rdp iterator and tree
onstru
tion features havelead to further work on generalised ba
ktra
kingparsers that will form the basis of a new tool
ur-rently under development provisionally
alled thePermutation Grammar Toolbox (PGT). We havereported elsewhere on the theoreti
al and pra
-ti
al aspe
ts of our generalised re
ursive des
entparsers [JS97b, JS97
, JS98℄ and the Web site hostsreports and prototype versions of the generalisedparser generator.Referen
es[Ba
60℄ J. W. Ba
kus. The syntax and semanti
s ofthe proposed International Algebrai
 Lan-guage of the Zuri
h ACM-GAMM
onfer-en
e. In R. Oldenburg, editor, Pro
. Inter-nat'l Conf. Information Pro
essing, UN-ESCO, Paris, 1959, pages 125{132, Lon-don, 1960. Butterworths.[JS97a℄ Adrian Johnstone and Elizabeth S
ott. De-signing and implementing language trans-lators with rdp { a
ase study. Te
hni
alReport TR-97-27, Royal Holloway, Univer-sity of London, Computer S
ien
e Depart-ment, De
ember 1997.[JS97b℄ Adrian Johnstone and Elizabeth S
ott.Generalised re
ursive des
ent. Part 1: lan-guage design and parsing. Te
hni
al Re-port TR-97-18, Royal Holloway, University

of London, Computer S
ien
e Department,O
tober 1997.[JS97
℄ Adrian Johnstone and Elizabeth S
ott.Generalised re
ursive des
ent. Part 2:some underlying theory. Te
hni
al Re-port TR-97-19, Royal Holloway, Universityof London, Computer S
ien
e Department,O
tober 1997.[JS97d℄ Adrian Johnstone and Elizabeth S
ott.rdp { a re
ursive des
ent
ompiler
om-piler. User manual for version 1.5. Te
hni-
al Report TR-97-25, Royal Holloway, Uni-versity of London, Computer S
ien
e De-partment, De
ember 1997.[JS97e℄ Adrian Johnstone and Elizabeth S
ott.rdp supp { support routines for the rdp
ompiler
ompiler version 1.5. Te
hni
alReport TR-97-26, Royal Holloway, Univer-sity of London, Computer S
ien
e Depart-ment, De
ember 1997.[JS97f℄ Adrian Johnstone and Elizabeth S
ott. Atutorial guide to rdp for new users. Te
hni-
al Report TR-97-24, Royal Holloway, Uni-versity of London, Computer S
ien
e De-partment, De
ember 1997.[JS98℄ Adrian Johnstone and Elizabeth S
ott.Generalised re
ursive des
ent parsing andfollow determinism. In Kai Koskimies, ed-itor, Pro
. 7th Intnl. Conf. Compiler Con-stru
tion (CC'98), Le
ture notes in Com-puter S
ien
e 1383, pages 16{30, Berlin,1998. Springer.[San95℄ Georg Sander. VCG Visualisation of Com-piler Graphs. Universit�at des Saarlan-des, 66041 Saarbr�u
ken, Germany, Febru-ary 1995.[Wir77℄ Niklaus Wirth. What
an we do about theunne
essary diversity of notation for syn-ta
ti
 de�nitions. Communi
ations of theACM, 20(11), November 1977.

