
Designing and implementing languagetranslators with rdp { a case studyAdrian Johnstone Elizabeth Scott
Technical ReportCSD {TR { 97 { 27December 20, 1997
!()+,-./0123456Department of Computer ScienceEgham, Surrey TW20 0EX, England

Abstractrdp is a system for implementing language processors. It accepts a speci-�cation, written in an extended Backus-Naur Form, of a source language andproduces as output a parser for the language, written in C. It is possible forthe user to specify, in C, actions which should be taken when fragments of thesource language are recognised by the generated parser. rdp produces as outputa program written in C, which parses fragments of the speci�ed language andcarries out the speci�ed corresponding actions. rdp can produce, for example,compilers (the actions specify the corresponding target code), interpreters (theactions evaluate the input fragments) and pretty printers (the actions reformatthe input fragments).This report describes the design and implementation of a family of lan-guage translators based around a simple procedural programming languagecalled mini. The tools covered include two di�erent interpreters, an assem-bler, a simulator for an idealised processor, a na��ve single-pass compiler forthat processor, and a multiple-pass compiler. We also include a pretty printerfor ANSI-C and a list of sugestions for further project work. For each tool, welook at how the tool is used before covering the design and implementation ofthe translator. All of the tools are included in the rdp standard distributionpack and have been tested on MS-DOS, Windows-95 and Unix systems.The rdp source code is public domain and has been successfully built usingBorland C++ version 3.1 and Microsoft C++ version 7 on MS-DOS, BorlandC++ version 5.1 on Windows-95, GNU gcc and g++ running on OSF/1, Ul-trix, MS-DOS, Linux and SunOS, and a variety of vendor's own C compilers.Users have also reported straightforward ports to the Amiga, Macintosh andArchimedes systems.This document is c
Adrian Johnstone and Elizabeth Scott 1997.Permission is given to freely distribute this document electronically andon paper. You may not change this document or incorporate parts of itin other documents: it must be distributed intact.The rdp system itself is c
Adrian Johnstone but may be freely copiedand modi�ed on condition that details of the modi�cations are sent tothe copyright holder with permission to include such modi�cations infuture versions and to discuss them (with acknowledgement) in futurepublications.The version of rdp described here is version 1.50 dated 20 December1997.Please send bug reports and copies of modi�cations to the authors at theaddress on the title page or electronically to A.Johnstone@rhbnc.ac.uk.

Contents1 Translation tools 11.1 The spectrum of language translators and the limitations of sin-gle pass translators 11.2 Intermediate forms, and translation to virtual machine code 31.3 The mini family 42 The minicalc language: a simple calculator with declared variables 72.1 minicalc features 72.2 minicalc limitations 82.3 A grammar for minicalc 82.3.1 Specifying expressions 102.4 Hints on selecting operator priority and associativity 142.5 A minicalc syntax checker 143 An interpreter for minicalc 173.1 Declaring symbol tables 173.2 Using synthesized attributes 203.3 Expression evaluation 203.4 Accessing the symbol table 214 The minicond language: interpretation with conditionals 234.1 A grammar for minicond 234.2 Adding conditional operators 274.3 Using inherited attributes 274.4 Using semantic rules 284.5 Adding conditional execution 294.5.1 Semantic actions for conditional execution 314.6 Next steps 315 The Mini Virtual Machine (MVM) 335.1 MVM memory 345.2 MVM instruction execution 355.3 MVM addressing modes 365.4 MVM instructions 375.4.1 Instruction set capabilities 375.4.2 Address mode encoding 375.5 Example MVM instructions 38

ii CONTENTS5.5.1 Data manipulation instructions and address modes 385.5.2 Control manipulation instructions 395.6 Using an assembler to program MVM 395.7 mvmsim { a simulator for MVM byte codes 405.7.1 Using mvmsim 405.7.2 The mvmsim input �le format 415.7.3 Running a simulation 415.7.4 Implementing mvmsim 426 mvmasm { an assembler for MVM 476.1 A �rst example 476.1.1 Assembler output 486.1.2 Using the assembler and the simulator together 496.2 Assembler syntax reference 506.2.1 Line oriented and free format languages 506.2.2 Lexical elements 516.2.3 Expressions 516.2.4 Instructions and addressing modes 516.2.5 Directives 536.3 Implementing mvmasm 546.3.1 Multiple pass parsers 546.3.2 The EOLN scanner primitive 566.4 The mvmasm grammar 566.4.1 Directives for setting up the parser 566.4.2 The MVM de�nition header 566.4.3 The main mvmasm grammar 606.4.4 The expression evaluator 616.5 mvmasm auxiliary functions 627 A single pass compiler for miniloop 677.1 miniloop features 677.1.1 The begin end block (compound statement) 687.1.2 The while loop 697.2 Arranging data and code in memory 697.3 Compiling declarations 707.4 Compiling arithmetic expressions 717.5 Compiling print statements 717.6 Compiling if statements 727.7 Compiling while loops 737.8 Typical compiler output 737.9 Implementing miniloop 747.9.1 A grammar for miniloop 747.9.2 miniloop auxiliary functions 74

CONTENTS iii8 minitree { a multiple pass compiler 838.1 minitree intermediate form 848.2 Implementing minitree 918.2.1 A grammar for minitree 918.3 minitree auxiliary functions 928.3.1 Use of the graph library 928.3.2 The tree walker 929 A pretty-printer for ANSI-C 1019.1 Using the pretty-printer 1019.1.1 Command line options 102-i indent spacing 102-c comment start column 1029.1.2 File usage 1039.1.3 Making a listing 1039.1.4 Error messages 1039.2 Pretty-printer features 1049.3 Pretty-printer limitations 1059.3.1 Operators which may be monadic or diadic 1059.3.2 Consecutive indenting keywords 1059.3.3 Continuation lines 1069.3.4 Embedded comments 1069.3.5 Formatting of lexemes 1069.4 A grammar for a superset of ANSI-C 1079.5 Auxiliary routines 1109.5.1 The space array 1109.5.2 The pretty-print function 11610 Design projects 119A Acquiring and installing rdp 121A.1 Installation 121A.2 Build log 123

Chapter 1Translation toolsrdp is a system for implementing language processors. It accepts a speci�cation,written in an extended Backus-Naur Form, of a source language and producesas output a parser for the language, written in C. It is possible for the userto specify, in C, actions which should be taken when fragments of the sourcelanguage are recognised by the generated parser. rdp produces as output aprogram written in C, which parses fragments of the speci�ed language andcarries out the speci�ed corresponding actions. rdp can produce, for example,compilers (the actions specify the corresponding target code), interpreters (theactions evaluate the input fragments) and pretty printers (the actions reformatthe input fragments).This report describes the design and implementation of a family of lan-guage translators based around a simple procedural programming languagecalled mini. The tools covered include two di�erent interpreters, an assem-bler, a simulator for an idealised processor, a na��ve single-pass compiler forthat processor, and a multiple-pass compiler. We also include a pretty printerfor ANSI-C and a list of sugestions for further project work. For each tool, welook at how the tool is used before covering the design and implementation ofthe translator. All of the tools are included in the rdp standard distributionpack and have been tested on MS-DOS, Windows-95 and Unix systems.If you have not used rdp before, we recommend that you read through theaccompanying report entitled `A tutorial guide to rdp for new users' [JS97c]which is a step by step guide to running rdp and which also describes some ofthe theoretical underpinnings to parsing and translation of computer languages.There are also two reference manuals for rdp: the user guide [JS97a] and thesupport library manual [JS97b]. These reference guides provide detailed infor-mation on rdp's options, error messages and support library functions.We begin by discussing the roles of interpreters and compilers, with somehistorical background.1.1 The spectrum of language translators and the limitationsof single pass translatorsrdp can be used to construct many kinds of translator. In the tutorial guide [JS97c]

2 TRANSLATION TOOLSwe looked at a single pass interpreter for a very simple language called mini.These kinds of translators are limited to reading the source �le once and execut-ing embedded semantic actions on the
y. This makes it hard to implement loopconstructs, which of course require parts of the source �le to be executed overand over again. This is the reason why the mini language interpreter describedin the tutorial manual does not support looping constructs.One approach to handling loops within an interpreter might be to `trick' theparser by resetting the input pointer to the start of the mini source code loop atthe beginning of each loop iteration: a rewindable interpreter. This techniqueis feasible, but requires a detailed understanding of the internals of rdp. It alsoresults in rather slow translation. Experiments with the mini interpreter showthat when interpreting arithmetic expressions, about 90% of the time is spentperforming the parse and only 10% of the time performing useful computation.In fact, even this discouraging ratio represents the best-case. The use ofcomments and long variable names can signi�cantly increase the proportionof time spent on parsing. This is unfortunate as it militates against use ofmeaningful names and embedded documentation, leading to cryptic and hardto understand programs. Treating loops using the rewinding trick would meanthat the loop would be re-parsed over and over again, and such an interpreterwould be slow. Nevertheless, this kind of trick is used in some real systems: inparticular BASIC interpreters (such as the Visual Basic engine built in someWindows-95 tools) work this way. To improve the performance a little, it isnormal for such tools to store the program in a format that strips out commentsand white space, and replaces keywords with single characters. This eases thejob of the scanner and helps to improve performance.A compiler does not attempt to execute a program in the way that aninterpreter does. Instead, it outputs a program in the machine language ofsome target processor which can be directly executed by that processor. Thecompiler's main task is to identify operations in the source program and mapthem to code templates in the target processor's language that have the samemeaning, or semantics.Full compilation undoubtedly provides the most e�cient way of executingmost real programs, but a di�erent target program will be required for eachkind of target processor, that is, the generated code is not portable between ar-chitectures (or in extreme cases, not even between di�erent models of computerwithin the same architectural family). One approach to providing a measureof portability is to strictly separate the parsing stage (which is speci�ed by thedesign of the language to be translated) and the generation phase, which iskeyed to the architecture of the target processor.This is usually achieved by allowing the parser to make one or more passesover the source program and by providing embedded semantic actions thattranslate the program into some simple intermediate form which captures themeaning of the program without requiring the large syntactic overhead of key-words and English-like syntax that are used in most human-readable program-ming languages. The compilers miniloop and minitree (described in Chap-ters 7 and 8 respectively) are examples of this approach.

Intermediate forms, and translation to virtual machine code 31.2 Intermediate forms, and translation to virtual machinecodeIntermediate forms used in real compilers fall into two basic types: a tree like-structure closely related to the derivation trees described in [JS97a] or alterna-tively a list of instructions for a paper architecture or virtual machine1. Thevirtual machine approach is illustrated by the miniloop compiler in Chapter 7and the tree based approach by the minitree compiler described in Chapter 8.Virtual machines are super�cially similar to real processors, but they o�er alevel of abstraction above that of a real processor. For instance, it is commonin intermediate forms to retain the variable names from the original user's pro-gram rather than translating them into machine addresses as would be requiredfor a real machine level program.Both kinds of intermediate form allow a variety of optimisations to be ap-plied, such as the evaluation of constant expressions or the replacement of mul-tiplications by powers of two with shift operations. In general, an optimiser issupposed to take a program in the intermediate form and output another pro-gram written in intermediate form that has the same semantics, but is fasteror more compact, or both. Sometimes optimisers fail to make improvements,and in some cases they may actually make things worse. In addition, somefeatures of programming languages (such as the unrestricted use of pointers)can introduce subtle e�ects that make it hard for the optimiser to guaranteethat the semantics are preserved.After the optimiser has �nished, code must be generated for the target pro-cessor. In general, there must be a di�erent code generator for each processor,but at least all of the parsing and many of the optimisation components of thecompiler can be common between target processors.One way of providing the bene�ts of full portability whilst retaining muchof the e�ciency of a fully compiled solution is use an intermediate form thatcan itself be e�ciently interpreted. In this case no �nal code generation phaseis required. Instead, a software simulator for the virtual machine which canread and execute the intermediate form is supplied. This kind of approachwas popularised by the UCSD P-system in the 1970's which was a combinedoperating system and Pascal compiler that was distributed as P-code. P-code [PD82b, PD82a] was in fact the machine language for a mythical stackbased computer that could be e�ciently simulated on real architectures. Thesystem was so successful that a microprocessor manufacturer subsequently de-signed and marketed a hardware implementation of the P-code processor. Onthis processor, the P-code was native machine code so no software based inter-pretation was required.P-code was successful because its only real competitors on the very smallmicroprocessor based systems of the time were interpreters for BASIC. These1This use of the term virtual machine to denote an architecture that is independent of anyphysically implemented machine should not be confused with the use of the term in operatingsystems and computer architecture contexts, where it denotes the ability of an architectureto support multiple simultaneously executing processes each of which appears to own the fullresources of the host machine.

4 TRANSLATION TOOLSfully interpreted languages were slow compared to the P-code simulator. Asmicroprocessor systems matured, true compilers for languages such as C andTurbo-Pascal that compiled to the host machine's machine code became widelyavailable and the UCSD P-system fell out of favour because it was much slowerthan these so-called native-mode compilers.Recently, virtual machine based approaches have become popular again be-cause of the need to distribute executable programs around the Internet. Porta-bility between di�erent computer architectures must be absolutely guaranteedeven though there are a very wide variety of systems connected to the net,and the programs must run in an identical fashion wherever they are executed.In addition, the programs must be run in such a way that any suspicious be-haviour that might undermine the host system's security can be caught. Inpractice, actually allowing arbitrary machine language programs to execute istoo dangerous. Instead, languages like Java compile to an intermediate virtualmachine, and Web browsers provide an interpreter for that virtual machine thatcan in prinipal catch illegal memory accesses and attempts to access operatingsystem services that could threaten system integrity. The Java virtual machinesimultaneously acts as a reasonably e�cient portable platform for executingprograms and as a �lter on the actions of those programs that protects theunderlying operating system.1.3 The mini familyIn the following chapters we will illustrate the interpreted virtual machine ap-proach to compilation by describing the development of single and multiple-passcompilers for mini which work in this fashion, outputting instructions for a `pa-per' processor called the Mini Virtual Machine (MVM). Along the way we willlook at fully interpreted versions of mini and the design of an assembler andsimulator for MVM. The level of presentation is aimed at readers who are fa-miliar with the principles of parser generators and the ANSI-C programminglanguage. If you are completely new to translator design you may �nd it helpfulto read the rdp tutorial manual [JS97c] and the accompanying user [JS97a] andsupport [JS97b] manuals.In detail we will develop the following tools.1. A syntax checker and interpreter for minicalc, a language that providesdeclarations, assignment, expression evaluation and output.2. An interpreter for minicond which has block statements, relational oper-ators and an if-then-else statement in addition to the basic minicalclanguage.3. A paper architecture called the Mini Virtual Machine (MVM) and itsspeci�cation as a simulator for MVM (called mvmsim) written in ANSI-C.4. An assembler called mvmasm that translates MVM assembly language intoMVM binary code. The implementation of mvmasm illustrates the design

The mini family 5issues in assemblers which are culturally rather di�erent from high levelprogramming languages.5. A single-pass compiler for the language miniloop which adds a while loopconstruct to minicond and outputs MVM assembler source, suitable fortranslation with mvmasm into MVM binary which may be executed bymvmsim.6. A multiple-pass compiler in which the parser builds a tree-based inter-mediate form and a separate code-generation pass traverses the tree andoutputs MVM assembler source code which may then be assembled andsimulated.7. A pretty-printer for ANSI-C which illustrates the use of a highly under-speci�ed grammar to process a language which will be checked for syn-tactic correctness by another tool using a fully speci�ed language.We conclude this report by suggesting some design projects based on extensionsto the compilers.All of these tools are included in the rdp distribution and are automaticallybuilt and tested as part of the standard installation makefile. If you havesuccessfully installed rdp, therefore, you should already have working versionsof the tools, and all the source �les described here will be found in the mainrdp directory.

Chapter 2The minicalc language: a simplecalculator with declared variablesIn this chapter we give a grammar and associated syntax checker for a tinylanguage, minicalc, which includes only the features at the core of any proce-dural programming language | expression evaluation and assignment to namedvariables. In minicalc, as in most modern languages, variables must be de-clared before they are used, so as to catch the elementary programming errorof assigning to a variable whose name has been misspelled. In early high levelprogramming languages, a system would quietly make a new variable with themisspelt name and assign the value there. Subsequent expressions using thevalue of the correctly spelt variable would then use the old value, causing hardto �nd errors.Variable declarations are also used to establish the type of a variable whichrestricts the kinds of values that may be assigned, and the kinds of operationsthat may be applied to the declared variable. Type checking can catch pro-gramming errors such as trying to add a number to a string, or attempting touse an integer instead of a pointer value.minicalc provides constructs for variable declaration, for assignment of theresults of arithmetic operations to those variables and for the values of thosevariables to be printed out. It is, e�ectively, only as powerful as a desktop cal-culator with named variables. An example minicalc program listing is shownin Figure 2.1: it corresponds to the �le testcalc.m in the standard rdp dis-tribution. In later chapters we shall extend mini to include control structuressuch as loops and if statements.2.1 minicalc featuresminicalc programs comprise a sequence of declarations and statements. Eachstatement and declaration must be terminated by a semicolon, in much thesame way as in an ANSI-C program. minicalc supports only integer variables.Variable declarations look like ANSI-C int declarations, taking an optionalinitialisation expression. Line 11 in the listing shows an example of two variablesbeing declared, both with initialisation expressions.

8 THE MINICALC LANGUAGE: A SIMPLE CALCULATOR WITH DECLARED VARIABLES1: (***2: *3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 19974: *5: * testcalc.m - a piece of Mini source to test the Minicalc interpreter6: *7: * This file may be freely distributed. Please mail improvements to the author.8: *9: ***)10:11: int a=3+4, b=1;12:13: print("a is ", a, "\n");14:15: b=a*2;16:17: print("b is ", b, ", -b is ", -b, "\n");18:19: int z = a ** 3;20: print(a, " cubed is ", z, "\n");21:22: (* End of testcalc.m *)Figure 2.1 An example minicalc program (testcalc.m)minicalc expressions are built up using the four basic diadic left associativearithmetic operators (+, -, * and /) along with unary + and - and the diadicright associative exponentiation operator (**). Operands may be either numericliterals or variable names. The result of an expression may be assigned to avariable, as shown in line 15, or used within a print statement, as shown in line17. print statements take a parenthesised, comma delimited list of expressionsor strings, which are evaluated and printed in left to right order, much like thePascal write statement. The usual ANSI-C escape sequences may be used tooutput non-printing characters such an line end (represented by \n).2.2 minicalc limitationsminicalc can only perform integer computations, and only allows strict se-quencing of statements, there being no
ow of control statements. In addition,there is no read input statement to accompany the print output statement.Enhanced versions of minicalc will be presented in later chapters.2.3 A grammar for minicalcIt is easy to construct an LL(1) grammar for minicalc suitable for input to rdp.A parser generated from such a grammar with no semantic actions embeddedwithin it acts as a pure parser or syntax checker for the minicalc language.Figure 2.2 shows a suitable grammar from which to generate a mini syntaxchecker: it is supplied with the rdp distribution as �le mini_syn.bnf and willbe discussed in the remainder of this section.

A grammar for minicalc 9
1: (***2: *3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 19974: *5: * mini_syn.bnf - a mini grammar for syntax checking6: *7: * This file may be freely distributed. Please mail improvements to the author.8: *9: ***)10: TITLE("Mini_syn V1.50 (c) Adrian Johnstone 1997")11: SUFFIX("m")12:13: program ::= { [var_dec | statement] ';' }.14:15: var_dec ::= 'int' (ID ['=' e1])@','.16:17: statement ::= ID '=' e1 | 'print' '(' (e1 | String)@',' ')'.18:19: e1 ::= e2 { '+' e2 (* Add *) | '-' e2 (* Subtract *) }.20:21: e2 ::= e3 { '*' e3 (* Multiply *) | '/' e3 (* Divide *) }.22:23: e3 ::= e4 | '+' e3 (* Posite *) | '-' e3 (* Negate *).24:25: e4 ::= e5 ['**' e4] (* Exponentiate *).26:27: e5 ::= ID (* Variable *) | INTEGER (* Numeric literal *) | '(' e1 ')'.28:29: comment ::= COMMENT_NEST('(*' '*)'). (* Comments *)30:31: String ::= STRING_ESC('"' '\\'). (* Strings for print *)32:33: (* End of mini_syn.bnf *)Figure 2.2 An rdp grammar speci�cation for minicalc (mini syn.bnf)

10 THE MINICALC LANGUAGE: A SIMPLE CALCULATOR WITHDECLARED VARIABLESA minicalc source program comprises an arbitrary number of variable dec-larations and statements, each terminated with a semicolon, as speci�ed byrule program in line 13. Variable declarations, speci�ed in line 15, comprise thekeyword int followed by a comma delimited list of variable names which maybe optionally followed by an = sign and an initialisation expression.Statements in minicalc may be either assignments or print statements, asspeci�ed in line 17. The print statement takes parameters by way of a commadelimited list of strings and expressions.Comments present particular problems for parser generators because themodern convention is to allow a comment to occur anywhere that whitespaceis allowed: typically between any two tokens of the language. A full speci�ca-tion of this convention using only the grammar rules would require a call to acomment rule after every terminal in the grammar, and this would make thegrammar very unwieldy. The usual solution is to instruct the scanner to detectand �lter out comments in exactly the same way as whitespace (such as lineends, tabs and space characters) is discarded.rdp o�ers a range of scanner primitives to support three di�erent com-menting conventions. You can read more about the use of these primitives,and the general problems of comment speci�cation in Chapter 4 of the usermanual [JS97a]. In mini_syn.bnf comments comprising matching (* and *)brackets are speci�ed on line 29. This rule is only used to parameterise thescanner, and is never actually called by the main parser so it will be deletedwhen rdp processes the grammar.2.3.1 Specifying expressionsThe forms of mini expressions are speci�ed on lines 19{27. Most programminglanguages provide support for expressions made up of operators for commonarithmetic and logical operations. Some even allow control
ow to be speci�edusing operators: the ANSI-C if-then-else operator (? :) is perhaps the mostwell known example of this feature.Syntactically, expressions are simply streams of operator and operand to-kens. For an expression made up of diadic (two-operand) operators we expectto see expressions of the formoperand operator operand . . . operand operator operandMonadic (single operand) operators are distinguished by appearing betweendiadic operators and operands or next to other monadic operatirs. Here isan expression made up of monadic - (negate) and the diadic addition andsubtraction operators.3 + -4 - -6 + 2The following is a simple grammar that generates expressions of this form:expression ::= {monadic_op} operand { diadic_op {monadic_op} operand }.operand ::= INTEGER.monadic_op ::= '-'.diadic_op ::= '+' | '-'.

A grammar for minicalc 11If all we want to do is to check that an expression is syntactically valid thenwe can simply extend the de�nitions of monadic_op and diadic_op to includeall the monadic and diadic operators present in the language being speci�ed.Here, for instance is a suitable grammar for mini expressions which includemonadic + and - and diadic +, -, *, / and ** (exponentiation).expression ::= {monadic_op} operand { diadic_op {monadic_op} operand }.operand ::= INTEGER.monadic_op ::= '+' | '-'.diadic_op ::= '+' | '-' | '*' | '/' | '**'.If we extend the de�nition of rule operand we can similarly allow namedvariables and non-integer literal operands such as REALs.Deeper problems arise when we consider the evaluation of an expression.The string fred = 1 - 2 - 3 is a legal minicalc statement, but what valueshould actually be assigned to fred? We could begin evaluating from the left,e�ectively carrying out the stepsfred = 1fred = fred - 2fred = fred - 3or from the right, e�ectively carrying out the stepsfred = 3fred = 2 - fredfred = 1 - fredIn the �rst case fred ends up with value -4 and in the second case with value2. The usual convention is to evaluate subtractions from left to right, i.e. usingthe �rst of the two choices above, and this is called left associativity. The pro-grammer may wish to override this and other order-of-evaluation conventions,and traditionally this is done using parentheses. The following grammar allowsexpressions of the form 1 - (2 - 3) and 3 + (x * y) - 2expression ::= {monadic_op} operand { diadic_op {monadic_op} operand }.operand ::= INTEGER | ID | '(' expression ')'.monadic_op ::= '+' | '-'.diadic_op ::= '+' | '-' | '*' | '/' | '**'.Note that we have introduced recursion into the grammar: the operandrule accepts a left parenthesis after which it calls the expression rule beforeaccepting a matching closing parenthesis. This nested structure incorporatesthe notion of `do-�rst' into the grammar which is exactly what parentheses`mean' in expressions| the parentheses in an expression are used to override thedefault order of expression evaluation so that the sub-expression in parenthesesis evaluated �rst.

12 THE MINICALC LANGUAGE: A SIMPLE CALCULATOR WITHDECLARED VARIABLESSpecifying operator priorityWe have seen that parentheses can be used to override default evaluation ordersin expressions. However, expressions with lots of parentheses can be hard toread (although LISP programmers seem to manage) and so the conventions ofoperator priority have grown up to allow expressions to be written with implicitparentheses. Most people use priority rules instinctively because they are taughtto us when we �rst learn arithmetic at school. Multiplication and division, forinstance, have higher precedence than addition and subtraction. This meansthat the expression 3 + 4 * 5 evaluates to 23 not 35 as would be the case ifstrict left-to-right evaluation were used. E�ectively, the priority allows us towrite 3 + 4 * 5 as a shorthand for 3 + (4 * 5). If we need to force left-to-right evaluation then we can write (3 + 4) * 5. In conventional arithmetic,exponentiation has the highest priority followed by negation, multiplication(and division) and �nally addition (and subtraction). We can express thesepriorities by using the nest of production rules shown in lines 19{27 of Figure 2.2.Specifying operator associativityIn programming languages, operators take values of a particular type and returnvalues with a type. Integer addition, for instance, takes two integers and returnsan integer, and the `greater than or equal' relational operator >= takes twointegers and returns a boolean result. If the return-type of an operator is thesame as the type of its acceptable operands then we can write expressions thatcontain a run of similar operators such as 3 + 4 + 5 which we can read as either(3 + 4) + 5 or 3 + (4 + 5). With addition, both interpretations evaluate to12 but if we use subtraction instead then an ambiguity arises: (3 - 4) - 5 is-6 but 3 - (4 - 5) is 3 - (-1) which is 4. The associativity of an operatorspeci�es which of the two interpretations should be selected: subtraction is infact left associative so 3 - 4 - 5 is interpreted as (3 - 4) - 5.In general, if we have several operators at the same level of priority, weneed to decide in which order to evaluate the operands. In most cases weevaluate from left to right, so that 2 - 3 + 4 evaluates as (2 - 3) + 4 not as2 - (3 + 4) and 2 / 3 * 4 evaluates as (2 / 3) * 4. Evaluating from leftto right automatically gives each of the operators left associativity.Left to right evaluation is most common, but strings of exponents, suchas 2 ** 3 ** 4, are traditionally evaluated in right to left order. The minigrammars demonstrate how to ensure left to right (and right to left) operandevaluation and we shall now discuss this in detail.Left to right evaluation and left associative operatorsThe left associative arithmetic operators + and - are speci�ed with rules of theform e1 ::= e2 { '+' e2 | '-' e2 }.The rule specifying the left-associative operators (e1 in this case) calls its im-mediate successor rule in the operator tree (e2) on both sides of the operators

A grammar for minicalc 13being recognised in e1. This has the e�ect of ensuring that higher priority op-erators on both sides of a + or - are evaluated �rst. In addition, the use of thezero-or-many iterator bracket { } ensures that a run of + and/or - operatorsis processed in strictly left to right order, i.e. the operators are evaluated in aleft associative manner.Right to left evaluation and right associative operatorsRight associative operators, such as exponentiation ** are speci�ed using rulesof the forme4 ::= e5 { '**' e4 }.The crucial di�erence between this kind of rule for right associative operatorsand the previous rule for de�ning left associative operators is that in this casethe rule calls itself on the right hand side of the operator. Because of the waythe iterator works, this ensures that, in a run of exponentiation operators all ofthe operators to the right of the �rst one will be processed before the �rst oneis processed. By extension, it is easy to see that the e�ect of this kind of right-recursive rule is to ensure that a run of exponentiation operators is evaluatedin the reverse order to that in which they are read, that is right to left, whichis what we require for a right associative operator.In detail, it is clear that the right recursion will absorb all instances in arun of exponentiation operators, so even though we have used the zero-or-manyiterator bracket { } each invocation of rule e4 can only ever absorb zero orone instances of the ** operator, so in practice we write such rules in this way:e4 ::= e5 ['**' e4].Operators that do not combineSome operators yield result values that are incompatible with their operandsand therefore can not be used next to each other in expressions. It is not math-ematically meaningful, for instance, to write an expression like 3 < 4 <= 6because the result of evaluating 3 < 4 is a boolean truth value and this cannotreasonably be compared to the integer 6. We might loosely call such operators`non-associative' but strictly speaking it is meaningless to speak of the associa-tivity of such an operator. The arithmetic relationals are the standard examplesof such operators, and we implement them using rules such asrel_expr ::= exp ['>' exp].The important point here is that the curly braces { } used for the expressionrules e1 and e2 in Figure 2.2 to specify zero or more consecutive instances ofan operator are replaced by square brackets [] which only allow zero or oneoccurrence of the relational operator, so a sequence of such operators in anexpression will be rejected by the parser.In the next chapter we shall add relational operators to mini using a ruleof the form described here. It is, perhaps, worth noting that in some languagesthis issue is rather obscured by the confusion of boolean values with integer

14 THE MINICALC LANGUAGE: A SIMPLE CALCULATOR WITHDECLARED VARIABLESvalues. Languages such as Pascal are strict whereas others (such as ANSI-C)simply use integer values instead of true booleans and may even provide fullyleft associative relational operators.2.4 Hints on selecting operator priority and associativityMost common operators are left associative since this corresponds to a left-to-right evaluation rule which is natural for cultures that read left-to-right.Occasionally an operator is given right associativity for special reasons. Theexponentiation operator ** is an example of such an operator. The reason thatexponentiation is traditionally right associative is that, when written in thetraditional mathematical notation using position rather than a symbol for theoperator, the expression (xy)z can be trivially rewritten as xyz . Since there isalready such a straightforward way of writing left associating exponentiation itmakes sense to de�ne the exponent operator as right associative, so xyz corre-sponds to x(yz). Thus, using the programming language notation, x ** y ** zis interpreted as x ** (y ** z).Similar considerations may be used to decide the relative priorities of oper-ators. Remember that the higher priority operators need to be evaluated �rstin an expression. In common usage, for instance, it is clear that the expres-sion -2 ** 2 (i.e. �22) is expected to yield -4, that is, it is a shorthand for-(2 ** 2) not (-2) ** 2 which would yield +4. Hence we must give exponen-tiation higher priority than monadic -. On the other hand it is also clear that-2 * -2 evaluates to +4, not -4, that is we should interpret the expression as(-2) * (-2) from which we deduce that multiplication has lower priority thanmonadic -.The number of priority levels provided by a language is a fundamental designdecision. Pascal provides rather few levels, and in particular expressions con-taining adjacent logical operators must be parenthesised. ANSI-C goes to theother extreme and provides so many priority levels that many C programmersare unsure of the relative priorities of unusual operators. From the perspectiveof the language user (as opposed to designer) the golden rule is: if in doubt,insert explicit parentheses.2.5 A minicalc syntax checkerAs it stands, mini_syn.bnf can be processed by rdp in the normal way to makea syntax checker for mini. Such a checker can detect badly spelled keywords,and syntactically ill formed expressions but is not able to check that variableshave been declared before use.The rdp make �le contains the commands for constructing a syntax checkerfrom mini_syn.bnf and running it on a test �le called testcalc.m. Thesecommands will be executed if you typemake ms_test

A minicalc syntax checker 15******:1: (* Erroneous minicalc input *)2:3: int a;4:5: Error 1 (error.m) Scanned ID whilst expecting '='5: innt b = 3; (* should be int b; *)5: -----16:7: b=a*2; (* a used before being initialised *)8:9: Error 1 (error.m) Scanned '*' whilst expecting one of ID, INTEGER, '(', '+', '-'9: a = 3 - * 4; (* should be a = 3 * - 4; *)9: --------110:11: bb = b * 3; (* undeclared variable *)12:******: 2 errors and 0 warnings******: Fatal - errors detected in source fileFigure 2.3 Error reporting in the syntax checkerThis make �le target is automatically built as part of the standard installation,so if you have already built rdp using the make �le then the already-compiledsyntax checker will simply be run on the test �le.Figure 2.3 shows the output of the syntax checker for an erroneous programand illustrates the syntax checker's limitations. The misspelling of int in line5 and the incorrect orderings of the arithmetic operators in line 9 have beendetected, but the use of an uninitialised variable in line 7 and the assignmentto an undeclared variable in line 11 have been ignored.These kinds of errors can only be detected by checking long range relation-ships between program symbols. A variable declaration may occur a long waybefore that variable is used, but the context free grammars used by rdp are es-sentially only powerful enough to check local features of the language. A contextsensitive grammar may be written in such a way as to support type checking,but e�cient parsing techniques for practical context sensitive grammars are notavailable. Instead, we use an external symbol table and embedded semantic ac-tions to keep track of the declaration and use of identi�ers. Our next tool, whichis a full interpreter for minicalc can check for undeclared variables without anyextra overhead: the interpreter needs a symbol table anyway to keep track ofcomputed results and it turns out that adding checks for undeclared variablesis straightforward.

Chapter 3An interpreter for minicalcThe primary purpose of rdp is to construct a parser for the language generatedby an rdp-IBNF speci�cation. Such a parser may be used as a syntax checkerfor the language, as we have seen in the previous chapter. Syntax checkersare useful, but we really want to be able to write translators that perform someuseful action as a side e�ect of performing a parse. An interpreter is a translatorthat executes actions speci�ed in the parser whilst a parse is occurring. To besuitable for interpretation, the language grammar must be designed to be bothparsable and executable in a single linear pass, and minicalc is an example ofa language which has such a grammar. An interpreter which is very similar tominicalc is described in the tutorial manual [JS97c].rdp allows us to embed semantic actions into a grammar. rdp's semanticactions are written in C, and are copied into the generated parser so that assoon as a fragment of the language to be parsed is recognised the action can beperformed. For instance, on recognition of the minicalc fragmentint tempwe can make a new symbol table entry for a variable called temp. If the fragmentis followed by an = token then we can go on to parse and evaluate an arithmeticexpression, placing the result into the symbol table record for temp. Figures 3.1and 3.2 show the speci�cation for a full interpreter for minicalc that operates inthis way. This interpreter IBNF speci�cation uses the same grammar as that forthe mini syntax checker described in the last chapter. The only di�erences arethe addition of semantic actions and synthesised attributes to allow declarationof variables, evaluation of arithmetic operations and the printing of results.You can read more about semantic actions in Chapter 5 of the user man-ual [JS97a] and Chapter 6 of the tutorial manual [JS97c]. To understand theminicalc interpreter you also need to be familiar with the use of rdp's built-insymbol table package which you can read about in Chapter 7 of the supportlibrary manual [JS97b] and Chapter 7 of the tutorial manual [JS97c].3.1 Declaring symbol tablesLines 14{19 of Figure 3.1 specify the creation of a symbol table to hold thevariables declared in a minicalc program. A symbol table is a repository for

18 AN INTERPRETER FOR MINICALC1: (***2: *3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 19974: *5: * minicalc.bnf - a decorated mini calculator grammar with interpreter semantics6: *7: * This file may be freely distributed. Please mail improvements to the author.8: *9: ***)10: TITLE("Minicalc interpreter V1.50 (c) Adrian Johnstone 1997")11: SUFFIX("m")12: USES("math.h")13:14: SYMBOL_TABLE(mini 101 3115: symbol_compare_string16: symbol_hash_string17: symbol_print_string18: [* char* id; integer i; *]19:)20:21: program ::= {[var_dec | statement] ';' }.22:23: var_dec ::= 'int'24: (ID:name ['=' e1:val]25: [* mini_cast(symbol_insert_key(mini, &name, sizeof(char*), sizeof(mini_data)))26: ->i = val;27: *]28:)@','.29:30: statement ::= ID:name31: [* if (symbol_lookup_key(mini, &name, NULL) == NULL)32: {33: text_message(TEXT_ERROR, "Undeclared variable '%s'\n", name);34: symbol_insert_key(mini, &name, sizeof(char*), sizeof(mini_data));35: }36: *]37: '=' e1:val38: [* mini_cast(symbol_lookup_key(mini, &name, NULL))->i = val; *] |39:40: 'print' '(' (e1:val [* printf("%li", val); *] |41: String:str [* printf("%s", str); *]42:)@','43: ')'.44: Figure 3.1 An rdp speci�cation for the minicalc interpreter: part 1

Declaring symbol tables 19
45: e1:integer ::= e2:result {'+' e2:right [* result += right; *] | (* Add *)46: '-' e2:right [* result -= right; *] }. (* Subtract *)47:48: e2:integer ::= e3:result {'*' e3:right [* result *= right; *] | (* Multiply *)49: '/' e3:right [* if (result == 0)50: text_message(TEXT_FATAL_ECHO, "Divide by zero attempted\n"); else result /= right; *]51: }. (* Divide *)52:53: e3:integer ::= '+' e3:result | (* Posite *)54: '-' e3:result [* result = -result; *] | (* Negate *)55: e4:result.56:57: e4:integer ::= e5:result ['**' e4:right58: [* result = (integer) pow((double) result, (double) right); *]59:] (* Exponentiate *).60:61: e5:integer ::= ID:name62: [* if (symbol_lookup_key(mini, &name, NULL) == NULL)63: {64: text_message(TEXT_ERROR, "Undeclared variable '%s'\n", name);65: symbol_insert_key(mini, &name, sizeof(char*), sizeof(mini_data));66: }67: *]68: [* result = mini_cast(symbol_lookup_key(mini, &name, NULL))->i; *] | (* Variable *)69: INTEGER:result | (* Numeric literal *)70: '(' e1:result ')'. (* Do-first *)71:72: comment ::= COMMENT_NEST('(*' '*)'). (* Comments *)73:74: String: char * ::= STRING_ESC('"' '\\'):result. (* Strings for print *)75:76: (* End of minicalc.bnf *)Figure 3.2 An rdp speci�cation for the minicalc interpreter: part 2

20 AN INTERPRETER FOR MINICALCrecords which may be stored and retrieved using a key. Typically the keyis a string corresponding to the name of an identi�er, but rdp allows keysto be made up of combinations of di�erent �elds. The symbol table packageitself is quite general| the user must supply a set of routines for comparing,hashing and printing keys which e�ectively tune the package to use tables witha particular kind of key. The library itself comes with suitable functions forthe very common case in which the single string key �eld is the �rst �eld inthe symbol table record, and it is those routines that are used here. For theseroutines to work we must be sure to set up the data part of the symbol tablerecord correctly: in this case a single char* �eld to hold the variable's identi�eris the �rst �eld and then an integer �eld is declared to hold the working valueof a variable.3.2 Using synthesized attributesA synthesized attribute is a value (which may be of any C type, includingprimitive types such as characters and integers as well as complex types such asstructures and arrays) which is passed back up a parse tree, or equivalently inrdp terms `returned' by a grammar rule or scanner primitive. A simple examplemay be found in the de�nition for rule e5, part of which is reproduced here:e5:integer ::= ... | INTEGER:result |When rule e5 matches against an INTEGER the scanner can be asked to returnthe binary number corresponding to the INTEGER lexeme just recognised. Thespeci�cation here indicates that the return value should be loaded into an at-tribute called result. At the end of a rule, the current value of result isreturned to the caller of the rule, so the e�ect of this rdp IBNF fragment is toparse an integer and return the corresponding binary number to the caller.3.3 Expression evaluationThe expression tree (rules e1{e5 speci�ed in lines 45{70) evaluates expressionsby collecting the values of operands in rule e5 and passing them back up throughthe tree, performing any calculations speci�ed by operators en route.Each operator has an attached semantic action which evaluates its operandsinto the result return value. The semantic actions just use the equivalent op-erator in the underlying C language except in the case of the exponentiationoperator which does not exist in ANSI-C. Exponentiation is therefore han-dled by calling the pow() standard library function (ensuring that the integeroperands supplied by the mini code are re-cast as double precision real num-bers). The header �le for the maths library must be added to the list of �leswhich are #includeed into the parser, and this is speci�ed with the USES di-rective in line 12.We must be particularly cautious with the divide operator / because anattempt to divide by zero would generate an arithmetic trap on some com-puter architectures (or, even worse, quietly generate unde�ned results on some

Accessing the symbol table 21others!) The semantic action for the divide operator checks for this conditionbefore attempting to evaluate any divisions and issues a fatal error messageif necessary which will abort interpretation. You can read about the routinetext_message() which is used to issue error messages in Chapter 8 of thesupport library manual [JS97b].3.4 Accessing the symbol tableWhen a new variable is declared in a mini program using an int declaration wemust create a new symbol table entry which will hold the value of the variable.When the corresponding variable identi�er appears within an expression wemust access the symbol table to retrieve the value, and when an identi�erappears on the left hand side of an assignment we must access the symbol tableto update the variable's value �eld. The symbol table library provides tworoutines symbol_lookup_key() and symbol_insert_key() to search for andinsert keys. You should look at Chapter 7 of the support library manual [JS97b]for a complete description of these routines. Lines 30{36 illustrate the use ofthese functions to look up an identi�er in the symbol table:30: statement ::= ID:name31: [* if (symbol_lookup_key(mini, &name, NULL) == NULL)32: {33: text_message(TEXT_ERROR, "Undeclared variable '%s'\n", name);34: symbol_insert_key(mini, &name, sizeof(char*), sizeof(mini_data));35: }36: *]The ID scanner primitive will accept an alphanumeric identi�er whose lexeme isreturned in attribute name. The semantic action calls symbol_lookup_key() tosearch the symbol table called mini for the identi�er name in any scope region. Ifthe symbol table does not contain name then symbol_lookup_key() will returna NULL value, in which case the action issues an error message and then insertsthe identi�er into the table. This is done so as to suppress subsequent errormessages that might be triggered by later references to the variable.

Chapter 4The minicond language: interpretationwith conditionalsThe minicalc language discussed in the last chapter is only really as powerful asan integer-only pocket calculator with a large number of memories. Historically,calculators were distinguished from full blown computers on the basis of theircontrol capability: to be worthy of the name a computer must be capableof making decisions. A `decision' in this context usually means conditionallyexecuting some parts of a program on the basis of calculations performed whilstthe program is running (that is, at run-time). By this de�nition, minicalchas the abilities of a calculator, not a computer. We shall progressively addcapabilities to our mini language. We start in this chapter by making theseadditions:1. relational operators (>, >=, <, <=, == and !=) with lower priority than anyof the arithmetic operators, and2. an if-then-else statement which allows conditional interpretation ofprograms.The result is a language minicond whose programs look like minicalc programswith some additional features| minicalc is a strict subset of the minicondlanguage so any minicalc program will be correctly evaluated by a minicondinterpreter. Figure 4.1 shows an example minicond program. The output pro-duced when this is run through the minicond interpreter is shown in Figure 4.2.In a later chapter we shall see how to add looping constructs and a facilityfor grouping statements together in blocks.4.1 A grammar for minicondThe grammar for minicond shown in Figures 4.3 and 4.4 follows the generalform of the interpreter presented in the previous chapter, except that large se-mantic actions have been placed in their own semantic rules, and the necessarysyntax and semantic actions have been added to support relational expressionsand the if statement.

24 THE MINICOND LANGUAGE: INTERPRETATION WITH CONDITIONALS1: (***2: *3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 19974: *5: * testcond.m - a piece of Minicond source to test the Minicond interpreter6: *7: * This file may be freely distributed. Please mail improvements to the author.8: *9: ***)10:11: int a=3+4, b=1;12:13: print("a is ", a, "\n");14:15: b=a*2;16:17: print("b is ", b, ", -b is ", -b, "\n");18:19: print(a, " cubed is ", a**3, "\n");20:21: int z = a;22:23: if z==a then print ("z equals a\n") else print("z does not equal a\n");24:25: z=a - 3;26:27: if z==a then print ("z equals a\n") else print("z does not equal a\n");28:29: (* End of testcond.m *)Figure 4.1 An example minicond program (testcond.m)
a is 7b is 14, -b is -147 cubed is 343z equals az does not equal aFigure 4.2 minicond output for example program

A grammar for minicond 251: (***2: *3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 19974: *5: * minicond.bnf - a decorated mini-conditional grammar with interpreter semantics6: *7: * This file may be freely distributed. Please mail improvements to the author.8: *9: ***)10: TITLE("Minicond interpreter V1.50 (c) Adrian Johnstone 1997")11: SUFFIX("m")12: USES("math.h")13:14: SYMBOL_TABLE(minicond 101 3115: symbol_compare_string16: symbol_hash_string17: symbol_print_string18: [* char* id; integer i; *]19:)20:21: program ::= {[var_dec(1) | statement(1)] ';'}.22:23: (* semantic rules - implemented as macros in the C code *)24: _insert(id) ::= [* if (interpret)25: symbol_insert_key(minicond, &id, sizeof(char*),26: sizeof(minicond_data));27: *].28: _lookup(id ret) ::= [* {29: void * sym = symbol_lookup_key(minicond, &id, NULL);30: if (sym == NULL) /* not found! */31: {32: text_message(TEXT_ERROR_ECHO, "Undeclared variable, '%s'\n", id);33: sym = symbol_insert_key(minicond, &id,34: sizeof(char*), sizeof(minicond_data));35: }36: ret = minicond_cast(sym)->i;37: }38: *].39: _update(id val) ::= [* if (interpret)40: {41: void * sym = symbol_lookup_key(minicond, &id, NULL);42: if (sym == NULL) /* not found! */43: {44: text_message(TEXT_ERROR_ECHO, "Undeclared variable, '%s'\n", id);45: sym = symbol_insert_key(minicond, &id,46: sizeof(char*), sizeof(minicond_data));47: }48: minicond_cast(sym)->i = val;49: }50: *].51: _and(dst a b) ::= [* dst = a && b; *].52: _and_not(dst a b) ::= [* dst = !a && b; *].53: _local_int(a) ::= [* integer a; *].54: Figure 4.3 An rdp speci�cation for the minicond interpreter: part 1

26 THE MINICOND LANGUAGE: INTERPRETATION WITH CONDITIONALS55: var_dec(interpret:integer) ::=56: 'int' (ID:name _insert(name) (* Declaration *)57: ['=' e0:val _update(name val)] (* Initialisation *)58:)@','.59:60: statement(interpret:integer) ::=61: ID:name '=' e0:value _update(name value) | (* Assignment *)62:63: _local_int(flag)64: 'if' e0:cnd 'then' _and(flag cnd interpret) statement(flag) (* if statement *)65: ['else' _and_not(flag cnd interpret) statement(flag)] |66:67: 'print' '(' (e0:value [* if (interpret) printf("%li", value); *] | (* output *)68: String:str [* if (interpret) printf("%s", str); *]69:)@','70: ')'.71:72: e0:integer ::=73: e1:result ['>' e1:right [* result = result > right; *] | (* Greater than *)74: '<' e1:right [* result = result < right; *] | (* Less than *)75: '>=' e1:right [* result = result >= right; *] | (* Greater than or equal *)76: '<=' e1:right [* result = result <= right; *] | (* Less than or equal *)77: '==' e1:right [* result = result == right; *] | (* Equal *)78: '!=' e1:right [* result = result != right; *]]. (* Not equal *)79:80: e1:integer ::= e2:result {'+' e2:right [* result += right; *] | (* Add *)81: '-' e2:right [* result -= right; *] }. (* Subtract *)82:83: e2:integer ::= e3:result {'*' e3:right [* result *= right; *] | (* Multiply *)84: '/' e3:right (* Divide *)85: [* if (result == 0)86: text_message(TEXT_FATAL_ECHO, "Divide by zero attempted\n");87: else result /= right;88: *]89: }.90:91: e3:integer ::= '+' e3:result | (* Posite *)92: '-' e3:result [* result = -result; *] | (* Negate *)93: e4:result.94:95: e4:integer ::= e5:result ['**' e4:right (* Exponentiate *)96: [* result = (integer) pow((double) result, (double) right); *]97:].98:99: e5:integer ::= ID:name _lookup(name result) | (* Variable access *)100: INTEGER:result | (* Numeric literal *)101: '(' e1:result ')'. (* Do-first *)102:103: comment ::= COMMENT_NEST('(*' '*)'). (* Comments *)104:105: String: char* ::= STRING_ESC('"' '\\'):result. (* Strings for print *)106:107: (* End of minicond.bnf *)Figure 4.4 An rdp speci�cation for the minicond interpreter: part 2

Adding conditional operators 274.2 Adding conditional operatorsThe rule e0 de�ned in lines 72{78 adds a speci�cation for the six new relationaloperators at a priority level below that of the operators de�ned in the minicalcgrammar expression tree. It is not meaningful to write a sequence of relationaloperators; an expression such as (3 < 2) < 4 attempts to compare a booleanvalue, in this case false (the result of 3 < 2) with the integer 4. This issue isconfused in some languages such as C where booleans are not directly supported,integers being used in their place. This expression actually yields true in ANSI-C because the subexpression (3<2) yields 0 which is indeed less than 4. So asto avoid this kind of confusion in minicond the rule will only accept individualinstances of relational operators: that is an expression such asa + b > 3is legal buta > b > 3 and (a > b) > 3are not. This is achieved by using the zero-or-one [] construct rather thanthe zero-or-many { } bracket in rule e0 and only allowing bracketed expres-sions to contain arithmetic operators as speci�ed on line 101.In other respects the rule is entirely conventional: on recognition of anoperator subexpression the parser will execute the associated semantic actionand in each case we have simply used the equivalent operator in the underlyingANSI-C language.4.3 Using inherited attributesIn the last chapter we saw how information about a token could be passedfrom the scanner to the parser's semantic actions using attributes, and we alsosaw how information calculated within a parser rule could be passed back toa calling rule using a similar mechanism. These kinds of attributes are calledsynthesized attributes because the information is synthesized at the lower level(either within the scanner or a rule) and passed back up the chain of produc-tion rules. Synthesized attributes correspond roughly to the return values offunctions in a programming language, and as we have seen this is precisely howthey are implemented in rdp.Sometimes we need to reverse this process and pass information down intoproduction rules. We can think of this as a rule inheriting information fromthe rule which called it, and so these kinds of attributes are called inheritedattributes. They correspond roughly to function parameters in conventionalprogramming languages, and that is how they are implemented in rdp. Youcan read more about the use of inherited attributes in Chapter 5 of the usermanual [JS97a] and Chapter 6 of the tutorial manual [JS97c].In the minicond interpreter we use inherited attributes in some rules to passin a
ag called interpret which controls the execution of semantic actions.The use of this
ag will be explained more fully in section 4.5 below. Here we

28 THE MINICOND LANGUAGE: INTERPRETATION WITH CONDITIONALSsimply note that an inherited attribute is speci�ed on the left hand side of arule de�nition by adding parenthesised parameters to the rule name. In line 50of minicond.bnf, for instance, the original minicalc variable declaration ruleis rede�ned asvar_dec(interpret:integer) ::= ...This speci�es that rule var_dec has a single inherited attribute called interpretof type integer. rdp grammar rules can have multiple inherited attributes eachof which must be speci�ed with an accompanying type. When such a rule iscalled, the parameter values must be �lled in using either literal numbers, literalstrings or the names of other attributes. You can see examples in line 21 wherethe top level rule calls subrules with a literal integer:program ::= {[var_dec(1) | statement(1)] ';'}.and in line 64 where the statement rule is called and passed the value of anattribute.4.4 Using semantic rulesIn complex translators the semantic actions can become very large, and readinga decorated rdp grammar can become di�cult as the C-language semantic ac-tions obscure the underlying form of the grammar. One solution to this problemis to parcel all but the most trivial actions into separate C functions that residein the auxiliary �le, in which case the semantic actions in the grammar may bereduced to function calls. This certainly allows the grammar to `show through'but then a full understanding of the translator requires two �les (the rdp IBNF�le and the C language auxiliary �le) to be coordinated. Semantic rules are asort of half way house in which the C language actions may be separated outfrom the main part of the grammar whilst still residing in the same source �le.A semantic rule is one which contains only a single sequence of semanticactions. As such, these rules do not a�ect the language generated by the gram-mar (or, equivalently, matched by the parser generated from the grammar). Byconvention, semantic rule names begin with a leading underscore so that whenreading the grammar we can mentally delete them from consideration of thelanguage generated.Semantic rules are implemented using ANSI-C macros rather than as func-tions. This is to allow the semantic rule to automatically have access to all ofthe attributes in the rule that calls the semantic rule but you should be awarethat each instance of a semantic rule will result in the complete body of therule being instantiated into the parent rule, so casual use could lead to verylarge generated parsers.Semantic rules can take inherited attributes but may not return synthesizedattributes| since the semantic rule automatically has access to the completestate of the calling rule it can access the parents attributes directly. The in-herited attributes are treated slightly di�erently for semantic rules than fornormal rules in that the attributes are made into macro parameters and are

Adding conditional execution 29thus available for textual substitution within the semantic actions. As suchthey do not take a type and they follow the rules for macro parameters in theANSI-C macro preprocessor.The minicond interpreter contains six semantic rules.� _local_int(a) ::= [* integer a; *]. generates a macro that will de-clare a new local variable of type integer. The name of the variable willbe whatever identi�er is supplied as the actual parameter in a call to thissemantic production.� _and(dst a b) ::= [* dst = a && b; *]. the destination attributeis set to the logical and of attributes a and b.� _and_not(dst a b) ::= [* dst = !a && b; *]. the destination attributeis set to the logical and of the inverse of attribute a and attribute b.� _insert(id) the identi�er id is added to the symbol table minicond.� _lookup(id ret) the attribute ret is set to the integer value �eld of thesymbol table record for identi�er id. If id is not found in the symboltable then an error message is issued and the symbol is added in, so as tosuppress subsequent messages.� _update(id val) the integer value �eld of the symbol table record foridenti�er id is set to val. If id is not found in the symbol table thenan error message is issued and the symbol is added in, so as to suppresssubsequent messages.4.5 Adding conditional executionOur �rst task when adding an if statement to mini is to de�ne the necessarysyntax to the grammar. This is done in lines 64 and 65 of minicond.bnf:63: ...64: 'if' e0:cnd 'then' _and(flag cnd interpret) statement(flag)65: ['else' _and_not(flag cnd interpret) statement(flag)] |66: ...If we strip out the semantic actions, the semantic rules and the attributes fromthis rule we see that its e�ect on the language is to de�ne an if statement withthis syntax:statement ::= 'if' e0 'then' statement ['else' statement].This recursive rule allows nesting of minicond statements, which leads toan ambiguity in the grammar. Consider this fragment of minicond code:1: int x = 0, a = 10, b = 20, c = 30;2: if a>b then3: if b>c then4: x = 15: else6: x = 2

30 THE MINICOND LANGUAGE: INTERPRETATION WITH CONDITIONALSHere we see two nested if statements, with one optional else clause present.The ambiguity in the grammar means that we cannot tell, just by looking atlines 1-5 whether the else clause at line 5 belongs to the if statement at line3 or the if statement at line 2. The ambiguity is re
ected in the error messagethat rdp generates when presented with the full grammar:******: Error - LL(1) violation - rulerdp_statement_2 ::= ['else' _and_not statement] .contains null but first and follow sets both include: 'else'Since an else clause may be immediately followed by another else clause andthe else clause is optional we have an LL(1) violation because the IBNF phrase['else' statement] is (1) optional, and (2) starts with the keyword elseand may be followed by the keyword else. In practice, it is almost universallyagreed by programming language designers that an else clause should bind tothe nearest if statement, in this case to the if statement at line 3.Whilst rdp is an LL(1) parser generator it is not strictly true that it can onlygenerate parsers for LL(1) grammars. When rdp is presented with a non-LL(1)grammar it is e�ectively being asked to parse strings that may provide matchesfor more than one alternative at some point in the derivation. By default, rdpsimply rejects such grammars with an appropriate error message, but if we adda -F
ag to the rdp command line then rdp will be forced to output a parserthat disambiguates such cases by choosing the alternative that is lexically �rstin the grammar. As long as the grammar writer is able to achieve the non-LL(1) behaviour required by putting the most important alternative �rst thenthe generated parser will operate correctly. In the case of iterators (includingthe optional bracket [] here) rdp will choose to go into an iterator ratherthan skipping over it if the currently parsed token is in both the first andfollow sets of the iterator. This rule has the e�ect of parsing the else clausein such a way that the derivation tree shows the else clause as bound to thenearest if.There are other techniques for handling the so-called dangling-else problem.Perhaps the simplest is to change the language syntax so that if statementsare explicitly terminated. The Algol-68 language for instance uses a rule of thisform: statement ::= 'if' e0 'then' statement ['else' statement] 'fi'.The closing 'fi' (which is if backwards) marks the end of each if state-ment and removes both the grammatical ambiguity for dangling-else's and theLL(1) breach caused by the presence of the keyword else in both the first andfollow sets of the optional else clause. The modern trend in programminglanguages is to insist on this kind of explicit termination because it has beenobserved that programmers are more likely to accidentally leave out tokens thanto add in spurious tokens. Forcing the programmer to mark the end of com-pound statements is a useful discipline. However, languages designed duringthe 60's and 70's such as Pascal and C typically allow unterminated controlstatements.

Next steps 314.5.1 Semantic actions for conditional executionWhen we write an if statement in a program we think of the computer `jump-ing' over one of the two branches. In a compiler we can generate instructionsthat do indeed cause a section of code to be jumped over as we shall see inChapter 7, but in an interpreter we cannot simply jump over part of the inputstream because the whole source text must be checked for syntactic correctness.Hence the parser will read and process both the then and the else branchesof an if statement, executing the semantic actions in both branches as it goes.In practice, of course, we only want to execute the semantic actions for onebranch or the other so we need to be able to dynamically disable semanticaction execution at run-time. We do this by supplying an inherited attributeto the productions statement and var_dec which is a boolean value. If theattribute is true then the embedded semantic actions are executed and if notthey are skipped over.At the top level, rule program in line 21 calls the statement and var_decrules with the attribute set to 1 (i.e. true) so at the start of a programall semantic actions will be executed. When an if statement is encountered,the conditional expression is evaluated and the result is logically and-ed withthe value of the interpret attribute. This new value is then supplied as aparameter to a new (nested) instance of the statement rule.The semantic actions in the expression tree are not switched on and o� inthis way because they do not need to be: during the evaluation of an expressionattributes are calculated and passed back up the tree of expression rules butno changes are made to the variables declared in a minicond program untilan assignment is executed. The _update semantic rule associated with theassignment statement is guarded by a check against the interpret attribute,so the result of an expression is simply discarded if interpretation has beenswitched o�.4.6 Next stepsThe techniques used in this chapter to handle conditional interpretation cannot easily be extended to handle looping because our parsers are designed tomake complete passes over the source program, and a loop construct wouldrequire us to skip backwards in the parse. This is certainly not impossible toimplement but would require detailed knowledge of rdp's internals and is notthe recommended approach. Instead we shall move to a full compiler for miniwhich outputs instructions for a very simple computer called the Mini VirtualMachine (MVM). By providing an assembler and simulator for MVM we canbuild a complete system that models the tasks of a compiler for a real processor.

Chapter 5The Mini Virtual Machine (MVM)MVM is a paper architecture designed to support e�cient interpretation ona host architecture. We will use MVM to illustrate the techniques of virtualmachine simulation, assembly language translation and compilation. In thischapter we shall describe the MVM architecture and a simulator for that ar-chitecture written in ANSI-C. As well as providing a means to execute MVMprograms, the simulator source code can be treated as an exact speci�cation ofthe architecture. We will begin by describing the architecture informally.The Mini Virtual Machine is a very simple architecture based around a con-ventional memory to memory processor. This means that all MVM operationsexecute directly on the contents of memory locations: there are no registers orstacks available for storing data, although there are two internal registers usedto hold the address and contents of the currently executing instruction.MVM is a 16-bit processor in which arithmetic operations take place on 16-bit quantities and in which memory addresses also �t into 16-bit words. Thislimitation to 16-bit memory addresses does constrain the size of the programsthat we can write, but is su�cient for demonstrating the ideas behind thedevelopment of a compiler. It also means that the tools can be compiled andrun on older 16-bit computers such as ordinary MS-DOS machines. If you havea 32-bit system and a suitable C compiler, it is quite easy to extend the MVMspeci�cation and its simulator to support 32-bit operations and addresses.Understanding a new processor is made easier if we list the capabilities ofthe architecture under three main headings:1. the memory resources provided by the architecture,2. the various ways in which operands may be fetched during instructionexecution (the addressing modes) and3. the collection of operations that may be programmed on that architecture(the instruction set).In each of these three areas MVM provides very limited facilities. Thismakes MVM easy to understand, easy to program and easy to write softwaresimulators for, but it does not make MVM a good target for e�cient hardwareimplementation. That need not concern us: MVM is only really intended to

34 THE MINI VIRTUAL MACHINE (MVM)
01234

6553565534655336553265531
07

Total of 65536 cells addressed as memory[0]to memory[65535].Each cell contains eight bits numbered 0 { 7memory
temp LSBtemp MSB The 16-bit variable temp is stored as two bytesat successive addresses.The address of temp is 2: the address of theLeast Signi�cant Byte (LSB)Figure 5.1 MVM memory structurebe used via a software simulator, so the many clever devices that hardwaredesigners have introduced into real architectures to aid hardware realisationare irrelevant to our purpose. You should bear in mind, however, that writinga compiler for a real processor is more complex than writing a compiler forMVM: the principles remain the same, but the large scale design of a realcompiler requires much more detail to be handled.5.1 MVM memoryAll MVM data and instructions are stored in a single main memory. MVMhas no special or general purpose registers for data. The MVM memory canbe regarded as an array of eight-bit (byte) locations, individually addressed.The size of the MVM memory is �xed at 64K (= 6553610) bytes. This allowsall MVM addresses to be speci�ed using 16-bit numbers. A diagrammaticrepresentation of the MVM memory is shown in Figure 5.1.Since the memory cells can only hold eight bit numbers, and since MVMusually operates on 16-bit quantities, in general two adjacent cells are used tohold each data item. When accessing 16-bit numbers, the address of the leastsigni�cant byte is speci�ed, (say n) and the operand is understood to be madeup of the contents of the addressed cell concatenated with the contents of thenext highest address (n+1). In the example shown in the �gure, the 16-bitvariable temp resides at locations 2 and 3. If memory[2] contains 910 (10012)and memory[3] contains 310 (00112) then the value of temp is 0003 concatenatedwith 0009, which is 310 � 25610+ 910 = 77710 (11000010012).MVM instructions range in size from two to eight bytes. By analogy withthe addressing for data items, the address of the instruction is taken to be theaddress of the least signi�cant byte which will be the lowest address of the rangeof locations occupied by the instruction.

MVM instruction execution 35Op Mode Dst Src1 Src2ExecutionunitProgram counter? ? ? ? ??� ? ? ?���� ?data from memorydataaddress to memory
memory

Figure 5.2 MVM internal structure5.2 MVM instruction executionA block diagram of the internal structure of an MVM processor is shown inFigure 5.2. MVM is an example of a Von Neumann processor, as indeed aremost real computers in use today. In a Von Neumann machine, instructions anddata can co-exist in the same memory as described in the previous section. It isnot possible, just by looking at the contents of memory to distinguish betweeninstructions and data.The processor maintains a pointer to memory (that is, a register whichholds the address of a location in memory) called the program counter. Before aprogram can be executed, it must be loaded into memory and then the programcounter initialised with the address of the �rst instruction to be executed.Once the machine starts running the program, it reads the instructionpointed to by the program counter into some internal registers collectively calledthe Instruction Register. In this case, the instruction register has space for anoperation code, an address mode and up to three operands called the destina-tion, source 1 and source 2 operands. These registers between them can holdall of the information needed to execute a single MVM instruction: the sig-ni�cance of the individual registers will be described in the following sections.For now, note that the data from memory may be loaded into the instructionregister or sent to the execution unit; that memory addresses may be suppliedby the program counter or by the operand registers; that only the executionunit can generate data to be written back into memory and that the contentsof the operand registers may connected directly to the execution unit.After the instruction register has been loaded with a new instruction readyfor execution, the program counter is incremented so that it points to the loca-tion just past the end of the instruction that has just been read. The processorthen performs whatever action is speci�ed by the instruction in the instruc-tion register, which might for instance be the addition of two numbers or the

36 THE MINI VIRTUAL MACHINE (MVM)copying of a data item from one memory location to another. These kinds ofinstructions are called data manipulation instructions because they allow datato be modi�ed in various ways.In addition to the data manipulation instructions, Von Neumann processorslike MVMhave control manipulation instructions which a�ect the order in whichthe program's instructions are executed. By default, the program counter issimply incremented to point to the next instruction after the current one. Inthe absence of any control manipulation instructions, therefore, all programswould simply be executed once only in strict order by address. This is the kindof program that we can write using the simple minicalc language which hasno control
ow constructs.The control manipulation instructions allow sequences of instructions to bejumped over. They work by loading a new value directly into the programcounter which overrides the simple sequential execution. Often the new valueis only loaded if some condition is true. An if condition then action state-ment can be implemented as a test of condition. If condition is false, then theprogram counter is loaded with the address of the instruction after the codecorresponding to action, and this has the e�ect of skipping over action withoutexecuting it.5.3 MVM addressing modesMost high level programming languages provide both variables and numericliterals. In minicalc, for instance, the assignmentstemp = x + yandtemp = x + 12are both valid. In practice, they will be compiled into an ADD instruction withthree operands: a destination and two sources corresponding to the left andright sides of the + operator. The variables x and y will be stored at speci�cmemory addresses. What if variable y were to be stored at location 12? Howwould an MVM processor distinguish between an instruction to add the number12 and an instruction to add the contents of a variable stored at location 12?The answer is to provide some extra information called the addressing mode.It is the responsibility of the compiler to specify the correct addressing modewhen it generates an MVM instruction. We shall look at how the modes arespeci�ed in the next section.MVM provides only two addressing modes: literal and variable. Real pro-cessor architectures often provide many complex addressing modes which, forinstance, might allow an access within a two dimensional array to be speci�edas a single machine instruction. The trend in recent years has been to discour-age the use of any but the most straightforward addressing operations becausethey complicate the use of pipelining in hardware implementations. Pipelinedprocessors are very e�cient, but their execution units are disrupted by the

MVM instructions 37overhead of having to decode complicated addressing modes. Broadly speak-ing, Complex Instruction Set Computer (CISC) architectures such as the DECVAX, the Motorola 68000 and the Intel 80x86 family have many exotic address-ing modes, and Reduced Instruction Set Computer (RISC) architectures suchas the MIPS, Sun SPARC and Dec Alpha have essentially only three modes.MVM is simple, but is not comparable to a real RISC architecture becauseit does not have any data registers, and the e�cient use of such registers isperhaps the de�ning characteristic of a true RISC architecture.5.4 MVM instructionsMVM instructions are made up of a string of bytes. Depending on the in-struction, the string may be between two and eight bytes long: every MVMinstruction has an operation code (opcode) byte followed by an address modebyte, and most instructions also contain some operands. Each operand is rep-resented by a 16-bit number, so each operand adds two bytes to the length ofan instruction one for the most signi�cant byte (MSB) and one for the leastsigni�cant byte (LSB). The format of a three address instruction, therefore isopcode mode dst MSB dst LSB src1 MSB src1 LSB src2 MSB src2 LSBInstructions with less than three operands follow this general format butsimply omit the unused operand �elds. Even zero address instructions such ashalt have a mode byte.5.4.1 Instruction set capabilitiesThe opcode byte could encode up to 256 unique instructions, but in fact MVMonly uses the �rst 17 codes, numbered 0{16. As we shall see in the next chapter,it in more convenient to use hexadecimal (base 16) than decimal (base 10) torepresent machine level quantities, so Table 5.1 which shows the complete MVMinstruction set gives the hexadecimal encodings for the instructions.The functional description of each instruction in Table 5.1 uses a C-like syn-tax to explain the actions of the MVM processor on receipt of each instruction.Main memory is modeled as an array of locations called mem[] and the programcounter as a variable called PC. The function resolve() looks at the addressingmode of its corresponding operand and fetches the actual data. Later in thischapter we give extracts from the source code of a simulator for MVM instruc-tions which shows exactly how these functional descriptions may be turned intoexecutable code.5.4.2 Address mode encodingThe mode byte is split into two four-bit nibbles called mode �elds 1. Each of thetwo mode �elds encode the address mode for one of the two source operands:1Since we only have two addressing modes to encode, we could make do with only a singlebit for each �eld, but we wish to leave some capacity so that, for instance, a register basedvariant of MVM could be easily de�ned.

38 THE MINI VIRTUAL MACHINE (MVM)Opcode Mnemonic Operands Function00 HALT { { { Stop the processor01 ADD dst src1 src2 mem[dst] = resolve(src1) + resolve(src2)02 SUB dst src1 src2 mem[dst] = resolve(src1) - resolve(src2)03 MUL dst src1 src2 mem[dst] = resolve(src1) * resolve(src2)04 DIV dst src1 src2 mem[dst] = resolve(src1) / resolve(src2)05 EXP dst src1 src2 mem[dst] = resolve(src1) ** resolve(src2)06 EQ dst src1 src2 mem[dst] = resolve(src1) == resolve(src2)07 NE dst src1 src2 mem[dst] = resolve(src1) != resolve(src2)08 GT dst src1 src2 mem[dst] = resolve(src1) > resolve(src2)09 GE dst src1 src2 mem[dst] = resolve(src1) >= resolve(src2)0A LT dst src1 src2 mem[dst] = resolve(src1) < resolve(src2)0B LE dst src1 src2 mem[dst] = resolve(src1) <= resolve(src2)0C CPY dst src1 { mem[dst] = resolve(src1)0D BNE target src1 { if resolve(src1) != 0 then PC = target0E BEQ target src1 { if resolve(src1) == 0 then PC = target0F PRTS 0 src1 { Print resolve(src1) as string10 PRTI 0 src1 { Print resolve(src1) as decimal integerTable 5.1 The MVM instruction setthe most signi�cant nibble encodes for src1 and the least signi�cant nibble forsrc2. For instructions that do not use one or both of the source operands, thecorresponding mode �elds are set to zero. No mode �eld is required for thedestination operand because the destination must clearly always be an address:it is never meaningful to assign a result to literal! On some real architectures,multiple destination addressing modes are provided but MVM has no need ofthem.5.5 Example MVM instructionsMVM programs are made up of sequences of MVM instructions which willusually include both data manipulation and control manipulation instructions.Each valid program must �nish with a HALT instruction which the simulatorinterprets as an instruction to �nish interpreting instructions and return controlto the user. It is not an accident that the HALT instruction uses opcode number0. Within the simulator, the memory is initialised throughout to zero. If a userprogramming error causes the simulator to try executing from memory that hasnot been loaded with instructions, the simulator will immediately terminatebecause those zeros will be interpreted as HALT instructions.5.5.1 Data manipulation instructions and address modesIn section 5.3 we distinguished between literal and variable addressing. Here welook at the MVM instructions that correspond to the minicalc code fragmentstemp = x + y and temp = x + 12.

Using an assembler to program MVM 39If the variable x is resident at location 1010 (location 000A in hexadecimal)and y resides at location 1210 (location 000C in hexadecimal) then the instruc-tion to add them together and store them in a variable called temp at location4 is Op Mode Dst Src1 Src201 11 0004 000A 000CHere we have the operation code for ADD (0116) followed by a mode byte thatspeci�es variable mode addressing for both source operands (1116). Then wehave three operands speci�ed as the addresses of the destination (000416) andthe two sources (000A16 and 000C16).By contrast, if we wish to add the number 12 to the contents of x and putthe result in temp then the correct instruction isOp Mode Dst Src1 Src201 10 0004 000A 000CThe only di�erence between these instructions is that the mode �eld foroperand src2 is 1 in the �rst example and 0 in the second corresponding tovariable mode addressing and literal mode addressing respectively.5.5.2 Control manipulation instructionsControl manipulation instructions are used in the implementation of if state-ments, loop statements and goto statements. Consider the minicond fragmentif temp then a = a + 1;z = z - 2;If temp resides at location 000A16, a at location 000E16 and z at location 001C16,then the following sequence of instructions based at location 213416 correspondsto the minicond fragment.Location Op Mode Dst Src1 Src22134: 0E 10 2142 000A213A: 01 10 001C 001C 00012142: 02 10 000E 000E 0001The instruction at location 213416 is a BEQ which will restart execution ataddress 214216 if the variable at location 000A16 is zero. The next line addsone to the variable at location 001C16, and the �nal line subtracts one from thevariable at location 000E16. The overall e�ect of the fragment is to skip overthe middle instruction if the value of temp at location 001C16 is zero.5.6 Using an assembler to program MVMWriting MVM programs in this numerical code is time consuming and highlyerror prone. An assembler is a translator for a very simple language that o�ersEnglish-language like mnemonic names for the machine instructions and can

40 THE MINI VIRTUAL MACHINE (MVM)also perform branch calculations automatically, so that instructions can be re-ferred to by a symbolic label rather than by their numeric address. Assemblersdo not make machine level programming easy, but they do free the programmerfrom a great deal of bookkeeping work. Assemblers are in themselves examplesof an interesting class of translator. We shall describe the implementation ofan assembler for MVM (called mvmasm) in the next chapter. We complete thischapter with the description of a simulator, mvsim, for MVM code.5.7 mvmsim { a simulator for MVM byte codesThe MVM instruction set is designed to be e�ciently implemented as a simu-lator. In this section we look at the design and use of such a simulator.5.7.1 Using mvmsimThe function of the simulator is two-fold: �rstly it provides a concrete modelof the behaviour of an MVM processor, and secondly it allows instruction ex-ecution to be traced by printing out each instruction as it is executed. Themvmsim executable is built as part of the standard rdp installation, so if youhave already run make on the supplied makefile you should have a workingsimulator. To check, type mvmsim at the command line prompt. You shouldsee the following output:Fatal: No source file specifiedmvmsim v1.5 - simulator for MVMUsage: mvmsim [options] source-l Show load sequence-t Print execution trace-v Set verbose modeYou can contact the author (Adrian Johnstone) at:Computer Science Department, Royal Holloway, University of LondonEgham, Surrey, TW20 0EX UK. Email: A.Johnstone@rhbnc.ac.ukThis is the standard mvmsim help message: in this case it has been triggeredbecause no source �le was speci�ed. It tells you about the three optional
agsthat can be supplied to mvmsim:� -l tells mvmsim to echo the data it is writing into the simulator's memoryduring the load phase� -t switches on trace mode in which instructions are echoed as they areexecuted� -v sets verbose mode which causes mvmsim to print out a title line, andthen at the end of a run, the total CPU time along with the number ofMVM instructions executed

mvmsim { a simulator for MVM byte codes 415.7.2 The mvmsim input �le formatThe MVM program to be simulated is read by mvmsim from an input �le whichcontains binary information rendered as a hexadecimal dump of the requiredmemory contents. Each line of the dump �le starts with a 16-bit hexadecimalnumber which speci�es the base address to which the rest of the data on thatline will be loaded. The data is speci�ed as zero or more pairs of hexadecimaldigits. Each pair speci�es the contents of one eight-bit memory cell, and thecorresponding memory locations are loaded in ascending order starting withthe base address.Spaces are allowed (but not required) between each pair of digits. Blanklines are also allowed.This kind of load format is commonly used by assemblers for real processors,although executable �le formats used by commercially available processors areusually in pure binary to save space. In a pure binary �le each location could berepresented by a single binary byte but in our case each location requires twobytes, each representing a hexadecimal character. Therefore, MVM executable�les are likely to be at least twice as large as their pure binary equivalents. Onthe other hand, pure binary �les can not easily be read into an editor or printedout.As well as specifying memory contents, the input �le must tell the simula-tor which memory location contains the �rst instruction to be executed. Themvmsim input �le uses a special format to specify this transfer address compris-ing an asterisk followed by the transfer address itself.The short example below shows the contents of an mvmsim input �le for aprogram comprising three instructions.1000 0C 01 000A 007B1006 10 11 0000 000A100C 00 11100E *1000The �rst instruction, based at location 100016 copies the number 12310(7B16) to the memory location 000A16. The next instruction prints out thecontents of that location as a decimal number and the third instruction isa halt which will cause the simulator to terminate. The �nal line speci�esa transfer address of 100016: the transfer address is denoted with a leadingasterisk (*) which warns the assembler not to attempt to load the data on thatline into memory. The �le may be found in the standard rdp distribution asexamples/rdp_case/mvmsim.sim.5.7.3 Running a simulationWe can run the simulator on the above test �le with all options enabled byissuing the commandmvmsim -l -t -v examples/rdp_case/mvmsim.simThe output of this command is shown below:

42 THE MINI VIRTUAL MACHINE (MVM)mvmsim v1.5 - simulator for mvmLoad address 1000 0C01000A007BLoad address 1006 10110000000ALoad address 100C 0011Load address 100E *10001000 CPY 000A, 007B, 0000 -> 007B1006 PRTI 0000, 007B, 0000 -> 0000 123100C HALT 0000, 0000, 0000 -> 0000 -- Halted --0.006 CPU seconds used, 3 MVM instructions executedAfter the title line, mvmsim echoes to the output the contents of the input�le as it is loaded into the internal memory. Execution then begins, startingat the transfer address. As each instruction is executed, mvmsim outputs theaddress of the instruction, its mnemonic and then the three operands in theorder dst, src1 and src2. If an operand is not used by an opcode, then 0000 isoutput. The operands are printed after the addressing mode has been resolved,that is the actual data to be operated on is displayed rather than its address.Hence, when the instruction at location 100616 is being executed, its secondoperand is shown as 7B16 not as 000A16 which is the address speci�ed in theload �le.The value written back to memory by the instruction is shown after a `yields'sign (->). If no value is written back (as for instance in the case of the prtiinstruction) then a zero is displayed.Any output produced by prti or prts instructions is displayed after the in-struction. If the -t option is not used on the command line, then the instructiondisplay is completely suppressed, so only program output appears.Finally, when the simulator encounters a halt instruction, it prints themessage -- Halted -- and terminates.5.7.4 Implementing mvmsimThe full source code of the simulator runs to a little over 300 lines of ANSI-Cwhich may be found in the �le mvmsim.c. In this section we shall look at theoverall structure of the simulator and look in detail at the code correspondingto the MVM instruction execution unit.About half of the code in mvmsim.c is concerned with processing the com-mand line options, parsing the input �le and then loading of the internal mem-ory. These functions are easy to understand, and we shall not discuss themfurther here. The parts of the code we are interested in are those that modelthe MVM architecture's memory and program counter, and the function thatcontrols the simulated execution of the MVM instructions.

mvmsim { a simulator for MVM byte codes 4318: #define MEM_SIZE 65536lu22: unsigned char memory[MEM_SIZE];23: unsigned long pc = 0;39: static int get_memory_byte(unsigned long address)52: static int get_memory_word(unsigned long address)65: static void put_memory_byte(unsigned long address, int data)71: static void put_memory_word(unsigned long address, int data)Figure 5.3 Extracts from the mvmsim simulator: memory declarationsMemory and program counter declarationsFigure 5.3 shows the declarations that model the MVM memory. Line 18 spec-i�es the size of the simulated memory, which is restricted to 65536lu (65536as a long unsigned number or 64K) bytes in this 16-bit MVM simulator. It ispossible to reduce the size of the MVM memory by adjusting this �gure, butof course MVM programs must then ensure that they only work within theavailable memory. The MVM internal memory itself is modeled by an arrayof unsigned char (line 22) and the program counter by an unsigned longinteger (line 23).We could access the MVM memory by simply reading and writing to thememory array, but one of the characteristics of machine level programmingis that programs often contain errors. A bad error might cause the simu-lator to run amok and start executing from illegal host addresses. So asto control this kind of problem, all memory access is channeled through theget_memory_byte(), get_memory_word(), put_memory_byte() and put_memory_word()routines declared in lines 39{76. These routines validate the memory address,issuing a fatal error message if the program being simulated tried to access anon-existent location.The get_memory_byte() and get_memory_word() routines take an addressand return either a single byte or a single word which is formed by concatenatingthe addressed byte with the contents of the location address + 1. In this case,the addressed byte forms the least signi�cant byte of the returned word. Theput_memory_word() function takes an address and a 16-bit data word. Theleast signi�cant byte of the data word is written into memory at the speci�edaddress, and the most signi�cant byte is loaded to location address + 1The main execution loopAfter the simulator has loaded the memory array and set the program counterto the value of the transfer address, the function mvmsim_execute() is called.This function loops until a halt instruction is encountered, executing one in-struction per iteration. The full source of the mvm_execute() function is shownin Figures 5.4{5.6.

44 THE MINI VIRTUAL MACHINE (MVM)160: static void mvmsim_execute(void)161: {162: int stop = 0;163:164: while (!stop)165: {166: unsigned op = get_memory_byte(pc),167: mode = get_memory_byte(pc + 1);168: int dst = get_memory_word(pc + 2),169: src1 = get_memory_word(pc + 4),170: src2 = get_memory_word(pc + 6);171:172: exec_count++;173:174: /* do indirections on modes */175: if ((mode >> 4) == 1)176: src1 = get_memory_word(src1);177:178: if ((mode & 7) == 1)179: src2 = get_memory_word(src2);180:Figure 5.4 Extracts from the mvmsim simulator: the execute function part 1Variable stop declared at line 162 is used as a
ag to signal terminationof the simulation. It is initialised to false, and only set to true when a haltinstruction is encountered. The main simulation loop comprises lines 164 to279. The body of the loop comprises the code to fetch the new instruction (lines166{170), the address mode resolution code in lines 174{179 and a large switchstatement which decodes the operation code (lines 181{278 shown in Figures 5.5and 5.6.). Within the switch statement, each of the 17 cases includes a call tothe display() function which provides the trace output if a -t option has beenspeci�ed on the simulator command line. Each case �nishes with an incrementof the program counter by the length in bytes of the decoded instruction.The address mode resolution code examines the mode byte loaded from theinstruction. If the corresponding mode �eld (see section 5.3) is a one, then thesource operand is reloaded with the contents of the memory location addressedby the data. There is no need to resolve the destination operand, becausedestinations are always assumed to be addresses not literal data.The code within the simulation loop provides a detailed speci�cation ofthe meaning of each instruction in terms of the semantics of ANSI-C. Thebne instruction for instance (lines 243{249) tests the value of the �rst sourceoperand against zero, and if the test succeeds the program counter is loadedwith the address speci�ed in the destination operand. If the test fails, theprogram counter is simply incremented in the normal way, thus passing controlto the next instruction.

mvmsim { a simulator for MVM byte codes 45181: switch (op)182: {183: case OP_ADD:184: put_memory_word(dst, src1 + src2);185: display("ADD ", dst, src1, src2);186: pc += 8;187: break;188: case OP_SUB:189: put_memory_word(dst, src1 - src2);190: display("SUB ", dst, src1, src2);191: pc += 8;192: break;193: case OP_MUL:194: put_memory_word(dst, src1 * src2);195: display("MUL ", dst, src1, src2);196: pc += 8;197: break;198: case OP_DIV:199: put_memory_word(dst, src1 / src2);200: display("DIV ", dst, src1, src2);201: pc += 8;202: break;203: case OP_EXP:204: put_memory_word(dst, (int) pow((double) src1, (double) src2));205: display("EXP ", dst, src1, src2);206: pc += 8;207: break;208: case OP_EQ:209: put_memory_word(dst, src1 == src2);210: display("EQ ", dst, src1, src2);211: pc += 8;212: break;213: case OP_NE:214: put_memory_word(dst, src1 != src2);215: display("NE ", dst, src1, src2);216: pc += 8;217: break;218: case OP_GT:219: put_memory_word(dst, src1 > src2);220: display("GT ", dst, src1, src2);221: pc += 8;222: break;Figure 5.5 Extracts from the mvmsim simulator: the execute function part 2

46 THE MINI VIRTUAL MACHINE (MVM)223: case OP_GE:224: put_memory_word(dst, src1 >= src2);225: display("GE ", dst, src1, src2);226: pc += 8;227: break;228: case OP_LT:229: put_memory_word(dst, src1 < src2);230: display("LT ", dst, src1, src2);231: pc += 8;232: break;233: case OP_LE:234: put_memory_word(dst, src1 <= src2);235: display("LE ", dst, src1, src2);236: pc += 8;237: break;238: case OP_CPY:239: put_memory_word(dst, src1);240: display("CPY ", dst, src1, src2);241: pc += 6;242: break;243: case OP_BNE:244: display("BNE ", dst, src1, src2);245: if (src1 != 0)246: pc = dst;247: else248: pc += 6;249: break;250: case OP_BEQ:251: display("BEQ ", dst, src1, src2);252: if (src1 == 0)253: pc = dst;254: else255: pc += 6;256: break;257: case OP_PRTS:258: display("PRTS", dst, src1, src2);259: printf("%s", memory + src1);260: pc += 6;261: break;262: case OP_PRTI:263: display("PRTI", dst, src1, src2);264: printf("%i", (int) src1);265: pc += 6;266: break;267: case OP_HALT:268: display("HALT", dst, src1, src2);269: printf(" -- Halted --\n");270: stop = 1;271: pc += 2;272: break;273: default:274: display("----", dst, src1, src2);275: text_printf("\n");276: text_message(TEXT_FATAL, "illegal instruction encountered\n");277: break;278: }279: }280: }Figure 5.6 Extracts from the mvmsim simulator: the execute function part 3

Chapter 6mvmasm { an assembler for MVMWriting MVM programs directly in the binary machine code is very error prone.In the early days of computing it was not unusual for programmers to take greatpride in their ability to remember all the binary codes for instructions, but evenif the machine code is easy to remember (as indeed it is for the very simple MVMprocessor) it is still hard to keep track of lots of variables if they can only bereferred to by their numeric machine addresses.Assemblers evolved as the earliest available programming aids. Most assem-blers provide two basic facilities:� a set of mnemonic names for the machine instructions� the ability to label instructions and data locations allowing jump targetsand variable addresses to be referred to using symbolic names rather thannumeric values.In addition, assemblers usually allow arithmetic to be performed on symbolicaddresses. This allows the address calculations associated with array indexing,record �eld selection and jump branch selection to be done by the assembler,rather than by the programmer.6.1 A �rst exampleThe mvmasm source code corresponding to the short example used in section 5.7.3is shown below: a variable is loaded with decimal 123 and then printed.;Simulator example fileDATA 0x000A ;start assembling data at address 000A hextemp: WORD 1 ;declare an integer variable called tempCODE 0x1000 ;switch to assembling code at address 1000 hexstart:CPY temp, #123 ;load temp with decimal 123PRTI temp ;print the value of temp as an integerHALT ;terminate the simulatorEND start ;transfer address is code start

48 MVMASM { AN ASSEMBLER FOR MVMEach line of mvmasm source code may contain a label such as temp: orstart:, an instruction such as PRTI temp and a comment which comprisesanything between a semicolon ; and the end of a line. All three of these �eldsare individually optional, so lines containing only a label, only an instructionor only a comment are valid as indeed are blank lines.Most instructions in an assembler program correspond to machine opcodes,but some are directives which are instructions to the assembler. In the exampleabove, the instructions DATA, CODE, WORD and END are directives.6.1.1 Assembler outputThe e�ect of assembling opcodes and executing directives is best seen by ex-amining the assembler's output. The example source code is available withinthe rdp distribution as �le examples/rdp_case/mvmsim.mvm. Executing thecommandmvmasm -l examples/rdp_case/mvmsimproduces the following output listing:******:0000 1: ;Simulator example file0000 2: DATA 0x000A ;start assembling data at address 000A hex000A 0001 3: temp: WORD 1 ;declare an integer variable called temp000C 4:000C 5: CODE 0x1000 ;switch to assembling code at address 1000 hex1000 6: start:1000 0C01000A007B 7: CPY temp, #123 ;load temp with decimal 1231006 10110000000A 8: PRTI temp ;print the value of temp as an integer100C 0011 9: HALT ;terminate the simulator100E 10:100E *1000 11: END start ;transfer address is code start******: Transfer address 00001000******: 0 errors and 0 warningsListing formatThis listing shows the familiar line numbered source �le listing on the right,with the assembler generated output on the left. The �rst �eld of the outputis the current assembly address, that is the MVM memory address to whichany data or instructions following on the line will be loaded. A single space isfollowed by a string of pairs of hexadecimal digits representing the assembledoutput. You will see that the output is in the same format as the input for themvmsim.Assembly using the DATA and CODE pointersTwo internal counters are maintained by mvmasm called the current data ad-dress and the current code address. Their values are set by the DATA and CODEdirectives respectively and they keep track of the next available data and codememory locations. Since MVM is a Von Neumann processor, data and codemay be loaded at any memory locations, but it is conventional to separate them

A �rst example 49into blocks. Line 2 (DATA 0x000A) sets the current data address to hexadecimal000A and makes the data pointer the current assembly address. All subsequentinstructions will be assembled into succeeding locations until such time as an-other DATA or CODE directive is encountered. If a DATA or CODE directive appearson its own without an operand then it simply switches the current assemblyaddress to the current data address or current code address respectively.LabelsLabels have the same syntactic form as C language identi�ers, that is an al-phabetic character or an underscore followed by zero or more alpha-numericcharacters or underscores. A label de�nition must be followed by a colon (:).When a label is encountered, it is given the value of the current assembly ad-dress. Whether a label gets the current data address or the current code addressdepends upon which of the DATA and CODE directives was most recently encoun-tered. Hence, in the above example temp is given the value 000A16 (the currentdata address) and start the value 100016 (the current code address).Machine instructions and addressing modesLines 7, 8 and 9 show actual machine instructions being assembled. Eachline comprises one of the operation codes from Table 5.1 followed by betweenzero and three operands. An operand may be either an address or literaldata, which is distinguished by a preceding hash # sign. Hence the instruc-tion CPY temp, #123 assembles to 0B 01 000A 007B where 000A is the valueof the label temp and 007B is the hexadecimal form of the literal decimal con-stant #123. As in ANSI-C, hexadecimal numbers are marked by the pre�x 0x.Numeric values lacking this pre�x are assumed to be decimal.Data declaration directivesData may be declared using the WORD directive, which speci�es that enoughspace be reserved for a machine word (two bytes) and in this case also providesan initialisation expression so that temp is initialised to 1. There are other datadeclaration directives which may be used to reserve larger blocks of storage.These other directives are described below in section 6.2.5.The END directiveLine 11 shows an END directive which both marks the end of the assembler input�le and speci�es the transfer address, that is the address of the �rst instructionto be executed by the simulator. In this case, the value of the start label,which is 1000166.1.2 Using the assembler and the simulator togetherThe assembler is usually used to prepare input for the mvmsim simulator, and ifthe assembler is invoked with a -x option then the simulator will be automati-

50 MVMASM { AN ASSEMBLER FOR MVMcally run in trace mode on the assembler output. Hence issuing this commandmvmasm -l -x examples/rdp_case/mvmsim.mvmproduces this output:******:0000 1: ;Simulator example file0000 2: DATA 0x000A ;start assembling data at address 000A hex000A 0001 3: temp: WORD 1 ;declare an integer variable called temp000C 4:000C 5: CODE 0x1000 ;switch to assembling code at address 1000 hex1000 6: start:1000 0C01000A007B 7: CPY temp, #123 ;load temp with decimal 1231006 10110000000A 8: PRTI temp ;print the value of temp as an integer100C 0011 9: HALT ;terminate the simulator100E 10:100E *1000 11: END start ;transfer address is code start******: Transfer address 00001000******: Calling simulator: mvmsim -t -v mvmasm.outmvmsim v1.5 - simulator for mvm1000 CPY 000A, 007B, 0000 -> 007B1006 PRTI 0000, 007B, 0000 -> 0000 123100C HALT 0000, 0000, 0000 -> 0000 -- Halted --0.030 CPU seconds used, 3 MVM instructions executed******: 0 errors and 0 warnings6.2 Assembler syntax referenceIn this section we describe the features of the mvmasm assembler in terms ofthe lexical structure, the available arithmetic operators, the directives and themachine instructions. The implementation of mvmasm as an rdp translator spec-i�cation is described in the next section. Large examples of mvmasm code whichexercise most of the features may be found in the following chapters, whichdescribe compilers that translate to mvmasm.6.2.1 Line oriented and free format languagesThe mvmasm syntax follows the tradition of assemblers in being line oriented withonly one statement allowed per line. Early high level programming languageswere line oriented in this way, but most programming languages designed sincethe early 1960's have been free format, allowing whitespace and line breaks toappear between any two language tokens. Low level languages such as assem-blers have tended to retain the older style, not least because it can be simplerto hand write a parser for a line oriented language. In particular, error recoveryis eased: if a syntax error is detected on a line then after reporting the error theparser can simply restart at the start of the next line. The re-synchronisationof the parser after an error in a free format language can be much harder, and

Assembler syntax reference 51as a result errors in free format languages can generate an avalanche of spuriouserror messages.6.2.2 Lexical elementsIdenti�ers in mvmasm follow the rules for identi�ers in ANSI-C, that is an identi-�er may begin with an alphabetic character or an underscore and continue withzero or more alphabetic characters, digits or underscores. The length of an iden-ti�er is limited only by the available memory within the running assembler andis for practical purposes unbounded.Numbers start with a digit. If the �rst digit is a zero (0) and this is immedi-ately followed by a lower or upper case x character, then the rest of the numberis assumed to be in hexadecimal format, otherwise the number is assumed tobe decimal. Decimal numbers are made up of the digits 0{9. Hexadecimalnumbers can additionally use the letters A{F in either upper or lower case torepresent hexadecimal 10{15 respectively.Within a line, space and tab characters may be used to format the source.Comments are marked by a leading semicolon (;). Any characters between asemicolon and the end of a line are ignored by the assembler. A comment maystart in any column.6.2.3 ExpressionsIn any mvmasm context requiring a numeric value, an expression may be used.Expression operands may be identi�ers or numbers as de�ned above, or the pre-de�ned identi�ers TRUE and FALSE which are synonyms for the values 1 and 0respectively. The full set of ANSI-C numeric operators is provided, augmentedby the operator ** which stands for exponentiation. The supported operators,with their priorities on a scale of 1 (the lowest) to 11 (the highest) are listedin Table 6.1. Internally, all assembler arithmetic is done with the precision ofa long integer. Most C compilers treat this as a 32-bit integer.6.2.4 Instructions and addressing modesThe 17 MVM instructions are assembled using the mnemonics listed in Ta-ble 5.1. Operands are separated by commas, and take the form of an expressionas de�ned above. For source, but not destination, operands the expression maybe preceded by a hash sign (#) denoting literal addressing mode. The hash hasno e�ect on the value returned by the expression, but sets the addressing modefor the operand containing the # to literal mode.The following are all valid instructions:ADD temp, x, y ;sum x and ySUB temp, temp, #1 ;decrement temp by 1SUB temp, temp, #x ;decrement temp by the value of xSUB temp, temp, x ;decrement temp by the value of the contents;of memory location with address x

52 MVMASM { AN ASSEMBLER FOR MVM
Operator Priority Function> 1 Greater than< 1 Less than>= 1 Greater than or equal to<= 1 Less than or equal to== 1 Equal to!= 1 Not equal to|| 2 Logical inclusive OR&& 3 Logical AND^ 4 Bitwise exclusive OR| 5 Bitwise inclusive OR& 6 Bitwise AND<< 7 Shift left>> 7 Shift right+ 8 Add- 8 Subtract* 9 Divide/ 9 Multiply- 10 Monadic - (negate)+ 10 Monadic + (posite)~ 10 Bitwise complement! 10 Logical not** 11 ExponentiateTable 6.1 Operator priorities in mvmasm

Assembler syntax reference 53CPY temp, #(300 + 6) * 2 ;assign 612 to tempHALT ;terminate executionBEQ temp, start ;If temp is zero, branch to start otherwise;continue execution with the next instruction6.2.5 DirectivesFile inclusionINCLUDE ("�lename") { Open �lename for reading at this point, continuingto read the parent �le after the end of �lename has been reached. Thisdirective works just like the #include preprocessor directive in ANSI-Cand the INCLUDE directive in rdp's IBNF source language.Assembly pointer manipulationCODE optional-expression { Use the CODE pointer for subsequent assembly. Ifthe optional-expression is present, set the CODE pointer to its value, oth-erwise carry on assembling starting at the most recent value of the CODEpointer. The CODE pointer is initialised to zero when the assembler starts.DATA optional-expression { Use the DATA pointer for subsequent assembly. Ifthe optional-expression is present, set the DATA pointer to its value, oth-erwise carry on assembling starting at the most recent value of the DATApointer. The DATA pointer is initialised to zero when the assembler starts.Data declaration directivesWORD expression { Reserve a word (two bytes) of memory and initialise thecontents to the value of expression.BLOCKW expression { Reserve expression words (2 � expression bytes) of mem-ory. No initialisation of the memory is performed.STRING "character-string" { Reserve su�cient bytes to hold the number ofcharacters in character-string plus one, and initialise them to hold thecharacter-string and a terminating zero byte.Symbol assignmentlabel: EQU expression { Force the value of label to be the value of expression.This allows symbols to be set to arbitrary values, rather than the defaultbehaviour which is for symbols to acquire the value of the assembly pointerat the time they are translated. The following are legal uses of EQU:large_prime: EQU 131 ;large_prime <- 131top_bit: EQU 128 ;top_bit <- 128

54 MVMASM { AN ASSEMBLER FOR MVMlength: EQU top_bit + 1 ;length <- 129Transfer address speci�cationEND expression { Mark the last valid line of the assembler source �le and setthe transfer address to the value of expression. The transfer address iswritten into the output �le, and is used by the simulator to specify theaddress of the �rst instruction to be executed by the simulator.6.3 Implementing mvmasmAssembler syntax is designed to be easy to parse, and it is quite straightforwardto design an assembler completely by hand. However, this tutorial manual isabout rdp, so we shall use rdp to implement mvmasm. It turns out that twospecial rdp features are needed to e�ciently implement assemblers: support formultiple passes and support for line oriented languages.6.3.1 Multiple pass parsersAn interesting aspect of nearly all high level languages is that they may betranslated in a single pass. This requires variables and functions to be declaredbefore they are used, a rule rigidly enforced by Pascal and loosely enforced withthe help of default behaviour in C. In an assembler, however, such a rule wouldmake writing programs very tedious because of the large number of forwardjumps present in real code. A forward jump has this form:BEQ temp, done......done:...Recall that labels take the value of the current assembly address at the pointof their declaration, so declaring a label before it is used is not helpful here.On the other hand, the actual value of done will be unknown when the BEQinstruction is encountered for the �rst time.There are three solutions to this predicament: we can either ban forwardreferences; we can use a �xup; or we can use a multiple pass assembler. The�rst option is draconian since it means that only backward jumps are allowable.Remarkably, the standard assembler for at least one real computer (the DigicoM16 minicomputer, a 16-bit machine with an architecture similar to that of the12-bit DEC PDP-8) did indeed enforce this restriction. This machine assembledfrom paper tape, and internal memory was very limited. In addition, the designof the instruction set meant that forward jumps were less common than onmodern machines so the designers thought that only having to feed the sourcepapertape through once was a su�cient advantage to justify banning forwardreferences.

Implementing mvmasm 55A �xup assembler assembles the source into a bu�er in memory. Whenit encounters the BEQ instruction above, it assumes a value of zero for thevalue of the label done, but also adds the instruction to a list of references fordone. When it subsequently assembles the de�nition of done, it then knows thecorrect value and so can go back through the list for done �lling in the correctvalue wherever it has been used. This approach, called �xing up the forwardreferences, allows assembly to be completed in a single pass of the source �le,but it requires the assembler to maintain an internal bu�er which is as largeas the largest possible program that could be assembled, and in addition apotentially large number of reference lists. In practice, a �xup based assemblercan be rather complicated and might require a large amount of runtime storage.By far the most common solution to the problem is to make two or morepasses over the source �le. On the �rst pass, a symbol table is loaded withthe labels and their values as they are encountered. If they are �rst seen as anoperand, then the corresponding table entry is loaded with an arbitrary value.By the end of the �rst pass, however, de�nitions will have been seen for all thesymbols if the source program is syntactically well formed. The assembler thenrepeats the entire process, but making use of the label information from the�rst pass. The success of this approach relies on the fact that all instructionsuse a �xed size �eld to hold symbol values. As a result, the position of eachinstruction and data item in memory is �xed during the �rst pass, so symbolvalues will not change as a result of other symbols changing their value.Are two passes su�cient? Well, if our only concern is forward references thetwo passes are enough, but consider this use of the EQU directive:first: EQU second + 2second: EQU third + 3third: EQU 100Here we have a chain of forward references. On pass one, labels first andsecond are to receive the value of expressions which include unknown data butlabel third will be correctly set to 100. On pass two label second can becorrectly set to 103, but label first is still indeterminate, so in this case twopasses is not su�cient. In general, we need as many passes as there are levels offorward referencing plus one. Since we can always add another level of forwardreferencing to a source �le, any �xed number of passes is insu�cient.In practice, this situation is rather arti�cial, and real assemblers typicallyput an upper limit on the number of passes although it is not hard to simplykeep re-parsing until all the symbols in the symbol table are determined. Themvmasm parser makes three passes, so it can in fact handle the situation shownabove, but no more than two levels of forward referencing are allowed. As weshall see in a later section, rdp generated parsers can be set to make multiplepasses by adding a directive of the form PASSES(3) to the rdp BNF speci�cation�le.

56 MVMASM { AN ASSEMBLER FOR MVM6.3.2 The EOLN scanner primitiveAs noted in section 6.2.1 assemblers (and some early languages like the originalFORTRAN) are line oriented, in that a maximum of one statement per lineof source �le is allowed. The rdp generated parsers that we have looked atpreviously have been free format in that line ends and white space may beintroduced arbitrarily between language tokens so as to format the source �le forhuman convenience. rdp provides a special scanner primitive denoted by EOLNwhich matches against the line end marker, and a special comment primitiveCOMMENT_LINE which can be used to specify comments which are introduced bya grammar token and terminated by a line end. If an rdp grammar does notinclude any instances of EOLN then line end markers are suppressed and treatedas whitespace.6.4 The mvmasm grammarA listing of mvmasm.bnf, the rdp speci�cation for mvmasm is shown in Fig-ures 6.1{6.3. The main body of the mvmasm grammar is shown in Figure 6.2.The third part of the listing (Figure 6.3) shows a self contained interpreterfor arithmetic expressions based on the C-language operators. This part ofthe grammar is a useful starting point for any small language based aroundexpression evaluation. We shall look at the three parts in turn.6.4.1 Directives for setting up the parsermvmasm source �les have default �le type .mvm as speci�ed in line 11. Threeheader �les are used by the grammar: mvm_aux.h which contains the functionprototypes for the auxiliary functions described in the next section, mvm_def.hwhich contains an enumeration listing the MVM operation codes (see Fig-ure 6.4) and the ANSI-C library �le math.h which is used to implement theexponentiation operator.6.4.2 The MVM de�nition headerThe parser uses three passes to resolve forward references in the way describedabove. Output �le handling is performed by the PRE and POST_PARSE functions(init() and quit(), respectively) declared on lines 18 and 19. The -x com-mand line switch is set up using an ARG_BOOLEAN directive in line 21 along withsome other additional information for the help message.mvmasm uses a symbol table to keep track of labels and their contents. Whena label is �rst declared it is added to the symbol table and given the value ofthe assembler's current location counter. However, the EQU directive can beused to assign arbitrary numeric values to labels by evaluating expressions,and label values may of course be used in those expressions. Thus labels inmvmasm perform the same rôle as variables in the minicalc interpreter andit is perhaps to be expected that the symbol table declaration in lines 28{35is essentially identical to the symbol table declaration in the minicalc and

The mvmasm grammar 571: (***2: *3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 19974: *5: * mvmasm.bnf - an assembler for Mini Virtual Machine assembler language6: *7: * This file may be freely distributed. Please mail improvements to the author.8: *9: ***)10: TITLE("mvmasm v1.5 - absolute assembler for mvm")11: SUFFIX("mvm")12: USES("mvm_aux.h")13: USES("math.h")14: USES("mvm_def.h")15: PASSES(3)16: PARSER(unit) (* name of start production *)17:18: PRE_PARSE([* init(rdp_outputfilename); *])19: POST_PARSE([* quit(rdp_outputfilename); *])20:21: ARG_BOOLEAN(x execute_sim "execute assembled code using mvmsim simulator")22: ARG_BLANK("")23: ARG_BLANK("You can contact the author (Adrian Johnstone) at:")24: ARG_BLANK("")25: ARG_BLANK("Computer Science Department, Royal Holloway, University of London")26: ARG_BLANK("Egham, Surrey, TW20 0EX UK. Email: A.Johnstone@rhbnc.ac.uk")27:28: SYMBOL_TABLE(mvmasm 101 3129: symbol_compare_string30: symbol_hash_string31: symbol_print_string32: [* char *id;33: integer val;34: *]35:)36:37: unit ::= [* emit_code = (rdp_pass == 3);38: data_location = code_location = 0; /* clear location counters */39: location = &code_location; /* make code counter current */40: dummy_label = symbol_new_symbol(sizeof(mvmasm_data)); /* initialise error symbol */41: *]42: { code }.43:44: code ::= [* emit_eoln(); emit_loc(); last_label = NULL; *]45: [label ':'] [instr] [* emit_fill(); *] EOLN.46: Figure 6.1 An rdp BNF speci�cation for mvmasm part 1: rdp directives and thestart production

58 MVMASM { AN ASSEMBLER FOR MVM47: label ::= ID:lab48: [* if ((last_label = symbol_lookup_key(mvmasm, &lab, NULL)) == NULL)49: last_label = symbol_insert_key(mvmasm, &lab, sizeof(char*), sizeof(mvmasm_data));50: mvmasm_cast(last_label)->val = *location;51: *].52:53: instr ::= diadic | copy | branch | print | halt | directive.54:55: diadic ::= [* int op, m1 = 1, m2 = 1; *]56: (57: 'ADD' [* op = OP_ADD; *] e1: dst ',' ['#' [* m1=0; *]] e1: src1 ',' ['#' [* m2=0; *]] e1:src2 |58: 'SUB' [* op = OP_SUB; *] e1: dst ',' ['#' [* m1=0; *]] e1: src1 ',' ['#' [* m2=0; *]] e1:src2 |59: 'MUL' [* op = OP_MUL; *] e1: dst ',' ['#' [* m1=0; *]] e1: src1 ',' ['#' [* m2=0; *]] e1:src2 |60: 'DIV' [* op = OP_DIV; *] e1: dst ',' ['#' [* m1=0; *]] e1: src1 ',' ['#' [* m2=0; *]] e1:src2 |61: 'EXP' [* op = OP_EXP; *] e1: dst ',' ['#' [* m1=0; *]] e1: src1 ',' ['#' [* m2=0; *]] e1:src2 |62:63: 'EQ' [* op = OP_EQ; *] e1: dst ',' ['#' [* m1=0; *]] e1: src1 ',' ['#' [* m2=0; *]] e1:src2 |64: 'NE' [* op = OP_NE; *] e1: dst ',' ['#' [* m1=0; *]] e1: src1 ',' ['#' [* m2=0; *]] e1:src2 |65: 'GT' [* op = OP_GT; *] e1: dst ',' ['#' [* m1=0; *]] e1: src1 ',' ['#' [* m2=0; *]] e1:src2 |66: 'GE' [* op = OP_GE; *] e1: dst ',' ['#' [* m1=0; *]] e1: src1 ',' ['#' [* m2=0; *]] e1:src2 |67: 'LT' [* op = OP_LT; *] e1: dst ',' ['#' [* m1=0; *]] e1: src1 ',' ['#' [* m2=0; *]] e1:src2 |68: 'LE' [* op = OP_LE; *] e1: dst ',' ['#' [* m1=0; *]] e1: src1 ',' ['#' [* m2=0; *]] e1:src269:) [* emit_op(op, dst, src1, src2, m1, m2, 3); *] .70:71: copy ::= [* int m1 = 1; *]72: 'CPY' e1: dst ',' ['#' [* m1=0; *]] e1: src [* emit_op(OP_CPY, dst, src, 0, m1, 1, 2); *] .73:74: branch ::= 'BEQ' e1: src ',' e1: label [* emit_op(OP_BEQ, label, src, 0, 1, 1, 2); *] |75: 'BNE' e1: src ',' e1: label [* emit_op(OP_BNE, label, src, 0, 1, 1, 2); *] |76: 'BRA' e1: label [* emit_op(OP_BEQ, label, 0, 0, 0, 1, 2); /* force immediate mode */ *] .77:78: print ::= [* int m1 = 1; *]79: (80: 'PRTS' e1: src [* emit_op(OP_PRTS, 0, src, 0, 0, 1, 2); /* force immediate mode */ *] |81: 'PRTI' ['#' [* m1=0; *]] e1: src [* emit_op(OP_PRTI, 0, src, 0, m1, 1, 2); *]82:).83:84: halt ::= 'HALT' [* emit_op(OP_HALT, 0, 0, 0, 1, 1, 0); *] .85:86: directive ::= 'INCLUDE' '(' string: filename ')'87: [* if (text_open(filename) == NULL)88: text_message(TEXT_ERROR_ECHO, "include file '%s' not found\n", filename);89: else90: {91: text_get_char();92: scan_();93: }94: *] |95:96: 'CODE' [* location = &code_location; *] [e1:n [* *location = n; *]] |97: 'DATA' [* location = &data_location; *] [e1:n [* *location = n; *]] |98: 'WORD' e1:val [* emit2(val); *] |99: 'BLOCKW' e1:val [* *location += 2 * val; *] |100: 'STRING' string:str [* while (*str!=0) emit1(*str++); emit1(0); *] |101: 'EQU' e1:val [* mvmasm_cast(current_label())->val = val; *] |102: 'END' e1: val [* transfer = val; emit_transfer(); *] .103: Figure 6.2 An rdp BNF speci�cation for mvmasm part 2: instructions

The mvmasm grammar 59104: (* Expression interpreter using C operators and long int data ***************)105:106: e1:integer ::= e2:result ['>' e2:right [* result = result > right; *] | (* Greater than *)107: '<' e2:right [* result = result < right; *] | (* Less than *)108: '>=' e2:right [* result = result >= right; *] | (* Greater than or equal to *)109: '<=' e2:right [* result = result <= right; *] | (* Less than or equal to *)110: '==' e2:right [* result = result == right; *] | (* Equal to *)111: '!=' e2:right [* result = result != right; *]]. (* Not equal to *)112:113: e2:integer ::= e3:result {'||' e3:right [* result = result || right; *]}. (* Logical inclusive OR *)114:115: e3:integer ::= e4:result {'&&' e4:right [* result = result && right; *]}. (* Logical AND *)116:117: e4:integer ::= e5:result {'^' e5:right [* result ^= right; *]}. (* Bitwise exclusive OR *)118:119: e5:integer ::= e6:result {'|' e6:right [* result |= right; *]}. (* Bitwise inclusive OR *)120:121: e6:integer ::= e7:result {'&' e7:right [* result &= right; *]}. (* Bitwise AND *)122:123: e7:integer ::= e8:result {'<<' e8:right [* result <<= right; *] | (* Shift left *)124: '>>' e8:right [* result >>= right; *] }. (* Shift right *)125:126: e8:integer ::= e9:result {'+' e9:right [* result += right; *] | (* Add *)127: '-' e9:right [* result -= right; *] }. (* Subtract *)128:129: e9:integer ::= e10:result {'*' e10:right [* result *= right; *] | (* Divide *)131:132: e10:integer ::= '+' e10:result | (* Posite *)133: '-' e10:result [* result = -result; *] | (* Negate *)134: '~' e10:result [* result = ~result; *] | (* Bitwise complement *)135: '!' e10:result [* result = !result; *] | (* Logical not *)136: e11:result.137:138: e11:integer ::= e0:result ['**' e10:right [* result = (integer) pow((double) result, (double) right); *]].139:140: e0:integer ::= [* mvmasm_data* temp; *]141: ID:name142: [* temp = mvmasm_cast(symbol_lookup_key(mvmasm, &name, NULL));143: if (temp == NULL)144: {145: if (rdp_pass == 3)146: text_message(TEXT_ERROR_ECHO,"Undefined symbol '%s'\n", name);147: result = 0;148: }149: else150: result = temp->val;151: *] | (* Variable *)152: INTEGER:result | (* Numeric literal *)153: 'TRUE' [* result = 1; *] | (* Logical TRUE *)154: 'FALSE' [* result = 0; *] | (* Logical FALSE *)155:156: '(' e1:result ')'. (* Parenthesised expression *)157:158: string: char* ::= STRING_ESC('"' '\\'):result.159:160: Comment ::= COMMENT_LINE(';').Figure 6.3 An rdp BNF speci�cation for mvmasm part 3: expressions

60 MVMASM { AN ASSEMBLER FOR MVM1: /***2: *3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 19974: *5: * mvm_def.h - Mini Virtual Machine opcode definitions6: *7: * This file may be freely distributed. Please mail improvements to the author.8: *9: ***/10: enum opcodes{OP_HALT, OP_ADD, OP_SUB, OP_MUL, OP_DIV, OP_EXP,11: OP_EQ, OP_NE, OP_GT, OP_GE, OP_LT, OP_LE,12: OP_CPY,13: OP_BNE, OP_BEQ,14: OP_PRTS, OP_PRTI};Figure 6.4 The MVM opcode de�nitionsminicond grammars. The alphanumeric label indenti�er is stored in the char*�eld id and the value of the label is held in the val �eld.6.4.3 The main mvmasm grammarThe top level rule unit accepts zero or more lines of assembler source. unititself is activated three times, once for each pass over the source. rdp auto-matically resets the input at the start of each pass, but some mvmasm variablesneed to be re-initialised each time as shown in lines 37{40. The boolean
agemit_code is set to true on pass three and is used to control the output tothe binary �le: code emission is inhibited on passes one and two when this
ag is false. Both the data and code location counters are zeroed, and thecode location is set as the default assembly address. Finally, dummy_label isinitialised to point to a new symbol table record. This record is used to handleerrors involving the EQU assembler directive as will be described below.Each line of assembler source is processed by the code rule which can matchan optional label, an optional instruction and a line end (EOLN) primitive. Atthe start of each line, an end of line character is sent to the output by callingemit_eoln() followed by the value of current location counter. The globalvariable last_label is set to NULL to indicate that no label has been seenyet on this line. After processing the contents of the line the code rule callsemit_fill() to pad the binary output to column 16. This ensures that themixed binary/source output listing is properly aligned.Labels are processed by rule label. The string representing the label'sname is returned in attribute lab and the semantic action in lines 48{51 �rstlooks up the label in the symbol table (inserting it if not already present) beforeloading the current value of the location counter into the symbol's val �eld. Itshould be clear that labels may be rede�ned in mvmasm, that is they may appearmore than once in a label �eld. This is primarily intended to allow labels tohave new values assigned with the EQU directive, but it does mean that a labelmight accidentally be used several times within a code segment and it is hardto imagine a situation where this would not represent a programming error.The reader might like to consider whether it would be appropriate to issue a

The mvmasm grammar 61warning message when such a doubly-declared label is encountered.Rule instr on line 53 splits the handling of instructions into six cases: the�rst �ve handle the �ve syntactically di�erent classes of MVM instructions andthe sixth handles the assembler directives.The diadic instructions (matched by rule diadic) illustrate the general prin-ciples used in all MVM instruction processing. Three local variables op, m1 andm2 are used to collect the operation code and the addressing modes for thetwo destination operands. Upon recognition of the opcode op is set to thecorresponding member of the opcodes enumeration shown in Figure 6.4. Theaddressing modes are set to 1 (variable mode addressing) by default but areset to 0 (constant mode addressing) if the corresponding operand starts witha # character. The expression evaluator (which is described in the next sec-tion) is called for each operand. After the line has been processed the auxiliaryfunction emit_op() is called to output the binary pattern corresponding to theinstruction.The other MVM instructions are processed similarly. The eight assemblerdirectives are handled by rule directive. The INCLUDE directive collects a�lename and calls text_open() to lookup and open the �le. If the �le is notfound, text_open() returns NULL and an error message is issued. If the �leis successfully opened, the text handler and scanner are initialised (lines 91{92). There is no need to restore the scanner and text handler context when anincluded �le is closed because the text handler performs this task automatically.The CODE and DATA directives switch the current assembly location to thecode or data pointer respectively. They also optionally take an expression andupdate the location accordingly.The WORD, BLOCKW and STRING directives allocate storage space for data.WORD takes an expression which is evaluated and emitted directly. The BLOCKWalso takes an expression which is then used to update the location counter whichhas the e�ect of reserving a block of storage without initialising it. The STRINGdirective accepts a double quote delimited string and then emits along with aterminating zero (the ASCII nul character).The EQU directive takes an expression and updates the current label's val�eld accordingly. The END directive marks the end of the assembly unit andspeci�es the start address of the unit.6.4.4 The expression evaluatorThe expression evaluator follows the general principles used in the minicalcinterpreter. In mvmasm a more complete set of operators is available than inminicalc, corresponding to the complete set of ANSI-C integer operators aug-mented with the exponentiation operator **. Two literal values have also beenadded, true and false, which yield 1 and 0 respectively. Identi�ers are checkedfor validity on the �nal pass (lines 143{150): unde�ned labels on earlier passesare simply ignored.

62 MVMASM { AN ASSEMBLER FOR MVM1: /***2: *3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 19974: *5: * mvm_aux.c - Mini Virtual Machine assembler semantic routines6: *7: * This file may be freely distributed. Please mail improvements to the author.8: *9: ***/10: #include <stdarg.h>11: #include <stdio.h>12: #include <stdlib.h>13: #include "scan.h"14: #include "memalloc.h"15: #include "textio.h"16: #include "mvmasm.h"17: #include "mvm_aux.h"18:19: int emit_code = 0;20: int execute_sim = 0;21:22: static FILE * objfile = NULL;23:24: unsigned long * location;25: unsigned long data_location;26: unsigned long code_location;27: unsigned long transfer = 0;28:29: void * last_label = NULL; /* pointer to most recently seen label */30: void * dummy_label = NULL; /* dummy symbol returned by current label on error */31:32: static int emitted = 0; /* Count of bytes emitted this line */33: Figure 6.5 mvmasm auxiliary functions part 1: declarations6.5 mvmasm auxiliary functionsThe mvmasm auxiliary functions shown in Figures 6.5 {6.7 perform �le handlingand output to the binary object �le. Function emitf() (lines 34{51) forms theheart of the output routines: it simulates the behaviour of the ANSI-C printf()output function by accepting a formatted output string and an arbitrary numberof output �elds and then using ANSI-C vprintf() and vfprintf() functionsto format the output. The ANSI-C standard library macros va_list, va_startand va_end are used to handle the variable number of arguments which emitf()may be passed| see any good book on ANSI-C for an explanation of their use.If the emit_code
ag is false, the output is simply discarded, but if it is true (asit will be on pass 3) then the output is sent to the object �le. In addition, if textechoing is enabled with a -l command line option (to construct an assemblerlisting) then up to the �rst 16 characters are also echoed to the screen.The functions emit_transfer(), emit_loc() and emit_fill() call emitf()to print the transfer address and the current value of the location counter andto pad the line with spaces to column 16.

mvmasm auxiliary functions 6334: static int emitf(char * fmt, ...) /* conditional print to object file */35: {36: int i;37: va_list ap; /* argument list walker */38:39: va_start(ap, fmt);40:41: if (emit_code) /* no-op if not emitting... */42: {43: if (emitted < 16 && text_get_echo())44: i = vprintf(fmt, ap);45: vfprintf(objfile, fmt, ap); /* ... otherwise pass to fprintf() */46: }47:48: va_end(ap);49:50: return(i); /* for completeness, although not used here */51: }52:53: void emit_eoln(void)54: {55: if (emit_code)56: fprintf(objfile, "\n");57: }58:59: void emit_transfer(void)60: {61: if (emit_code)62: emitted += emitf("*%.4lX", transfer);63: }64:65: void emit_loc(void)66: {67: emitted = 0;68: emitf("%.4lX ", * location);69: }70:71: void emit_fill(void)72: {73: if (text_get_echo())74: {75: while (emitted++ < 16) printf(" ");76: printf(" ");77: }78: }79:80: void emit_op(int op, unsigned long oper1, unsigned long oper2, unsigned long oper3,int mode1, int mode2, int opers)81: {82: emit1((unsigned long) op); /* output opcode */83: emit1((unsigned long)((mode1 << 4)| mode2)); /* output addressing modes */84: if (opers > 0)85: emit2(oper1);86: if (opers > 1)87: emit2(oper2);88: if (opers > 2)89: emit2(oper3);90: }91: Figure 6.6 mvmasm auxiliary functions part 2: main output routines

64 MVMASM { AN ASSEMBLER FOR MVM92: void emit1(unsigned long val)93: {94: emitted += emitf("%.2lX", val);95: (* location)++;96: }97:98: void emit2(unsigned long val)99: {100: emitted += emitf("%.4lX", val);101: (* location)+= 2;102: }103:104: void * current_label(void) /* check that there is a valid label on this line */105: {106: if (last_label == NULL)107: {108: text_message(TEXT_ERROR_ECHO, "Missing label on directive\n");109: return & dummy_label;110: }111: else112: return last_label;113: }114:115: void init(char * outputfilename)116: {117: if (* outputfilename == '-')118: objfile = stdout;119: else if ((objfile = fopen(outputfilename, "w"))== NULL)120: text_message(TEXT_FATAL, "Unable to open object file");121: }122:123: int quit(char * outputfilename)124: {125: fclose(objfile);126:127: text_message(TEXT_INFO, "Transfer address %.8lX\n", transfer);128:129: if (execute_sim && * outputfilename != '-')130: {131: #define COMMAND "mvmsim -t -v "132: char * command =(char *) mem_calloc(1, strlen(outputfilename)+ strlen(COMMAND)+ 1);133:134: command = strcat(command, COMMAND);135: command = strcat(command, outputfilename);136:137: text_message(TEXT_INFO, "Calling simulator: %s \n", command);138:139: if (system(command)!= 0)140: text_message(TEXT_FATAL, "Not enough memory or simulator not found\n");141: }142:143: return 0;144: } Figure 6.7 mvmasm auxiliary functions part 3: housekeeping functions

mvmasm auxiliary functions 65The emit1() and emit2() functions in lines 92{102 output one and twobyte (two and four hexadecimal digit) values and then update the current as-sembly location accordingly. They are used by the emit_op() function to out-put complete MVM instructions. Each instruction comprises an opcode byteand a mode byte constructed from the two mode �elds passed into the function.Between zero and three 16-bit operands are then output.Function current_label() (lines 104{113) returns the value of the last la-bel seen. At the start of each line of assembler source, the parser resets the vari-able last_label to NULL. This
ags the error condition for the EQU directive| ifno label has been seen an error message is issued and a pointer to dummy_labelis returned instead. This is so as to ensure that subsequent assignments to thelabel �elds of the symbol table record returned by current_label() do notneed to check for a NULL pointer.The init() function in lines 115{121 is straightforward: it simply attemptsto open the output �le and issues an error message if the �le open fails. Thequit() function closes the object �le and echoes the transfer address to thescreen. If the -x command line option has been used then the
ag execute_simwill be true. Assuming that the object �le was not sent to stdout, i.e. that a�le containing the object code exists, a command is constructed that will runthe simulator on the object �le and then the ANSI-C library function system()is called to pass control to the simulator.

Chapter 7A single pass compiler for miniloopThis chapter describes the �rst of two full compilers for an extended version ofthe minicond syntax that provides a while loop and a compound statementdelimited by begin and end keywords. The compiler works by recognisingcompilable fragments of the source code, such as an individual assignment oran arithmetic operation, and then emitting the corresponding MVM assemblerinstruction. The output of the compiler is a complete assembler program withthe same semantics as the miniloop source program, and this can then beassembled using mvmasm and executed using mvmsim.In this chapter we shall describe the language features added to miniloop,give an example of the compiler's output and then describe the assembler codepatterns that are used to implement the miniloop high level language con-structs. We shall then describe in detail the rdp grammar and auxiliary routinesthat are used to implement miniloop. In the next chapter we shall describe an-other compiler called minitree which compiles from the same source languageto the same MVM assembler code as miniloop. The di�erence between thetwo compilers is that miniloop emits assembler code during the parse whereasminitree builds an internal representation of the source program (a modi�edderivation tree) and then, in a separate phase, traverses the tree to output theassembler code. The two compilers are functionally almost identical as theystand, but minitree allows code optimisations such as rearranging the orderof instructions to be performed. Since miniloop is a single pass compiler itcannot perform code re-ordering.7.1 miniloop featuresminiloop programs look like minicond programs with some additional fea-tures| the minicond and minicalc languages are almost strict subsets of theminiloop language so any minicalc or minicond program will be correctlyhandled by the miniloop compiler. The only exception to this rule is thatminiloop variable names must not start with two underscore characters. Thisis because miniloop generates internal identi�er names with that form, and wedo not want user identi�ers and internal identi�ers to clash. Figure 7.1 showsan example miniloop program.

68 A SINGLE PASS COMPILER FOR MINILOOP1: (***2: *3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 19974: *5: * testloop.m - a piece of Miniloop source to test the Miniloop compiler6: *7: * This file may be freely distributed. Please mail improvements to the author.8: *9: ***)10:11: int a=3+4, b=1;12:13: print("a is ", a, "\n");14:15: b=a*2;16:17: print("b is ", b, ", -b is ", -b, "\n");18:19: print(a, " cubed is ", a**3, "\n");20:21: int z = a;22:23: if z==a then print ("z equals a\n") else print("z does not equal a\n");24:25: z=a - 3;26:27: if z==a then print ("z equals a\n") else print("z does not equal a\n");28:29: a = 3;30:31: while a > 0 do32: begin33: print("a is ", a, "\n");34: a = a - 135: end;36:37: (* End of testloop.m *)Figure 7.1 An example miniloop program (testloop.m)The output produced when this is run through the miniloop compiler andthen assembled and simulated by mvmasm and mvmsim, is shown in Figure 7.2.The assembler code produced by miniloop is shown in Figures 7.6{7.8 anddiscussed in section 7.8.7.1.1 The begin end block (compound statement)It is useful to be able to group statements together into blocks so that a singleif statement can control the execution of a list of statements. In minicondonly a single statement could be placed within the then or else clause of anif statement. The begin end brackets allow statements to be grouped andtreated as a single, compound, statement. It is worth noting that miniloopis strict about the placement of semicolons which are statement separators notstatement terminators as they are in ANSI-C. The last statement in a begin end

Arranging data and code in memory 69a is 7b is 14, -b is -147 cubed is 343z equals az does not equal aa is 3a is 2a is 1-- Halted --Figure 7.2 mvmsim output for assembled output from miniloop for the exampleprogramblock cannot by de�nition therefore have a semicolon following it, so it is alwaysan error to have a semicolon before an end statement. This usage follows thatof Pascal and Algol-68 although Pascal does allow an empty statement whichin most cases allows spurious semicolons to be accepted.7.1.2 The while loopLines 31{35 of Figure 7.1 illustrate the use of the while loop which is essentiallyidentical to the while loop in Pascal. A relational expression is repeatedlyevaluated and the statement after the do keyword is evaluated as long as theexpression is true. The statement may be either a simple statement (such asprint or indeed another while) or it may be a compound statement, as in theexample.7.2 Arranging data and code in memoryMVM is limited to 64K bytes of memory because the address �elds in the in-structions are only 16 bits long and 216 = 65536 = 64K. MVM instructions canbe executed from any location and operands can also reside anywhere in mem-ory, but miniloop places code in a single sequence starting at location 100016and data in a single block starting at location 800016. Within the data block,internal temporary variables created during the compilation of expressions areplaced at the end. This memory map is shown in Figure 7.3.We establish this memory map by setting the CODE and DATA assemblypointers appropriately. At the start of each program, miniloop issues thefollowing assembler directives:DATA 0x8000__MPP_DATA: CODE 0x1000__MPP_CODE:This has the e�ect of initialising the start address for data assembly to800016 and setting the label __MPP_DATA to the address of the �rst data item,

70 A SINGLE PASS COMPILER FOR MINILOOP
Spare memory100016800016 CodeUnused code spaceUser dataInternal temporary dataUnused data space

Figure 7.3 MVM memory map for programs compiled by miniloopand then initialising the start address for code assembly to 100016 and set-ting the label __MPP_CODE to the address of the �rst instruction, which willsubsequently be used as the transfer address.At the end of each program miniloop writes out directives of this form:DATA__temp: BLOCKW 9 ;declare array of temporariesEND __MPP_CODEHere assembly is switched to the data region and a block of temporaries (inthis case nine words long) is speci�ed. These form the array of temporaryvariables used during expression evaluation (as described in section 7.4) andrepresented by the region Internal temporary data in Figure 7.3. Finally, thevalue of __MPP_CODE is established as the transfer address by naming it in anEND directive.7.3 Compiling declarationsA declaration in miniloop such asint a;reserves space for one integer in memory and makes the identi�er a a synonymfor the address of that variable. Whenever the compiler encounters a declarationit switches to the DATA location and assembles a WORD directive:DATAa: WORD 0

Compiling arithmetic expressions 71The WORD directive reserves one word (two bytes) of memory and initialisesthem, in this case to zero. Following such a declaration we can use the identi�era to refer symbolically to the location holding the contents of the variable ajust as we would in the high level source code.7.4 Compiling arithmetic expressionsThe parser breaks expressions down into individual operations taking accountof operator priority and associativity as discussed in Chapter 2. Each operationis then compiled into the corresponding MVM instruction with the destinationoperand being a temporary variable. A sub-expression of the form 3 + 4 willbe compiled toADD __temp + 0,#3,#4 ;__temp + 0 := #3 + #4The temporary variables do not need to be separately declared in the way thatuser variables were handled in the previous section. Instead, the compiler keepscount of the number of temporaries used and declares them in a block at theend of the program. The temporaries are always referred to as __temp + nwhere n us the number of the temporary. This uses the address calculationcapability of the assembler to avoid the need for a large number of separatelabels.7.5 Compiling print statementsThe print statement can take an arbitrary number of parameters of eitherstring or integer type. The MVM instruction set provides two opcodes speci�-cally for printing strings and integers.For an integer parameter, code to evaluate the arithmetic expression is is-sued which leaves a value in a temporary variable t. The compiler then simplyissues an instruction of the formPRTI __temp + t ;print integerFor the case of an expression made up of a single variable, the expression eval-uator returns the name of that variable instead of the name of a temporary, socode of the formPRTI v ;print integerwill be issued, where v is the name of the variable.For a string parameter the compiler outputs code of the formDATA__STR_2: STRING "b is "CODEPRTS __STR_2The string is stored in data space and given a unique label (in this case __STR_2).The compiler then switches back to code space and emits a PRTS instruction.

72 A SINGLE PASS COMPILER FOR MINILOOPIF n:relational testthen blockELSE n:else blockFI n:
????Figure 7.4 Flow of control through a compiled if-then-else statement7.6 Compiling if statementsAn if-then-else statement de�nes three blocks of code: a relational expres-sion, a then block and an else block. Figure 7.4 illustrates the code templateused by miniloop and the allowed forms of control
ow through the construct.miniloopmaintains an internal label counter which is advanced each time a newunique label is required. Such labels are needed for labelling the strings usedwhen assembling print statements containing string parameters and whenevera structured statement (such as if-then or while-do) is encountered. In thecase of an if-then-else statement the start of the statement (corresponding tothe �rst assembler instruction in the compiled version of the relational expres-sion) is labeled __IF_n where n is the current value of the label counter. n iscalled the number of the control statement. Similarly, the end of the statementis labeled __FI_n and the start of the else block is labeled with __ELSE_n.The relational expression is compiled �rst, yielding a temporary variablewhich will contain a zero if the expression evaluates to false and a one other-wise. The compiler then issues the assembler instructionBEQ __temp + t, __ELSE_n ;ifn __temp + t go to __ELSE_nwhere t is the number of the temporary containing the result of evaluating therelational expression and n is the number of the control statement as de�nedabove. This has the e�ect of jumping to the else block if the condition wasfalse.The compiler then emits the code for the then block followed by the assem-bler instructionBRA __FI_n ;go to __FI_n

Compiling while loops 73DO n:relational testdo blockOD n: ????Figure 7.5 Flow of control through a compiled while-do statementwhich causes control to
ow unconditionally to the end of the if statement.Finally, the compiler emits the __ELSE_n label and the code for the else block(which may be empty) �nishing o� with the __FI_n label.7.7 Compiling while loopsA while-do statement is similar to an if-then statement (with no else) clausewhich is followed by a jump back to the relational test. There are two blocksof code: a relational expression, and the do block. Figure 7.5 illustrates thecode template used by miniloop and the allowable control
ow through theconstruct.The compiler emits two labels for each while-do loop: one of the form__DO_n to mark the start of the statement and one of the form __OD_n to markthe end, where n is the number of the control statement.The relational expression is compiled �rst, yielding a temporary variablewhich will contain a zero if the expression evaluates to false and a one other-wise. The compiler then issues the assembler instructionBEQ __temp + t, __OD_n ;ifn __temp + t go to __OD_nwhere t is the number of the temporary containing the result of evaluating therelational expression and n is the number of the control statement. This hasthe e�ect of jumping to the end of the while-do if the condition was false. Thecode for the do block is then emitted followed by the __OD_n label.7.8 Typical compiler outputFigures 7.6{7.8 show the compiled output for the test program in Figure 7.1which contains instances of all the constructs described above. In particular,note the setup and wrapup code in lines 3{6 and 137{142, the declaration inlines 8{9, the arithmetic expression evaluation in line 12 and the assignment

74 A SINGLE PASS COMPILER FOR MINILOOPof its result to user variable a in line 13, the if-then-else statement at lines97{114 and the while-do statement at lines 116{135.7.9 Implementing miniloopThe miniloop compiler makes a single pass over the source �le emitting MVMinstructions as it goes. We shall examine the grammar �rst and then look atthe auxiliary functions which perform the actual code output.7.9.1 A grammar for miniloopThe overall form of the miniloop grammar shown in Figures 7.9 and 7.10 issimilar to the minicond grammar with the addition of syntax for a while-doloop in lines 56{61 and syntax for the begin-end compound statement on line67. The symbol table declared in lines 17{22 is used only for keeping track ofwhether a variable has been correctly identi�ed and so the symbol table dataspeci�ed in line 21 includes only the id �eld| there is no need for an integerdata �eld as there was for the minicalc and minicond interpreters. When avariable is declared it is checked for validity (line 39{40): miniloop variablenames must not begin with a double underscore (__) because these might clashwith the internal label names. Lines 44{67 show the statement compiler. Thisemits code according to the templates described in the previous sections.A signi�cant di�erence between the miniloop grammar and the earlierminicond and minicalc grammars is that here the expression rules returnchar* attributes rather then integer ones. In the previous grammars, theexpression rules formed an interpreter that returned values. In miniloop therules return the labels of locations that will contain the values at run time.Each level of the expression tree has this basic form:79: e1:char* ::= [* char* dst; *] e2:left { [* dst = new_temporary(); *]80: ('+' e2:right [* emit("ADD", "+", dst, left, right); *] |81: '-' e2:right [* emit("SUB", "-", dst, left, right); *]82:)83: [* left = dst; *]84: } [* result = left; *].The auxiliary function emit() outputs one assembler instruction constructedfrom the supplied opcode and operand parameters. The new_temporary()function constructs a string of the form __temp + n where n is the name of thenext available temporary variable. This temporary then becomes the destina-tion operand for the assembler instruction corresponding to the operator beingprocessed.7.9.2 miniloop auxiliary functionsThe miniloop auxiliary functions are shown in Figures 7.11 and 7.12. Theyperform �le handling, output to the assembler object �le and some housekeepingconcerned with the generation of unique labels. Function emitf() (lines 24{31) forms the heart of the output routines: it simulates the behaviour of the

Implementing miniloop 750000 1: ; testloop.mvm - generated from 'testloop.m'0000 2:0000 3: DATA 0x80008000 4: __MPP_DATA:8000 5: CODE 0x10001000 6: __MPP_CODE:1000 7:1000 8: DATA8000 0001 9: a: WORD 08002 10:8002 11: CODE1000 0100807400030004 12: ADD __temp + 0, #3, #4 ;__temp + 0 := #3 + #41008 0C1180008074 13: CPY a, __temp + 0 ;a := __temp + 0100E 14:100E 15: DATA8002 0001 16: b: WORD 08004 17:8004 18: CODE100E 0C0180020001 19: CPY b, #1 ;b := #11014 20:1014 21: DATA8004 612069732000 22: __STR_0: STRING "a is "800A 23:800A 24: CODE1014 0F0100008004 25: PRTS __STR_0101A 101100008000 26: PRTI a ;print integer1020 27:1020 28: DATA800A 0A00 29: __STR_1: STRING "\n"800C 30:800C 31: CODE1020 0F010000800A 32: PRTS __STR_11026 0310807580000002 33: MUL __temp + 1, a, #2 ;__temp + 1 := a * #2102E 0C1180028075 34: CPY b, __temp + 1 ;b := __temp + 11034 35:1034 36: DATA800C 622069732000 37: __STR_2: STRING "b is "8012 38:8012 39: CODE1034 0F010000800C 40: PRTS __STR_2103A 101100008002 41: PRTI b ;print integer1040 42:1040 43: DATA8012 2C202D6220697320 44: __STR_3: STRING ", -b is "801B 45:801B 46: CODE1040 0F0100008012 47: PRTS __STR_31046 0211807600008002 48: SUB __temp + 2, 0, b ;__temp + 2 := 0 - b104E 101100008076 49: PRTI __temp + 2 ;print integer1054 50:Figure 7.6 miniloop compiled output for the example program: part 1

76 A SINGLE PASS COMPILER FOR MINILOOP1054 51: DATA801B 0A00 52: __STR_4: STRING "\n"801D 53:801D 54: CODE1054 0F010000801B 55: PRTS __STR_4105A 101100008000 56: PRTI a ;print integer1060 57:1060 58: DATA801D 2063756265642069 59: __STR_5: STRING " cubed is "8028 60:8028 61: CODE1060 0F010000801D 62: PRTS __STR_51066 0510807780000003 63: EXP __temp + 3, a, #3 ;__temp + 3 := a ** #3106E 101100008077 64: PRTI __temp + 3 ;print integer1074 65:1074 66: DATA8028 0A00 67: __STR_6: STRING "\n"802A 68:802A 69: CODE1074 0F0100008028 70: PRTS __STR_6107A 71:107A 72: DATA802A 0001 73: z: WORD 0802C 74:802C 75: CODE107A 0C11802A8000 76: CPY z, a ;z := a1080 77: __IF_7:1080 06118078802A8000 78: EQ __temp + 4, z, a ;__temp + 4 := z == a1088 0E11109A8078 79: BEQ __temp + 4,__ELSE_7 ;ifn __temp + 4 go to __ELSE_7108E 80:108E 81: DATA802C 7A20657175616C73 82: __STR_8: STRING "z equals a\n"8038 83:8038 84: CODE108E 0F010000802C 85: PRTS __STR_81094 0E0110A00000 86: BRA __FI_7 ;go to __FI_7109A 87: __ELSE_7:109A 88:109A 89: DATA8038 7A20646F6573206E 90: __STR_9: STRING "z does not equal a\n"804C 91:804C 92: CODE109A 0F0100008038 93: PRTS __STR_910A0 94: __FI_7:10A0 0210807980000003 95: SUB __temp + 5, a, #3 ;__temp + 5 := a - #310A8 0C11802A8079 96: CPY z, __temp + 5 ;z := __temp + 510AE 97: __IF_10:10AE 0611807A802A8000 98: EQ __temp + 6, z, a ;__temp + 6 := z == a10B6 0E1110C8807A 99: BEQ __temp + 6,__ELSE_10 ;ifn __temp + 6 go to __ELSE_1010BC 100:Figure 7.7 miniloop compiled output for the example program: part 2

Implementing miniloop 7710BC 101: DATA804C 7A20657175616C73 102: __STR_11: STRING "z equals a\n"8058 103:8058 104: CODE10BC 0F010000804C 105: PRTS __STR_1110C2 0E0110CE0000 106: BRA __FI_10 ;go to __FI_1010C8 107: __ELSE_10:10C8 108:10C8 109: DATA8058 7A20646F6573206E 110: __STR_12: STRING "z does not equal a\n"806C 111:806C 112: CODE10C8 0F0100008058 113: PRTS __STR_1210CE 114: __FI_10:10CE 0C0180000003 115: CPY a, #3 ;a := #310D4 116: __DO_13:10D4 0810807B80000000 117: GT __temp + 7, a, #0 ;__temp + 7 := a > #010DC 0E111108807B 118: BEQ __temp + 7,__OD_13 ;ifn __temp + 7 go to __OD_1310E2 119:10E2 120: DATA806C 612069732000 121: __STR_14: STRING "a is "8072 122:8072 123: CODE10E2 0F010000806C 124: PRTS __STR_1410E8 101100008000 125: PRTI a ;print integer10EE 126:10EE 127: DATA8072 0A00 128: __STR_15: STRING "\n"8074 129:8074 130: CODE10EE 0F0100008072 131: PRTS __STR_1510F4 0210807C80000001 132: SUB __temp + 8, a, #1 ;__temp + 8 := a - #110FC 0C118000807C 133: CPY a, __temp + 8 ;a := __temp + 81102 0E0110D40000 134: BRA __DO_13 ;go to __DO_131108 135: __OD_13:1108 136:1108 0011 137: HALT110A 138:110A 139: DATA8074 140: __temp: BLOCKW 9 ;declare array of temporaries8086 141:8086 *1000 142: END __MPP_CODEFigure 7.8 miniloop compiled output for the example program: part 3

78 A SINGLE PASS COMPILER FOR MINILOOP1: (***2: *3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 19974: *5: * miniloop.bnf - a decorated mini loop grammar with single pass compiler semantics6: *7: * This file may be freely distributed. Please mail improvements to the author.8: *9: ***)10: TITLE("Miniloop compiler V1.50 (c) Adrian Johnstone 1997")11: SUFFIX("m")12: PARSER(program)13: USES("ml_aux.h")14: TREE15: OUTPUT_FILE("miniloop.mvm")16:17: SYMBOL_TABLE(mini 101 3118: symbol_compare_string19: symbol_hash_string20: symbol_print_string21: [* char* id; *]22:)23:24: check_declared ::= [* if (symbol_lookup_key(mini, &dst, NULL) == NULL)25: {26: text_message(TEXT_ERROR, "Undeclared variable '%s'\n", dst);27: symbol_insert_key(mini, &dst, sizeof(char*), sizeof(mini_data));28: }29: *].30:31: program ::= [* emit_open(rdp_sourcefilename, rdp_outputfilename); *]32: { [var_dec | statement] ';'}33: [* emit_close(); *].34:35: var_dec ::= 'int' (ID:dst36: [* emitf(" \n DATA\n%s: WORD 0\n\n CODE\n",dst); *]37: ['=' e0:left [* emit("CPY", "", dst, left, NULL); *]]38: [* symbol_insert_key(mini, &dst, sizeof(char*), sizeof(mini_data));39: if (*dst == '_' && *(dst+1) == '_')40: text_message(TEXT_ERROR_ECHO, "variable names must not begin with two underscores\n");41: *]42:)@','. (* Declaration *)43:44: statement ::= ID:dst check_declared45: '=' e0:left [* emit("CPY", "", dst, left, NULL); *] | (* assignment *)46:47: [* integer label = new_label(); *] (* if statement *)48: [* emitf("__IF_%lu:\n", label); *]49: 'if' e0:left50: [* emitf(" BEQ %s,__ELSE_%lu\t;ifn %s go to __ELSE_%lu \n",left,label,left, label); *]51: 'then' statement52: [* emitf(" BRA __FI_%lu\t;go to __FI_%lu\n__ELSE_%lu:\n", label, label, label); *]53: ['else' statement]54: [* emitf("__FI_%lu:\n", label); *] |55: Figure 7.9 An rdp BNF speci�cation for miniloop part 1: statements

Implementing miniloop 7956: [* integer label = new_label(); *] (* while do statement *)57: [* emitf("__DO_%lu:\n", label); *]58: 'while' e0:left59: [* emitf(" BEQ %s,__OD_%lu\t;ifn %s go to __OD_%lu \n",left,label,left, label); *]60: 'do' statement61: [* emitf(" BRA __DO_%lu\t;go to __DO_%lu\n__OD_%lu:\n", label, label, label); *] |62:63: 'print' '(' (e0:left [* emit_print('I', left); *] |64: String:left [* emit_print('S', left); *]65:)@',' ')' | (* print statement *)66:67: 'begin' (statement)@';' 'end'. (* compound statement *)68:69: e0:char* ::= [* char* dst; *] e1:left [[* dst = new_temporary(); *]70: ('>' e1:right [* emit("GT ", ">", dst, left, right); *] | (* Greater than *)71: '<' e1:right [* emit("LT ", "<", dst, left, right); *] | (* Less than *)72: '>=' e1:right [* emit("GE ", ">=", dst, left, right); *]| (* Greater than or equal *)73: '<=' e1:right [* emit("LE ", ">=", dst, left, right); *]| (* Less than or equal *)74: '==' e1:right [* emit("EQ ", "==", dst, left, right); *]| (* Equal *)75: '!=' e1:right [* emit("NE ", "!=", dst, left, right); *] (* Not equal *)76:) [* left = dst; *]77:] [* result = left; *].78:79: e1:char* ::= [* char* dst; *] e2:left { [* dst = new_temporary(); *]80: ('+' e2:right [* emit("ADD", "+", dst, left, right); *] | (* Add *)81: '-' e2:right [* emit("SUB", "-", dst, left, right); *] (* Subtract *)82:)83: [* left = dst; *]84: } [* result = left; *].85:86: e2:char* ::= [* char* dst; *] e3:left { [* dst = new_temporary(); *]87: ('*' e3:right [* emit("MUL", "*", dst, left, right); *] | (* Multiply *)88: '/' e3:right [* emit("DIV", "/", dst, left, right); *] (* Divide *)89:)90: [* left = dst; *]91: } [* result = left; *].92:93: e3:char* ::= [* int negate = 0; char* dst;*]94:95: {('+'|'-' [* negate ^= 1; *])} e4:result (* Posite or negate *)96: [* if (negate) {dst = new_temporary(); emit("SUB", "-", dst, "0", result); result = dst; } *].97:98: e4:char* ::= [* char *dst; *]99: e5:left100: [[* dst = new_temporary(); *]101: '**' e4:right [* emit("EXP", "**", dst, left, right); *] (* Exponentiate *)102: [* left = dst; *]103:] [* result = left; *].104:105: e5:char* ::= ID:dst check_declared [* result = dst; *] | (* Variable access *)106: INTEGER:val [* result = (char*) mem_malloc(12); sprintf(result, "#%lu", val); *] |107: '(' e1:result ')'. (* Parenthesised expression *)108:109: comment ::= COMMENT_NEST('(*' '*)'). (* Comments: stripped by lexer *)110: String:char* ::= STRING_ESC('"' '\\'):result. (* Strings for print *)111:112: (* End of miniloop.bnf *)Figure 7.10 An rdp BNF speci�cation for miniloop part 2: expressions

80 A SINGLE PASS COMPILER FOR MINILOOPANSI-C printf() output function by accepting a formatted output string andan arbitrary number of output �elds and then using ANSI-C vprintf() andvfprintf() functions to format the output. The ANSI-C standard librarymacros va_list, va_start and va_end are used to handle the variable numberof arguments which emitf() may be passed| see any good book on ANSI-Cfor an explanation of their use.The emit_open() and emit_close() functions open and close the output�le as well as writing the wrapper code that appears at the start and endof every compiled program (see section 7.2). The function emit() is used tooutput a single assembler instruction along with a comment that renders theoperation in an algebraic form to make reading the output easier for thosenot used to assembler format. The emit_print() function is a specialisedoutput routine for handling the print statement in miniloop. It generatesthe code templates discussed in section 7.5. The new_temporary() functionallocates a block of memory to hold the name of the temporary and then usesthe sprintf() function to construct the name.

Implementing miniloop 811: /***2: *3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 19974: *5: * ml_aux.c - miniloop one pass compiler semantic routines6: *7: * This file may be freely distributed. Please mail improvements to the author.8: *9: ***/10: #include <stdarg.h>11: #include <stdio.h>12: #include <string.h>13: #include "textio.h"14: #include "memalloc.h"15: #include "ml_aux.h"16:17: FILE * outfile;18:19: static long unsigned temp_count = 0;20:21: int emitf(const char * fmt, ...)22: {23: int i;24: va_list ap; /* argument list walker */25:26: va_start(ap, fmt); /* pass parameters to vprintf */27: i = vfprintf(outfile, fmt, ap); /* remember count of characaters printed */28: va_end(ap); /* end of var args block */29:30: return i; /* return number of characters printed */31: }32:33: void emit_open(char * sourcefilename, char * outfilename)34: {35: if ((outfile = fopen(outfilename, "w"))== NULL)36: text_message(TEXT_FATAL, "unable to open output file \'%s\' for writing\n", outfilename);37: emitf("; %s - generated from \'%s\'\n\n", outfilename, sourcefilename);38: emitf(" DATA 0x8000\n__MPP_DATA:\n CODE 0x1000\n__MPP_CODE:\n");39: }40:41: void emit_close(void)42: {43: emitf("\n HALT\n\n DATA\n__temp: BLOCKW %lu ;declare array of temporaries\n\n"44: " END __MPP_CODE\n", temp_count);45: fclose(outfile);46: }47: Figure 7.11 miniloop auxiliary functions part 1: low level output

82 A SINGLE PASS COMPILER FOR MINILOOP48: void emit(char * asm_op, char * alg_op, char * dst, char * src1, char * src2)49: {50: emitf(" %s %s, %s", asm_op, dst, src1);51: if (src2 != NULL)52: emitf(", %s", src2);53:54: /* Now output algebraic style */55: emitf(" \t;%s := %s %s", dst, src1, alg_op);56: if (src2 != NULL)57: emitf(" %s", src2);58: emitf("\n");59: }60:61: void emit_print(char kind, char * src)62: {63: if (kind == 'S')64: {65: unsigned long label = new_label();66:67: emitf("\n DATA\n__STR_%lu: STRING \"", label);68: text_print_C_string_file(outfile, src);69: emitf("\"\n\n CODE\n PRTS __STR_%lu\n", label);70: }71: else72: {73: emitf(" PRTI ");74: text_print_C_string_file(outfile, src);75: emitf("\t;print integer\n");76: }77: }78:79: char * new_temporary(void)80: {81: char * ret =(char *) mem_malloc(30);82:83: sprintf(ret, "__temp + %lu", temp_count++);84:85: return ret;86: }87:88: unsigned long new_label(void)89: {90: static long unsigned label = 0;91:92: return label++;93: }94:95: /* End of ml_aux.c */Figure 7.12 miniloop auxiliary functions part 2: high level output and house-keeping

Chapter 8minitree { a multiple pass compilerSome translation tasks are di�cult to perform during a parse, even if a multi-pass parser is employed. High quality compilers, for instance, can performmanydi�erent code improvement transformations as part of an optimisation phase.Typically, optimisations work by relating together widely separated parts ofthe source text. Take for example, common sub-expression elimination which isone of the most commonly applied optimisations: an assignment between arrayelements in ANSI-C such asa[i,j] = b[i,j];actually contains two identical calculations if the sizes of the a and b arrays arethe same. (In detail, i must be multiplied by the width of the array and addedto j.) A single pass translator has to process each of these identical calculationsin isolation and so is unlikely to be able to rearrange the calculations into theequivalent but more e�cient formtemp = (j * array_width) + i; *(a+temp) = *(b+temp);If a multiple pass translator is to be used then it is usual to construct a datastructure in memory that represents the user program in a manner which maybe e�ciently processed. Simply storing the original program text is ine�cientbecause discovering a derivation for an input text is so time consuming: that isafter all the primary function of the parsers that rdp constructs and it wouldclearly be wasteful to run the process several times. (Of course, just becausethis is a wasteful process it need not stop us using it where applicable and rdpprovides the PASSES directive for precisely this purpose. Simple multi-pass ap-plications, such as the implementation of a translator from a machine's assemblylanguage to its machine code, may usefully exploit this strategy. You can readabout the design and implementation of such as assembler in Chapter 6.)Leaving aside issues of e�ciency, making multiple independent passes overthe source text does not allow us to make connections between widely separatedparts of the text because the parsers generated by rdp only look at a singlesymbol at a time: they do not of themselves keep track of complete sentencesor program statements. However, rdp can be set to build a derivation treewhilst it performs a parse. This tree shows explicitly the relationships between

84 MINITREE { A MULTIPLE PASS COMPILERsymbols in the source program that are only implicitly present in the originaltext, and can be traversed and rearranged e�ciently.This chapter is about a compiler called minitree that accepts the samesource language as the miniloop compiler described in the previous chapterand which outputs almost identical MVM assembler code, but which uses a treeas an internal data structure. During the parse, the rdp generated minitreeparser automatically constructs the intermediate form, and then a POST_PARSEfunction called code_generate() is called which traverses the tree, emittingMVM instructions as it goes. In principle, optimising phases could be insertedbetween the parse phase and the code generation phase that would rearrangethe tree to create more e�cient code, although we do not describe such optimi-sations here.We strongly recommend that before proceeding with this chapter you readChapters 9 and 10 of the rdp user manual [JS97a] which describe rdp's treegeneration facilities in detail.8.1 minitree intermediate formWhen designing a tree-based compiler, the central decision concerns the infor-mation to be retained in the tree after parsing. One extreme option is to simplyuse the entire derivation tree which contains all the terminals matched as wellas a node for every rule instance activated during the parse.The small programs in Figures 8.1{8.6 exercise all of the major syntacticfeatures of minitree including declarations (with and without initialisation);assignment of expressions to variables; print statements; both if-then andif-then-else statements; a while-do statement; and a compound begin endstatement. Each program fragment is accompanied by a full derivation treeand the corresponding reduced derivation tree used as an intermediate form byminitree.Full derivation trees for a parse grow rapidly with program length: puttingall the program fragments together into a ten-line program yields a tree contain-ing 184 nodes. The tree is mostly broad and
at with long `catkins' hanging o�of some nodes. The catkins are generated by the expression rules: every timean integer or a variable is referenced the parser must recurse right down to thebottom of the expression tree giving rise to these long vertical chains. Morethan a quarter of the nodes in the derivation tree are of this form, and the pro-portion would be even higher if the expression tree had more levels (that is, ifwe had more priority levels in the expressions as we do in the mvmasm grammar,for instance). Our reduced derivation trees typically contain only one quarterof the nodes of a full derivation tree and yet the original program may be re-constructed from a reduced derivation tree. In particular, the expression rulesno longer generate `catkins' but are only as deep as they need to be to showthe operators actually used in the source expression.An e�cient intermediate form for a compiler should retain all the informa-tion needed to reconstruct the original program but no more. Text books oncompilers often distinguish between Concrete Syntax Trees and Abstract Syn-

minitree intermediate form 851: int a,2: b = 3 + 4;

Figure 8.1 A minitree declaration, its full derivation tree and a reduced deriva-tion tree

86 MINITREE { A MULTIPLE PASS COMPILER1: int a, b;2:3: a = (a + b * 3) / 2;

Figure 8.2 A minitree expression, its full derivation tree and a reduced deriva-tion tree

minitree intermediate form 87
1: int a;2:3: print("a is ", a, "\n");

Figure 8.3 A minitree print statement, its full derivation tree and a reducedderivation tree

88 MINITREE { A MULTIPLE PASS COMPILER1: int a,b;2:3: begin4: a = a + b;5: b = b - 16: end;

Figure 8.4 A minitree compound statement, its full derivation tree and areduced derivation tree

minitree intermediate form 891: int a = 1, b = 1;2:3: if a == 1 then a = 0;4:5: if a > b then a = 0 else a = 1;

Figure 8.5 A minitree if statement, its full derivation tree and a reducedderivation tree

90 MINITREE { A MULTIPLE PASS COMPILER1: int a = 1, b =10;2:3: while a < b do4: begin5: print(a);6: a = a + 17: end;

Figure 8.6 A minitree while statement, its full derivation tree and a reducedderivation tree

Implementing minitree 91tax Trees (AST's). There is little agreement on the formal de�nition of theseobjects, but broadly speaking a Concrete Syntax Tree is either a full derivationtree or a parse tree made up of just the terminal nodes whilst an AST is usuallya tree made up of some of the terminals.The reason for the distinction between concrete and abstract forms is thatsome terminals in real programming languages are just there to make the pro-gram more readable (so-called `syntactic sugar') and some are only there torepresent the two-dimensional nature of programs. The concrete form includesall such terminals but they may be dropped in the abstract forms.An example of the �rst case is the parentheses that appear around the con-ditional expression in the ANSI-C if () else and while () do statements:it is perfectly straightforward to write an unambiguous grammar that does notinclude these parentheses and in fact the equivalent Pascal statements do notrequire them. They are just there to `please the eye' and may be omitted fromthe intermediate form.The second case is represented by the many kinds of brackets used in pro-gramming languages including parentheses in arithmetic expressions, the brack-ets around array index expressions and the begin end constructs (or f g inANSI-C). These brackets are used to show the nesting in a program, but anytree form can show nesting naturally in terms of the parent-child relationshipsbetween nodes, so the bracketing terminals are redundant.The intermediate tree forms used by real compilers tend to be rather adhoc. rdp provides a standardised way to build trees by applying promotionoperators to nodes within the full derivation tree. The user manual [JS97a]contains examples of standard approaches to common language features andwe have applied these to the implementation of minitree.8.2 Implementing minitreeOne of the advantages of a multi-pass implementation scheme is that it allowsa clean separation between the grammar and the semantics of code generation.The only semantic actions left in the grammar �le minitree.bnf are thosethat use the symbol table to check that all variables encountered have beencorrectly declared. All of the code generation calls to the various emit...()auxiliary functions have been shifted to the tree walker code. minitree usesthe same auxiliary semantic functions as miniloop and so needs to be linkedwith the functions in ml_aux.c. In addition, three extra functions to handlethe tree walking are contained in the auxiliary �le mt_aux.c. We shall look atthe grammar �rst, and then the new auxiliary functions.8.2.1 A grammar for minitreeThe starting point for the minitree grammar is the miniloop grammarstrippedof its semantic actions apart from those associated with the symbol table. Wethen add promotion operators to terminals and nonterminals so as to prunethe derivation tree into the forms shown in Figures 8.1{8.6. The �rst task is to

92 MINITREE { A MULTIPLE PASS COMPILERremove nodes that are pure syntactic sugar such as the semicolon and commanodes. These are used to separate items in lists when represented as a lineartext, but within a tree we can simply represent the list items as siblings under aparent node. Hence, in line 33 the semicolon node is promoted under its parent,and thus e�ectively deleted from the tree. Similarly, in line 46, the parenthesesin the print statement and the comma separating the parameters to be printedare deleted.The if and while statements also contain sugar nodes that are deleted: theif statement is represented in the tree as a single if node with two or threechildren, the �rst being the expression tree for the relational condition and thesecond and third corresponding to the then block and the optional else block.The expression tree in lines 49{74 uses the techniques described in the usermanual to build operator trees with the usual priority and associativity rela-tionships built into their structure. The promote-above operator (^^^) is usedto handle the left associative operators and the natural tree ordering ensuresthat the operator priorities are correctly implemented. We assume that the treeis to be traversed in a depth-�rst, left-to-right manner so that higher priorityoperators will appear deeper in the tree.8.3 minitree auxiliary functionsminitree makes use of the miniloop auxiliary functions described previouslyfor handling output to the assembler �le and opening and closing the �le. Youshould refer to the previous chapter for a discussion of these code emissionfunctions. The minitree auxiliary �le mt_aux.c shown in Figures 8.9{8.13contains three extra functions:1. a top level function (code_generate() at lines 188{193) that is called asthe POST_PARSE function from the grammar,2. a depth-�rst, left-to-right tree traversal function that processes expressiontrees (expression_walk() at lines 20{76), and3. a depth-�rst, left-to-right tree traversal function that processes statementsand calls the expression walker where appropriate (tree_walk() at lines78{186).The code_generate() function is straightforward: it calls the emit_open()and emit_close() functions used by miniloop to initialise and close the as-sembler output �le, and between them the tree walker is called.8.3.1 Use of the graph library8.3.2 The tree walkerThe expression walker is recursively called, once for each node in the expressiontree. At each call a subtree is passed as a parameter, and the function examinesthe token number of the root node in that subtree. The token numbers comprise

minitree auxiliary functions 931: (***2: *3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 19974: *5: * minitree.bnf - a mini parser which builds an intermediate form6: *7: * This file may be freely distributed. Please mail improvements to the author.8: *9: ***)10: TITLE("Minitree compiler V1.50 (c) Adrian Johnstone 1997")11: SUFFIX("m")12: PARSER(program)13: USES("ml_aux.h")14: USES("mt_aux.h")15: OUTPUT_FILE("minitree.mvm")16: TREE17: POST_PARSE([* code_generate(rdp_sourcefilename, rdp_outputfilename, rdp_tree); *])18:19: SYMBOL_TABLE(mini 101 3120: symbol_compare_string21: symbol_hash_string22: symbol_print_string23: [* char* id; *]24:)25:26: check_declared ::= [* if (symbol_lookup_key(mini, &name, NULL) == NULL)27: {28: text_message(TEXT_ERROR, "Undeclared variable '%s'\n", name);29: symbol_insert_key(mini, &name, sizeof(char*), sizeof(mini_data));30: }31: *].32:33: program ::= { [var_dec | statement] ';'^}.34:35: var_dec ::= 'int'^^ (dec_body)@','^.36:37: dec_body ::= ID:name^^ ['='^ e0]:^38: [* symbol_insert_key(mini, &name, sizeof(char*), sizeof(mini_data));39: if (*name == '_' && *(name+1) == '_')40: text_message(TEXT_ERROR_ECHO, "variable names must not begin with two underscores\n");41: *].42:43: statement ::= ID:name check_declared '='^^ e0 | (* assignment *)44: 'if'^^ e0 'then'^ statement ['else'^ statement] | (* if statement *)45: 'while'^^ e0 'do'^ statement | (* while do statement *)46: 'print'^^ '('^ (e0 | String)@','^ ')'^ | (* print statement *)47: 'begin'^^ (statement)@';'^ 'end'^. (* compound statement *)48: Figure 8.7 An rdp BNF speci�cation for minitree part 1: statements

94 MINITREE { A MULTIPLE PASS COMPILER49: e0 ::= e1^^ ['>'^^^ e1 | (* Greater than *)50: '<'^^^ e1 | (* Less than *)51: '>='^^^ e1 | (* Greater than or equal *)52: '<='^^^ e1 | (* Less than or equal *)53: '=='^^^ e1 | (* Equal *)54: '!='^^^ e1 (* Not equal *)55:] .56:57: e1 ::= e2^^ { '+'^^^ e2 | (* Add *)58: '-'^^^ e2 (* Subtract *)59: } .60:61: e2 ::= e3^^ { '*'^^^ e3 | (* Multiply *)62: '/'^^^ e3 (* Divide *)63: } .64:65: e3 ::= e4^^ |66: '+'^ e3 | (* Posite: note suppression from intermediate form! *)67: '-'^^ e3 . (* Negate *)68:69:70: e4 ::= e5 ['**'^^ e4]:^^.71:72: e5 ::= ID:name^^ check_declared | (* Variable access *)73: INTEGER^^ | (* Numeric literal *)74: '('^ e1^^ ')'^. (* Parenthesised expression *)75:76: comment ::= COMMENT_NEST('(*' '*)'). (* Comments: stripped by lexer *)77: String^ ::= STRING_ESC('"' '\\'). (* Strings for print *)78:79: (* End of minitree.bnf *)Figure 8.8 An rdp BNF speci�cation for minitree part 2: expressions1: /***2: *3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 19974: *5: * mt_aux.c - Minitree multiple pass compiler semantic routines6: *7: * This file may be freely distributed. Please mail improvements to the author.8: *9: ***/10: #include <stdarg.h>11: #include <stdio.h>12: #include <string.h>13: #include "graph.h"14: #include "memalloc.h"15: #include "textio.h"16: #include "minitree.h"17: #include "ml_aux.h"18: #include "mt_aux.h"19: Figure 8.9 minitree auxiliary functions part 1: declarations

minitree auxiliary functions 9520: char * expression_walk(rdp_tree_data * root)21: {22: /* Postorder expression walk */23: if (root->token == SCAN_P_ID)24: return root->id;25: else if (root->token == SCAN_P_INTEGER)26: {27: char * result =(char *) mem_malloc(12);28:29: sprintf(result, "#%lu", root->data.u);30: return result;31: }32: else33: {34: void * left_edge = graph_get_next_edge(root);35: void * right_edge = graph_get_next_edge(left_edge);36:37: char * left = expression_walk((rdp_tree_data *) graph_get_edge_target(left_edge));38:39: if (right_edge == NULL) /* monadic operator */40: {41: char * dst = new_temporary();42:43: switch (root->token)44: {45: case RDP_T_26 /* - */ : emit("SUB", "-", dst, "0", left); break;46: default:47: text_message(TEXT_FATAL, "unexpected monadic operator found in expression walk: "48: "token number %i, identifier \'%s\'\n", root->token, root->id);49: }50: return dst;51: }52: else53: {54: char * right = expression_walk((rdp_tree_data *) graph_get_edge_target(right_edge));55: char * dst = new_temporary();56:57: switch (root->token)58: {59: case RDP_T_17 /* != */ : emit("NE ", "!=", dst, left, right); break;60: case RDP_T_22 /* * */ : emit("MUL", "*", dst, left, right); break;61: case RDP_T_23 /* ** */ : emit("EXP", "**", dst, left, right); break;62: case RDP_T_24 /* + */ : emit("ADD", "+", dst, left, right); break;63: case RDP_T_26 /* - */ : emit("SUB", "-", dst, left, right); break;64: case RDP_T_27 /* / */ : emit("DIV", "/", dst, left, right); break;65: case RDP_T_29 /* < */ : emit("LT ", "<", dst, left, right); break;66: case RDP_T_30 /* <= */ : emit("LE ", "<=", dst, left, right); break;67: case RDP_T_32 /* == */ : emit("EQ ", "==", dst, left, right); break;68: case RDP_T_33 /* > */ : emit("GT ", ">", dst, left, right); break;69: case RDP_T_34 /* >= */ : emit("GE ", ">=", dst, left, right); break;70: default: text_message(TEXT_FATAL, "unexpected diadic operator found in expression walk: "71: "token number %i, identifier \'%s\'\n", root->token, root->id);72: }73: return dst;74: }75: }76: }77: Figure 8.10 minitree auxiliary functions part 2: expression walker

96 MINITREE { A MULTIPLE PASS COMPILER78: void tree_walk(rdp_tree_data * root)79: {80: /* Preorder tree walk */81: if (root == NULL)82: return;83: else84: {85: void * this_edge = graph_get_next_edge(root);86:87: switch (root->token)88: {89: case 0: /* scan root or begin node's children */90: case RDP_T_begin:91: {92: void * this_edge = graph_get_next_edge(root);93:94: while (this_edge != NULL) /* walk children, printing results */95: {96: tree_walk((rdp_tree_data *) graph_get_edge_target(this_edge));97: this_edge = graph_get_next_edge(this_edge);98: }99: break;100: }101:102: case RDP_T_31 /* = */ :103: emit("CPY",104: "",105: ((rdp_tree_data *) graph_get_edge_target(this_edge))->id, expression_walk(106: (rdp_tree_data *) graph_get_edge_target(graph_get_next_edge(this_edge))), NULL);107: break;108:109: case RDP_T_int:110: {111: void * this_edge = graph_get_next_edge(root);112:113: while (this_edge != NULL) /* walk children, declaring each variable */114: {115: void * child_edge;116: rdp_tree_data * this_node =(rdp_tree_data *) graph_get_edge_target(this_edge);117:118: emitf(" \n DATA\n%s: WORD 1\n\n CODE\n", this_node->id);119: if ((child_edge = graph_get_next_edge(this_node))!= NULL)120: emit("CPY", "", this_node->id,121: expression_walk((rdp_tree_data *) graph_get_edge_target(child_edge)), NULL);122: this_edge = graph_get_next_edge(this_edge);123: }124: break;125: }126: Figure 8.11 minitree auxiliary functions part 3: program, assignment anddeclaration

minitree auxiliary functions 97
127: case RDP_T_print:128: {129: void * this_edge = graph_get_next_edge(root);130:131: while (this_edge != NULL) /* walk children, printing results */132: {133: rdp_tree_data * this_node =(rdp_tree_data *) graph_get_edge_target(this_edge);134:135: if (this_node->token == RDP_T_18 /* " */)136: emit_print('S', this_node->id);137: else138: emit_print('I', expression_walk(this_node));139:140: this_edge = graph_get_next_edge(this_edge);141: }142: }143: break;144:145: case RDP_T_if:146: {147: char * relation;148: rdp_tree_data149: * rel_stat =(rdp_tree_data *) graph_get_edge_target(this_edge),150: * then_stat =(rdp_tree_data *) graph_get_edge_target(graph_get_next_edge(this_edge)),151: * else_stat =(rdp_tree_data *) graph_get_edge_target(graph_get_next_edge(152: graph_get_next_edge(this_edge)));153:154: integer label = new_label();155: emitf("__IF_%lu:\n", label);156: relation = expression_walk(rel_stat);157: emitf(" BEQ %s,__ELSE_%lu\t;ifn %s go to __ELSE_%lu \n", relation, label, relation, label);158: tree_walk(then_stat);159: emitf(" BRA __FI_%lu\t;go to __FI_%lu\n__ELSE_%lu:\n", label, label, label);160: tree_walk(else_stat);161: emitf("__FI_%lu:\n", label);162: break;163: }164: Figure 8.12 minitree auxiliary functions part 4: print and if

98 MINITREE { A MULTIPLE PASS COMPILER
165: case RDP_T_while:166: {167: char * relation;168: rdp_tree_data169: * rel_stat =(rdp_tree_data *) graph_get_edge_target(this_edge),170: * do_stat =(rdp_tree_data *) graph_get_edge_target(graph_get_next_edge(this_edge));171:172: integer label = new_label();173: emitf("__DO_%lu:\n", label);174: relation = expression_walk(rel_stat);175: emitf(" BEQ %s,__OD_%lu\t;ifn %s go to __OD_%lu \n", relation, label, relation, label);176: tree_walk(do_stat);177: emitf(" BRA __DO_%lu\t;go to __DO_%lu\n__OD_%lu:\n", label, label, label);178: break;179: }180:181: default:182: text_message(TEXT_FATAL, "unexpected tree node found: "183: "token number %i, identifier \'%s\'\n", root->token, root->id);184: }185: }186: }187:188: void code_generate(char * source, char * output, void * tree_root)189: {190: emit_open(source, output);191: tree_walk((rdp_tree_data *) graph_get_next_node(tree_root));192: emit_close();193: }194:195: /* End of mt_aux.c */Figure 8.13 minitree auxiliary functions part 5: while and POST PARSE func-tion

minitree auxiliary functions 99either one of the scanner primitives such as SCAN_P_ID (the ID primitive) or akeyword from the minitree grammar such as RDP_T_17 (the != token). Thede�nitions of the primitives may be found in rdp_supp/scan.h and the de�ni-tions of the minitree tokens in minitree.h. The expression walker returns ateach level the name of the variable containing the result of the calculation per-formed at that level in exactly the same way as the expression rules in minilooptransmit the names of locations back up the tree.The leaf nodes in an expression must be either INTEGER or ID tokens. Inthese two cases expression_walk() simply returns a string corresponding tothe lexeme of the token. Any other nodes will be operator nodes, and the ex-pression walker will call their children before emitting an assembler instructioncorresponding to the operator. The left child is called at line 37. The right childis then examined in line 39 and if it is NULL (empty) then the node must be amonadic operator so assembler code for the monadic operators (only monadic- in this case) is emitted via the switch statement at lines 43{49. For non-monadic operators, the right child is processed and then the switch statementat lines 57{72 is used to select the assembler instruction corresponding to theoperator.The tree walker has this following outline form:78: void tree_walk(rdp_tree_data * root)79: {80: /* Preorder tree walk */81: if (root == NULL)82: return;83: else84: {85: void * this_edge = graph_get_next_edge(root);86:87: switch (root->token)88: {89: case 0: /* scan root or begin node's children */90: case RDP_T_begin:91: {92: void * this_edge = graph_get_next_edge(root);93:94: while (this_edge != NULL) /* walk children, printing results */95: {96: tree_walk((rdp_tree_data *) graph_get_edge_target(this_edge));97: this_edge = graph_get_next_edge(this_edge);98: }99: break;100: } case ...:...}}The function is designed to be called recursively and at each level to look atthe type of node in the root of the subtree being processed and act accordingly.

100 MINITREE { A MULTIPLE PASS COMPILERThe �rst case, shown here, corresponds to a begin node or the root node ofthe reduced derivation tree which has token number 0. begin nodes do not ofthemselves generate any output code but their children are minitree statementsthat must be recursively processed, hence in line 96 we see tree_walk() beingcalled on the current node's children.Five other statements are handled within the tree walker. Assignment(lines 102{107) emits a CPY assembler instruction with the �rst child of theroot as the destination operand. The source is obtained by calling the expres-sion walker on the right child of the root.Declarations are denoted by a sub-tree with an INT root node which haveone or more child nodes containing the names of the variables to be declared.The while loop at lines 113{123 walks the children outputting a WORD assemblerdirective for each variable labeled with the name of that variable. The optionalinitialisation expression is represented in the tree as an expression sub-treehanging under the node containing the name of the variable being declared, soif this tree is non-null then the expression walker is called to generate code toevaluate the initialisation expression.print statements are handled in lines 127{143. The while loop in lines131{141 walks the children of the print node. If the child is a string (markedwith a node type of RDP_T_18 corresponding to the " token) then emit_print()is called to emit a print string instruction. If not, then the expression walker iscalled on the child and emit_print() is called to emit a print integer instruc-tion.The code to handle if and while statements is at lines 145{163 and 165{179 respectively. The general format of the code is exactly the same as for thesemantic actions in the miniloop grammar except that the tree walker is calledin lines 158, 160 and 176 to generate the code for the then, else and do blocks.It would be quite straightforward to integrate the expression and statementwalker functions together into a single function. We have separated them forclarity, but the reader may like to consider how to combine them together.Further ideas for projects are given in the �nal chapter.

Chapter 9A pretty-printer for ANSI-CA pretty-printer is a tool that rearranges the formatting of a program so asto meet some standard for indentation and comment placement. It turns outthat ANSI-C and its embedded preprocessor present some di�cult challengesin the design of a pretty-printer which we shall explore in this chapter. Thetool described here is called pretty_c and you can see some examples of itsoutput in Figures 9.4{9.7.rdp is usually used to specify parsers that describe a language tightly, that isthe parser should accept inputs that are in the language and reject inputs thatare not. It can be very hard to ensure that a parser does have this property,and we know that some aspects of language (such as type checking) are notamenable to speci�cation using just context-free grammars. In these cases wemust use semantic checks to increase the checking power of the parser.For our pretty-printer, we look at a radically di�erent approach to languageparsing in which a minimilist rdp grammar is constructed that will parse allvalid ANSI-C programs as well as a large number of syntactically invalid ones.The rationale here is that an ANSI-C programmerwho wishes to use the pretty-printer will also have access to an ANSI-C compiler which will be able to detectsyntactically invalid programs, so we can reasonably assume that the ANSI-C program presented to the pretty-printer will already have been checked forvalidity. Therefore we can safely use a parser for a superset of the ANSI-Clanguage and not bother to check every detail. This allows us to use a verysigni�cantly simpli�ed grammar, but the limitation is that our pretty-printerhas to make formatting decisions on the basis of the current input lexeme and itsimmediate predecessor. The pretty-printer never `knows' whether it is inside afunction de�nition or processing global de�nitions, for instance, and as a resultit cannot vary formatting according to the kind of construct it is processing.9.1 Using the pretty-printerThe pretty-printer is built during installation of rdp as a side e�ect of runningthe command make. To check whether all is well typepretty_cand you should receive the following help message:

102 A PRETTY-PRINTER FOR ANSI-CFatal - No source file specifiedC pretty-printer V1.50 (c) Adrian Johnstone 1997Generated on Dec 20 1997 21:55:41 and compiled on Dec 20 1997 at 21:51:16Usage: pretty_c [options] source[.c]-f Filter mode (read from stdin and write to stdout)-l Make a listing-o <s> Write output to filename-s Echo each scanner symbol as it is read-S Print summary symbol table statistics-t <n> Tab expansion width (default 8)-T <n> Text buffer size in bytes for scanner (default 20000)-v Set verbose mode-V <s> (Write derivation tree to filename in VCG format - not available in this parser)-i <n> Number of spaces per indent level: 0 means use tabs (default 2)-c <n> Preferred start column for trailing comments (default 30)These command line options are described below. Now typepretty_c test.cThe pretty printer will reformat the �le test.c (which is part of the standarddistribution) and print outtest.c,2133,12267,5.75The �rst �eld is the name of the �le that was formatted, the second is thenumber of lines in the �le (2133) and the third is the number of languagetokens processed (12267 in this case). The �nal �eld is the average number oftokens per line.9.1.1 Command line optionsThe pretty-printer provides the normal rdp-generated parser command lineoptions along with the following two pretty-printer speci�c
ags.-i indent spacingThe default indentation spacing is two spaces. A larger value makes the inden-tation clearer (whilst making the lines longer) and some standards require theuse of tab characters to show indentation. A
ag of -i0 will force pretty_c touse one tab character per indent. A non-zero value (such as -i4) will set thepretty-printer to use that number of spaces per indent.-c comment start columnThe pretty-printer handles comments specially, as will be described in the nextsection. pretty_c attempts to line up comments by moving them across to thecomment start column, which is column 30 by default. This
ag may be usedto change the comment start column.

Using the pretty-printer 1039.1.2 File usagepretty_c is a single pass parser which reads the lexemes in the input �le fromleft to right in the usual way and writes a reformatted version to a temporary�le. By default, this �le is called pretty.c but a di�erent temporary �le namecan be speci�ed with the -o option. At the end of a successful run, pretty_crenames the source �le to a �le with the same name but a �letype of .bak andthen renames the temporary �le to the original source �le name. It is a fatalerror to try to make the temporary output �le the same name as the input �lebecause under some operating systems (such as MS-DOS) the temporary �lewill overwrite the input �le during processing which results in a corrupted �le.9.1.3 Making a listingpretty_c can be used to make a line-numbered listing of a program by usingthe -l option. However, bear in mind that it is the input �le that will be listed,not the pretty-printed �le. If you run the pretty-printer twice on the same �le,then a listing generated on the second run will show the formatted �le.9.1.4 Error messagesAlthough pretty_c accepts a very loose C grammar it will reject �les thatcontain invalid C lexemes. In such cases pretty_c issues the usual syntaxerror messages. In addition, one of the following three fatal error messages mayappear if pretty_c has di�culty accessing �les.temporary output filename is the same as the source filenameAn output �le name that is the same as the source �le name has been speci�ed.It is a fatal error to try and make the temporary output �le the same nameas the input �le because under some operating systems (such as MS-DOS) thetemporary �le will overwrite the input �le during processing which results in acorrupted �le. Use a di�erent output �le name.unable to open output file output �lenamepretty_c was unable to open the temporary output �le for writing. This maybe because there is no disk space left, or there may already exist a �le of thatname that is write protected.unable to rename �lename 1 to �lename 2pretty_c was unable to rename the �rst �le to the second �le. This may bebecause there is no disk space left, or there may already exist a �le called�lename 2 that is write protected.

104 A PRETTY-PRINTER FOR ANSI-C9.2 Pretty-printer featuresThe �rst requirement of a pretty-printer is that it should only modify the spac-ing of a program and not change its meaning: a pretty-printer is an interestingexample of a translator whose input and output language are the same! Theparticular details of the formatting changes are essentially a matter of taste.A variety of standards exist for C formatting, but there is no universal agree-ment on how a C program should be indented. We choose to follow the formatthat rdp uses for its machine generated parsers. In detail, pretty_c uses thefollowing conventions.1. Each line of a program has an indentation level. The indentation level ofthe �rst line of a program is 0.2. All of the original spacing in the �le to be pretty printed is discarded,except for the contents of comments, preprocessor directives and stringliterals which are preserved.3. Each output line is preceded by a (possibly zero-length) space, the lengthof which is proportional to the indentation level. By default, each in-dentation level is represented by two spaces, but the user can specify viathe -i command line argument, the use of a single tab character or anarbitrary non-zero number of space characters per indentation level.4. Some lexemes are output with a preceding inter-token space. Diadic oper-ators such as >> or %, for instance, are always surrounded by single spacecharacters. In detail, pretty_c classi�es each language token into oneof 16 kinds and maintains a 16 � 16 array of boolean values that spec-ify whether an ordered pair of language tokens should be separated by aspace or not.5. All line endings are preserved. (Some pretty-printers attempt to ensurethat a blank line is inserted after each block of declarations and in someother contexts. pretty_c preserves whatever convention for vertical spac-ing already exists in the �le to be formatted: the only changes made arewithin a line.)6. An opening brace { increases the indentation level by one, and a closingbrace } decreases the indentation level by one.7. The keywords do, while, for, if, else and switch are indenting key-words. The line after an indenting keyword will have its indentation levelincreased by one unless it starts with an open brace {. Subsequent lineswill not be a�ected and will be indented as they would have been if theindenting keyword had not been encountered.8. A comment that starts in the �rst column is never indented.9. A comment that does not start in the �rst column but which is the �rstlexeme on a line is indented using the current indentation level for thatline.

Pretty-printer limitations 10510. A comment that is not the �rst lexeme on a line is reformatted to beginin the comment start column, or two columns to the right of the previouslexeme, whichever is the least. By default, the comment start column iscolumn 30, but this may be changed with the -c command line option.9.3 Pretty-printer limitationsThe conventions listed above are a useful start, but it turns out that there aresome sequences of C statements that can result in ugly formatting. In its presentform, pretty_c is good enough for everyday use (all of the rdp source has beenformatted using it, for instance) but in this section we note a series of specialcases that are handled poorly. In the next chapter we make some suggestionson how to extend the tool to cope with some more esoteric constructions.9.3.1 Operators which may be monadic or diadicSome language tokens serve a dual rôle. The * operator, for instance, is usedto denote multiplication, pointer de�nition and pointer dereferencing. Ideallywe should like to produce formatted output is the following form:char *str;int a;a = *str * 4;Since pretty_c only ever examines the token to be formatted and its immediatepredecessor it is hard to distinguish between the monadic and diadic uses of *.In the present pretty-printer, * is always treated as a diadic operator with aspace on both sides, resulting in output of the formchar * str;int a;a = * str * 4;9.3.2 Consecutive indenting keywordsThe convention for indenting keywords is that they should cause a temporaryindentation of the following line. This is inadequate for the case of a sequenceof indenting keywords on neighbouring lines. For instance, this piece of codeif (x != 0)doy += 3;while (y < x);will be reformatted asif (x != 0)doy += 3;while (y < x);

106 A PRETTY-PRINTER FOR ANSI-CThis is because temporary indentations do not accumulate.9.3.3 Continuation linesOccasionally, a long expression or function call will be broken over several lines,with signi�cant horizontal formatting. pretty_c does not preserve this format-ting. Considerx = 4 +long_function_call(first,second,third);Ideally we would like pretty_c to recognise that the open parenthesis marksthe start of a new indentation level, but in fact pretty_c will simply reformatthis asx = 4 +long_function_call(first,second,third);9.3.4 Embedded commentsA comment which is not the �rst lexeme on a line will be moved to the commentstart column, if possible. This is undesirable if the comment is intended to beembedded within a line.x = func(3 /* parameter width */, 45, 67);will be reformatted asx = func(3 /* parameter width */, 45, 67);9.3.5 Formatting of lexemesIn one place, pretty_c does not even follow its own conventions: a string orcharacter literal containing an octal escape sequence such as'\03' or An embedded control \012 characterwill be output with the numerical escape sequence reformatted to use hexadec-imal notation, as in'\X03' or An embedded control \X0A characterThis minor unpleasantness arises from a limitation of the rdp scanner whichonly returns the binary version of a string or character literal.

A grammar for a superset of ANSI-C 1079.4 A grammar for a superset of ANSI-COur aimwith the grammar for pretty_c is to accept all valid ANSI-C programs,but we are not limited to accepting only valid ANSI-C. The outline form of thegrammar is:program ::= f any valid ANSI-C lexeme g.This will be a string of zero or more ANSI-C lexemes in whatever order,including sequences that are not syntactically correct ANSI-C, so for instancepretty_c would accept a `program' of the formint main(void){ else 3 do case 16:}which should certainly be rejected by any real C compiler.The full pretty_c grammar speci�cation is shown in Figures 9.1 and 9.2.The top level rule program accepts zero or more matches against one of 16subrules that between them generate the complete ANSI-C lexicon. Each ofthe 16 subrules de�nes a particular kind of token, and each kind has di�erentspacing conventions|all of the diadic operators, for instance, are de�ned inrule diadic. Rule program receives (in the synthesized attribute lexeme) thestring of characters matched by the scanner, and a local attribute kind is as-signed one member of the kind enumeration which is de�ned in the auxiliary�le pr_c_aux.h shown in Figure 9.3. Rule program also includes calls to theauxiliary functions pretty_open() and pretty_close() that control the �lehandling.There are two cases where the string returned in lexeme is not necessarilythe actual string matched by the scanner. In the case of both character andstring literals (de�ned in lines 82 and 84) the scanner will process embeddedescape sequences to produce a string which may contain binary characters.This is the source of the restriction noted in section 9.3.5 in which octal escapesequences will be rewritten as hexadecimal escape sequences on output: thescanner does not preserve information on whether a particular escape sequencewas octal or hexadecimal so we have arbitrarily decided to output them all ashexadecimal.Comments in rdp generated parsers are usually de�ned using one of the`invisible' comment scanner primitives and quietly suppressed by the scan-ner. In this application, of course, we wish to pass comments from the parserinto the pretty printer (otherwise the comments would be removed from theformatted output!) As a result, comments are de�ned in line 56 using theCOMMENT_VISIBLE primitive.Preprocessor directives in ANSI-C present the pretty printer with particularproblems. Unusually for a high level language, spacing is critical in preprocessorde�nitions. These two commands have quite di�erent meanings:#define a(b) b=3;#define a (b) b=3;

108 A PRETTY-PRINTER FOR ANSI-C1: (***2: *3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 19974: *5: * pretty_c.bnf - a pretty-printer for ANSI-C6: *7: * This file may be freely distributed. Please mail improvements to the author.8: *9: * This grammar illustrates a rather different approach to writing language10: * parsers. Instead of trying to exactly define the language with the11: * grammar we try and find a simple grammar that accepts the language, and12: * also allow it to accept lots of incorrect strings. The rationale is that13: * a pretty-printer does not need to check a program for syntax errors14: * because a conventional compiler will be used subsequently to do that.15: * As a result we end up with a very flat, loose grammar16: *17: ***)18: TITLE("C pretty-printer V1.50 (c) Adrian Johnstone 1997")19: SUFFIX("c")20: PARSER(program)21: OUTPUT_FILE("pretty.c")22: TEXT_SIZE(100_000)23: USES("pr_c_aux.h")24:25: ARG_NUMERIC(i indent_size "Number of spaces per indent level: 0 means use tabs (default 2)")26: ARG_NUMERIC(c comment_start "Preferred start column for trailing comments (default 30)")27:28: program ::= [* enum kinds kind;29: long unsigned line, column;30: pretty_open(rdp_sourcefilename, rdp_outputfilename);31: *]32: {33: [* line = scan_line_number(); column = scan_column_number(); *]34: (35: comment: lexeme [* kind = K_COMMENT; *] |36: string: lexeme [* kind = K_STRING; *] |37: character: lexeme [* kind = K_CHARACTER; *] |38: block_open: lexeme [* kind = K_BLOCK_OPEN; *] |39: block_close: lexeme [* kind = K_BLOCK_CLOSE; *] |40: preprocessor: lexeme [* kind = K_PREPROCESSOR; *] |41: monadic: lexeme [* kind = K_MONADIC; *] |42: diadic: lexeme [* kind = K_DIADIC; *] |43: open_bracket: lexeme [* kind = K_OPEN_BRACKET; *] |44: close_bracket: lexeme [* kind = K_CLOSE_BRACKET; *] |45: item: lexeme [* kind = K_ITEM; *] |46: field_delim: lexeme [* kind = K_FIELD_DELIM; *] |47: punctuation: lexeme [* kind = K_PUNCTUATION; *] |48: keyword: lexeme [* kind = K_KEYWORD; *] |49: keyword_indent: lexeme [* kind = K_KEYWORD_INDENT; *] |50: EOLN: lexeme [* kind = K_EOLN; *]51:)52: [* pretty_print(lexeme, kind, column, line); *]53: }54: [* pretty_close(rdp_sourcefilename, rdp_outputfilename); *].55: Figure 9.1 rdp grammar for pretty-printer: part 1

A grammar for a superset of ANSI-C 10956: comment: char* ::= COMMENT_VISIBLE('/*' '*/'):result.57:58: preprocessor: char* ::= COMMENT_LINE_VISIBLE('#'):result.59:60: monadic: char* ::= '!':result | '++':result | '--':result | '~':result .61:62: diadic: char* ::= '&&':result | '&':result | '^':result | '|':result |63: '||':result | '%':result | '*':result | '/':result |64: '+':result | '-':result | '<<':result | '>>':result |65: '<':result | '<=':result | '==':result | '>':result |66: '>=':result | '?':result | '!=':result | '%=':result |67: '&=':result | '*=':result | '+=':result | '-=':result |68: '/=':result | '=':result | '^=':result | '|=':result |69: '<<=':result | '>>=':result | '\\':result.70:71: block_open: char* ::= '{':result.72:73: block_close: char* ::= '}':result.74:75: open_bracket: char* ::= '(':result | '[':result.76:77: close_bracket: char* ::= ')':result | ']':result.78:79: item: char* ::= ([* result = SCAN_CAST->id; *] (INTEGER | REAL)) |80: ID:result | '...':result .81:82: string: char* ::= STRING_ESC('"''\\'):result.83:84: character:char* ::= STRING_ESC('\'''\\'): result.85:86: field_delim: char* ::= '->':result | '.':result.87:88: punctuation: char* ::= ':':result | ';':result | ',': result.89:90: keyword: char* ::= 'auto':result | 'break':result | 'case':result |91: 'char':result | 'const':result | 'continue':result |92: 'default':result | 'double':result | 'enum':result |93: 'extern':result | 'float':result | 'goto':result |94: 'int':result | 'long':result | 'register':result |95: 'return':result | 'short':result | 'signed':result |96: 'sizeof':result | 'static':result | 'struct':result |97: 'union':result | 'unsigned':result | 'void':result |98: 'volatile':result.99:100: keyword_indent: char* ::= 'do':result | 'else':result | 'for':result |101: 'if':result | 'switch':result | 'while':result.Figure 9.2 rdp grammar for pretty-printer: part 2

110 A PRETTY-PRINTER FOR ANSI-CThe �rst de�nes a macro called a with a parameter b which has 3 assigned toit in the body of the macro. The second de�nes a parameterless macro a whichexpands to the string (b) b=3;. The absence or presence of the space betweenthe macro name and the opening parenthesis is used to decided whether amacro has parameters or not. This is an immediate problem for the rdp scannerbecause spaces are discarded and must be reconstructed from the token stream.It would be possible to do this by keeping track of the column numbers for thetokens immediately after a #define token, but fortunately for us there is asimpler solution. In the C preprocessor, no line endings are allowed withinpreprocessor directives. As a result we can make use of the rdp scanner'sCOMMENT_LINE_VISIBLE primitive to de�ne a `comment' that opens with thetoken # and closes with the line end. This will cause the complete preprocessordirective to be handled in the parser as a single monolithic unit, just like acomment. In this way the spacing is preserved. Of course, a side e�ect ofthis is that preprocessor lines will never be `pretti�ed', but given the subtletiesof parsing preprocessor directives this conservative design decision is perhapsjusti�ed.The lexeme and its associated kind value are passed to the auxiliary functionpretty_print() in line 52 along with the line and column numbers for thetoken. This function will be described in the next section: we simply note herethat the lexeme will be printed (possibly with a preceding space) to the output�le, and that line end tokens will be followed by a string of spaces correspondingto the indentation level.9.5 Auxiliary routinesThe auxiliary functions and the kind enumeration are de�ned in the auxiliaryheader �le pr_c_aux.h shown in Figure 9.3. The two externally visible vari-ables, indent_size and comment_start receive the values of the -i and -ccommand line arguments. The kind enumeration has 17 values: the �rst 16correspond to the 16 subrules in the pretty_c grammar and the last one K_TOPis a dummy value that is set to the number of subrules.The source code for the three auxiliary functions is shown in Figures 9.4{9.7.The data declarations are in Figure 9.4 and include variables to keep count ofthe number of line endings seen, the number of lexemes seen and the number ofcomments. We also remember the value of the last reported line number. Thismay be di�erent to the number of line endings seen because a comment thatspans a line ending will be parsed as a single comment lexeme, and so some lineendings may be hidden.The �le handling routines pretty_open() and pretty_close() are shownin Figure 9.5 and are straightforward.9.5.1 The space arrayThe 16 � 16 array of booleans space_array is used by the pretty printer todecide whether a space should precede the current lexeme before it is output.

Auxiliary routines 1111: /**2: *3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 19974: *5: * pr_c_aux.h - pretty-printer semantic routines6: *7: * This file may be freely distributed. Please mail improvements to the author.8: *9: **/10: enum kinds11: {12: K_BLOCK_CLOSE, K_BLOCK_OPEN, K_CHARACTER, K_CLOSE_BRACKET, K_COMMENT,13: K_DIADIC, K_EOLN, K_FIELD_DELIM, K_KEYWORD, K_KEYWORD_INDENT, K_ITEM,14: K_MONADIC, K_OPEN_BRACKET, K_PREPROCESSOR, K_PUNCTUATION, K_STRING, K_TOP15: };16:17: extern unsigned long indent_size;18: extern unsigned long comment_start;19:20: void pretty_close(char * sourcefilename, char * outputfilename);21: void pretty_open(char * sourcefilename, char * outputfilename);22: void pretty_print(char * lexeme, enum kinds kind, unsigned long column, unsigned long line);23:24: /* End of pr_c_aux.h */Figure 9.3 Pretty-printer auxiliary functions: header �leThe pretty_print() function remembers in a static variable the token kind oflast lexeme seen, so at each stage it has access to the token kinds of the previousand current lexemes. Line 129 uses the space array to check whether a spaceshould be output:129: if (space_table[last_kind][kind]) /* insert space if necessary */130: printed += fprintf(outputfile, " ");Here we see that if there is a one at position (last, current) of the space arraythen a preceding space will be output. Line 54, for instance, speci�es that aspace shall always be output if the last kind was punctuation (such as a commaor semicolon). This e�ectively inserts a space after every punctuation character.This lookup table mechanism is very
exible and almost su�ciently powerfulbut it does su�er from some limitations. In particular, it is not easy to decidewhether a * token is a diadic multiplication or a monadic pointer dereferenceoperator, especially in contexts such as mytype *temp; where mytype is a userde�ned type de�nition that has been created using a typedef statement. To beable to handle such cases we would need to keep track of all typedef statementswhich would require a much more detailed grammar. In fact, we would have toimplement a complete C preprocessor to perform this task perfectly because itis conceivable that the user de�ned type mytype had been de�ned in a macroor in an included �le. pretty_c simply ignores these complications and alwaystreats * (and for that matter &) as a diadic operator with spaces on both sides.This is the source of the restrictions described in section 9.3.1.

112 A PRETTY-PRINTER FOR ANSI-C1: /***2: *3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 19974: *5: * pr_c_aux.c - pretty printer semantic routines6: *7: * This file may be freely distributed. Please mail improvements to the author.8: *9: ***/10: #include <stdio.h>11: #include "scan.h"12: #include "textio.h"13: #include "pr_c_aux.h"14:15: static int lexeme_count = 0;16: static int eoln_count = 0;17: static int comment_count = 0;18: static int last_line = 1;19: static FILE * outputfile;20: unsigned long indent_size = 2l;21: unsigned long comment_start = 30l;22:23:24: static int space_table[K_TOP][K_TOP]= {25: /* K26: C E27: L Y O P28: B O F W P R P29: L B S I O E E U30: O L C E E R N P N31: C O H _ L D _ R C32: K C A B C D K _ M B O T33: _ K R R O D _ E I O R C U S34: C _ A A M I D Y N N A E A T35: L O C C M A E E W D I A C S T R36: O P T K E D O L O E T D K S I I37: S E E E N I L I R N E I E O O N38: E N R T T C N M D T M C T R N G39: -- */40: /* BLOCK_CLOSE */ {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},41: /* BLOCK_OPEN */ {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},42: /* CHARACTER */ {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},43: /* CLOSE_BRACKET */ {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0},44: /* COMMENT */ {1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1},45: /* DIADIC */ {1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1},46: /* EOLN */ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},47: /* FIELD_DELIM */ {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},48: /* KEYWORD */ {0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0},49: /* KEYWORD_INDENT */ {0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0},50: /* ITEM */ {0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1},51: /* MONADIC */ {1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1},52: /* OPEN_BRACKET */ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},53: /* PREPROCSSOR */ {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1},54: /* PUNCTUATION */ {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},55: /* STRING */ {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1}56: };57: Figure 9.4 Pretty-printer auxiliary functions: part 1

Auxiliary routines 113
58: void pretty_open(char * sourcefilename, char * outputfilename)59: {60: if (strcmp(sourcefilename, outputfilename)== 0)61: text_message(TEXT_FATAL, "temporary output filename is the same as the source filename");62:63: if (* outputfilename == '-')64: outputfile = stdout;65: else if ((outputfile = fopen(outputfilename, "w"))== NULL)66: text_message(TEXT_FATAL, "unable to open output file \'%s\'", outputfilename);67: }68:69: void pretty_close(char * sourcefilename, char * outputfilename)70: {71: unsigned long useful_lexeme_count = lexeme_count - comment_count - eoln_count;72: char * backup_filename = text_force_filetype(sourcefilename, "bak");73:74: fclose(outputfile);75:76: remove(backup_filename);77:78: if (rename(sourcefilename, backup_filename)!= 0)79: text_message(TEXT_FATAL, "unable to rename \'%s\' to \'%s\'\n", sourcefilename, backup_filename);80:81: if (rename(outputfilename, sourcefilename)!= 0)82: text_message(TEXT_FATAL, "unable to rename \'%s\' to \'%s\'\n", outputfilename, sourcefilename);83:84: text_printf("%s,%lu,%lu,%.2lf\n", sourcefilename,85: last_line,86: useful_lexeme_count,87: (double) useful_lexeme_count /(double) last_line);88: }89: Figure 9.5 Pretty-printer auxiliary functions: part 2

114 A PRETTY-PRINTER FOR ANSI-C90: void pretty_print(char * lexeme, enum kinds kind, unsigned long column, unsigned long line)91: {92: static int last_kind = K_EOLN;93: static int indentation = 0;94: static int temporary_indent = 0;95: static int printed = 0;96:97: lexeme_count++; /* bump lexeme counter for statistics */98: last_line = line; /* remember the highest line number seen */99:100: if (kind == K_BLOCK_CLOSE)101: indentation--;102: else if (last_kind == K_BLOCK_OPEN)103: indentation++;104:105: if (last_kind == K_EOLN) /* do indentation */106: {107: int indent_count, space_count;108:109: if (temporary_indent && kind != K_BLOCK_OPEN) /* add an indent of we aren't opening a block */110: indentation++;111:112: for (indent_count = 0; indent_count < indentation; indent_count++)113: if (!((column == 1)&&(kind == K_COMMENT))) /* Don't indent comments that start in column 1 */114: if (indent_size == 0)115: {116: fprintf(outputfile, "\t"); /* indent using a tab */117: printed += text_get_tab_width();118: }119: else120: for (space_count = 0; space_count < indent_size; space_count++)121: printed += fprintf(outputfile, " ");122:123: if (temporary_indent && kind != K_BLOCK_OPEN) /* reset temporary indent */124: indentation--;125:126: temporary_indent = 0;127: }128:129: if (space_table[last_kind][kind]) /* insert space if necessary */130: printed += fprintf(outputfile, " ");131: Figure 9.6 Pretty-printer auxiliary functions: part 3

Auxiliary routines 115132: /* Print the lexeme: some kinds need special actions */133: switch (kind)134: {135: case K_EOLN:136: fprintf(outputfile, "\n");137: eoln_count++;138: printed = 0;139: break;140:141: case K_COMMENT:142: comment_count++;143: if (last_kind != K_EOLN) /* comments that aren't first on a line move to middle */144: do145: printed += fprintf(outputfile, " ");146: while (printed < comment_start);147:148: printed += fprintf(outputfile, "/*%s*/", lexeme);149: break;150:151: case K_STRING:152: printed += fprintf(outputfile, "\"");153: printed += text_print_C_string_file(outputfile, lexeme);154: printed += fprintf(outputfile, "\"");155: break;156:157: case K_CHARACTER:158: printed += fprintf(outputfile, "\'");159: printed += text_print_C_char_file(outputfile, lexeme);160: printed += fprintf(outputfile, "\'");161: break;162:163: case K_PREPROCESSOR:164: printed += fprintf(outputfile, "#%s", lexeme);165: break;166:167: default:168: printed += fprintf(outputfile, "%s", lexeme);169: break;170: }171:172: if (kind == K_KEYWORD_INDENT) /* Set an indent for next line */173: temporary_indent = 1;174:175: last_kind = kind;176: }177: /* End of pr_c_aux.c */Figure 9.7 Pretty-printer auxiliary functions: part 4

116 A PRETTY-PRINTER FOR ANSI-C9.5.2 The pretty-print functionThe pretty-print function is called after each lexeme read by the parser. It isde�ned in Figures 9.6 and 9.7, lines 90{176. The internal state of the prettyprinter is maintained between calls in four static integer variables:1. last_kind contains the token kind of the lexeme processed on the previ-ous call to pretty_print(),2. indentation contains the current indentation level,3. temporary_indent is a boolean
ag that is set after an indenting keywordsuch as if or while is seen, and4. printed contains the number of characters output since the last new linecharacter, or (equivalently) the current output column number.In lines 97 and 98 the global variables lexeme_count and last_line areupdated. These variables are used within function pretty_close to output thenumber of lines, number of lexemes and the average lexeme per line count atthe end of a run.The indentation of lines is performed by the code in lines 105-127, which isonly executed if the last token seen was a new line so as to ensure that inden-tation is only performed at the beginning of a line. Lines 109-110 temporarilyincrement the indentation level if the temporary_indent
ag is set and we arenot processing a new block. Any temporary increment is reset in lines 123{124.Line 113 detects comments that start in column 1 and suppresses their in-dentation. Lines 114{121 output tab characters or groups of spaces accordingto the value of the indent_size variable that is set using the -i commandline option. In each case, the printed variable is updated to show the col-umn number after printing. The routine text_get_tab_width() is used to getthe current value of the tab setting as set using the -t command line option.Incidentally, note the ugly layout of this code which is a manifestation of theproblem described in section 9.3.2.The space table is accessed in lines 129{130 to control the output of a spacecharacter before the current lexeme is printed. You may dislike the spacingconvention used here (some people like a space after an opening parenthesisand a space before a closing parenthesis, for instance) in which case you shouldexperiment with modi�cations to the space table.The lexemes are printed out under the control of the switch statement atlines 133{170. Most token kinds receive the default treatment of being simplyprinted out. However the following token kinds require special treatment:1. K_EOLN must be output as a newline character, and the eoln_count andprinted variables must be updated at the same time,2. K_COMMENT lexemes do not contain the delimiting /* and */ brackets sothese must be reinstated on output, and the comment must be placed asnear to the comment start column as possible,

Auxiliary routines 1173. K_STRING and K_CHARACTER lexemes do not contain the delimiting quotemarks so these must be reinstated on output, and4. K_PREPROCESSOR lexemes do not contain the delimiting # token, so thismust be inserted before output of the body of the preprocessor command.The �nal actions of the pretty-print function are to set a temporary indent ifan indentable keyword has been output and to update the last_kind variableready for the next invocation.

Chapter 10Design projectsIn this chapter we give suggestions for enhancements to the mini languagesdescribed in earlier chapters that might reasonably be undertaken as exercises,as well as a larger project to build a subset C compiler.1. Add block de�nition to minicond (hint: follow the syntax in miniloop.bnf).2. Add left and right shift operators to minicalc and its descendent lan-guages.3. Add logical operators to minicalc and its descendent languages.4. Add real arithmetic minicalc and its descendent languages.5. Add a switch statement minicond and miniloop.6. Add a for loop to miniloop.7. Add a goto statement to miniloop.8. Add function de�nition and call to miniloop.9. Implement common mode subexpression elimination for minitree.10. Add registers to MVM and a simple register allocator to minitree.11. Add a graph colouring register allocator to minitree.12. Add conditional assembly to mvmasm.13. Add macro de�nition and call to mvmasm.14. Implement a subset C compiler with rdp.This is an ambitious project which could build into a complete compilerfor C targeted at a virtual machine of the MVM form. The suggestionshere form a coherent path through the tasks but an experienced languageimplementor would probably coalesce some of the intermediate stagestogether.

120 DESIGN PROJECTS(a) De�ne a language for the target machine. The MVM assembly lan-guage used in this manual is suitable as a basic language and hasthe advantage that an assembler and a simulator already exist forthat language. An extremely ambitious choice would be to use thelanguage of a real processor, although this is only recommended forreaders that are very familiar with programming the chosen proces-sor.(b) De�ne a tree-like intermediate data structure to represent the resultof parsing the source program. The student can either decide to buildthis structure using actions embedded in the parser speci�cation oruse the automatic tree building capability of rdp.(c) De�ne a subset of C. A simple subset might correspond to a ver-sion of C that only allows integer operations, has no pointers, nouser-de�ned types and no capability to de�ne functions. Controlstructures might also be restricted: a simple if-then-else state-ment and a while-do statement would su�ce in the �rst instance.(d) Write an rdp speci�cation that parses the chosen subset languageand test it against a set of test examples illustrating both correctand incorrect usage.(e) Enhance the rdp speci�cation using either explicit semantic actionsor the rdp tree operators to build the intermediate form.(f) Write a POST_PARSE function that traverses the intermediate formemitting instructions for the target processor.(g) Demonstrate correct compilation and execution of test programs us-ing simulation or by direct execution on the target architecture.(h) Add a full complement of C control structures, including switch,break, goto and for.(i) Add support for
oating point arithmetic.(j) Add support for function de�nition.(k) Add support for user de�ned type de�nition.(l) Add support for pointers.(m) Implement common subexpression elimination.(n) Implement register allocation using graph colouring.

Appendix AAcquiring and installing rdprdp may be fetched using anonymous ftp to ftp.dcs.rhbnc.ac.uk. If youare a Unix user download pub/rdp/rdpx_y.tar or if you are an MS-DOS userdownload pub/rdp/rdpx_y.zip. In each case x_y should be the highest numberin the directory. You can also access the rdp distribution via the rdp Webpage at http://www.dcs.rhbnc.ac.uk/research/languages/rdp.shmtl. Ifall else fails, try mailing directly to A.Johnstone@rhbnc.ac.uk and a tape ordisk will be sent to you.A.1 Installation1. Unpack the distribution kit. You should have the �les listed in Table A.1.2. The make�le can be used with many di�erent operating systems andcompilers.Edit it to make sure that it is con�gured for your needs by uncommentingone of the blocks of macro de�nitions at the top of the �le.3. To build everything, go to the directory containing the make�le and typemake. The default target in the make�le builds rdp, the mini_syn syn-tax analyser, the minicalc interpreter, the minicond interpreter, theminiloop compiler, the minitree compiler an assembler called mvmasmand its accompanying simulator mvmsim, a parser for the Pascal languageand a pretty printer for ANSI-C. The tools are run on various test �les.None of these should generate any errors, except for LL(1) errors causedby the mini and Pascal if statements and warnings from rdp about un-used comment() rules, which are normal.make then builds rdp1, a machine generated version of rdp. rdp1 is thenused to reproduce itself, creating a �le called rdp2. The two machinegenerated versions are compared with each other to make sure that thebootstrap has been successful. Finally the machine generated versions aredeleted.4. If you type make clean all the object �les and the machine generatedrdp versions will be deleted, leaving the distribution �les plus the new

122 ACQUIRING AND INSTALLING RDP00readme.1_5 An overview of rdpmakefile Main rdp make�leminicalc.bnf rdp speci�cation for the minicalc interpreterminicond.bnf rdp speci�cation for the minicond interpreterminiloop.bnf rdp speci�cation for the miniloop compilerminitree.bnf rdp speci�cation for the minitree compilermini_syn.bnf rdp speci�cation for the mini syntax checkerml_aux.c miniloop auxiliary �leml_aux.h miniloop auxiliary header �lemt_aux.c minitree auxiliary �lemt_aux.h minitree auxiliary header �lemvmasm.bnf rdp speci�cation of the mvmasm assemblermvmsim.c source code for the mvmsim simulatormvm_aux.c auxiliary �le for mvmasmmvm_aux.h auxiliary header �le for mvmasmmvm_def.h op-code de�nitions for MVMpascal.bnf rdp speci�cation for Pascalpretty_c.bnf rdp speci�cation for the ANSI-C pretty printerpr_c_aux.c auxiliary �le for pretty_cpr_c_aux.h auxiliary header �le for pretty_crdp.bnf rdp speci�cation for rdp itselfrdp.c rdp main source �le generated from rdp.bnfrdp.exe 32-bit rdp executable for Win-32 (.zip �le only)rdp.h rdp main header �le generated from rdp.bnfrdp_aux.c rdp auxiliary �lerdp_aux.h rdp auxiliary header �lerdp_gram.c grammar checking routines for rdprdp_gram.h grammar checking routines header for rdprdp_prnt.c parser printing routines for rdprdp_prnt.h parser printing routines header for rdptest.c ANSI-C pretty printer test source �letest.pas Pascal test source �letestcalc.m minicalc test source �letestcond.m minicond test source �letestloop.m miniloop test source �letesttree.m minitree test source �lerdp_doc\rdp_case.dvi case study TEX dvi �lerdp_doc\rdp_case.ps case study Postscript sourcerdp_doc\rdp_supp.dvi support manual TEX dvi �lerdp_doc\rdp_supp.ps support manual Postscript sourcerdp_doc\rdp_tut.dvi tutorial manual TEX dvi �lerdp_doc\rdp_tut.ps tutorial manual Postscript sourcerdp_doc\rdp_user.dvi user manual TEX dvi �lerdp_doc\rdp_user.ps user manual Postscript sourcerdp_supp\arg.c argument handling routinesrdp_supp\arg.h argument handling headerrdp_supp\graph.c graph handling routinesrdp_supp\graph.h graph handling headerrdp_supp\memalloc.c memory management routinesrdp_supp\memalloc.h memory management headerrdp_supp\scan.c scanner support routinesrdp_supp\scan.h scanner support headerrdp_supp\scanner.c the rdp scannerrdp_supp\set.c set handling routinesrdp_supp\set.h set handling headerrdp_supp\symbol.c symbol handling routinesrdp_supp\symbol.h symbol handling headerrdp_supp\textio.c text bu�er handling routinesrdp_supp\textio.h text bu�er handling headerexamples\... examples from manualsTable A.1 Distribution �le list

Build log 123executables. If you type make veryclean then the directory is cleanedand the executables are also deleted.A.2 Build logThe output of a successful make�le build on MS-DOS is shown below. Notethe warning messages from rdp on some commands: these are quite normal.cc -Irdp_supp\ -c rdp.crdp.c: cc -Irdp_supp\ -c rdp_aux.crdp_aux.c:cc -Irdp_supp\ -c rdp_gram.crdp_gram.c:cc -Irdp_supp\ -c rdp_prnt.crdp_prnt.c:cc -Irdp_supp\ -c rdp_supp\arg.crdp_supp\arg.c:cc -Irdp_supp\ -c rdp_supp\graph.crdp_supp\graph.c:cc -Irdp_supp\ -c rdp_supp\memalloc.crdp_supp\memalloc.c:cc -Irdp_supp\ -c rdp_supp\scan.crdp_supp\scan.c:cc -Irdp_supp\ -c rdp_supp\scanner.crdp_supp\scanner.c:cc -Irdp_supp\ -c rdp_supp\set.crdp_supp\set.c:cc -Irdp_supp\ -c rdp_supp\symbol.crdp_supp\symbol.c:cc -Irdp_supp\ -c rdp_supp\textio.crdp_supp\textio.c:cc -erdp.exe rdp.obj rdp_*.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objrdp -F -omini_syn mini_syncc -Irdp_supp\ -c mini_syn.cmini_syn.c:cc -emini_syn.exe mini_syn.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objmini_syn testcalcrdp -F -ominicalc minicalccc -Irdp_supp\ -c minicalc.cminicalc.c:cc -eminicalc.exe minicalc.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objminicalc testcalca is 7b is 14, -b is -147 cubed is 343rdp -F -ominicond minicond******: Error - LL(1) violation - rulerdp_statement_2 ::= ['else' _and_not statement] .

124 ACQUIRING AND INSTALLING RDPcontains null but first and follow sets both include: 'else'******: Warning - Grammar is not LL(1) but -F set: writing files******: 1 error and 1 warningcc -Irdp_supp\ -c minicond.cminicond.c:cc -eminicond.exe minicond.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objminicond testconda is 7b is 14, -b is -147 cubed is 343z equals az does not equal ardp -F -ominiloop miniloop******: Error - LL(1) violation - rulerdp_statement_2 ::= ['else' statement] .contains null but first and follow sets both include: 'else'******: Warning - Grammar is not LL(1) but -F set: writing files******: 1 error and 1 warningcc -Irdp_supp\ -c miniloop.cminiloop.c:cc -Irdp_supp\ -c ml_aux.cml_aux.c:cc -eminiloop.exe miniloop.obj ml_aux.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objrdp -F -omvmasm mvmasmcc -Irdp_supp\ -c mvmasm.cmvmasm.c:cc -Irdp_supp\ -c mvm_aux.cmvm_aux.c:cc -emvmasm.exe mvmasm.obj mvm_aux.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objcc -Irdp_supp\ -c mvmsim.cmvmsim.c:cc -emvmsim.exe mvmsim.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objminiloop -otestloop.mvm testloopmvmasm -otestloop.sim testloop******: Transfer address 00001000mvmsim testloop.sima is 7b is 14, -b is -147 cubed is 343z equals az does not equal aa is 3a is 2a is 1-- Halted --rdp -F -ominitree minitree******: Error - LL(1) violation - rulerdp_statement_2 ::= ['else' statement] .contains null but first and follow sets both include: 'else'

Build log 125******: Warning - Grammar is not LL(1) but -F set: writing files******: 1 error and 1 warningcc -Irdp_supp\ -c minitree.cminitree.c:cc -Irdp_supp\ -c mt_aux.cmt_aux.c:cc -eminitree.exe minitree.obj m*_aux.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objminitree -otesttree.mvm testtreemvmasm -otesttree.sim testtree******: Transfer address 00001000mvmsim testtree.sima is 7b is 14, -b is -147 cubed is 343z equals az does not equal aa is 3a is 2a is 1-- Halted --rdp -opascal -F pascal******: Error - LL(1) violation - rulerdp_statement_9 ::= ['else' statement] .contains null but first and follow sets both include: 'else'******: Warning - Grammar is not LL(1) but -F set: writing files******: 1 error and 1 warningcc -Irdp_supp\ -c pascal.cpascal.c:cc -epascal.exe pascal.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objpascal testrdp -opretty_c pretty_ccc -Irdp_supp\ -c pretty_c.cpretty_c.c:cc -Irdp_supp\ -c pr_c_aux.cpr_c_aux.c:cc -epretty_c.exe pretty_c.obj pr_c_aux.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objpretty_c testtest.c,2133,12267,5.75fc test.c test.bakComparing files test.c and test.bakFC: no differences encountereddel test.bakrdp -F -ordp1 rdpcc -Irdp_supp\ -c rdp1.crdp1.c: cc -erdp1.exe rdp1.obj rdp_*.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objcopy rdp1.c rdp2.crdp1 -F -ordp1 rdp

126 ACQUIRING AND INSTALLING RDPfc rdp1.c rdp2.cComparing files rdp1.c and rdp2.c****** rdp1.c** Parser generated by RDP on Dec 20 1997 21:05:05 from rdp.bnf******* rdp2.c** Parser generated by RDP on Dec 20 1997 21:05:02 from rdp.bnf*******

Bibliography[JS97a] Adrian Johnstone and Elizabeth Scott. rdp - a recursive descent com-piler compiler. user manual for version 1.5. Technical Report TR-97-25, Royal Holloway, University of London, Computer Science Depart-ment, December 1997.[JS97b] Adrian Johnstone and Elizabeth Scott. rdp supp { support routinesfor the rdp compiler compiler version 1.5. Technical Report TR-97-26,Royal Holloway, University of London, Computer Science Department,December 1997.[JS97c] Adrian Johnstone and Elizabeth Scott. A tutorial guide to rdp fornew users. Technical Report TR-97-24, Royal Holloway, University ofLondon, Computer Science Department, December 1997.[PD82a] S Pemberton and M C Daniels. Pascal implementation: compiler andassembler/interpreter. Ellis Horwood, 1982.[PD82b] S Pemberton and M C Daniels. Pascal implementation: the P4 com-piler. Ellis Horwood, 1982.

