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Abstract

gtb is a system for analysing context free grammars. The user provides a
collection of BNF rules and uses gtb’s programming language, LC, to study
grammars built from the rules. In its current stage of development gtb is
focused primarily on parsing and the associated grammar data structures. It is
possible to ask gtb to produce any of the standard LR DFAs for the grammar,
and to create an LR or a GLR parser for the grammar. These parsers can
be run as LC methods on any specified input string. gtb also generates other
forms of general parsers such as reduction incorporated parsers, Earley parsers
and Chart parsers. It produces various forms of output diagnostics, and can be
used to compare the different forms of parser and DFA types.

This document is c©Adrian Johnstone and Elizabeth Scott 2006.

Permission is given to freely distribute this document electronically and
on paper. You may not change this document or incorporate parts of it
in other documents: it must be distributed intact.

The gtb system itself is c©Adrian Johnstone but may be freely copied
and modified on condition that details of the modifications are sent to
the copyright holder with permission to include such modifications in
future versions and to discuss them (with acknowledgement) in future
publications.

The version of gtb described here is version 2.4 dated 2005.

Please send bug reports and copies of modifications to the authors at the
address on the title page or electronically to A.Johnstone@rhul.ac.uk.
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1 gtb overview

There are many aspects motivating the investigation of context free grammars,
for example to find better general parsing algorithms, to characterise classes of
grammar which can be efficiently parsed, and to support the transformation of
grammars into equivalent ones that can be parsed using one of the standard
linear time techniques. gtb is designed to support all of these interests. It
contains many of the common general parsing techniques, allowing them to be
compared and contrasted on different types of grammar. It allows the user to
construct different types of automata which form the basis of the standard LR
parsers, and it can build many of the structures which support parsing such
as first and follow sets and carry out left recursion detection. gtb can
output many of the structures in VCG format. Thus structures such as DFAs,
rules trees, grammar non-terminal dependency graphs, parse trees and graph
structured stacks to be displayed graphically using the VCG tool [San95].

This is a brief guide to using the gtb tool kit, it is essentially a cut down
version of the more detailed gtb tutorial guide. It is aimed at users who are
familiar with the theory of parsing and with the use of parser generators. Stan-
dard definitions of finite state automata, context free grammars, derivations
and related concepts will be assumed, as will familiarity with the standard LR
parse tables and stack based parsers. For a full guide to gtb and the related
underlying theoretical concepts the reader is referred to the much more detailed
gtb tutorial guide.

1.1 gtb input files

The input to gtb consists of a set of grammar rules and an LC script of methods
to be executed. The terminal symbols are enclosed in single quotes, the left hand
sides of the rules are assumed to be the non-terminals, and each grammar rule is
terminated by a full stop. There should only be one rule for each non-terminal.
The empty string is denoted by # in a gtb grammar.

The following is a gtb input file which specifies a small grammar, ex1.

(* ex1 *)

S ::= S ’+’ S | S ’*’ S | E .

E ::= ’a’ | ’b’ .

(* the LC instructions are enclosed in parantheses *)

(

ex1_grammar := grammar[S]

generate[ex1_grammar 15 right sentential_forms]

)

Comments are contained within brackets of the form (* *) and the gtb

method calls are contained within parentheses. The method grammar[S] causes
gtb to make a grammar using the specified rules and start symbol S, in the
above example the grammar is referred to using the variable name ex1_grammar.
The second method in the above example gets gtb to generate 15 strings using
right-most derivations.
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gtb constructs various data structures associated with the grammar, in-
cluding the first and follow sets for each terminal and non-terminal. Be-
cause gtb uses the first and follow sets in various ways in other parts of its
functionality, the sets it constructs also include non-terminals.

The write method gets gtb to print out some of the data structures that
it has constructed. To get more information we switch into verbose mode. By
default the output is printed to the screen. For example, if we input the script

S ::= S ’+’ S | S ’*’ S | E .

E ::= ’a’ | ’b’ .

(

gtb_verbose := true

write[grammar[S]]

)

diagnostic information is printed on the screen.

Grammar report for start rule S

Grammar alphabet

0 !Illegal

1 #

2 $

3 ’*’

4 ’+’

5 ’a’

6 ’b’

-------------

7 E

8 S

Grammar rules

E ::= ’a’ |

’b’ .

S ::= S[0] ’+’ S[1] |

S[2] ’*’ S[3] |

E[4] .

Grammar sets

terminals = {’*’, ’+’, ’a’, ’b’}

nonterminals = {E, S}

reachable = {’*’, ’+’, ’a’, ’b’, E, S}

reductions = {E ::= ’b’ . , E ::= ’a’ . , S ::= E . ,

S ::= S ’*’ S . , S ::= S ’+’ S . }

nullable_reductions = {E ::= ’b’ . , E ::= ’a’ . , S ::= E . ,

S ::= S ’*’ S . , S ::= S ’+’ S . }

start rule reductions = {S ::= E . , S ::= S ’*’ S . , S ::= S ’+’ S . }

start rule nullable_reductions = {S ::= E . , S ::= S ’*’ S . ,

S ::= S ’+’ S . }
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Internally all of the grammar symbols are given unique integer numbers, listed
at the top of the output. To help identify bugs, gtb performs a ‘reachability’
analysis to determine which of the symbols in the rules can appear in sentential
forms of the given start symbol. Finally gtb outputs its versions of the first

and follow sets for each symbol.

1.2 Enumeration and the rules tree

gtb represents the grammar that it constructs using a rules tree. The internal
rules tree can be output to a file in VCG format.

S ::= S ’+’ S | S ’*’ S | E .

E ::= ’a’ | ’b’ .

(

ex1_grammar := grammar[S]

rules_file := open["rules.vcg"]

render[rules_file ex1_grammar]

)

creates a rules tree that is displayed in VCG as

1.3 Grammar dependency graphs

For nonterminals A and B, the relationship A depends on B is defined by the
property that B appears on the right hand side of the rule for A. The relation
A depends on B is represented in a grammar dependency graph (GDG). For
example,

S ::= S ’+’ S | S ’*’ S | E .

E ::= ’a’ | ’b’ .

(
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ex1_grammar := grammar[S]

write[ex1_grammar]

render[open["gdg.vcg"] gdg[ex1_grammar]]

close[gdg_file]

)

builds the following GDG

The GDG produced by gtb contains more information than just the basic de-
pendency relationships. The edge from A to B is labelled l or r if there is a
rule A ::= Bβ or A ::= αB, respectively, and the edge is also labelled L or R if
there is a rule A ::= αBβ where α 6= ε or β 6= ε, respectively.

2 Using gtb – a quick start

You can download gtb from

www.cs.rhul.ac.uk/research/languages/projects/gtb/gtb.html

The distribution contains sub-directories so the file needs to be unpacked with
the appropriate sub-directory flag. The WINDOWS distribution contains exe-
cutables gtb_xp and gtb_cygwin that run from the command line under Win-
dows XP and under cygwin. There is also a UNIX distribution and the source
files can be compiled to run under other systems, see the README file. Some
example files are included with the distribution. Typing gtb_xp \gtb_ex\ex1

will provide an initial example of how the tool works.
To use gtb on your own examples simply create an input file file.gtb in

which the grammar rules are listed at the top of the file in the form described in
Section 1.1 and then the gtb methods you want to execute are listed, in order,
enclosed in parantheses.

gtb can generate a specified number of sentences or sentential forms from
the grammar. It can build LR(0), SLR, LALR, LR(1) and Aycock and Hor-
spool style automata and it performs standard LR parses and various forms of
GLR parses. It constructs various types of grammar related structures such as
first and follow sets and it can be used to detect recursion and to termi-
nalise a grammar to remove recursion. gtb can be instructed to output textual
information to the screen and graphical data structures in VCG format.

The following is an example gtb input script
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S ::= E ’;’ .

E ::= E ’+’ T | T .

T ::= ’0’ | ’1’ .

X ::= ’a’ ~X ’b’ | A ’a’ A | X ’a’ .

A ::= ’a’ ~B | ’a’ ~B ~B | # .

B ::= B A | # .

(

this_grammar := grammar[S]

gtb_verbose := true

this_nfa := nfa[this_grammar lr 1]

this_dfa := dfa[this_nfa]

this_lalr := la_merge[this_dfa]

lr_parse[this_lalr "0+1;"]

gtb_verbose := false

this_derivation := tomita_1_parse[dfa[nfa[grammar[S] slr 1]] "0+1;"]

render[open["gss.vcg"] this_derivation]

next_grammar := grammar[X tilde_enabled]

terminalise_grammar[next_grammar terminal]

ah_ex := ah_trie[next_grammar]

ri_recognise[ah_ex "aaaabb"]

)

The methods construct an LR(1) DFA for the grammar whose start non-
terminal is S, then construct an LALR table by merging appropriate states,
and then run the standard LR parse algorithm on the input string 0 + 1;.
The directive gtb_verbose:=true causes diagnostics on the behaviour of these
methods to be printed on the screen. The method tomita_1_parse performs
a Tomita-style parse of the same string using the SLR(1) parse table and the
render method causes the graph structured stack constructed during this parse
to be written to a VCG input file. The method terminalise_grammar causes
the grammar whose start symbol is X to be terminalised according to the
user-supplied ~ annotations, and the final two methods build the required au-
tomaton and run a reduction-incorporated parse using this automaton on the
string aaaabb.

We complete this section with a full listing of the current gtb methods.
These methods are discussed briefly in the following sections and full details
can be found in the comprehensive Tutorial Guide.

2.1 The gtb methods

ah_trie[my_grammar]

Builds an RCA using the Aycock and Horspool trie based method.
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augment_grammar[my_grammar]

Augments the grammar my_grammar if it does not already have a start rule of
the required form.

close["file_name"]

Closes the file called file_name previously opened for reading and writing.

cycle_break_sets[my_gdg prune_break_sets_by_table 0]

Finds the strongly connected components and minimal terminalisation sets for
the graph my_gdg. Replacing the prune_break_sets_by_table option with
retain_break_sets causes all the sets constructed to be listed. Replacing 0
with N causes only sets of size up to N to be constructed.

dfa[my_nfa]

Constructs a DFA from the NFA my_nfa.

gdg[my_grammar]

Builds a grammar dependency graph for my_grammar.

generate[my_grammar 10 left sentences]

Constructs 10 sentences from the grammar my_grammar using left-most deriva-
tions. The parameter left can be replaced by right and random. The param-
eter sentences can be replaced by sentential_forms.

grammar[start_symbol tilde_enabled]

Creates a grammar from the given rules taking start_symbol as the start
symbol. The tilde_enabled flag is an optional flag that creates the additional
grammar symbols from a tilded rule set.

gtb_verbose

Switches on and off verbose diagnostics.

la_merge[my_dfa]

Constructs the LALR DFA from the LR(1) DFA my_dfa.

lr_parse[my_dfa STRING]

Parses the string STRING using an LR parser and the DFA my_dfa. If STRING
is replaced with a file name then the string is read from the file.

nfa[my_grammar lr 1 terminal_lookahead_sets

full_lookahead_sets normal_reductions]

Creates an NFA from the grammar my_grammar. The parameter lr can be
replaced with unrolled to get an IRIA NFA. The parameter 1 can be re-
placed by 0, to get an LR(0), or 0-1, to get an SLR(1) NFA. The last three
parameters are optional and the ones given are the defaults. There is one
other possibility for each of these parameters, non-terminal_lookahead_sets,
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singleton_lookahead_sets and nullable_reductions, respectively.

nfa[my_grammar slr 1]

This is an abbreviation for nfa[my_grammar lr 0-1 terminal_lookahead_sets

full_lookahead_sets normal_reductions]

open["file_name" write_text]

Opens a file called file_name for writing. To open for read change the option
write_text to read_text. The default option is write_text.

prefix_grammar[my_grammar]

Constructs a left context prefix grammar from my_grammar.

render[my_file my_grammar]

Writes a file based on its second argument to the file file_name where this file
is created using my_file := open["file_name"]

ri_recognise[my_grammar STRING]

Recognises the string STRING using an RIGLR parser and the grammar my_grammar.
If STRING is replaced with a file name then the string is read from the file.

rnglr_recognise[my_dfa STRING]

Recognises the string STRING using an RNGLR parser and the DFA my_dfa.
The DFA must be RN. If STRING is replaced with a file name then the string
is read from the file.

terminalise_grammar[my_grammar terminal]

Convert non-terminals written ~A in the grammar into terminals. To turn
them back replace the terminal option (which is the default option) with
nonterminal.

tomita_1_parse[my_dfa STRING]

Parses the string STRING using a Tomita parser and the DFA my_dfa. If
STRING is replaced with a file name then the string is read from the file.

write[my_grammar]

Prints output based on its argument to the primary output device.

3 LR automata

The standard LR(0), SLR(1) and LR(1) parsing automata can be built by
first constructing a nondeterministic finite automaton (NFA) from the gram-
mar rules and then applying the subset construction to get a DFA, see for
example [GJ90] or the gtb tutorial guide.

For LR automaton construction the grammar needs to be augmented, so
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that the rule for the start symbol is of the form S ::= A. A gtb function that
requires an augmented grammar will test its input and augment it if neces-
sary. It is possible to explicitly instruct gtb to augment a grammar using the
method augment_grammar[my_grammar] which modifies the grammar rather
than creating a new, independent grammar.

3.1 LR NFA construction

The script

S ::= A ’b’ | ’a’ ’d’ .

A ::= A ’a’ | # .

(

ex3_grammar := grammar[S]

ex3_nfa := nfa[ex3_grammar lr 0]

render[open["nfa.vcg"] ex3_nfa]

render[open["rules.vcg"] ex3_grammar]

)

generates the following VCG NFA graph.

To generate SLR(1) and LR(1) DFAs replace lr 0 with slr 1 and lr 1 respec-
tively. (There are some technical issues relating to the construction of an LR(1)
NFA. These are discussed in the tutorial guide in the section on the singleton
set NFA model.)

The node numbering in the NFA is based on the slot numbering in the rules
tree. The NFA header nodes have numberings in the running enumeration
maintained by gtb (but the other NFA nodes do not).
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3.2 LR DFA construction

For pedagogic purposes, gtb constructs the LR(0) DFA from the NFA as using
the subset construction.

S ::= A ’b’ | ’a’ ’d’ .

A ::= A ’a’ | # .

(

ex3_grammar := grammar[S]

ex3_dfa := dfa[nfa[ex3_grammar lr 0]]

render[open["dfa.vcg"] ex3_dfa]

)

generates the following VCG output DFA

3.3 Deterministic LR parsing

gtb has an standard LR parser which uses the LR DFAs. The parser is run
using a specified DFA and a specified input string using the method
lr_parse[my_dfa STRING]

S ::= E ’;’ .

E ::= E ’+’ T | T .

T ::= ’0’ | ’1’ .
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(

ex2_grammar := grammar[S]

gtb_verbose := true

lr_parse[dfa[nfa[ex2_grammar lr 0]] "0+1;"]

gtb_verbose := false

)

In its default form the parse function lr_parse reports accept or reject.
However, we can get gtb to report a trace of the parser using the gtb_verbose
mode.

******: LR parse: ’0+1;’

Lexer initialised: lex_whitespace terminal suppresssed,

lex_whitespace_symbol_number 0

Lex: 4 ’0’

Stack: [34]

State 34, input symbol 4 ’0’, action 35 (S35)

Lex: 3 ’+’

Stack: [34] (4 ’0’) [35]

State 35, input symbol 3 ’+’, action 13 (R[2] R23 |1|->10)

Goto state 34, goto action 39

Stack: [34] (10 ’T’) [39]

State 39, input symbol 3 ’+’, action 14 (R[3] R24 |1|->7)

Goto state 34, goto action 37

Stack: [34] (7 ’E’) [37]

State 37, input symbol 3 ’+’, action 40 (S40)

Lex: 5 ’1’

Stack: [34] (7 ’E’) [37] (3 ’+’) [40]

State 40, input symbol 5 ’1’, action 36 (S36)

Lex: 6 ’;’

Stack: [34] (7 ’E’) [37] (3 ’+’) [40] (5 ’1’) [36]

State 36, input symbol 6 ’;’, action 12 (R[1] R22 |1|->10)

Goto state 40, goto action 42

Stack: [34] (7 ’E’) [37] (3 ’+’) [40] (10 ’T’) [42]

State 42, input symbol 6 ’;’, action 15 (R[4] R28 |3|->7)

Goto state 34, goto action 37

Stack: [34] (7 ’E’) [37]

State 37, input symbol 6 ’;’, action 41 (S41)

Lex: EOS

Stack: [34] (7 ’E’) [37] (6 ’;’) [41]

State 41, input symbol 2 ’$’, action 16 (R[5] R29 |2|->8)

Goto state 34, goto action 38
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Stack: [34] (8 ’S’) [38]

State 38, input symbol 2 ’$’, action 11 (R[0] R21 |1|->9 Accepting)

******: LR parse: accept

In the above output the current stack and the next action are shown at
each step in the parse. The elements of the form [n] on the stack are the DFA
state numbers, these numbers can be seen on the VCG version of the DFA.
The elements of the form (m ’x’) on the stack are grammar symbols, x is the
actual symbol and m is its number in the gtb generated enumeration.

The actions are given numbers internally. If the action is a shift then the
action number is the number of the state to be pushed onto the stack. If the
action is a reduction then the details of the reduction are printed out. The
reduce actions are numbered internally by gtb in the form R[n]. To see which
reduction corresponds to R[n] we use the parse table, which is written by gtb

using the method write[open["parse.tbl"] my_dfa]

3.4 LALR DFAs

The gtb method lalr_dfa := la_merge[my_dfa] takes any LR DFA and
merges states that differ only in the lookahead sets of the items that label
them. To construct an LALR DFA first construct the LR(1) DFA and then run
la_merge.

S ::= A ’b’ | ’a’ ’d’ .

A ::= A ’a’ | # .

(

ex3_grammar := grammar[S]

ex3_lalr := la_merge[dfa[nfa[ex3_grammar lr 1]]]

render[open["la_dfa.vcg"] ex3_lalr]

)

4 GLR algorithms

The problem with the standard stack based LR parsers is that the LR parse
tables for many grammars contain conflicts. One possible approach to dealing
with conflicts is to pursue each of the choices in parallel, generating a separate
stack for each process. Tomita [Tom91] devised a method for combining the
multiple stacks so that they require at most quadratic space. This allowed
him to give a practical, generalised version of the LR parsing algorithm. The
resulting multiple stack structure is known as a graph structured stack (GSS),
and algorithms which extend the LR parsing algorithm using a Tomita-style
GSS are known as GLR parsers. Tomita’s original algorithm contains an error
which means it is not correct for grammars which contain a certain type of rule.
However, this error can be corrected by modifying the input LR parse table.
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4.1 Building a GSS

Tomita’s original exposition pushes the grammar symbols onto the stack be-
tween the state symbols. Part of the role of gtb is to implement algorithms as
they are written both for pedagogic purposes and to allow the particular fea-
tures of the algorithms to be studied. Thus the gtb implementation of Tomita’s
algorithm constructs GSSs that contain symbol nodes.

A discussion of Tomita’s algorithm can be found in the gtb tutorial manual
or, for example, in [Tom91], [SJH00] or [SJ06]. Here we just illustrate the
approach with an example.

S ::= A b

A ::= b A | ε

that has LR(1) DFA

A ::= ·bA

S ::= A · b

A ::= bA·, {b}

S ::= Ab·, {$}

S′ ::= S·, {$}

A ::= ·, {b}

A ::= ·, {b}

S ::= ·Ab

S′ ::= ·S
0 2

3

4

5

1

�� �


�� �

�� �
�� �
�

�
�
�

-

-

b

A

HHHHj

-A

b
S

�
�
�
�

A ::= b · A

A ::= ·bA

'

&

$

%
y

b

-

We can use this DFA to recognise the string bbb, as follows.
We start in state 0 with 0 on the stack. The state 0 has a reduction A ::= ε.

Since the right hand side is ε, nothing is popped off the stack so we simply push
A followed by 3 on to the stack. So we have two stacks

3

A

0 0

We read the first input symbol, pushing states 2 and 5, respectively, onto the
stacks. The lookahead symbol is b so the reduction in state 2 can be applied
but the reduction in state 5 is not applied. Finally applying the reduction in
state 4 gives the stacks

5 4

b A

2 3 2 3

b A b A

0 0 0 0

Next we apply the shift action to states 2 and 3. The other two stacks die. Ap-
plying the reduction to the stack 0b2b2 gives the stack 0b2b2A4, then applying
the reduction in state 4 (twice) results in the stacks

4

A

2 5 2 4
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b b b A

2 3 2 2 3

b A b b A

0 0 0 0 0

We apply the last shift, then, since the lookahead symbol is $, there is one
applicable reduction, generating the stacks

2

b

2 5

b b

2 3 1

b A S

0 0 0

We can represent the stacks as a graph, merging common prefixes. Because
of the way the graph is traversed when performing a reduction, we put an edge
from each symbol to the symbol below it on the stack. In the above example
we have that two of the stacks have the same state, 4, on top at the same step
in the process, and such stacks are recombined. (It is this recombination which
ensures the the GSS has size which is at most quadratic in the length of the
input string.)
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mm m
mmm mm
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4 4
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4.2 Tomita’s algorithm in gtb

We can run Tomita’s algorithm on an LR DFA using the method
tomita_1_parse[my_dfa STRING] where, as for the LR parser, STRING is the
input string, a doubly quoted string of grammar terminals. The parser can be
run on an LR(0), SLR(1), LALR or LR(1) DFA.

S ::= A ’b’ .

A ::= ’b’ A | # .

(

this_derivation := tomita_1_parse[dfa[nfa[grammar[S] lr 1]] "bbb"]

render[open["gss_ex8.vcg"] this_derivation]

)
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As a result of running the Tomita parser gtb produces a stack structured
graph that is a version of the GSS. Rendering this graph to a VCG file the stack
structure can be viewed.

It is possible to get gtb to print the actions it performs during a parse using
gtb_verbose.

4.3 Right Nulled parse tables

Tomita’s original algorithm does not always correctly parse an input string if
the grammar contains right nullable rules, that is rules of the form A ::= αβ

where β
+
⇒ε. However, we notice that, for a rule of the form A ::= αβ, where

β
∗
⇒ε, if the parser reaches a state labelled with an item (A ::= α·β, a) and if the

next input symbol is a, then eventually, without reading any further input, the
parser will reach a state labelled with (A ::= αβ·, a) and perform a reduction.
Thus the parser could have performed the reduction from the state labelled
(A ::= α · β, a), popping off just the symbols associated with α from the stack.
This simple observation forms the basis of the right nulled (RN) GLR parsers.

We construct an RN LR DFA for a grammar, LR(0), SLR(1), LALR or
LR(1) as desired, exactly as for the standard LR parser, but states labelled with
an item of the form (A ::= α · β, a), where β

∗
⇒ε are also treated as reduction

states. To include the right nullable reductions in a gtb generated DFA we use
the method call nfa[my_grammar lr 1 nullable_reductions]. We then run
the subset construction using the dfa method exactly as for the standard LR
case.

For example, running the script

S ::= ’b’ A .

A ::= ’a’ A B | # .

B ::= # .

(

rn_nfa := nfa[grammar[S] lr 1 nullable_reductions]

render[open["nfa1.vcg"] rn_nfa]

rn_dfa := dfa[rn_nfa]

render[open["dfa1.vcg"] rn_dfa]

write[open["parse.tbl"] rn_dfa]

this_derivation := tomita_1_parse[rn_dfa "baa"]
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render[open["ssg1.vcg"] this_derivation]

this_derivation := tomita_1_parse[rn_dfa "baab"]

this_derivation := tomita_1_parse[rn_dfa "ca"]

this_derivation := tomita_1_parse[rn_dfa "bbb"]

)

generates the following GSS, NFA and DFA
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The following diagnostics are also produced, showing that the first input string
is correctly accepted and that the other three strings are (correctly) rejected.

******: Tomita 1 parse (queue length 0) : ’baa’

******: Tomita 1 parse: accept

SSG has final level 3 with 16 nodes and 16 edges; maximum queue length 3

Edge visit count histogram

0: 3

1: 6

2: 6

3: 2

Total of 24 edge visits

******: Tomita 1 parse (queue length 0) : ’baab’

******: Tomita 1 parse: reject

SSG has final level 3 with 7 nodes and 6 edges; maximum queue length -1000

Edge visit count histogram

0: 7

Total of 0 edge visits

******: Tomita 1 parse (queue length 0) : ’ca’

Illegal lexical element detected

******: Tomita 1 parse (queue length 0) : ’bbb’

******: Tomita 1 parse: reject

SSG has final level 1 with 3 nodes and 2 edges; maximum queue length -1000

Edge visit count histogram
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0: 3

Total of 0 edge visits

Notice that gtb also gives statistics relating to the Tomita parse of the
input. This allows the performance of Tomita’s algorithm to be compared with
other algorithms. To get more detailed diagnostics as the parse proceeds we
can switch on the verbose mode.

4.4 The RNGLR algorithm

The RNGLR algorithm [SJ06] is essentially similar to Tomita’s GLR algorithm
but it is more efficient in the case of right nullable rules. Also, the GSS con-
structed by the RNGLR algorithm does not have symbol nodes This makes the
GSS smaller and more efficient to search. It does have implications for deriva-
tion tree construction, the parser version of the algorithm constructs a GSS
whose edges are labelled with tree nodes. To run the RNGLR algorithm in gtb

we use the method rnglr_recognise[my_dfa STRING].

4.5 The RNGLR parser

A parser is a recogniser that outputs, in some form, a derivation of the input
string, if that string is in the language. Tomita constructed the GLR algorithm
with the production of derivation trees in mind. So the extension of the recog-
niser to a parser is relatively straightforward. However, GLR algorithms can
be applied to all grammars, and ambiguous grammars have sentences that have
more than one derivation tree. We combine all the derivation trees for a string
into a single structure called a shared packed parse forest in which common
nodes are shared and multiple sets of children are packed together.

To run the parser version of the RNGLR algorithm in gtb we use the
method rnglr_parse[my_dfa STRING].

5 Reduction incorporated recognisers

Although they are relatively efficient, GLR algorithms are at least cubic order
in worst case. There has been quite a lot of research directed towards improving
the efficiency of the standard LR parsing algorithm by reducing the cost of the
stack activity. We know that there exist context-free languages that cannot be
recognised by a finite state automaton, and thus we cannot expect to remove
the stack completely from the GLR algorithm. However, from a theoretical
point of view, we only require a stack to deal with instances of self embedding,
i.e. derivations of the form A

∗
⇒αAβ where α and β are not ε. This forms the

basis of a different type of general parsing algorithm [AH99].
Consider the grammar, ex11,

S ::= a A b b | c A b d

A ::= d
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S′ ::= ·S, $

S ::= ·aAbb, $

S ::= ·cAbd, $

S′ ::= S·, $

S ::= a · Abb, $
A ::= ·d, b

S ::= aA · bb, $ S ::= aAb · b, $- - -A

S ::= c · Abd, $

A ::= ·d, b

S ::= cA · bd, $A

S

a b

b

A ::= d·, b
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On input adbb we eventually read all the input and have stack

0 ← 2 ← 4 ← 5 ← 6

Since S ::= aAbb· is in state 6, we trace back to state 0 by popping four
symbols off the stack and then we traverse the S-transition from state 0 to
state 1. However, we could add a reduction transition (a special form of ε-
transition that does not require reading an input symbol) from state 6 to state
1 and traverse this as though it were an ε-transition. This would mean that we
did not have to push and pop the intermediate states. It turns out that such
transitions can always be added except in cases of self embedding.

To deal with different occurances of a nonterminal in different alternates of
rules we ‘multiply out’ the DFA states. A brief description is given in the next
section, full details can be found in in [SJ02] or [SJ05].

5.1 Reduction incorporated automata

For a grammar that does not contain recursion we construct an automaton,
IRIA(Γ), as follows.

Construct a node labelled S′ ::= S·, this is the start node. While the graph
has leaf nodes labelled A ::= α · β where β 6= ε, pick such a leaf node, h say,
and suppose that β = xβ′. Create a new node, k say, labelled A ::= αx · β′ and
a transition from h to k labelled x. If x is a non-terminal, then for each rule
x ::= γ create a new node, t, labelled x ::= ·γ and an ε-transition from h to t.

For each state, h, labelled X ::= α·, where X ::= α is rule i, trace back up
the automaton until the first node, k say, with a label of the form Y ::= δ ·Xσ

is reached. If t is the state such that there is a transition labelled X from k to
t, add a transition labelled Ri from h to t.

This approach results in the following FA, IRIA(Γ11), for ex11 above.
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The node labelled A ::= ·d has been multiplied out to allow for the two instances
of the non-terminal A in the grammar rules.

In the case of recursive rules we cannot simply use the multiplying out (un-
rolling) approach because this would never terminate. So, for recursive instances
of non-terminals we add an ε-edge back to the most recent instance of the target
item on a path from the start state to the current state. To instruct gtb to build
the IRIA for a grammar we use the method nfa[my_grammar unrolled 0]

S ::= S ’a’ | A .

A ::= ’b’ A | # .

(

ex12_iria:= nfa[grammar[S] unrolled 0]

render[open["nfa.vcg"] ex12_iria]

)

creates the IRIA
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In the VCG graph the ε-transitions are red and the reduction transitions
are blue. An ε-transition that returns to an existing node because of recursion
is green.

Note: gtb will construct IRIA(Γ) for any context-free grammar Γ. However,
IRIA(Γ) only correctly accepts L(Γ) if Γ does not contain any self embedding.
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5.2 Reducing non-determinism – RIA(Γ)

The RIGLR algorithm is more efficient if there is less non-determinism in the
IRIA automaton. We remove from IRIA(Γ) the transitions labelled with non-
terminals and then apply the subset construction treating the R-transitions as
non-ε transitions. The following automaton is the result of applying this process
to IRIA(Γ12).

S′ ::= ·S
S ::= ·A

S ::= ·Sa

A ::= ·bA

A ::= ·

A ::= ·bA

S ::= A·

A ::= b · A

A ::= bA·

A ::= ·

�
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To construct an RIA using gtb we apply the subset construction to the
corresponding IRIA. The required gtb method call is dfa[my_iria].

5.3 Terminalising a grammar

We now build a push down automaton, RCA(Γ), for any given context-free
grammar, Γ. We begin by modifying the grammar to remove most of the recur-
sion by creating ‘terminalised’ instances, A⊥, of recursive non-terminals creating
a new grammar ΓS (this changes the language generated by the grammar). We
then construct the RIA for ΓS and for each terminalised non-terminal, and then
call these automata from the main RIA. To construct an RCA for a grammar
Γ, gtb needs to construct the desired terminalised grammar, ΓS , from which it
can then build the required RIAs.

There are two possible approaches. The user can specify the instances of
non-terminals that are to be terminalised to construct ΓS, or gtb can identify
instances of self embedding and automatically introduce terminalisations until
the resulting grammar does not contain self embedding. In this section we
describe the former approach. In a later section we shall discuss the automatic
generation of ΓS .

gtb allows the user to mark instances of non-terminals in a grammar as
‘to be replaced with a terminalised version’ for an RIGLR parser. We use ~

to mark the non-terminals. The method grammar[S] ignores the ~ annotations
and treats an instance of ~A as though it were just A. Thus all of the previously
described behaviour of gtb is unchanged by the inclusion of the ~ annotations.

We can terminalise a grammar, replacing ~A with a pseudo terminal called
A!tilde by gtb, using the method terminalise_grammar[my_grammar].

In order for gtb to use the terminalisation notation the grammar method
needs to have the tilde_enabled option set. Running the script

S ::= A ’a’ .

A ::= ’a’ B | ’a’ .

B ::= ~A ’c’ .
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(

ex13_grammar := grammar[S tilde_enabled]

terminalise_grammar[ex13_grammar terminal]

iria_S := nfa[ex13_grammar unrolled 0]

render[open["nfa.vcg"] iria_S]

)

builds the IRIA

Since the grammar as been mutated the original unterminalised grammar is
lost. To reconstruct it use the nonterminal option with the terminalise_grammar
function.

my_grammar := terminalise_grammar[my_grammar nonterminal]
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We shall call a grammar that has, possibly, terminalised versions of some of
its non-terminals a terminalised grammar.

5.4 RCA(Γ)

Given a grammar, Γ, terminalise instances of non-terminals so that the resulting
grammar, ΓS say, has no self embedding. For each non-terminal, A 6= S, such
that ΓS contains at least one terminalised instance of A, construct the grammar
ΓA that has the same rules as ΓS but start symbol A.

Construct RIA(ΓS) and construct RIA(ΓA) for each terminalised non-terminal
A, ensuring that all the states in all the automata have different numbers.

To combine the RIAs into a push down automaton, RCA(Γ), that recognises
L(Γ) we replace transitions labelled with a terminalised non-terminal, A⊥, with
a call to the corresponding RIA, RIA(ΓA). Thus we replace each transition
labelled A⊥ with a transition to the start state of RIA(ΓA) and push the target
of the A⊥-transition on to a stack. We label the new transition p(k), where
k is the target of the A⊥-transition. These new transitions are ε-transitions
in the sense that they do not consume any of the input string, but they have
an associated stack action. The accepting states of the automata RIA(ΓA) are
labelled as pop states in the RCA.

The following PDA, RCA(Γ13), constructed from the derived grammar, ΓS ,

S ::= A a

A ::= a B | a
B ::= A⊥ c

A ::= a·

S ::= A · a

S ::= Aa·

B ::= A⊥ · c B ::= A⊥c·

A ::= aB·

S′ ::= S·

B ::= ·A⊥c

A ::= ·a

S ::= ·Aa

S′ ::= ·S
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5.5 The RIGLR algorithm

The RIGLR algorithm takes as input an RCA for a grammar Γ and a string
u = a1 . . . ad and it traverses the RCA using u. It starts in the RCA start state
and at each step i it constructs the set U of all RCA states that can be reached
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on reading the input a1 . . . ai. When a push transition is traversed the return
state is pushed onto the stack. The stacks are combined into a graph structured
stack called the call graph and each state in U is recorded with the node in the
call graph that corresponds to the top of the associated stack.

We use a slightly modified version of the algorithm that incorporates some
lookahead. The lookahead is similar to that used in the SLR(1) version of the
GLR algorithms. We only perform a push action to the automaton for A if
the next input symbol is in first(A), or follow(A) if A

∗
⇒ε. Also, we only

traverse a reduction transition if the next input symbol is in follow(A) where
A is the left hand side of the reduction rule, and we only perform a pop action
from the automaton for A if the next input symbol is in follow(A).

For example, consider the grammar ex14

S ::= a S⊥ B a | c
B ::= b | ε

which has RCA
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and consider the input string aacbaa.
We begin by creating a base node, v0, in the call graph labelled −1 and

start in the start state 0. Thus we have

U = {(0, v0)}

The only action is to read the next input symbol, a, and move to state 2,
starting the next step. We then perform the push action, create a new call
graph node, v1 labelled 4, and move to state 0.

�
�� �
��-1 4�
v0 v1

U = {(2, v0), (0, v1)}

Reading the next input symbol, a, from the process (0, v1) we move to state 2,
and from here we perform the push action, creating a new call graph node v2.

�
�� �
�� �
��-1 4 4� �
v0 v1 v2

U = {(2, v1), (0, v2)}

We then read the next input symbol, c, and from the process (0, v2) we move
to state 3. From state 3 we traverse the reduction transition to state 1 and we
perform the pop action. In the latter case we pop the top element, 4 the label
of v2, and we move to state 4. The top of the stack is now the child of v2, v1.
We do not traverse the reduction transition from state 5 because the next input
symbol, b, is not in follow(B).

U = {(3, v2), (1, v2), (4, v1)}
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The next input symbol is b and from state 4 we can move to state 6 and then,
via the reduction transition, to state 5. From (5, v1), reading the next input
symbol a, we move to state 7. We can traverse the reduction transition to
state 1 and perform the pop action, creating the process (4, v0), and then the
reduction transition from state 4 to state 5.

U = {(7, v1), (1, v1), (4, v0), (5, v0)}

Reading the last input symbol, a, we move from state 5 to state 7. We can
traverse the reduction to state 1 but, as v0 is the base of the stack, no pop
action can be performed.

U = {(7, v0), (1, v0)}

The traversal is now complete and one of the current positions, (1, v0), is the
accepting state and the empty stack. Thus the input string is (correctly) ac-
cepted.

To run the RIGLR algorithm in gtb we use the method

ri_recognise[my_grammar STRING]

which takes a grammar with terminalisation annotation, generates the struc-
tures needed for an RIGLR recogniser and then runs it on the specified STRING.

6 Terminalising a grammar automatically

We now return to the issue of terminalising a grammar so that all the self
embedding is removed. In general there will be different terminalisation possi-
bilities that we could choose. We call a set of instances of non-terminals which
have been replaced with pseudo-terminals a terminalisation of the grammar,
which is minimal if no proper subset of it is also a terminalisation.

The GDG constructed by gtb has been designed to facilitate the identi-
fication minimal terminalisations. A non-terminal A is self embedding if and
only if there is a path in the GDG from A to itself that contains at least one
edge labelled L and at least one edge labelled R. We call such paths LR-paths.
Similarly, we call a path that contains at least one L (R) edge an L-(R-)path.
To determine whether a non-terminal A is self embedding we can find all the
edges in the GDG that lie on any path from A to itself and look at their labels.

6.1 Strongly connected components

A graph is said to be strongly connected if there is a path from any node to
any other node in the graph. For any graph and any node A we can form the
strongly connected component containing A. We take A and all the nodes that
are on any path from A to itself. We then form a subgraph by taking these
nodes and all the edges from the original graph between these nodes.

Formally we partition the set of nodes of a graph into subsets, two nodes
A and B are in the same subset if and only if there is path from A to B and
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a path from B to A. We turn the each set in the partition in to a graph by
adding an edge from A to B if A and B are in the same partition and if there
was an edge from A to B in the original graph. The subgraphs constructed in
this way are all strongly connected and they are called the strongly connected

components (SCCs) of the graph.
In order to remove recursion, we identify cycles in the SCCs and then remove

an edge from each cycle, by terminalising the corresponding instance(s) of the
non-terminal which is the target of the edge.

Any LR-path from a node to itself in a GDG is contained in a maximal
SCC. Each SCC that contains at least one edge labelled L and at least one
edge labelled R must be considered. In any terminalisation all of the L-cycles
or all of the R-cycles must have been removed, and once all of the L-cycles (or
R-cycles) have been removed there can be no remaining self embedding. Thus
to find precisely all the minimal terminalisations we run the process twice, once
to find all possible minimal terminalisations that can be obtained by removing
edges from every L-cycle and then again to find the minimal terminalisations
by removing edges from every R-cycle.

We begin by using Tarjan’s algorithm [Tar72] to find the SCCs. All L-loops
(L-edges from a node to itself) must be included in any terminalisation and no
other loops are of interest. To reduce the size of the SCC’s we remove all loops.
We then consider each LR-SCC in turn. We find all the cycles, and then we
consider all the L-cycles. The basic algorithm works recursively down the list
of cycles choosing one edge from each cycle to form each terminalisation set in
turn. Of course this approach will produce many terminalisation sets that are
not minimal as well as all the minimal ones. As a first step towards efficiency,
as each cycle is considered the algorithm checks to see if the terminalisation
set already contains an edge from this cycle, and if it does then the cycle is
skipped. We then remove the non-minimal sets by removing any set which has
one of the other sets as a proper subset.

We then repeat the process for the R-cycles. Once the terminalisations
for R-cycles are constructed we run a final test to see whether any of the L-
terminalisations are subsets of the R-terminalisations, or vice versa. Then the
resulting sets are the minimal terminalisations for the SCC.

We then compute the terminalisation sets for the other SCC’s, and combine
them to form terminalisation sets for the whole grammar.

6.2 Terminalising a grammar using gtb

gtb supports user-defined grammar terminalisation by performing GDG anal-
ysis that identifies the strongly connected components. The terminalisation
analysis is performed by issuing the method call cycle_break_sets[my_gdg]

It uses Tarjan’s algorithm on the initial GDG and, as a side effect, gtb

creates a new version of the GDG in which the nodes in each SCC and the edges
between them are identified, the nodes in SCCs of greater than one element are
all coloured the same colour, and the edges between nodes in the same SCC
have class 1 or 3. The class 2 edges can be hidden in VCG allowing the non-
trivial strongly connected components to be viewed directly. In addition, the
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set of minimal terminalisation sets for each SCC is output to the screen. The
edges in the sets are listed by number and these numbers are displayed in the
gdg.vcg file.

Consider the following example, ex16,

S ::= A .

A ::= E E B C .

B ::= ’a’ A E ’a’ | # .

C ::= ’a’ D .

D ::= C D ’a’ | # .

E ::= A S | # .

(

ex16_gdg := gdg[grammar[S]]

cycle_break_sets[ex16_gdg]

render[open["gdg.vcg"] ex16_gdg]

)

When this script is run the following output is generated. (More detailed in-
formation can be obtained by setting gtb_verbose to true.)

Break sets for partition 1

0: {6, 8} cardinality 2

1: {7, 8} cardinality 2

Break sets for partition 2

0: {1, 2} cardinality 2

2: {2, 9, 10} cardinality 3

3: {2, 9, 11} cardinality 3

5: {1, 4, 5} cardinality 3

10: {4, 9, 10} cardinality 3

11: {4, 9, 11} cardinality 3

Within the VCG tool there is a ‘Folding’ option which allows nodes and
edges to be combined and hidden. Under Folding is an option to Expose/Hide
edges. If this option is selected and used to Hide the class 2 edges then the
following graph is displayed
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Choosing the terminalisation set {6, 8}∪{2, 3}, we use the GDG to find the
corresponding slots in the grammar and introduce the associated terminalisa-
tion to the grammar.

S ::= A .

A ::= ~E ~E ~B C .

B ::= ’a’ A E ’a’ | # .

C ::= ’a’ ~D .

D ::= C ~D ’a’ | # .

E ::= A S | # .

(

ex16_grammar := grammar[S]

terminalise_grammar[ex16_grammar terminal]

ex16_gdg := gdg[ex16_grammar]

cycle_break_sets[ex16_gdg]

render[open["gdg.vcg"] ex16_gdg]

)

Running this script we see that the terminalised grammar has no non-trivial
strongly connected components, and hence no self embedding.

6.3 Pruning the search space

In some cases the number of interim terminalisation sets constructed is very
large. Furthermore, for some grammars the number of cycles, and the final
number of minimal terminalisation sets, means that the prospect of finding all
minimal terminalisation sets is impractical.

We can get gtb to list the interim terminalisation sets by stopping the anal-
ysis before the minimality testing step. We do this using the retain_break_sets
option.

cycle_break_sets[my_gdg retain_break_sets]

We can reduce the search space by only looking for sets of size less than
some specified value N say. The effect of this is that gtb stops attempting
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to construct a terminalisation set at the point where the (N + 1)st element is
about to be added. We achieve this using a third parameter to the analysis
function cycle_break_sets[my_gdg retain_break_sets 2].

7 Aycock and Horspool’s approach

The RIGLR algorithm is based on work done by Aycock and Horspool [AH99].
However, Aycock and Horspool’s construction is slightly different. They con-
struct an automaton based on a trie constructed from the ‘handles’ of a ter-
minalised version of the input grammar. This method requires the grammar
to have terminalised so that all recursion except for non-hidden left recursion
has been removed. Aycock and Horspool also give a different algorithm for
computing all the traversals of an automaton. However, their algorithm is only
guaranteed to terminate if the original grammar did not contain any hidden
left recursion. Of course, the RIGLR algorithm can be used on Aycock and
Horspool style automata, and the RIGLR will work correctly on all context
free grammars. To allow Aycock and Horspool’s automata and algorithm to be
studied and compared to other algorithms, gtb supports the construction of
Aycock and Horspool trie based automata.

7.1 Left contexts and prefix grammars

The standard LR(0) parser identifies strings of the form αβ, where β is the right
hand side of a grammar rule and there is a right-most derivation S⇒

rm
αβw, for

some string of terminals w. The set of these strings is the language accepted
by the LR(0) DFA of the grammar.

Aycock and Horspool’s automaton is constructed by taking all the strings
in the language of the LR(0) DFA and forming a trie from them. When the trie
has been constructed, reduction transitions are added, the non-terminal transi-
tions are removed, and transitions labelled with terminalised non-terminals are
replaced with calls to a trie constructed from that non-terminal.

To construct the language of an LR(0) DFA, we use what we call a prefix

grammar. We augment the original grammar with a non-terminal S′ and then
for each non-terminal A, including S′, we create a corresponding non-terminal,
[A] in the prefix grammar. The terminals of the prefix grammar are the ter-
minals and non-terminals of the original grammar. The rules of the prefix
grammar are constructed as follows. There is always a rule

[S′] ::= ε

and for each instance of a non-terminal, B say, on the right hand side of a rule
A ::= γBδ in the original grammar, where A is reachable, there is a rule

[B] ::= [A]γ

in the prefix grammar. The prefix grammar, PΓ, has the property that L([A]),
the language generated by the non-terminal [A], is precisely the set of left
contexts of A. I.e. the set of α such that S⇒αAw for some terminal string w.
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Then the language of the LR(0) DFA is the set of all strings

{αβ | for some nonterminal A,α ∈ L([A]) and A ::= β}

gtb will automatically construct the prefix grammar as the first step in
the trie construction discussed below. However, it is possible to get gtb to
build the prefix grammar independently of the other methods using the method
prefix_grammar[my_grammar]. (This method does not mutate the grammar,
it creates a new grammar.) For example, running the script

S ::= A B A ’a’ | B ’d’ .

A ::= ~E ’a’ | ’b’ | C ~S C | ’a’ ~S ’b’ | # .

B ::= ’b’ ’a’ A ~B | A .

C ::= ~D ’a’ | ’a’ .

D ::= C | F .

E ::= ’d’ A .

F ::= ’a’ .

(

ex15_grammar := grammar[S tilde_enabled]

augment_grammar[ex15_grammar]

ex15_prefix := prefix_grammar[ex15_grammar]

write[ex15_prefix]

)

generates the rules

A!left_context ::= B!left_context[0] ’b’ ’a’ |

B!left_context[0] |

E!left_context[0] ’d’ |

S!left_context[0] |

S!left_context[0] ’A!terminal’ ’B!terminal’ .

B!left_context ::= S!left_context[0] ’A!terminal’ |

S!left_context[0] .

C!left_context ::= A!left_context[0] |

A!left_context[0] ’C!terminal’ ’S!tilde’ |

D!left_context[0] .

D!left_context ::= UNDEFINED

E!left_context ::= UNDEFINED

F!left_context ::= D!left_context[0] .

S!augmented!left_context ::= UNDEFINED

S!left_context ::= S!augmented!left_context[0] .

7.2 Trie based automata

If Γ has no recursion other than non-hidden left recursion then all the sets
L([A]) are finite. We form a trie from the set of strings in the language of the
DFA as follows. Form the set, Φ(Γ), of triples

Φ(Γ) = {(α, β,A) | for some nonterminal A,α ∈ L([A]) and A ::= β}
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by first generating each of the sets L([A]) then, for each α ∈ L([A]) and for
each rule A ::= β add (α, β,A) to Φ(Γ). (So the language of the DFA is the set
of strings αβ such that (α, β,A) ∈ Φ(Γ).)

Create a start node, u0 say. For each element (α, β,A) in Φ(Γ), begin at
the start node and suppose that x1 is the first element of αβ. If there is an
edge labelled x1 from the start node move to the target of this edge. Otherwise
create a new node, u say, and an edge labelled x1 from u0 to u and move to
u. Continue in this way, so suppose that we are at node v and that the next
symbol of αβ is xi. If there is an edge labelled xi from v move to the target of
this edge. Otherwise create a new node, w say, and an edge labelled xi from v

to w and move to w.
When all the symbols in αβ have been read, so we are at a node, y say,

that is at the end of a path labelled αβ from u0, if A 6= S′ retrace back up the
path labelled with the elements of β, so that we are at a node, t say, that is
the end of a path labelled α from u0. If there is not an edge labelled A from
t then create a new node, r say, and an edge from t to r labelled A. Add an
edge labelled R from y to r.

We then remove the edges labelled with non-terminals from the original
grammar, obtaining an automaton that corresponds to RIA(ΓS) in the RIGLR
algorithm. We call this the trie based automaton for S.

For example consider the terminalised grammar ex17

S ::= a S⊥ b | A a A | S a

A ::= a B⊥ | a B⊥ B⊥ | ε
B ::= B A | ε

The prefix grammar is

[S′] ::= ε [S] ::= [S′] | [S] [A] ::= [S] | [S] A a

the languages are

L([S′]) = {ε}, L([S]) = {ε}, L([A]) = {ε, Aa}

and the set Φ(Γ) is

{ (ε, S, S′), (ε, aS⊥b, S), (ε,AaA, S), (ε, Sa, S), (ε, aB⊥, A), (ε, aB⊥B⊥, A),
(ε, ε, A), (Aa, aB⊥, A), (Aa, aB⊥B⊥, A), (Aa, ε,A) }

The corresponding trie based automaton for S (before the non-terminal transi-
tions are removed) is
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To build the full PDA, for each terminalised non-terminal, A, in turn we
create a new rule A′ ::= A in the terminalised grammar and consider the gram-
mar obtained by taking A′ as the start symbol. Construct a prefix grammar
and a trie based automaton for A, as described above for S′. Then, for each
transition in any of the automata labelled A⊥, replace this with a transition
labelled p(k) to the start state of the trie based automaton for A, where k is
the target of the A⊥ transition, and remove the nonterminal transitions.

7.3 Trie based constructions in gtb

We get gtb to construct an Aycock and Horspool trie based push down automa-
ton using the method ah_trie[my_grammar] As a side effect of this method
gtb outputs a VCG rending of the tries in the file trie.vcg.

Initially the grammar must be terminalised so that there is no recursion
other than non-hidden left recursion. As for the RCAs we use the method
terminalise_grammar[] to produce a terminalised grammar. We can run
the RIGLR recogniser on the trie based automata using the method call
ri_recognise[this_ah_trie STRING]

For example, the script

S ::= ’a’ ~S ’b’ | A ’a’ A | S ’a’ .

A ::= ’a’ ~B | ’a’ ~B ~B | # .

B ::= B A | # .

(

ex17_grammar := grammar[S tilde_enabled]

terminalise_grammar[ex17_grammar terminal]

ah_ex17 := ah_trie[ex17_grammar]

ri_recognise[ah_ex17 "aaaabb"]

)

constructs the tries
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8 Library grammars

Grammars for ANSI-C, ISO-7185 Pascal and a version of IBM VS-COBOL are
included with the gtb distribution in the lib_ex subdirectory.

The grammar for ANSI-C has been extracted from [KR88], the grammar for
Pascal has been extracted from the ISO Standard and the grammar for COBOL
is from the grammar extracted by Steven Klusener and Ralf Laemmel, which
is available from http://www.cs.vu.nl/grammars/vs-cobol-ii/.

The grammars have been put into a BNF form using our ebnf2bnf tool,
followed by some manual manipulation.

Also in the lib_ex directory are token strings on which the recognisers
for these grammars can be run. The strings have been obtained from original
programs, written for other purposes, which have been ‘tokenised’ so that an
initial lexical analysis phase is not needed.

bool.tok

An ANSI-C program implementing a Quine-McCluskey Boolean minimiser. It
contains 4,291 tokens.

rdp_full.tok

An ANSI-C program formed from the source code of our RDP tool. It contains
26,551 tokens.

gtb_src.tok

An ANSI-C program formed from the source code of the GTB tool itself. It
contains 36,827 tokens.

treeview.tok

A Pascal program designed to allow elementary construction and visualisation
of tree structures. It contains 4,425 tokens.

view_ite.tok

The treeview program with the if-then statements replaced by if-then-else

statements whose else clause is empty. This allows a longest match LR(1)
parser to successfully parse the string. It contains 4,480 tokens.

quad.tok

A short Pascal program that calculates quadratic roots of quadratic polynomi-
als. It contains 279 tokens.

cob_src.tok
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A Cobol program based on one of the functions available from
http://www.cs.vu.nl/grammars/vs-cobol-ii/. It contains 2,197 tokens.

The gtb parse functions can read the input string from a file.

rnglr_recognise[this_dfa this_dfa open["bool.tok" read_text]]

NOTE: care is needed here because the default option for the open method is
write_text so if the read_text option is left out then the file will be overwrit-
ten with an empty file!
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