
A tutorial guide to gtb

September 19, 2006

Department of Computer Science
Egham, Surrey TW20 0EX, England

Abstract

gtb is a system for analysing context free grammars. The user provides a
collection of BNF rules and uses gtb’s programming language, LC, to study
grammars built from the rules. In its current stage of development gtb is
focused primarily on parsing and the associated grammar data structures. It is
possible to ask gtb to produce any of the standard LR DFAs for the grammar,
and to create an LR or a GLR parser for the grammar. These parsers can
be run as LC methods on any specified input string. gtb also generates other
forms of general parsers such as reduction incorporated parsers, Earley parsers
and Chart parsers. It produces various forms of output diagnostics, and can be
used to compare the different forms of parser and DFA types.

This document is c©Adrian Johnstone and Elizabeth Scott 2005.

Permission is given to freely distribute this document electronically and
on paper. You may not change this document or incorporate parts of it
in other documents: it must be distributed intact.

The gtb system itself is c©Adrian Johnstone but may be freely copied
and modified on condition that details of the modifications are sent to
the copyright holder with permission to include such modifications in
future versions and to discuss them (with acknowledgement) in future
publications.

The version of gtb described here is version 2.4 dated 2005.

Please send bug reports and copies of modifications to the authors at the
address on the title page or electronically to A.Johnstone@rhul.ac.uk.

Contents

1 Grammars, languages and derivations 1
1.1 An overview of translation and gtb 1
1.2 Context free grammars 3
1.3 Formal grammars and gtb 5
1.4 first and follow sets 6

1.4.1 Top-down and bottom-up derivation 6
1.4.2 first sets 7
1.4.3 follow sets 7
1.4.4 first and follow sets in gtb 8
1.4.5 Examining a gtb grammar 8

1.5 Enumeration and the rules tree 12
1.6 Grammar dependency graphs 13

1.6.1 GDGs in gtb 14
1.6.2 Recursive non-terminals 15

2 LR automata 18
2.1 State machines for finding derivations 18

2.1.1 Formal NFA construction 20
2.1.2 Using an LR(0) NFA to parse 21
2.1.3 Grammar augmentation in gtb 21
2.1.4 NFAs in gtb 23

2.2 DFAs and stacks 25
2.2.1 LR(0) tables 26
2.2.2 Parsing with an LR table 27
2.2.3 DFAs and LR parsers in gtb 28

2.3 SLR(1) parse tables 33
2.4 LR(1) tables 36

2.4.1 Formal LR(1) NFA construction 37
2.4.2 LR(1) tables 39
2.4.3 The singleton set model 40

2.5 LALR DFAs 43

3 GLR algorithms 44
3.1 Building a GSS 44

3.1.1 Example grammar ex7 45
3.1.2 Example grammar ex8 46

3.2 Tomita’s algorithm 48

CONTENTS ii

3.2.1 An example 48
3.2.2 Tomita’s algorithm in gtb 51
3.2.3 Right nullable rules 53

3.3 Right Nulled parse tables 55
3.3.1 RN tables in gtb 56
3.3.2 Tomita’s algorithm with RN tables 57
3.3.3 The RNGLR algorithm 60

3.4 The RNGLR parser 61
3.4.1 Shared packed parse forests 62
3.4.2 The RNGLR parser 63

4 Reduction incorporated recognisers 67
4.1 Grammars without self-embedding 68

4.1.1 Reduction incorporated automata 68
4.1.2 IRIA(Γ) in gtb 71
4.1.3 Reduction incorporated automata 75

4.2 Recursion call automata 76
4.2.1 Terminalising a grammar 76
4.2.2 RCA(Γ) 77
4.2.3 Traversing an RCA 78
4.2.4 Constructing RCAs in gtb 79

4.3 The RIGLR algorithm 81
4.4 Terminalising a grammar 83

4.4.1 Strongly connected components 84
4.4.2 Finding terminalisation sets 85
4.4.3 Terminalising a grammar using gtb 87
4.4.4 Pruning the search space 90

4.5 Aycock and Horspool’s approach 92
4.5.1 Left contexts and prefix grammars 92
4.5.2 Trie based automata 95
4.5.3 Trie based constructions in gtb 98

5 Library grammars 99

6 gtb methods 101

Chapter 1

Grammars, languages and derivations

1.1 An overview of translation and gtb

Computer programs are often written in a so-called ‘high level’ language such
as C++ or JAVA. Most human programmers find high level languages easier
to use than the ‘low level’ machine oriented languages. However, in order for a
machine to execute a program it must be translated from the high level language
in which it is written to the native language of that machine. A compiler is a
program which takes as input a program written in one language and produces
as output an equivalent program written in another language.

Although computer languages are designed to be simple to understand and
translate, real computer languages still present significant problems. Some-
times, especially with old languages such as FORTRAN and COBOL, the dif-
ficulties in translation arise from the imperfect understanding that the early
language designers had of the translation process. More modern languages,
such as Pascal and Ada, are to a large extent designed to be easy to translate.
The discovery that it was possible to design a language which could be trans-
lated in linear time (that is the translation time is proportional to the length
of the text to be translated) and yet still appear readable to humans was an
important result of early work on the theory of programming language syntax.

Computer language translation is traditionally viewed as a process with two
main parts: the front end conversion of a high level language text written in
a language such as C, Pascal or Ada into an intermediate form, and the back
end conversion of the intermediate form into the native language of a computer.
This view is useful because it turns out that the challenges encountered in the
design of a front end differ fundamentally from the problems posed by back end
code generation and separating out the problems makes it easier to think about
the overall task.

The language to be translated forms the input to the front end and is called
the source language. The output of the back end is called the target language.
In the typical case of a translator that outputs machine code for a particular
computer, the target language is usually called the object code.

Many of the theoretical issues surrounding front end translation were solved
during the 1960s and 1970s, and it is possible to reduce most of the implemen-
tation effort for a new front end to a clerical exercise that may itself be turned

An overview of translation and gtb 2

into a computer program. Compiler-compilers are programs that take the de-
scription of a programming language, and output the source code of a program
that will recognise, and possibly act upon, phrases written in that language.
The availability of such tools has fed back into programming language design.
It is very hard to use such tools to generate translators for languages such as
COBOL, but more recent languages are usually designed in such a way as to
facilitate the use of compiler-compilers. The description of the programming
language to be input to a compiler-compiler is usually given in a variant of the
generative grammar formalism which was introduced in the 1950s by Chomsky.
The formalism was first applied to the specification of programming languages
by John Backus and Peter Naur and in recognition of this the notation used
is often called Backus-Naur Form (or BNF). A full discussion of BNF can be
found in standard texts such as [ASU86] or [AU72].

However, it is often a complex task to design, for a language, a grammar
of the form which allows the standard techniques to be used. Furthermore, in
wider areas such as natural language parsing and bioinformatics the languages
cannot be selected and thus cannot be designed to be easily parsed. For these
reasons there is increasing interest in parsing techniques for grammars which
are not of the theoretically tractable forms. gtb is a tool that facilitates the
study and implementation of algorithms for general context free grammars.

Context free grammars are systems for specifying certain sets of strings
of finite alphabets. A set of strings specified by a context free grammar is
usually referred to as a (context free) language. Not all sets of strings can
be specified by a context free grammar, in fact there are sets of strings which
cannot be specified using any finite mechanical process. Context free grammars
are sufficiently powerful to essentially specify standard programming languages,
with the addition of semantic checks to address certain context sensitivities such
as type compatibility.

For sets specified by context free grammars, we are usually interested in
determining whether or not some given string belongs to the set. The process
of determining whether a given string belongs to a given context free language
is often referred to as parsing, although strictly speaking parsing also requires
the construction of some form of ‘derivation’ of the string from the grammar.

The parsing problem for context free grammars is known to be less than
cubic, that is there are algorithms whose order is less than n3 which take any
context free grammar Γ and any string u of length n and determine whether u

belongs to the language defined by Γ. There is no known linear algorithm which
performs this task, but there are large sub-classes of context free grammars for
which linear parsing algorithms do exist.

This has resulted in extensive investigation of context free grammars, to
find better general algorithms, to characterise classes of grammar which can be
efficiently parsed, and to support the transformation of grammars into equiva-
lent ones that can be parsed using one of the standard linear time techniques.
gtb is designed to support all three of these interests. It contains many of the
common general parsing techniques, allowing them to be compared and con-
trasted on different types of grammar. It allows the user to construct different
types of automata which form the basis of the standard LR parsers, and it can

Context free grammars 3

build many of the structures which support parsing such as first and follow

sets and carry out left recursion detection.
gtb can output many of the structures in VCG format. Thus structures

such as DFAs, rules trees, grammar non-terminal dependency graphs, parse
trees and graph structured stacks to be displayed graphically using the VCG
tool [San95].

gtb has been designed to support three categories of user: novice grammar
users who can use gtb to gain an understanding of the principles underlying
parsing and grammars, professional programmers who want to develop parsers
for real applications, and academic computer scientists who want to understand
and extend the theory of grammars and parsing.

This guide is aimed primarily at the first category above, readers who want
use gtb to extend their understanding of parsing. We shall describe the basic
functionality of gtb, giving brief discussions of the underlying theory and in-
terspersed with the corresponding gtb LC methods and example gtb scripts.
We begin with an overview of context free grammars and parsing.

1.2 Context free grammars

A context free grammar consists of a set of rewrite rules which are used to
generate strings. The strings are generated by replacing instances of the left
hand sides of rules with a string from the right hand side of the rule. For
example,

S ::= S + S | S ∗ S | E
E ::= a | b

is a set of grammar rules for a grammar ex1 that generates a language of sums
and products, for example, a+b*a+a or a.

Formally, a context free grammar consists of a set N of non-terminals, a set
T of terminals, and a set P of grammar rules of the form

A ::= α1 | α2 | . . . | αn

where A is an element of N and each αi is a string of elements from N and T.
One of the non-terminals, S say, is singled out and called the start symbol. The
strings α1, . . . , αn are called the alternates of the rule for A.

In the above grammar, the non-terminals are S, E, the terminals are +,*,a,b,
and the start symbol is S.

The empty string is denoted by ε and it is possible for ε to be an alternate
of a rule.

How does a grammar specify a language? We derive one string from another by
replacing a non-terminal with a string from the right hand side of its grammar
rule. So if we have a rule

A ::= ... | γ |

we can replace A by γ. We use the symbol ⇒ for a derivation, and we write
αAβ⇒αγβ.

Context free grammars 4

If µ and τ are strings, we say that τ can be derived from µ, and we write
µ

∗
⇒τ , if there is a sequence

µ⇒α1⇒ . . .⇒αn⇒τ.

We also write µ
+
⇒τ to indicate that the derivation contains at least one step.

For the example above we have

S ⇒ S + S

⇒ E + S

⇒ a + S

⇒ a + S + S

⇒ a + S * S + S

⇒ a + E * S + S

⇒ a + b * S + S

⇒ a + b * E + S

⇒ a + b * a + S

⇒ a + b * a + E

⇒ a + b * a + b

and so S
∗
⇒ a + b ∗ a + b.

The language specified by a grammar is the set of strings of terminals which
can be derived from its start symbol. We say that u ∈T∗ is a sentence if S

∗
⇒u.

(Here T∗ denotes the set of strings of elements of T and includes the empty
string ε, so if T={a, b, +} then
T∗ = {ε, a, b, +, aa, ab, a+, ba, bb, b+, +a, +b, ++, aaa, aab, . . .}.)

The language generated by the grammar above is the set of all sums and
products of a’s and b’s.

The above derivation is a left-most derivation, at each step the left-most
non-terminal in the string is replaced. There is a corresponding right-most
derivation in which the right-most non-terminal is replaced at each step.

S ⇒ S + S

⇒ S + S + S

⇒ S + S + E

⇒ S + S + b

⇒ S + S * S + b

⇒ S + S * E + b

⇒ S + S * a + b

⇒ S + E * a + b

⇒ S + b * a + b

⇒ E + b * a + b

⇒ a + b * a + b

Formal grammars and gtb 5

A sentential form is a string α, which may include both terminals and non-
terminals, such that S

∗
⇒α.

1.3 Formal grammars and gtb

The input to gtb consists of a set of grammar rules and an LC script of methods
to be executed. The rules have to be in a specific format: the terminal symbols
are enclosed in single quotes, the left hand sides of the rules are assumed to be
the non-terminals, and each grammar rule is terminated by a full stop. There
should only be one rule for each non-terminal. The empty string is denoted by
in a gtb grammar.

The following is a gtb input file which specifies the rules for the small
grammar, ex1, above.

(* ex1 *)

S ::= S ’+’ S | S ’*’ S | E .

E ::= ’a’ | ’b’ .

(* the LC instructions are enclosed in parantheses *)

(

ex1_grammar := grammar[S]

generate[ex1_grammar 10 left sentences]

generate[ex1_grammar 15 right sentential_forms]

)

Comments can be included in the file using brackets of the form (* *). The
method

my_grammar:=grammar[S]

causes gtb to make a grammar using the specified rules and start symbol S.
The grammar construct is referred to using the variable name my_grammar.

The method call

generate[ex1_grammar 10 left sentences]

gets gtb to generate 10 strings in the language of the grammar using left-most
derivations. The method call

generate[ex1_grammar 15 right sentential_forms]

gets gtb to generate 15 strings using right-most derivations.
If we run the above script through gtb, using the command

gtb ex1.gtb

we get the following output.

first and follow sets 6

Generated sentences using leftmost derivation

1: a

2: b

3: a + a

4: a + b

5: b + a

6: b + b

7: a * a

8: a * b

9: b * a

10: b * b

Generated sentential forms using rightmost derivation

1: S

2: S ’+’ S

3: S ’*’ S

4: E

5: S ’+’ S ’+’ S

6: S ’+’ S ’*’ S

7: S ’+’ E

8: S ’*’ S ’+’ S

9: S ’*’ S ’*’ S

10: S ’*’ E

11: ’a’

12: ’b’

13: S ’+’ S ’+’ S ’+’ S

14: S ’+’ S ’+’ S ’*’ S

15: S ’+’ S ’+’ E

1.4 first and follow sets

There are several sets associated with the grammar symbols which are used by
parsing algorithms to assist in the construction of derivations. In this section
we shall discuss two of these sets, the first and follow sets. We begin with a
brief discussion of the two most common approaches to parsing, then describe
the roles of the first and follow sets in these techniques. We then discuss
these sets in relation to gtb.

1.4.1 Top-down and bottom-up derivation

We often classify derivation techniques as either top-down or bottom up. In a
top down technique we begin with the start non-terminal and choose alternates
to replace non-terminals until the required string is generated. In a bottom-up
technique we read the required string (from the left) until the alternate of a
rule is found, and this alternate is then replaced by non-terminal on the left
hand side of the corresponding rule. The goal of the bottom-up approach is to
end up with a string consisting of just the start symbol.

first and follow sets 7

For example, if we take the grammar above and read the string a ∗ b + a

from the left we read a which is the right hand side of the rule E ::= a so we
replace a with E, to get the string E ∗ b + a. Reading this string we replace
E with S, giving S ∗ b + a. From this string we read S, ∗ and then b. We can
then replace b, which is the right hand side of a rule E ::= b, with E, giving
S ∗ E + a. Next we read S, ∗ and then E, and then replace E with S to give
S ∗ S + a. Carrying on in this way we generate the strings S + a, S + E, S + S

and finally S.
The top-down and bottom-up approaches rely on pre-computed sets, the

first and follow sets, to help determine which alternate or rule to use.

1.4.2 first sets

If we intend to use the rule S ::= α as the first step in the generation (or top-
down derivation) of a string a1 . . . an then it is clear that it must be possible to
derive a string beginning with a1 from α. (If this is not the case then we should
use a different alternate of S, if there is one.) In general, when deciding which
alternate to use at a step in some derivation it is useful to know whether that
alternate can derive a string which begins with a given terminal. The set of
terminals which can begin a string derivable from some given string β is called
the first set of β.

Formally we define

firstT(α) = {t ∈ T | α
∗
⇒tβ, for some β}

If α
∗
⇒ε then we also add ε to the first set. So we have

first(α) =

{

firstT(α) ∪ {ε} if α
∗
⇒ε

firstT(α) otherwise.

For example, for the above grammar ex1 we have

first(E) = {a, b} = first(S + S)

1.4.3 follow sets

In order to decide whether or not to replace, in a bottom-up derivation, the
right hand side of a rule by its left hand side we may use the follow sets (for
more detail see Section 2.3). The follow set of a non-terminal or a terminal x

is the set of terminals which can appear directly to the right of x in a sentential
form.

Formally we define

followT(x) = {t ∈ T | S
∗
⇒αxtβ, for some α, β}

If S
∗
⇒αx then we also add the special end-of-string symbol, $, to the follow

set. So we have

follow(x) =

{

followT(x) ∪ {$} if S
∗
⇒αx

followT(x) otherwise.

first and follow sets 8

For example, for the above grammar we have

follow(S) = {$, +, ∗} = follow(E)

1.4.4 first and follow sets in gtb

When it reads a call to the method grammar[S], gtb builds a grammar from the
given rules assuming the start symbol S. As part of this process gtb constructs
various data structures associated with the grammar, including the first and
follow sets for each terminal and non-terminal.

Because gtb uses the first and follow sets in various ways in other parts
of its functionality, the sets it constructs differ slightly from the formal definition
above in that they can also include non-terminals. So, for a non-terminal A in
the definition of first(A) used by gtb the set firstT (A) is replaced by the set

firstT∪N(A) =

{

{x ∈ T ∪N | A
+
⇒xβ, for some β} ∪ {ε} if α

∗
⇒ε

{x ∈ T ∪N | A
+
⇒xβ, for some β} otherwise.

The effect of requiring A
+
⇒xβ is that A belongs to its own first set if and only

if A is left recursive, and thus gtb can detect and report on left recursion in a
grammar as a side effect of the first set construction.

For example, for the above grammar, ex1, the gtb first set for S is

{a, b, S,E}

Similarly, for a grammar symbol x in the definition of follow(x) used by
gtb the set followT (x) is replaced by the set

followT∪N(x) =

{

{y ∈ T ∪N | S
∗
⇒αxyβ, for some α, β} ∪ {$} if S

∗
⇒αx

{y ∈ T ∪N | S
∗
⇒αxyβ, for some α, β} otherwise.

1.4.5 Examining a gtb grammar

Using the write method, we can get gtb to print out some of the data struc-
tures that it has constructed. If we add the line

write[ex1_grammar]

to the gtb script it will print out information about the grammar ex1_grammar
that it has constructed. (To get more information we switch into verbose mode).
By default the output is printed to the screen.

For example, if we input the script

(* ex1 *)

S ::= S ’+’ S | S ’*’ S | E .

E ::= ’a’ | ’b’ .

(* the LC commands are enclosed in parantheses *)

first and follow sets 9

(

ex1_grammar := grammar[S]

gtb_verbose := true

write[ex1_grammar]

)

diagnostic information is printed on the screen. We now give these diagnostics,
interspersed with some explanation.

Grammar report for start rule S

Grammar alphabet

0 !Illegal

1 #

2 $

3 ’*’

4 ’+’

5 ’a’

6 ’b’

7 E

8 S

Grammar rules

E ::= ’a’ |

’b’ .

S ::= S[0] ’+’ S[1] |

S[2] ’*’ S[3] |

E[4] .

Internally all of the grammar symbols (and other things as we shall see later)
are given unique integer numbers which are used both internally and in some
of the output structures. This numbering is listed at the top of the output.

Then the grammar rules are listed, and each instance of each non-terminal
on the right hand side of a rule is given an instance number.

Grammar sets

terminals = {’*’, ’+’, ’a’, ’b’}

nonterminals = {E, S}

reachable = {’*’, ’+’, ’a’, ’b’, E, S}

reductions = {E ::= ’b’ . , E ::= ’a’ . , S ::= E . ,

S ::= S ’*’ S . , S ::= S ’+’ S . }

nullable_reductions = {E ::= ’b’ . , E ::= ’a’ . , S ::= E . ,

S ::= S ’*’ S . , S ::= S ’+’ S . }

start rule reductions = {S ::= E . , S ::= S ’*’ S . , S ::= S ’+’ S . }

start rule nullable_reductions = {S ::= E . , S ::= S ’*’ S . ,

S ::= S ’+’ S . }

first and follow sets 10

To help identify bugs, gtb performs a ‘reachability’ analysis to determine which
of the symbols in the rules can appear in sentential forms of the given start
symbol. Then lists of certain ‘items’ which are output. The roles of these will
be discussed later.

first(’*’) = {’*’}

follow(’*’) = {S}

first(’+’) = {’+’}

follow(’+’) = {S}

first(’a’) = {’a’}

follow(’a’) = {$, ’*’, ’+’}

first(’b’) = {’b’}

follow(’b’) = {$, ’*’, ’+’}

first(E) = {’a’, ’b’}

follow(E) = {$, ’*’, ’+’}

first(S) = {’a’, ’b’, E, S}

follow(S) = {$, ’*’, ’+’}

rhs_follow(S, 0) = {’+’}

rhs_follow(S, 1) = {#}

rhs_follow(S, 2) = {’*’}

rhs_follow(S, 3) = {#}

rhs_follow(S, 4) = {#}

End of grammar report for start rule S

Finally gtb outputs its versions of the first and follow sets for each symbol.
We can see that also output, for each non-terminal, are sets called rhs-

follow sets. These sets are constructed for each instance of each non-terminal
in each grammar rule, and they are the first set of the string which follows
the particular instance. So for a rule B ::= αA[m]β we have

rhs_follow(B,m) = first(β)

Note: the first sets and rhs-follow sets depend only on the grammar rules, but
the follow sets depend on the start symbol of the grammar. For example,
we can construct a different grammar from the rules in our example above by
taking E to be the start symbol.

If we input the script

S ::= S ’+’ S | S ’*’ S | E .

E ::= ’a’ | ’b’ .

(

ex1_grammar := grammar[E]

write[ex1_grammar]

first and follow sets 11

generate[ex1_grammar 10 left sentences]

generate[ex1_grammar 15 right sentential_forms]

)

the following output is printed on the screen.

Grammar report for start rule E

Grammar alphabet

0 !Illegal

1 #

2 $

3 ’*’

4 ’+’

5 ’a’

6 ’b’

7 E

8 S

Grammar rules

E ::= ’a’ |

’b’ .

S ::= S[0] ’+’ S[1] |

S[2] ’*’ S[3] |

E[4] .

Grammar sets

terminals = {’*’, ’+’, ’a’, ’b’}

nonterminals = {E, S}

reachable = {’a’, ’b’, E}

reductions = {E ::= ’b’ . , E ::= ’a’ . , S ::= E . ,

S ::= S ’*’ S . , S ::= S ’+’ S . }

nullable_reductions = {E ::= ’b’ . , E ::= ’a’ . , S ::= E . ,

S ::= S ’*’ S . , S ::= S ’+’ S . }

start rule reductions = {E ::= ’b’ . , E ::= ’a’ . }

start rule nullable_reductions = {E ::= ’b’ . , E ::= ’a’ . }

first(’*’) = {’*’}

follow(’*’) = {}

first(’+’) = {’+’}

follow(’+’) = {}

first(’a’) = {’a’}

follow(’a’) = {$}

Enumeration and the rules tree 12

first(’b’) = {’b’}

follow(’b’) = {$}

first(E) = {’a’, ’b’}

follow(E) = {$}

first(S) = {’a’, ’b’, E, S}

follow(S) = {}

rhs_follow(S, 0) = {’+’}

rhs_follow(S, 1) = {#}

rhs_follow(S, 2) = {’*’}

rhs_follow(S, 3) = {#}

rhs_follow(S, 4) = {#}

End of grammar report for start rule E

Generated sentences using leftmost derivation

1: a

2: b

Generated sentential forms using rightmost derivation

1: E

2: ’a’

3: ’b’

1.5 Enumeration and the rules tree

gtb represents the grammar, grammar[S], that it constructs using a rules tree.
The internal rules tree can be output to a file in VCG [San95] format, allowing
it to be viewed. To do this we open a file named, for example rules.vcg, using
the method

rules_file := open["rules.vcg"],

and then use the method

render[rules_file my_grammar]

to output the VCG format to the file rules.vcg. The graph can then be viewed
by running VCG. Usually this is done by typing a command line instruction
such as vcg rules.vcg.

The script

(* ex1 *)

S ::= S ’+’ S | S ’*’ S | E .

E ::= ’a’ | ’b’ .

(

Grammar dependency graphs 13

ex1_grammar := grammar[S]

rules_file := open["rules.vcg"]

render[rules_file ex1_grammar]

)

creates a rules tree for ex1 that is displayed in VCG as

The nodes in the rules tree are labelled with what are sometimes called
LR(0) items, and which in gtb are referred to as slots. There is a slot for the
start of each rule and a slot for each position before and after each symbol in
each alternate of the rule.

Each slot has a number which belongs to the enumeration mentioned above.
So, for example ex1 above, the integers 3 to 8 are used for the grammar symbols
(as listed at the top of the output in the previous section) and the slot numbers
start at 9. In addition to its use for numbering the nodes in the rules tree, this
number is used frequently in later structures as part of the numbering of other
graph nodes and parse actions.

1.6 Grammar dependency graphs

Some parsing techniques view a grammar as a system for string matching in
which there are notional pointers into both the grammar and the input string.
Initially the grammar pointer points to the left hand side of the start rule
and the string pointer points to the left hand end of the input string. At any
stage in the parse if the grammar pointer is pointing at a terminal symbol
then that symbol is matched to the symbol pointed to by the string pointer,
and if the symbols match then both pointers are moved on one place. If the
grammar pointer is pointing to a non-terminal on the right hand side of rule
then the pointer is moved to the left hand side of the rule for that symbol.

Grammar dependency graphs 14

More sophisticated machinery is required to decide where to move the grammar
pointer when it is at the left hand side of a rule, and this leads to different
forms of parsing technique. But we can see that there is a sense in which a
non-terminal on the left hand side of a rule calls non-terminals which appear
on the right hand side of the rule.

The relationship A depends on B which is defined by the property that B

appears on the right hand side of the rule for A turns out to be useful in certain
situations. For example, the first step in building a reduction incorporated
parser (see Chapter 4) is to construct a new grammar which does not contain
any proper self embedding. (A grammar contains self embedding if there is a

terminal A and a derivation A
+
⇒σAτ , see below.)

The relation A depends on B is represented in a grammar dependency graph
(GDG). For example, the GDG for the example grammar, ex1, above is

S

E

n nXXXXXXz

y

1.6.1 GDGs in gtb

We can get gtb to construct the GDG for a grammar using the method

my_gdg := gdg[my_grammar]

which takes the grammar named my_grammar and creates a graph named my_gdg.
The GDG produced by gtb contains more information than just the basic de-
pendency relationships. The edge from A to B is labelled l or r if there is a
rule A ::= Bβ or A ::= αB, respectively, and the edge is also labelled L or R if
there is a rule A ::= αBβ where α 6= ε or β 6= ε, respectively.

Formally, an edge of the GDG, from A to B say, is labelled with a subset,
 LA,B, of the set {L,R, l, r}, as follows.

� If there is a rule A ::= αBβ where α 6= ε then LA,B contains L.

� If there is a rule A ::= αBβ where β 6= ε then LA,B contains R.

� If there is a rule A ::= αBβ where α
∗
⇒ε then LA,B contains l.

� If there is a rule A ::= αBβ where β
∗
⇒ε then LA,B contains r.

As for the rules tree, the internal GDG can be output in VCG format. To
do this we open a file named, for example gdg.vcg, using the method

gdg_file := open["gdg.vcg"],

and then use the method

render[gdg_file my_gdg]

Grammar dependency graphs 15

to output the VCG format.

S ::= S ’+’ S | S ’*’ S | E .

E ::= ’a’ | ’b’ .

(

ex1_grammar := grammar[S]

write[ex1_grammar]

gdg_file := open["gdg.vcg"]

ex1_gdg := gdg[ex1_grammar]

render[gdg_file ex1_gdg]

close[gdg_file]

)

Running the command vcg gdg.vcg displays the following graph.

It is possible to nest the method calls in the obvious way, so we can also
write

S ::= S ’+’ S | S ’*’ S | E .

E ::= ’a’ | ’b’ .

(

ex1_grammar := grammar[S]

render[open["gdg.vcg"] gdg[ex1_grammar]]

)

1.6.2 Recursive non-terminals

A non-terminal A is said to be recursive if there is a derivation A
+
⇒σAτ , i.e. if

a string that contains A can be derived from A in a derivation that contains at
least one step.

If A is recursive then we have a derivation

A ⇒ σ1A1τ1 ⇒ σ2A2τ2 ⇒ . . .⇒ σm−1Am−1τm−1 ⇒ σAτ

and thus there is a corresponding cycle

A→ A1 → A2 → . . . Am−1 → A

Grammar dependency graphs 16

in the GDG. Conversely if there is a non-empty cycle from A to itself in the
GDG then A is recursive. Thus we can identify recursive non-terminals by
identifying cycles in the GDG.

For example the GDG for the grammar ex0

S ::= B A a | B B

A ::= B b A B | a
B ::= S a a | ε | D
D ::= d

has GDG

We see that there are cycles from S, A and B to themselves, correctly reflecting
the fact that these non-terminals are all recursive.

A non-terminal A is said to be left recursive if there is a derivation A
+
⇒Aτ

and right recursive if there is a derivation A
+
⇒σA.

It is not hard to see that A is left recursive if and only if there is a derivation
of the form

A⇒σ1A1τ1
∗
⇒A1τ1 ⇒σ2A2τ2

∗
⇒ . . .

∗
⇒σm−1Am−1τm−1

∗
⇒Am−1τm−1⇒σAτ

∗
⇒Aτ

where σ1, σ2, . . . , σm−1, σ
∗
⇒ε. In particular there are rules

A⇒σ1A1τ1, A1⇒σ2A2τ2, . . . , Am−1⇒σAτ.

so the edges A → A1, A1 → A2, . . ., Am−1 → A will all have the label l on
them. Thus we have that A is left recursive if and only if there is a non-empty
cycle from A to itself in the GDG with the property that every edge in the cycle
has a label that includes l.

In the above example there are paths, all of whose edges are labelled l,
from S and B to themselves, correctly reflecting the fact that S and B are left
recursive but A is not.

Similarly a non-terminal A is right recursive if and only if there is a non-
empty cycle from A to itself in the GDG with the property that every edge in
the cycle has a label that includes r. In the above example the edge from B to
S is not labelled r and we see that S and B are not right recursive, but A is
right recursive.

Grammar dependency graphs 17

A non-terminal A is said to be self embedding if there is a derivation A
+
⇒σAτ

where σ, τ 6= ε. It is not hard to see that a non-terminal A is self embedding if
and only if there is a path in the GDG from A to itself in which at least one
edge has the label L and at least one edge has the label R.

We can see from the above GDG that all the non-terminals in the above
grammar ex0 are self embedding.

Chapter 2

LR automata

As we have already mentioned, it is common to take a grammar Γ and a string
u and to try to determine whether or not u ∈ L(Γ). A well known technique
which is often used for this is called shift reduce parsing. In its standard form
a shift reduce parser is a bottom up parser which, if it succeeds, produces a
right-most derivation of the input string u.

The idea is to have an algorithm which, for a given grammar, takes as input
a string X1X2 . . . Xn, say, of terminals and non-terminals and which produces
as output another string Y1Y2 . . . Ym, if one exists, such that

S
∗
⇒ Y1Y2 . . . Ym ⇒ X1X2 . . . Xn.

Such an algorithm is applied to an input string, then successively to its own
output with the aim of obtaining the string containing just the start symbol,
S.

Of course, the problem of determining whether the string X1X2 . . . Xn can
be derived from the start symbol is the point of the whole process, so we can’t
expect to be able to tell whether a string Y1 . . . Ym with the above property
exists. If we could then we wouldn’t need the process at all.

It turns out that it is possible to construct a finite state automaton with
the property that it accepts an input string if and only if it is an initial segment
of a sentential form in the grammar and, as we shall see, this is enough. These
automata are the standard LR automata which form the basis of the stack
based parsing technique introduced by Knuth [Knu65].

In this chapter we shall describe a non-standard construction of the LR
automata, constructing initial NFAs and then applying the subset construction
to generate the traditional DFAs. This is based on the approach described by
Grune [GJ90], and we believe that it gives important pedagogic insight into the
structure and behaviour of these automata. For this reason gtb constructs the
LR automata in precisely this stepwise fashion (rather than in the more direct
move and closure based approach described in standard texts such as [ASU86]).

2.1 State machines for finding derivations

In this section we describe how to construct an NFA which works as follows:

State machines for finding derivations 19

� It reads part of the input string X1 . . . Xi, say, and then stops.

� When it stops it either reports an error, or there is some string α such
that S

∗
⇒X1 . . . Xiα and there is a production Z ::= XjXj+1 . . . Xi. In

the latter case, the string X1 . . . Xj−1ZXi+1 . . . Xn is returned. Replacing
the right hand side of a rule with its left hand side in this way is called a
reduction.

We shall illustrate the construction and operation of the NFA using the
following grammar ex2 which has a special augmented start rule S′ ::= S.

S′ ::= S

S ::= E;
E ::= E + T | T
T ::= 0 | 1

The start node of our NFA is a node labelled with S′ the augmented start
symbol. We are looking to construct a string just containing S and we describe
this state using the notation ·S. We create a node labelled S′ ::= ·S and an
arrow labelled ε to it from the start node. If the input string is just S then we
have a complete, single step derivation and we can terminate and accept the
string. We achieve this by creating an accepting node, labelled S′ ::= S· to
indicate that we have seen the string S, and an arrow labelled S to this node.

If the input string is not S then we are looking to construct it. To construct
S we need to find one of the alternates on the right-hand-side of a production
rule for S. We create a new special header node labelled S which has a child
node for each alternate of the rule for S (in this case E;). We put a dot in front
of each of the alternates to indicate that we are now looking for that string.
Since the move from S to one of it’s alternates doesn’t consume any of the input
string the arrow between these nodes is labelled ε.

S ::= ·E;

S

?

?

ε

S

S′ ::= ·S

S′ ::= ·S

S′

?
ε

3

ε�� ��� �
�� �

Now we are looking for E. If we read the next symbol of the input and
it is E then we can move on and look for the next symbol, in this case a
semicolon. Otherwise we need to look to construct an E. We build this into
the NFA by making a header node labelled E. Then, as for S, we need to
look for some alternate in the production rule for E, so we add new nodes and
epsilon-transitions as for S.

State machines for finding derivations 20

S ::= ·E; E ::= ·E + T E ::= ·T

S ::= E·;

S E

?

? ?

ε

S E

S′ ::= ·S

S′ ::= ·S

S′

?
ε

3

ε�� ��� �
�� ��� �

1

ε ε ε�
��+

HHHHj�� ��� �

We carry on this construction process until all the branches of the NFA
terminate in accepting states. The complete NFA for the above grammar is

S ::= ·E; E ::= ·E + T

E ::= E · +T

E ::= E + ·T

E ::= E + T ·

E ::= ·T T ::= ·1T ::= ·0

E ::= T · T ::= 1·T ::= 0·S ::= E·;

S ::= E; ·

S E T

?

? ?

?

?

?

?

? ??

ε

S E

+

T

E

;

T 10

S′ ::= ·S

S′ ::= ·S

S′

?
ε

3

ε�� ��� �
�� ��� ��� �

1

ε ε
ε

ε ε�
��+

HHHHj
O�� � �� ��� ��� � �� ��� �

�� ��� ��� ��� �

�
�	

Z
ZZ~

-

ε

ε

ε

k

2.1.1 Formal NFA construction

Formally we construct the LR(0) NFA from a grammar Γ as follows.

1. For each non-terminal A in the augmented grammar construct a header
node labelled A.

2. For each rule A ::= x1 . . . xd

(a) create nodes labelled A ::= x1 . . . xi−1 · xi . . . xd, for 1 ≤ i ≤ d + 1,

(b) create an edge labelled ε from the node labelled A to the node labelled
A ::= ·x1 . . . xd,

(c) create an edge labelled xi from the node labelled A ::= x1 . . . xi−1 ·
xi . . . xd to the node labelled A ::= x1 . . . xi ·xi+1 . . . xd, for 1 ≤ i ≤ d.

(d) if xi is a non-terminal create an edge labelled ε from the node labelled
A ::= x1 . . . xi−1 ·xi . . . xd to the header node labelled xi, for 1 ≤ i ≤
d.

3. The start state is the state labelled with the augmented start symbol.

4. The accepting states are the states with a label of the form A ::= α·.

State machines for finding derivations 21

2.1.2 Using an LR(0) NFA to parse

Standard shift reduce parsers use push down automata, i.e. a stack is used
together with the FA. Ultimately this is how our shift reduce parsers will work
but it is instructive to consider parsing directly with just the LR(0) NFA because
this highlights the role of the stack and informs our development of reduction
incorporated parsers in Chapter 4.

Formally we have an LR(0) NFA together with an action which is to be
carried out when the NFA reaches an accepting state. This action will be to
replace a substring of the input string by a non-terminal.

Given an input string X1X2 . . . Xm we begin in the start state of the NFA.
Then at each stage we either move along an ε arrow into another state or we
read the next input symbol and move into a new state along an arrow labelled
with that symbol, if one exists. If no moves are possible and the current NFA
state is not a leaf state then the parse has failed. If the NFA moves into a leaf
state (one with no out-transitions) the string on the right hand side of the item
labelling this state will occur in the input string. Replace this string with the
non-terminal on the left hand side of the item, and return the result.

Suppose that we are attempting to parse the string 0 + 1; in the above
grammar, and that we have so far constructed E + 1;. Thus we have the
derivation steps E + 1; ⇒ T + 1; ⇒ 0 + 1; . To construct the previous step,
starting in state 0 we run the NFA on E + 1;.

state input action

0 ^E + 1 ; move to state 1

1 ^E + 1 ; move to state 3

3 ^E + 1 ; move to state 4

4 ^E + 1 ; move to state 5

5 ^E + 1 ; move to state 6

6 ^E + 1 ; read input symbol

7 E^+ 1 ; read input symbol

8 E +^1 ; move to state 12

12 E +^1 ; move to state 15

15 E +^1 ; read input symbol

16 E + 1^; replace 1 by T, return string E + T ;

We now have the steps E + T ; ⇒ E + 1; ⇒ T + 1; ⇒ 0 + 1; and we can run
the NFA again on the input E + T ;.

2.1.3 Grammar augmentation in gtb

If it is necessary for a grammar to be augmented, then a gtb function that
requires an augmented grammar will test its input and augment it if necessary.
However, augmented versions of grammars are different from the corresponding
original grammar. first and follow sets, and perhaps more importantly the
internal enumeration of the symbols and slots, are different for the augmented
version of a grammar.

State machines for finding derivations 22

It is possible to explicitly instruct gtb to augment a grammar using the
method

augment_grammar[my_grammar]

It is important to note that this modifies the grammar my_grammar, it does
not create a new, independent grammar. It is also important to note that a
grammar is only augmented if its start rule is not already of the form S ::= A,
where S is not recursive. (In other words, if the grammar is already augmented.)

The following script, ex2.gtb, creates the grammar in the above example,

(* ex2 Augmentation *)

S ::= E ’;’ .

E ::= E ’+’ T | T .

T ::= ’0’ | ’1’ .

(

ex2_grammar := grammar[S]

render[open["rules1.vcg"] ex2_grammar]

augment_grammar[ex2_grammar]

render[open["rules2.vcg"] ex2_grammar]

)

The first time that the render function is called it generates the rules tree for
the original unaugmented grammar. The VCG representation of this rules tree
is

The second time it is called, the grammar has been augmented, so the following
is now the rules tree.

State machines for finding derivations 23

2.1.4 NFAs in gtb

We can get gtb to build an LR(0) NFA from a grammar, my_grammar say, that
we have already built from the input rules. The basic form of the method call
is

my_nfa := nfa[my_grammar lr 0]

There are various forms of NFA which can be constructed and thus the nfa

method is parameterised by both the input grammar and various other options.
Many of the options have defaults but it is necessary to specify the type of NFA
required, in this case lr, and then the level of lookahead, in this case 0. This
constructs an NFA of the type we have described above. If we render this NFA
to a file gtb generates VCG output which can be displayed graphically.

From the following script

(* ex2 *)

S ::= E ’;’ .

E ::= E ’+’ T | T .

T ::= ’0’ | ’1’ .

(

ex2_grammar := grammar[S]

ex2_nfa := nfa[ex2_grammar lr 0]

render[open["nfa.vcg"] ex2_nfa]

)

generates a VCG file, nfa.vcg, which contains the NFA. The function nfa[ex2_grammar lr 0]

automatically augments the grammar as described in Section 2.1.3.
The NFA generated by the above example is a little large to reproduce in

these notes, so we show the effect using a smaller grammar.
Consider the grammar, ex3,

S ::= A b | a d A ::= A a | ε

State machines for finding derivations 24

The script

(* ex3 Generating NFAs *)

S ::= A ’b’ | ’a’ ’d’ .

A ::= A ’a’ | # .

(

ex3_grammar := grammar[S]

ex3_nfa := nfa[ex3_grammar lr 0]

render[open["nfa.vcg"] ex3_nfa]

render[open["rules.vcg"] ex3_grammar]

)

generates the following VCG NFA graph.

Again the grammar is automatically augmented by the nfa function, so the
corresponding rules tree is now

DFAs and stacks 25

The node numbering in the NFA is based on the slot numbering in the
rules tree. The NFA header nodes have numberings in the running enumeration
maintained by gtb (but the other NFA nodes do not). So, in the above example,
the NFA header node labelled S is the 25th element in the enumeration, and
the slot number in the rules tree for S is 11. So the corresponding NFA node is
labelled 11.25. The descendents of this node are also labelled in the form 25.m,
where m is the corresponding slot number in the rules tree.

2.2 DFAs and stacks

There are two obvious inefficiencies with the NFA based parser described in the
previous section: the NFA is non-deterministic and thus if a particular parse
is unsuccessful it may be necessary to back-track and try a different sequence
of steps, and every time a non-terminal replacement is carried out the whole
input string is read again.

We can improve the first case by using the subset construction (given, for
example, in [ASU86]) to construct a deterministic finite state automaton that
is equivalent to the LR(0) NFA, and we can solve the second problem by using
a stack.

The following terminology is used for certain structures that are used in the
subset construction. We give the terminology here because it is used in the
diagnostic reporting carried out by gtb.

A production A ::= γ · α which has a ‘dot’ somewhere on its right hand
side is called an LR(0)-item, (in gtb it is also referred to as a slot as described
above).

If P is a set of items the ε-closure of P , cl(P), is the smallest set which
contains P and all items of the form B ::= ·β where there is item of the form
A ::= γ · Bα in P .

If P is a set of items and X is a terminal or non-terminal then PX is the
set of all items A ::= γX · α such that A ::= γ · Xα is in P . We define
move(P,X) = cl(PX).

The DFA constructed from the LR(0) NFA using the subset construction is
called the LR(0) DFA. We label the DFA states with the union of the labels of
the NFA states from which the DFA state has been constructed.

Applying the subset construction to the NFA from the end of Section 2.1
gives

T ::= 0·
reduction

�
�
�
�

S′ ::= S·

�� �
T ::= 1·

reduction

�
�
�
�

E ::= T ·
reduction

�
�
�
�

S ::= E·;
E ::= E · +T

S ::= E; ·
reduction

�
�
�
�

T ::= ·0
T ::= ·1

E ::= ·T
E ::= ·E + T

S ::= ·E;
S′ ::= ·S

T ::= ·0
T ::= ·1

E ::= E + ·T

E ::= E + T ·
reduction

�
�
�
�

?
6

Z
Z

Z
Z

Z~

XXXXz

-

Q
Q

Q
QQs

S
1

0

+

;

T

����) �
�

�
��	

�
�
�
�

�
�

��>

-

E

T

'

&

$

%
#
"

!0

1 �
�
�
�

@
@

@@R

0

1

2

3

4

5

6

7

8

DFAs and stacks 26

The accepting states of the LR(0) DFA are those states whose label includes
an item of the form A ::= α·.

A grammar is LR(0) if, in the LR(0) DFA constructed as above, the labels of
the accepting states have only one item in them.

We can use a DFA to parse a string in a similar fashion to the use of the
NFA. However, to avoid re-reading the input string, each time we move to a
DFA state this state is pushed onto a stack. When a state labelled with an
item A ::= x1 . . . xn· (a reduction item) is reached, the top n states are popped
of the stack, leaving k say on top, and we move to the state which is the target
of the transition from k labelled A.

2.2.1 LR(0) tables

In practice it is usual to write core data structure of an LR parser as a table.
The rows of the table are indexed by the DFA state numbers and the columns
are indexed by $, the terminals and the non-terminals. The columns indexed
by the terminals form what is usually called the action part of the table, and
the columns indexed by the non-terminals form the goto part of the table.

Formally the LR(0) table is constructed as follows.

� If there is a DFA transition labelled with a terminal a from state h to
state k then sk is put in row h, column a of the table. These actions are
referred to as shifts.

� If there is a DFA transition labelled with a non-terminal A from state h

to state k then gk is put in row h, column A of the table.

� If the label of state h includes the item A ::= x1 . . . xn·, where A ::=
x1 . . . xn is rule m and A 6= S′, put rm in all the columns labelled with
terminals, and the $ column, of row h.

� If the label of state h includes the item S′ ::= S· put acc the $ column of
row h.

The following is the LR(0) table for the grammar

0. S′ ::= S 3. E ::= T

1. S ::= E; 4. T ::= 0
2. E ::= E + T 5. T ::= 1

DFAs and stacks 27

$ 0 1 + ; S E T

0 - s4 s5 - - g1 g2 g3

1 acc - - - - - - -

2 - - - s7 s6 - - -

3 r3 r3 r3 r3 r3 - - -

4 r4 r4 r4 r4 r4 - - -

5 r5 r5 r5 r5 r5 - - -

6 r1 r1 r1 r1 r1 - - -

7 - s4 s5 - - - - g8

8 r2 r2 r2 r2 r2 - - -

2.2.2 Parsing with an LR table

Table driven parser

0

2

7

...

$

*

...

-
-

�

Parse table

?

Output

*

*

*

Input Stack

-

We begin with the start state, 0, on the stack. At each stage in the parse,
the parser looks at the state, h say, on the top of the stack and the next input
symbol, a. An entry is then selected from row h, column a of the table. If
there is no entry the parse stops and an error message is given. If the entry is
sk then the parser pushes k onto the stack and reads the next input symbol.
If the entry is rm then rule m, A ::= x1 . . . xd say, is found, and d symbols are
popped off the stack, leaving t say on the top of the stack. The entry, gk say, in
row t, column A of the table is then fetched and k is pushed onto the stack. If
the action is acc then if the input symbol is $ the parser terminates and reports
success.

Example Parse 0 + 1;.

stack remaining input next action

0 0 + 1 ; $ s4

0 4 + 1 ; $ r4

0 3 + 1 ; $ r3

0 2 + 1 ; $ s7

0 2 7 1 ; $ s5

0 2 7 5 ; $ r5

DFAs and stacks 28

0 2 7 8 ; $ r2

0 2 ; $ s6

0 2 6 $ r1

0 1 $ acc

return success

The string of input symbols which is replaced by a non-terminal when a
reduction is carried out (i.e. the string of grammar symbols popped off the
stack) is called a handle.

2.2.3 DFAs and LR parsers in gtb

For pedagogic purposes, gtb constructs the LR(0) DFA from the NFA as de-
scribed above, using the subset construction. The gtb method to do this from
a pre-constructed NFA, my_nfa, is

my_dfa := dfa[my_nfa]

Also, as for the NFA, the method render[dfa_file my_dfa] produces a VCG
format file that can be used to visualise the DFA.

For example, the gtb script

(* ex3 *)

S ::= A ’b’ | ’a’ ’d’ .

A ::= A ’a’ | # .

(

ex3_grammar := grammar[S]

ex3_nfa := nfa[ex3_grammar lr 0]

ex3_dfa := dfa[ex3_nfa]

render[open["dfa.vcg"] ex3_dfa]

)

generates the following VCG output DFA

DFAs and stacks 29

gtb has an LR parser whose structure is of the form described in Sec-
tion 2.2.2. The parser is run using a specified DFA and a specified input string
using the method

lr_parse[my_dfa STRING]

Here STRING is the sequence of input symbols, enclosed in double quotes. The
script

(* ex2 *)

S ::= E ’;’ .

E ::= E ’+’ T | T .

T ::= ’0’ | ’1’ .

(

ex2_grammar := grammar[S]

ex2_dfa := dfa[nfa[ex2_grammar lr 0]]

render[open["dfa.vcg"] ex2_dfa]

gtb_verbose := true

lr_parse[ex2_dfa "0+1;"]

gtb_verbose := false

)

creates the DFA

DFAs and stacks 30

In its default form the parse function lr_parse reports accept or reject.
However, we can get gtb to report a trace of the parser using the gtb_verbose
mode. We set this using the method

gtb_verbose := true

To switch the verbose mode off again we set gtb_verbose to false. Many of
the gtb methods have a verbose mode. The above script generates the following
output, which we discuss below.

******: LR parse: ’0+1;’

Lexer initialised: lex_whitespace terminal suppresssed,

lex_whitespace_symbol_number 0

Lex: 4 ’0’

Stack: [34]

State 34, input symbol 4 ’0’, action 35 (S35)

Lex: 3 ’+’

Stack: [34] (4 ’0’) [35]

DFAs and stacks 31

State 35, input symbol 3 ’+’, action 13 (R[2] R23 |1|->10)

Goto state 34, goto action 39

Stack: [34] (10 ’T’) [39]

State 39, input symbol 3 ’+’, action 14 (R[3] R24 |1|->7)

Goto state 34, goto action 37

Stack: [34] (7 ’E’) [37]

State 37, input symbol 3 ’+’, action 40 (S40)

Lex: 5 ’1’

Stack: [34] (7 ’E’) [37] (3 ’+’) [40]

State 40, input symbol 5 ’1’, action 36 (S36)

Lex: 6 ’;’

Stack: [34] (7 ’E’) [37] (3 ’+’) [40] (5 ’1’) [36]

State 36, input symbol 6 ’;’, action 12 (R[1] R22 |1|->10)

Goto state 40, goto action 42

Stack: [34] (7 ’E’) [37] (3 ’+’) [40] (10 ’T’) [42]

State 42, input symbol 6 ’;’, action 15 (R[4] R28 |3|->7)

Goto state 34, goto action 37

Stack: [34] (7 ’E’) [37]

State 37, input symbol 6 ’;’, action 41 (S41)

Lex: EOS

Stack: [34] (7 ’E’) [37] (6 ’;’) [41]

State 41, input symbol 2 ’$’, action 16 (R[5] R29 |2|->8)

Goto state 34, goto action 38

Stack: [34] (8 ’S’) [38]

State 38, input symbol 2 ’$’, action 11 (R[0] R21 |1|->9 Accepting)

******: LR parse: accept

In the above output the current stack and the next action are shown at each
step in the parse. The elements of the form [n] on the stack are the DFA state
numbers, these numbers can be seen on the VCG version of the DFA. In the
above example, initially the stack consists just of the start state, [34].

The elements of the form (m ’x’) on the stack are grammar symbols, x

is the actual symbol and m is its number in the gtb generated enumeration,
and can be obtained by using the write[my_grammar] method as described in
Section 1.4.4. (This number is also given in parse.tbl which we shall describe
below.) It is common in descriptions of LR parsers to include the symbol which
labelled the transition from one state on the stack to the next, because this can
make it easier both for the reader to see how the process is working, and for
the user to find the point in the input where the parse fails, it if fails. Thus
after the first action in the above example the stack is of the form

[34] (4 ’0’) [35]

DFAs and stacks 32

with state 34 on the bottom, then the terminal symbol 0, and then the state
35.

The actions are given numbers internally. If the action is a shift then the
action number is the number of the state to be pushed onto the stack. If the
action is a reduction then the details of the reduction are printed out. The
reduce actions are numbered internally by gtb in the form R[n]. To see which
reduction corresponds to R[n] we use the parse table, which is written by gtb.

If we write the DFA a textual version of the parse table corresponding to
the DFA is output.

write[open["parse.tbl"] my_dfa]

creates a file called parse.tbl that contains a text version of the gtb internal
DFA table representation, and the reduction numbers are given in this file.

For our example grammar ex2 the file parse.tbl is

LR symbol table

0 !Illegal

1 #

2 $

3 +

4 0

5 1

6 ;

7 E

8 S

9 S!augmented

10 T

LR state table

34 0:

S35

S36

S37

S38

S39

35 4:

R[2] {2}

R[2] {3}

R[2] {4}

R[2] {5}

R[2] {6}

36 5:

R[1] {2}

R[1] {3}

R[1] {4}

R[1] {5}

R[1] {6}

37 7:

S40

S41

38 8:

SLR(1) parse tables 33

R[0] {2}

R[0] {3}

R[0] {4}

R[0] {5}

R[0] {6}

39 10:

R[3] {2}

R[3] {3}

R[3] {4}

R[3] {5}

R[3] {6}

40 3:

S35

S36

S42

41 6:

R[5] {2}

R[5] {3}

R[5] {4}

R[5] {5}

R[5] {6}

42 10:

R[4] {2}

R[4] {3}

R[4] {4}

R[4] {5}

R[4] {6}

LR reduction table

R[0] R21 |1|->9 S!augmented ::= S . Accepting

R[1] R22 |1|->10 T ::= ’1’ .

R[2] R23 |1|->10 T ::= ’0’ .

R[3] R24 |1|->7 E ::= T .

R[4] R28 |3|->7 E ::= E ’+’ T .

R[5] R29 |2|->8 S ::= E ’;’ .

In the state table section each state is listed with its state number followed
by the number of the symbol that labels the DFA in-transitions to the state.
Below this are the actions associated with the state. (The reductions have (the
numbers of) associated lookahead symbols which are used later for SLR(1) and
LR(1) parsers.) In the reduction table section we have the reduction reference,
followed by the slot number of the reduction item, the length of the right hand
side of the reduction, and (the number of) the symbol on the left hand side of
the reduction rule.

2.3 SLR(1) parse tables

The problem with LR(0) parsing is that a large number of grammars are not
LR(0), i.e. their LR(0) parse tables contain some multiple entries. It is possible
for an entry to contain a shift action and several reduction actions.

SLR(1) parse tables 34

For example, consider the grammar, ex4, which is slight modification of the
grammar ex2.

1. S ::= B; 4. E ::= T

2. B ::= E 5. T ::= 0
3. E ::= E + T 6. T ::= 1

When we construct the LR(0) DFA for this grammar we get

T ::= 0·
reduction

�
�
�
�

S′ ::= S·

�� �
T ::= 1·

reduction

�
�
�
�

B ::= E·
E ::= E · +T

S ::= B·; S ::= B; ·
reduction

�
�
�
�

T ::= ·0
T ::= ·1

E ::= ·T
E ::= ·E + T

B ::= ·E

S′ ::= ·S

T ::= ·0
T ::= ·1

E ::= E + ·T

E ::= E + T ·
reduction

�
�
�
�

?
6

Z
Z

Z
Z

Z~

XXXXz

-

Q
Q

Q
QQs

S
1

0

+

;

T

����) �
�

�
��	

�
�

��>
B

E
#
"

!0

1

S ::= ·B;

E ::= T ·
reduction

�
�
�
�

reduction

�
�
�
�

�
 �	
- PPPPq

�
�

��>
T'

&

$

%
�
�
�
�

State 3 contains both a reduction and has a transition to another state. The
effect of this is that when we are in state 3 we don’t know whether to reduce,
popping E off the stack and pushing B, or to read the next input symbol in
the hope that it is +.

Of course we can make a choice, gtb chooses a shift in preference to a re-
duction and chooses between reductions by taking the first one found. However,
if the wrong choice is made then the parser may incorrectly reject the input
string.

We can resolve the problem in the above example if we use the next input
symbol to decide whether to ‘shift’ or ‘reduce’. If the next input is ‘+’ then we
need to push it onto the stack and hope to construct T next. If the next input
is ‘;’ then we need to reduce and get B onto the stack. If the input is any other
symbol then the parse cannot continue and we report an error.

Using the next input symbol to decide whether to perform a reduction is
known as one symbol lookahead. Using one symbol lookahead vastly increases
the class of grammars which can be correctly parsed using the table based
techniques we have been considering.

A simple way in which the input symbol is used to limit reduction appli-
cation is to use the follow sets described in Section 1.4.4. This is based on
the observation that if we replace a substring α of the current string βαu with
a non-terminal A then for the result to ultimately be successfully parsed βAu

must be a sentential form. The next input symbol is the first symbol in u,
so, by definition, this symbol must be in follow(A). Thus we only apply a
reduction A ::= α if the next input symbol lies in follow(A).

Since the follow sets can be statically computed, we can include this
information in the parse table. The resulting table is called an SLR(1) table.

SLR(1) parse tables 35

We construct the states exactly as for the LR(0) parse table, and we put
sm, gm and acc into the SLR(1) table exactly as for the LR(0) table. For
a reduction, if the label of state h includes the item A ::= x1 . . . xn·, where
A ::= x1 . . . xn is rule m and A 6= S′, we put rm in all the columns of row h

that are labelled with elements of follow(A).
The following in this SLR(1) table for the grammar ex4.

$ 0 1 + ; S B E T

0 - s5 s6 - - g1 g2 g3 g4

1 acc - - - - - - - -

2 - - - - s7 - - - -

3 - - - s8 r2 - - - -

4 - - - r4 r4 - - - -

5 - - - r5 r5 - - - -

6 - - - r6 r6 - - - -

7 r1 - - - - - - - -

8 - s5 s6 - - - - - g9

9 - - - r3 r3 - - - -

A grammar is said to be SLR(1) if the entries in its SLR(1) table each
contain at most one element.

In gtb the information that is required to build the parse table is collected
when the NFA is constructed. So, despite the fact that as automata the NFA
and the DFA for an SLR(1) parser are the same as those for the corresponding
LR(0) parser, gtb generates different internal structures in the two cases. Thus
the type of table which is ultimately required is specified in the call to the gtb

NFA builder.

(* ex4 An SLR(1) parser *)

S ::= B ’;’ .

B ::= E .

E ::= E ’+’ T | T .

T ::= ’0’ | ’1’ .

(

ex4_nfa := nfa[grammar[S] slr 1]

render[open["nfa.vcg"] ex4_nfa]

ex4_dfa := dfa[ex4_nfa]

lr_parse[ex4_dfa "0+1+1;"]

)

The lookahead information (the columns of the table in which a reduction
on particular rules should appear) is stored as part of the header nodes in the
NFA. For SLR(1) to make the graphs more readable the lookahead information
is omitted from the VCG rendering. In the VCG rendering of the DFA the
reductions are listed with the appropriate lookahead symbols.

Consider again the grammar, ex3, from Section 2.1.4. The script

LR(1) tables 36

(* ex3 *)

S ::= A ’b’ | ’a’ ’d’ .

A ::= A ’a’ | # .

(

ex3_grammar := grammar[S]

ex3_slr := dfa[nfa[ex3_grammar slr 1]]

render[open["dfa1.vcg"] ex3_slr]

)

generates the following VCG graph.

2.4 LR(1) tables

Using the follow set information to reduce the number of reductions in the
table still leaves conflicts for many realistic grammars. It is possible to reduce
significantly the number of conflicts by using the lookahead information in a
more subtle way.

Consider the grammar, ex5,

1. S ::= Ab 3. A ::= ε

2. S ::= aAa

that has LR(0) DFA

LR(1) tables 37

S ::= A · b S ::= Ab·

�
�
�
�
�
�
�
�

S′ ::= S·

�� �

S ::= a · Aa S ::= aA · a S ::= aAa·
A ::= ·

A ::= ·

S ::= ·aAa

S ::= ·Ab

S′ ::= ·S

�
�
�
�

?
6

XXXXz

- -

S
A

A a
�
�
�
�
�
�
�
�
�
�
�
�

�
�

��>
a

'

&

$

% -b

0

1

2

3

4

5

6

The start state of the DFA contains the reduction A ::= ε and a transition
labelled a. Since a ∈ follow(A) this results in a conflict in the SLR(1) table.
However, if we look at the NFA for ex5

S ::= ·AbS ::= ·aAa

S ::= A · bS ::= a · Aa

S ::= Ab·

S ::= aAa·

S ::= aA · a

A ::= ·

? ??

?

?

?

S Aa

b

a

A

S′ ::= ·S

S′ ::= ·S

?
ε

ε�� ��� �

ε ε�
��+

HHHHj �� ��� ��� � �� ��� � �� ��� �
�� �

εε

S′, {$} S, {$} A, {a, b}-

?

:

ε

-

we see that the item A ::= · appears in state 0 as a result of the inclusion of
the item S ::= ·Ab, and thus we really only need to consider performing the
reduction A ::= ε if the lookahead symbol is b. This observation motivates the
use of ‘local’ follow set information.

The NFA is constructed on the basis that if we are at a state labelled
A ::= α · Bβ then we are ultimately trying to construct A and currently we
need B. To construct B we need to match γ, for some γ such that B ::= γ.
When such a rule has been matched then we shall continue to match β, thus
we need the next input symbol to be derivable from β. In other words, we wish
that when we have matched B that the lookahead symbol is in first(β). Thus
instead of creating a header node in the NFA labelled B, we need to create one
labelled with B and first(β).

There is a further complication in the case that β
∗
⇒ε. In this case, having

matched B we may match A without reading any more input. Thus we need
the lookahead symbol to be in the set of lookaheads required by A. Thus, if
the header node above the node A ::= α · Bβ is labelled (A,G) then we label
the header node for B with (B, first(βG)), where first(βG) = first(β) ∪G

if β
∗
⇒ε and first(βG) = first(β), otherwise.

2.4.1 Formal LR(1) NFA construction

Formally we construct the LR(1) NFA from a grammar Γ as follows.

LR(1) tables 38

1. Augment the grammar with a new start symbol, S′, create and mark a
header node labelled (S′, {$}). Create a node labelled S′ ::= ·S and an
ε-transition to this node from the header node.

2. While there is an unmarked node in the NFA, select an unmarked node
h, say, labelled A ::= α ·xβ, say, and suppose that the header node above
this node is labelled (A,G).

(a) Create a node, k say, labelled A ::= αx · β, and a transition labelled
x from h to k.

(b) If β = ε, mark k.

(c) If x is a non-terminal, if there is a header node labelled (x, first(βG))
then add an ε-transition from h to this header. Otherwise create a
header node, l say, labelled (x, first(βG)) and an ε-transition from
h to l. Furthermore, for each grammar rule x ::= γ create an NFA
node, g say, labelled x ::= ·γ and an ε-transition from l to g. Mark
the node l and, if γ = ε, then mark g.

(d) mark h.

3. The start state is the header labelled (S′, {$}).

4. The accepting states are the states with a label of the form A ::= α·.

For example, the LR(1) NFA for the grammar ex5 is

S ::= ·AbS ::= ·aAa

S ::= A · bS ::= a · Aa

S ::= Ab·

S ::= aAa·

S ::= aA · a

A ::= · A ::= ·

? ??

?

?

?

S Aa

b

a

A

S′ ::= ·S

S′ ::= ·S

?
ε

ε�� ��� �

ε ε�
��+

HHHHj �� ��� ��� ��� � �� ��� � �� ��� �
�� �

ε εε

S′, {$} S, {$} A, {b} A, {a}-

? ?

:
z

ε

and the LR(1) NFA for the grammar ex3 is

LR(1) tables 39

S ::= ·AbS ::= ·ad

S ::= A · bS ::= a · d

S ::= Ab·S ::= ad·

A ::= ·Aa A ::= ·AaA ::= · A ::= ·

A ::= A · a A ::= A · a

A ::= Aa· A ::= Aa·

? ??

??

? ?

? ?

S Aa

bd

A A

a a

S′ ::= ·S

S′ ::= ·S

?
ε

ε�� ��� �

ε ε ε ε�
��+

HHHHj �� � �� ��� � �� ��� � �� ��� � �� �

�� ��� ��� ��� ��� ��� �

�
�	

�
�	

Z
ZZ~

Z
ZZ~

ε εε ε

S′, {$} S, {$} A, {b} A, {a}: k

ε

- -

We can get gtb to build this NFA and the corresponding DFA simply by
asking for an LR(1) structure in the method to build the NFA.

(* ex3 *)

S ::= A ’b’ | ’a’ ’d’ .

A ::= A ’a’ | # .

(

ex3_grammar := grammar[S]

render[open["nfa1.vcg"] nfa[ex3_grammar lr 1]]

)

2.4.2 LR(1) tables

The LR(1) states are labelled with the so-called LR(1)-items, pairs of the form
(A ::= α · β,G) where (A ::= α · β) is the label of an LR(1) NFA state whose
header node is labelled (A,G).

To construct the LR(1) table we put sm, gm and acc into the LR(1) table
exactly as for the SLR(1) and LR(0) tables. For a reduction, if the label of
state h includes the item (A ::= x1 . . . xn·, G), where A ::= x1 . . . xn is rule m

and A 6= S′, put rm in row h, column x for all x ∈ G.

LR(1) tables 40

The SLR(1) and LR(1) tables for ex5 are, respectively

SLR(1) $ a b S A

0 - s2/r3 r3 g1 g3

1 acc - - - -

2 - r3 r3 - g4

3 - - s5 - -

4 - s6 - - -

5 r1 - - - -

6 r2 - - - -

LR(1) $ a b S A

0 - s2 r3 g1 g3

1 acc - - - -

2 - r3 - - g4

3 - - s5 - -

4 - s6 - - -

5 r1 - - - -

6 r2 - - - -

2.4.3 The singleton set model

There are two issues with the DFA construction model described in Section 2.4.1
that we shall now discuss further.

Strictly speaking, applying the subset construction to the LR(1) NFA de-
scribed above does not always result in the standard LR(1) DFA constructed by
the direct method described, for example, in [ASU86]. The DFA is deterministic
and correct but it may have more states than the standard DFA.

Furthermore, it is possible for each of the possible subsets of a set follow(A)
to occur as local lookahead sets, thus there may be (2|follow(A)| − 1) NFA
header nodes for each non-terminal A.

Before discussing the alternative options that can be used in gtb to address
these problems, we give examples illustrating them.

In the first case the issue arises because, under the subset construction, DFA
states are made up from sets of NFA states and two DFA states are different if
they are not comprised of exactly the same NFA states. When a DFA state is
constructed the subset algorithm checks to see if there is already a DFA state
with the same set of NFA states and if there is then this DFA state is reused.
This ensures that the DFA construction algorithm terminates. Consider the
grammar ex6

S ::= aAa | aAb | bAB

A ::= a

B ::= a | b

The LR(1) NFA as described above has three headers labelled A. The relevant
portion of the NFA is shown below.

LR(1) tables 41

S ::= ·bABS ::= ·aAb

S ::= b · ABS ::= a · AbS ::= a · Aa

S ::= bA · BS ::= aA · bS ::= aA · a

A ::= ·a

A ::= a· A ::= a· A ::= a·

A ::= ·a A ::= ·a

???

???

baa

AAA

εε ε ε ε ε�� �
�� ��� ��� �

�� ��� ��� ��� ��� � �� ��� ��� � �� ��� ��� �

Z
ZZ~

Z
ZZ~

Z
ZZ~

ε ε ε

S, {$} A, {a} A, {b} A, {a, b}

? ? ??

������)

PPPPPPq ...
...

...

- z q

�ε
ε

ε

ε

? ? ?
.

a b B

S ::= ·aAa

. . .

? ? ?

a a a

If the subset construction is strictly applied to generate the DFA two states
containing the reduction A ::= a will be created. The relevant part of the DFA
is

S ::= b · AB

S ::= a · Ab

S ::= ·aAb

S ::= a · Aa

S′ ::= ·S

A ::= a·
A ::= a·

A ::= a·

�� �
. . .

. . .

a

b

A ::= ·a

S ::= ·bAB

A ::= ·a

S ::= ·aAb

�
�
�
�XXXXz

XXXXz

�
�
�
�A ::= ·a

-

-

a

a

'
&
$
%'

&
$
%
�����*

HHHHHj

In the standard DFA construction these two states would have been merged
because they contain the same item with the same lookahead set.

This problem can create many additional DFA states. For example, for
the grammar for ISO Pascal included with the distribution of gtb, the DFA
constructed from the LR(1) NFA using the strict form of the subset construction
has 12,258 states while the standard LR(1) DFA has 2,608 states.

gtb adopts two approaches to address this problem. The first approach is
straightforward: instead of simply applying the subset construction, when an
LR(1) NFA is being processed gtb accepts two DFA states as being equal if
the union of the labels from the corresponding NFA states are the same.

The other approach is to use a different form of NFA. This approach, which
we now discuss, also addresses the second issue mentioned above: the potentially
large number (2|follow(A)| − 1) of header nodes.

We create a singleton model LR(1) NFA by creating header nodes labelled
(A,x) for each non-terminal A and for each x ∈ follow(A). We then build
the NFA in a similar fashion to the LR(0) NFA. Given an item A ::= α · Bβ

we create a node labelled with this item and ε-transitions from this node to the
headers (A,x) where x ∈ first(β).

Singleton follow set LR(1) NFA construction

1. For each non-terminal A in the grammar and for each x ∈ follow(A)
construct a header node labelled (A,x).

LR(1) tables 42

2. For each rule A ::= x1 . . . xd and for each header (A, b)

(a) Create nodes labelled A ::= x1 . . . xi−1 · xi . . . xd, for 1 ≤ i ≤ d + 1.

(b) Create an edge labelled ε from the node labelled (A, b) to the newly
created node labelled A ::= ·x1 . . . xd.

(c) Create an edge labelled xi from the node labelled A ::= x1 . . . xi−1 ·
xi . . . xd to the node labelled A ::= x1 . . . xi ·xi+1 . . . xd, for 1 ≤ i ≤ d.

(d) If xi is a non-terminal create an edge labelled ε from the node labelled
A ::= x1 . . . xi−1·xi . . . xd to the header nodes labelled (xi, y), for each
y ∈ first(xi+1 . . . xdb), for 1 ≤ i ≤ d.

3. The start state is the state labelled S′.

4. The accepting states are the states with a label of the form A ::= α·.

The main fragment of the singleton model LR(1) NFA for ex6 is

S ::= ·bABS ::= ·aAb

S ::= b · ABS ::= a · AbS ::= a · Aa

S ::= bA · BS ::= aA · bS ::= aA · a

A ::= ·a

A ::= a· A ::= a·

A ::= ·a

???

???

baa

AAA

εε ε ε ε�� �
�� ��� �

�� ��� ��� ��� � �� ��� ��� � �� ��� ��� �

Z
ZZ~

Z
ZZ~

ε ε

S, {$} A, {a} A, {b}

? ??

������)

PPPPPPq ...
...

- z q
ε

ε

ε

ε

? ? ?
.

a b B

S ::= ·aAa

. . .

? ?

a a

��

ε

Applying the subset construction in its standard form to the singleton model
LR(1) NFA results in a DFA that is identical to the LR(1) DFA constructed
using the standard construction procedure. Furthermore, the LR(1) NFA has
|followA| header nodes for each non-terminal A.

It is not clear whether the singleton model LR(1) NFA is better in practice
than the original version, which is referred to as the full subset model in gtb.
Although in worst case the singleton model has fewer NFA headers, it is likely
in practice that the full subset model will have fewer headers. In particular if
we consider SLR(1) NFAs, the singleton model has |follow(A)| headers while
the full subset model has only one header for each non-terminal. Furthermore
the singleton model has edges for each element in the local follow sets.

gtb allows the user to choose which NFA model they want, allowing the
two approaches to be compared. The method

my_nfa := nfa[my_grammar lr 1 singleton_lookahead_sets]

generates the singleton model LR(1) NFA, while the method

my_nfa := nfa[my_grammar lr 1 full_lookahead_sets]

generates the original NFA, which is also the default action.

LALR DFAs 43

2.5 LALR DFAs

Historically, LR(1) DFAs were considered too large to be practical, in general
they have many more states than the SLR(1) DFA for the same grammar.

DeRemer [DeR69, DeR71] described another type of DFA, the LALR DFA,
that has the same number of states as the corresponding SLR(1) DFA but, in
general, fewer conflicts. The LALR DFA is the one used by YACC and many
other standard parser generators.

Conceptually an LALR DFA can be thought of as an LR(1) DFA in which
certain states have been merged. If two LR(1) DFA states have labels which
differ only in the lookahead sets associated with the items, then these two states
are merged, merging the lookahead sets for corresponding items. There is an
algorithm for constructing an LALR DFA directly without using the LR(1)
DFA but gtb uses the conceptually simple merging approach.

The gtb method

lalr_dfa := la_merge[my_dfa]

takes any LR DFA and merges states that differ only in the lookahead sets
of the items that label them. To construct an LALR DFA first construct the
LR(1) DFA and then run la_merge.

(* ex3 *)

S ::= A ’b’ | ’a’ ’d’ .

A ::= A ’a’ | # .

(

ex3_grammar := grammar[S]

ex3_lalr := la_merge[dfa[nfa[ex3_grammar lr 1]]]

render[open["la_dfa.vcg"] ex3_lalr]

)

Nowadays programming languages are designed to have grammars that are al-
most LR(1); their LR(1) tables have relatively few conflicts and those conflicts
which do arise are dealt with using semantic checks. However, there is a very
large class of grammars whose LR(1) tables contain conflicts, and left to them-
selves programmers do not naturally design LR(1) grammars.

Thus we consider general parsing techniques which can be used on all gram-
mars. In the next chapter we consider an extension of the LR technique which,
when faced with a conflict, pursues all the possibilities in parallel.

Chapter 3

GLR algorithms

The problem with the standard stack based LR parsers described in Chapter 2 is
that the LR(1) parse tables for many grammars contain conflicts, and the parser
cannot tell which of the possible actions to choose. If the choice made results in
the input being rejected then, to be correct, the parser must backtrack to the
point where it made the choice and try a different action. This backtracking
can result in unacceptable parse times for many grammars.

An alternative approach is, when a choice of action is encountered, to pursue
each of the choices in parallel. The naive approach is to make a copy of the
current stack(s) for each choice of action and to proceed with each stack in
parallel until the parse is complete or no further action exists for that stack. Of
course, this does not solve the problem because there are grammars for which
this process generates infinitely many stacks.

Tomita [Tom91] devised a method for combining the multiple stacks in such
a way that they require at most quadratic space. This allowed him to give
a practical, generalised version of the LR parsing algorithm which effectively
explores all possible actions in parallel. The resulting multiple stack structure
is known as a graph structured stack (GSS), and algorithms which extend the
LR parsing algorithm using a Tomita-style GSS are known as GLR parsers.

In reality Tomita’s algorithm contains an error which means it is not correct
for grammars which contain a certain type of rule. However, this error can be
corrected by modifying the input LR parse table.

In this chapter we shall describe the GSS and Tomita’s algorithm, and then
describe the modification to the LR tables needed to make the algorithm correct.
All of the algorithms discussed can be executed in gtb and we shall describe
the methods required as we proceed.

3.1 Building a GSS

We describe the GSS associated with an LR parse using two examples.
Tomita’s original exposition pushes the grammar symbols onto the stack

between the state symbols, as mentioned at the end of Section 2.2.3. Part
of the role of gtb is to implement algorithms as they are written both for
pedagogic purposes and to allow the particular features of the algorithms to be

Building a GSS 45

studied. Thus the gtb implementation of Tomita’s algorithm constructs GSSs
that contain symbol nodes.

3.1.1 Example grammar ex7

Consider the grammar ex7

S ::= A b | a b

A ::= a | B
B ::= a

that has LR(1) DFA

A ::= a·, {b}

A ::= B·, {b}

S ::= A · b

S ::= ab·, {$}

S ::= Ab·, {$}

S′ ::= S·, {$}

B ::= a·, {b}

A ::= ·a

S ::= ·Ab

S′ ::= ·S
0 2

4

3

5

6

1

A ::= ·B
B ::= ·a

�� ��� �

�� �
�� ��� ��

�
�
�

-

-
PPPPPPq

a

B

HHHHj

-

-

b

bA

S

�
�
�
�

S ::= a · b
'

&

$

%
S ::= ·ab

We can use this DFA to recognise the string ab, as follows.
We start in state 0 with 0 on the stack and read the first input symbol, a.

We perform the shift action to state 2, giving the stack

2

a

0

In state 2 we read the next input symbol, b, and find a shift action and two
possible reduction actions. The idea is two create two copies of the stack and
perform one of the reductions on each stack.

2 3 4

a A B

0 0 0

There is a reduction associated with state 4, but applying this reduction to the
corresponding stack 0B4 generates the stack 0A3, which already exists. Thus
all possible reductions at this stage have been applied.

States 2 and 3 have a shift action on b generating the corresponding stacks

5 6

b b

2 3

a A

0 0

State 4 has no action on input b so the stack with 4 on top dies at this point.
We read the final input symbol, the end-of-string symbol $. Both states 5

and 6 have reductions, and applying these results the same stack

Building a GSS 46

1

S

0

Since state 1 is the accepting state the string is correctly accepted.
We can represent the stacks as a graph, merging common prefixes. Because

of the way the graph is traversed when performing a reduction, we put an edge
from each symbol to the symbol below it on the stack. For example, we represent
the stack 0a2 as m m0 2a� �

The GSS corresponding to the stack activity in the above example ism m mm
m

mm
0 2 5

6

1

3

4

a b

b

S

A

B

� �

�

� �

�

�

�

�

Z
ZZ}

S
S

SSo6

3.1.2 Example grammar ex8

S ::= A b

A ::= b A | ε

that has LR(1) DFA

A ::= ·bA

S ::= A · b

A ::= bA·, {b}

S ::= Ab·, {$}

S′ ::= S·, {$}

A ::= ·, {b}

A ::= ·, {b}

S ::= ·Ab

S′ ::= ·S
0 2

3

4

5

1

�� �

�� �
�� ��� ��

�
�
�

-

-

b

A

HHHHj

-A

b
S

�
�
�
�

A ::= b · A

A ::= ·bA

'

&

$

%
y

b

-

We can use this DFA to recognise the string bbb, as follows.
We start in state 0 with 0 on the stack. The state 0 has a reduction A ::= ε.

Since the right hand side is ε, nothing is popped off the stack so we simply push
A followed by 3 on to the stack. State 3 does not have any reductions so we
have two stacks

3

A

0 0

We read the first input symbol, pushing states 2 and 5, respectively, onto the
stacks. The lookahead symbol is b so the reduction in state 2 can be applied
but the reduction in state 5 is not applied. Finally applying the reduction in
state 4 gives the stacks

Building a GSS 47

5 4

b A

2 3 2 3

b A b A

0 0 0 0

Next we apply the shift action to states 2 and 3. The other two stacks die. Ap-
plying the reduction to the stack 0b2b2 gives the stack 0b2b2A4, then applying
the reduction in state 4 (twice) results in the stacks

4

A

2 5 2 4

b b b A

2 3 2 2 3

b A b b A

0 0 0 0 0

We apply the last shift, then, since the lookahead symbol is $, there is one
applicable reduction, generating the stacks

2

b

2 5

b b

2 3 1

b A S

0 0 0

Again we represent these stacks as a graph, merging common prefixes. In
this case we have that two of the stacks have the same state, 4, on top at the
same step in the process, and such stacks are recombined. (It is this recombi-
nation which ensures the the GSS has size which is at most quadratic in the
length of the input string.)

m mm

m m

mm m
mmm mm

0 2

3

4 4

2

5

2

5

15

3

3

b

A

A A

b

b

b

b

S

A

A

b

A

� �

�

�

�

�

�

�

�

�

�

��

�

Z
ZZ}6

6
�

? ?

? ?

OK

�
�

�	
�

�
�/

The graph structured stack associated with an LR parse is the graph obtained
by turning each of the possible stacks into a graph with a node for each symbol

Tomita’s algorithm 48

on the stack an edge from h to k if the symbol corresponding to h is directly
above the symbol corresponding to k. These graphs are then merged so that
stacks with a common prefix are merged and stacks with the same state above
the same element of the input string on the top of the stack are re-combined.

We now discuss Tomita’s algorithm that, given a DFA and an input string,
constructs the corresponding GSS.

3.2 Tomita’s algorithm

In this section we give an informal description of Tomita’s algorithm. For de-
tailed discussion and a formal statement of the algorithm see [Tom91], [SJH00]
or [SJar].

The state nodes in the GSS are organised into levels, one level Ui for each
input symbol. The nodes in level i correspond to the the tops of stacks that
can be obtained by reading the the first i input symbols from the string.

The GSS construction proceeds by performing all possible reduction actions
before performing the shift actions and then reading the next input. So the GSS
is constructed level by level.

When a GSS state node is constructed the actions associated with the state
are collected and stored in a worklist pending application. The shift actions
are only performed when there are no pending reduction actions. (The issues
surrounding the nature of this worklist are subtle. A full discussion can be
found in [SJar].)

3.2.1 An example

We illustrate Tomita’s algorithm using ex8 from Section 3.1.2 and input bbb.
We begin by constructing a GSS node, u0, labelled 0 and collecting the shift

and reduce actions associated with this state. Applying the reduction A ::= ε

that has length 0, since the transition labelled A from state 0 goes to state 3,
we create a new GSS state node, u1, labelled 3 and a path from u1 to u0 via a
new symbol node labelled A.

m

m

0

3

A

6

6

u0

u1

We then collect the shift action associated with state 3. There are no further
pending reductions so the construction of U0 is complete. Next we apply both
the pending shift actions, creating new level 1 state nodes, u2 and u3, labelled
2 and 5 respectively, and creating paths from these nodes (via symbol nodes
labelled a as this is the current input symbol) to u0 and u1, respectively.

Tomita’s algorithm 49

m m

mm

0 2

53

b

A

b

� �

�

6

6
�

u0

u1

u2

u3

State 2 has a reduction action and applying this we construct a new level 1
node, u4, labelled 4 and a path from u4 to u2 via a new symbol node labelled
A.

m m

m

mm

0 2

4

53

b

A

A

b

� �

�

6

6
�

?

?u0

u1

u2

u3

u4

We then apply the reduction associated with state 4. The rule A ::= bA is of
length 2 so we trace back along the path of length 4 from u4, in this case to u0.
Since the label of u0 is 0 and the transition labelled A from 0 goes to state 3,
we create a new level 1 GSS node, u5, labelled 3 and a path from u5 to u0 via
a new symbol node labelled A. There are no further pending reductions so we
apply the shift actions, resulting in the graph

m mm

m

mm
mm

0 2

3

4

2

5

53

b

A

A

b

bA

b

� �

�

�

�

�

�

�

Z
ZZ}6

6
�

?

?u0

u1

u2 u6

u3

u4

u5 u7

For the reduction A ::= ε in state 2 we create a new level 2 state node, u8,
labelled 4 and a path from u8 to u6 via a new state node labelled A.

Tomita’s algorithm 50

m mm

m m

mm
mm

0 2

3

4 4

2

5

53

b

A

A A

b

bA

b

� �

�

�

�

�

�

�

Z
ZZ}6

6
�

? ?

? ?u0

u1

u2 u6

u3

u4 u8

u5 u7

For the reduction A ::= bA in state 4 we trace back along the path of length
4 from u8 to u4 and then, since the transition labelled A from state 2 goes to
state 4 and we already have a level 2 node, u8, labelled 4 we create a path from
u8 to u4 via a new node labelled A. There is now another path of length 4 from
u8, which goes to u0. The reduction A ::= Ab must be applied down this path,
and we create a new level two node, u9, labelled 3 and a path from u9 to u0 via
a new symbol node labelled A. Then we apply the pending shifts.

m mm

m m

mm m
mm mm

0 2

3

4 4

2

5

2

5

5

3

3

b

A

A A

b

b

b

b

A

A

b

A

� �

�

�

�

�

�

�

�

�

�

�

�

Z
ZZ}6

6
�

? ?

? ?

M

�
�

�	
�

�
�/u0

u1

u2 u6 u10

u3

u4 u8

u5 u7

u9 u11

Because the lookahead symbol is now $ only state 5 has a reduction. Tracing
back along the path of length 4 from u11 to u0, since the transition labelled
S from 0 goes to 1 we create a new level 3 node, u12, labelled 1 and a path
from u12 to u0 via a new symbol node labelled S. This completes the GSS
construction.

m mm

m m

mm m
mmm mm

0 2

3

4 4

2

5

2

5

15

3

3

b

A

A A

b

b

b

b

S

A

A

b

A

� �

�

�

�

�

�

�

�

�

�

��

�

Z
ZZ}6

6
�

? ?

? ?

OK

�
�

�	
�

�
�/u0

u1

u2 u6 u10

u3

u4 u8

u5 u7

u9 u11

u12

Because the last GSS level, level 3, contains a state node, u12, whose label
is 1, the DFA accepting state, the input string bbb is accepted.

Tomita’s algorithm 51

3.2.2 Tomita’s algorithm in gtb

We can run Tomita’s algorithm on an LR DFA using the method

this_derivation := tomita_1_parse[my_dfa STRING]

where, as for the LR parser, STRING is the input string, a doubly quoted string
of grammar terminals.

The parser can be run on the LR(0), SLR(1), LALR or LR(1) DFA. The
following script causes gtb to run the parser on ex8 with an LR(1) DFA.

(* ex8 GLR parsing *)

S ::= A ’b’ .

A ::= ’b’ A | # .

(

ex8_grammar := grammar[S]

ex8_nfa := nfa[ex8_grammar lr 1]

render[open["nfa.vcg"] ex8_nfa]

ex8_dfa := dfa[ex8_nfa]

render[open["dfa.vcg"] ex8_dfa]

this_derivation := tomita_1_parse[ex8_dfa "bbb"]

render[open["gss_ex8.vcg"] this_derivation]

)

As a result of running the Tomita parser gtb produces a stack structured
graph (ssg) that is a version of the GSS described above. Rendering this graph
to a VCG file the stack structure can be viewed.

It is possible to get gtb to print the actions it performs during a traversal
using gtb_verbose. Running the script

(* ex8 GLR parsing *)

S ::= A ’b’ .

A ::= ’b’ A | # .

(

ex8_grammar := grammar[S]

Tomita’s algorithm 52

ex8_nfa := nfa[ex8_grammar lr 1]

render[open["nfa.vcg"] ex8_nfa]

ex8_dfa := dfa[ex8_nfa]

render[open["dfa.vcg"] ex8_dfa]

gtb_verbose := true

this_derivation := tomita_1_parse[ex8_dfa "bbb"]

render[open["ssg.vcg"] this_derivation]

)

generates the output

******: Tomita 1 parse (queue length 0) : ’bbb’

Lexer initialised: lex_whitespace terminal suppresssed,

lex_whitespace_symbol_number 0

Lex: 3 ’b’

State 22, input symbol 3 ’b’, action 7 (R[0] R11 |0|->4)

State 22, input symbol 3 ’b’, action 23 (S23)

State 24, input symbol 3 ’b’, action 27 (S27)

Lex: 3 ’b’

State 23, input symbol 3 ’b’, action 7 (R[0] R11 |0|->4)

State 26, input symbol 3 ’b’, action 9 (R[2] R17 |2|->4)

State 23, input symbol 3 ’b’, action 23 (S23)

State 24, input symbol 3 ’b’, action 27 (S27)

Lex: 3 ’b’

State 23, input symbol 3 ’b’, action 7 (R[0] R11 |0|->4)

State 26, input symbol 3 ’b’, action 9 (R[2] R17 |2|->4)

State 26, input symbol 3 ’b’, action 9 (R[2] R17 |2|->4)

State 23, input symbol 3 ’b’, action 23 (S23)

State 24, input symbol 3 ’b’, action 27 (S27)

Lex: EOS

State 27, input symbol 2 ’$’, action 10 (R[3] R18 |2|->5)

State 25, input symbol 2 ’$’, action 8 (R[1] R14 |1|->6 Accepting)

Lex: EOS

******: Tomita 1 parse: accept

SSG has final level 3 with 26 nodes and 26 edges; maximum queue length 1

Edge visit count histogram

0: 13

1: 12

2: 2

Total of 16 edge visits

Path length histogram

0: 3

4: 4

Total of 7 path entries

Weighted total of 16 path entries

Reduction length histogram

0: 3

4: 4

Tomita’s algorithm 53

Total of 7 reduction length entries

Weighted total of 16 reduction length entries

Reduction histogram

0: 3

4: 4

Total of 7 reduction entries

Weighted total of 16 reduction entries

(Some discussion of the diagnostics produced from tomita_1_parse can be
found in Section 3.3.1.)

3.2.3 Right nullable rules

As we saw in Section 3.2.1, while the GSS is being constructed it is possible
to add a new edge from an existing node, creating a new path down which a
reduction must be applied. This was the case for node u8 in the example in
Section 3.2.1.

Tomita’s algorithm was designed to construct the GSS as efficiently as pos-
sible, keeping to a minimum the amount of graph searching required. For this
reason the worklist mentioned above is carefully designed so that pending re-
ductions are stored with the first edge of each path down which they must be
applied. The problem is that when a new edge is added to the middle of an
existing path then reductions associated with nodes at the end of the path may
not be applied down the new path. We illustrate the problem with the following
grammar, ex9.

S ::= b A

A ::= a A B | ε
B ::= ε

whose LR(1) DFA is

S ::= ·bA, $
bS′ ::= ·S, $

S ::= b · A, $

A ::= ·, $

A ::= ·aAB, $- a A
B ::= ·, $

A ::= aA · B, $

'

&

$

%
- -

�
 �	S ::= bA·, $

0
2 4

5

3 �
 �	A ::= aAB·, $
6

B�
 �	S′ ::= S·, $

'

&

$

%
A ::= a · AB, $

A ::= ·, $

A ::= ·aAB, $

�
�
�
�

�
�
�
�

7
a

�
�

��=
HHHHj

S
1

A�� �?

We run Tomita’s algorithm with the above table and input string baa, using
the gtb script

(* ex9 Right nullable rules *)

S ::= ’b’ A .

A ::= ’a’ A B | # .

B ::= # .

(

ex9_grammar := grammar[S]

Tomita’s algorithm 54

ex9_nfa := nfa[ex9_grammar lr 1]

render[open["nfa.vcg"] ex9_nfa]

ex9_dfa := dfa[ex9_nfa]

render[open["dfa.vcg"] ex9_dfa]

this_derivation := tomita_1_parse[ex9_dfa "baa"]

render[open["ssg.vcg"] this_derivation]

)

This generates the GSS

The parser outputs diagnostics, in particular reporting that the input is re-
jected.

******: Tomita 1 parse (queue length 0) : ’baa’

******: Tomita 1 parse: reject

SSG has final level 3 with 12 nodes and 12 edges; maximum queue length 1

Edge visit count histogram

0: 7

1: 6

Total of 6 edge visits

The problem is that once node 34 in the GSS is constructed the reduction
by the rule A ::= aAB is applied and a new edge is created from node 33. This
creates a new path from node 34 down which the reduction must be applied,
but only reductions associated with node 33, and in this case there are none, are
applied again. Thus the GSS construction process terminates without success.

In general, suppose that we add an edge from a node, u say, in the middle
of an existing path in the GSS, and that there is a reduction associated with a
node, v, further up this path.

m
m

m

m

m��

�

�

?

?

?

?

�
�

�	

v

u

. . .

. . .
w �

Right Nulled parse tables 55

It is not hard to see that the reduction must be of the form A ::= αβ where
β

∗
⇒ε and the item A ::= α · β belongs to the DFA state that labels the node

u. Rules of the form A ::= αβ where β
∗
⇒ε and β 6= ε are called right nullable

rules.
Tomita [Tom86] attempted to solve the problem of right nullable rules by

introducing sub-levels into the GSS, but this caused the algorithm to fail to
terminate in certain cases. Farshi [NF91] gave a different version of Tomita’s
algorithm, using a different worklist structure, and addressed the problem by
simply searching the full GSS each time a new edge is created to ensure that
all appropriate reductions are found and correctly applied. The problem with
Farshi’s algorithm is that it generates very much more graph searching dur-
ing the GSS construction and hence the algorithm is much less efficient than
Tomita’s algorithm. Some statistics comparing the efficiency of the algorithms
can be found in [JSE04].

In fact the problem can be solved by using Tomita’s original algorithm but
adding extra reductions to the LR parse table. We now describe the modifica-
tion to the tables.

3.3 Right Nulled parse tables

As we remarked in Section 3.2.3, Tomita’s algorithm does not always correctly
parse an input string if the grammar contains right nullable rules. However, we
notice that, for a rule of the form A ::= αβ, where β

∗
⇒ε, if the parser reaches

a state labelled with an item (A ::= α · β, a) and if the next input symbol is a,
then eventually, without reading any further input, the parser will reach a state
labelled with (A ::= αβ·, a) and perform a reduction. Thus the parser could
have performed the reduction from the state labelled (A ::= α · β, a), popping
off just the symbols associated with α from the stack. This simple observation
forms the basis of the right nulled (RN) GLR parsers.

We construct the LR DFA for a grammar, LR(0), SLR(1), LALR or LR(1)
as desired, exactly as for the standard LR parser, but states labelled with an
item of the form (A ::= α ·β, a), where β

∗
⇒ε are also treated as reduction states.

To perform a reduction we need to know the number of symbols to be popped
off the stack and the name of the non-terminal on the left hand side of the rule.
Thus, in an RN table we record reduction actions together with the number of
symbols to be popped off the stack and the left hand side of the rule.

We construct an RN table from the LR DFA in a similar way to the LR
table, putting sm and gm into the RN table exactly as for the LR(1) table.
For a reduction, if the label of state h includes the item (A ::= x1 . . . xp · β,G),

where β
∗
⇒ε and A 6= S′, put r(p,A) in row h, column x for all x ∈ G. Finally,

put acc into row k, column $, where k is the DFA state whose label includes
(S′ ::= S·, $), and if S ::= ε add acc to row 0, column $, where 0 is the DFA
start state.

Right Nulled parse tables 56

3.3.1 RN tables in gtb

As we have said, gtb collects all the information that it needs to build an
LR table when it constructs the NFA. Thus the method that builds an NFA
contains a parameter which instructs gtb to treat slots of the form A ::= α · β,
where β

∗
⇒ε, as reductions. The default action is to use only the standard LR

reductions. To include the right nullable reductions we use the method call

my_nfa := nfa[my_grammar lr 1 nullable_reductions]

If we run gtb with this NFA method and visualise the resulting NFA using
VCG we see that the NFA states that contain a reduction slot are highlighted in
blue. For the standard NFA it is the leaf nodes that are highlighted, but when
the nullable_reductions option is used then other nodes may be highlighted
as well.

For example, for the grammar ex9, running the script

(* ex9 Right nullable rules *)

S ::= ’b’ A .

A ::= ’a’ A B | # .

B ::= # .

(

ex9_grammar := grammar[S]

rn_nfa := nfa[ex9_grammar lr 1 nullable_reductions]

render[open["nfa1.vcg"] rn_nfa]

)

and then running VCG on nfa1.vcg we see that the nodes labelled S ::= a ·A,
A ::= b · AB, and A ::= bA ·B, are highlighted.

Right Nulled parse tables 57

We note that, for efficiency, the internal representation of an RN table in gtb

is not simply the theoretical representation described above, it matches more
closely the structure of the output table parse.tbl described in Section 2.2.3.
The internal representation is not of immediate concern to the reader but, as for
the LR parser, it is helpful for understanding some of the diagnostic information
produced by gtb. In particular, when gtb reports on a reduction action it
reports the gtb generated slot number of the item A ::= x1 . . . xp·β (the number
of the corresponding NFA node), then gives the length of the reduction and the
associated non-terminal. In fact, as can be seen in Section 3.3.2, the diagnostics
generated by the Tomita parser are in a similar form to those generated by the
LR parser described above.

3.3.2 Tomita’s algorithm with RN tables

We can use Tomita’s algorithm with RN tables and the algorithm will work
correctly on all grammars and input strings.

For example, running the script

(* ex9 Right nullable rules *)

S ::= ’b’ A .

A ::= ’a’ A B | # .

B ::= # .

(

ex9_grammar := grammar[S]

rn_nfa := nfa[ex9_grammar lr 1 nullable_reductions]

Right Nulled parse tables 58

rn_dfa := dfa[rn_nfa]

render[open["dfa1.vcg"] rn_dfa]

write[open["parse.tbl"] rn_dfa]

this_derivation := tomita_1_parse[rn_dfa "baa"]

render[open["ssg1.vcg"] this_derivation]

this_derivation := tomita_1_parse[rn_dfa "baab"]

this_derivation := tomita_1_parse[rn_dfa "ca"]

this_derivation := tomita_1_parse[rn_dfa "bbb"]

)

generates the following GSS and DFA

The file parse.tbl produced is

LR symbol table

0 !Illegal

1 #

2 $

Right Nulled parse tables 59

3 a

4 b

5 A

6 B

7 S

8 S!augmented

LR state table

28 0:

S29

S30

29 4:

R[1] R[4] {2}

S31

S32

30 7:

R[2] {2}

31 3:

R[1] R[3] {2}

S31

S33

32 5:

R[7] {2}

33 5:

R[0] R[5] {2}

S34

34 6:

R[6] {2}

LR reduction table

R[0] R14 |0|->6 B ::= . #

R[1] R15 |0|->5 A ::= . #

R[2] R18 |1|->8 S!augmented ::= S . Accepting

R[3] R19 |1|->5 A ::= ’a’ . A B

R[4] R20 |1|->7 S ::= ’b’ . A

R[5] R21 |2|->5 A ::= ’a’ A . B

R[6] R22 |3|->5 A ::= ’a’ A B .

R[7] R23 |2|->7 S ::= ’b’ A .

and running the script also produces the following diagnostics, showing that the
first input string is correctly accepted and that the other three input strings
are (correctly) rejected.

******: Tomita 1 parse (queue length 0) : ’baa’

******: Tomita 1 parse: accept

SSG has final level 3 with 16 nodes and 16 edges; maximum queue length 3

Edge visit count histogram

0: 3

1: 6

2: 6

3: 2

Right Nulled parse tables 60

Total of 24 edge visits

******: Tomita 1 parse (queue length 0) : ’baab’

******: Tomita 1 parse: reject

SSG has final level 3 with 7 nodes and 6 edges; maximum queue length -1000

Edge visit count histogram

0: 7

Total of 0 edge visits

******: Tomita 1 parse (queue length 0) : ’ca’

Illegal lexical element detected

******: Tomita 1 parse (queue length 0) : ’bbb’

******: Tomita 1 parse: reject

SSG has final level 1 with 3 nodes and 2 edges; maximum queue length -1000

Edge visit count histogram

0: 3

Total of 0 edge visits

Notice that gtb also gives statistics relating to the Tomita parse of the
input. In particular it reports the number of edge visits carried out during the
construction of the GSS, in the first example there are 24. This allows the
performance of Tomita’s algorithm to be compared with other algorithms. To
more detailed diagnostics as the parse proceeds we can switch on the verbose
mode, as shown on page 52.

3.3.3 The RNGLR algorithm

We can construct an algorithm that is more efficient than Tomita’s in the case
of right nullable rules by observing that a reduction of the form A ::= αβ·,
where β

∗
⇒ε need not be applied when β matches ε, as the nulled reduction

A ::= α · β will generate the required portion of the GSS when it is applied.
It is not hard to see that a GSS edge between two nodes, u and v say, at the

same level exits if and only if it was created as the result of applying a reduction
B ::= γ · δ with γ being matched to ε. In particular, a reduction A ::= αβ· is
to be applied with β matching ε if and only if the first edges of the paths down
which it is to be applied have their target nodes on the current level. (This
was the case, for example, in ex9 where the first edge of the path down which
A ::= aAB was applied was from node 34 to node 33, both on level 3.) Thus to
avoid unnecessarily applying A ::= αβ· we only apply reductions down paths
whose first edge goes to a level below the current level. (It is important to note
that, because of this modification, the RNGLR algorithm cannot be used with
the standard LR tables if the grammar contains right nullable rules.)

The GSS constructed by the RNGLR algorithm does not have symbol nodes
(however, when we draw them we label the GSS edges with symbols for ped-
agogic purposes). This makes the GSS smaller and more efficient to search.

The RNGLR parser 61

It does have implications for derivation tree construction, the parser version
of the algorithm constructs a GSS whose edges are labelled with tree nodes.
However, this method results in slightly smaller trees and so we prefer it to
Tomita’s parser, which exploits the GSS symbol nodes.

The fact that the GSS does not include symbol nodes allows the RNGLR
algorithm to have a more efficient pending reduction worklist, reductions are
stored with the second edge on the path down which they are to be applied.
This, together with the early application of right nullable reductions discussed
at the start of this section means that the RNGLR algorithm is more efficient
than Tomita’s algorithm, even on grammars with no right nullable rules.

To run the RNGLR algorithm in gtb we use an method call of the form

this_derivation := rnglr_recognise[my_dfa STRING]

For example, running the script

(* ex9 Right nullable rules *)

S ::= ’b’ A .

A ::= ’a’ A B | # .

B ::= # .

(

ex9_grammar := grammar[S]

rn_nfa := nfa[ex9_grammar lr 1 nullable_reductions]

rn_dfa := dfa[ex9_nfa]

gtb_verbose := true

this_derivation := rnglr_recognise[rn_dfa "baa"]

render[open["ssg2.vcg"] this_derivation]

)

generates the following GSS

3.4 The RNGLR parser

Strictly speaking the algorithms that we have discussed so far are recognisers.
A parser is a recogniser that outputs, in some form, a derivation of the input
string, if that string is in the language.

The RNGLR parser 62

3.4.1 Shared packed parse forests

Derivations are often presented as trees. The root of a derivation tree is labelled
with the start symbol, the leaves are labelled with the symbols of the input
string and the interior nodes are labelled with nonterminals. The children of a
node, A say, are labelled with the symbols from an alternate of the grammar rule
for A. For example, the following derivation tree corresponds to the derivation
on page 4.

m
m
m

m m
m
m
m

m
m

m
m
m

m
m

m

m
ma

E

S

S S

S

S

S

S

+

b

E

∗

a

E

+

b

E
?

?

? ?

?

?

?

?

? ?

?

�
�	

�
�	

@
@R

@
@R

�
��+

Q
QQs

Tomita constructed the GLR algorithm with the production of derivation
trees in mind. So the extension of the recogniser to a parser is relatively straight-
forward. However, GLR algorithms can be applied to all grammars, and am-
biguous grammars have sentences that have more than one derivation tree.
Thus we begin by describing an efficient representation of the set of derivation
trees of a string.

We combine all the derivation trees for a string into a single structure called
a shared packed parse forest in which common nodes are shared and multiple
sets of children are packed together. In general, given a forest of derivation
trees for a string a1 . . . an, if two trees contain the same subtree for a substring
ai . . . ai, say, then this subtree can be shared.

mS
mB
mA
m maj ai

? ?

��= @@R

mS
mCmA

aj ai

? ?

��/ SSw

SSw��/

m m

...
...

·
·

·
·

·
·

·
·

·
·

·
·

·
·

·
·

mS
mB
@@R

mS
mCmA

aj ai

? ?

SSw

SSw��/

m m

...
...

·
·

·
·

·
·

·
·

·
·

·
·

.

⇒CCW
��/ AAU

�

����-

If two nodes labelled A, say, have different subtrees which derive the same
substring, aj . . . ai say, then the two nodes labelled A can be packed together
and the subtrees can be added as alternates under the packed node.

The RNGLR parser 63

mS
mA
mx1

m maj ai

? ?

��= @@R

@@R��/ ... ·
·

·
·

·
·

. . .

⇒

·
·

mxm. . .

mS
mA
my1

m maj ai

? ?

��= @@R

@@R��/ ... ·
·

·
·

·
·

. . .

·
·

myp. . .

mS
mA

mx1

maj

?

@@R��/ ... ·
·

·
·

· ·

. . .

·
·

mxm. . . my1

mai

?

·· ·
·

myp. . .

f f(((hhhh
��+ ZZ~ ��+ ZZ~

PPPPPPPq

�������)

???

A directed graph obtained by taking the derivation trees of a sentence u

and merging and packing the nodes in the fashion described above is called a
shared packed parse forest (SPPF).

The following is the SPPF for the (two) derivations of the string b ∗ a + b

from the grammar ex1 on page 5

m m m
m m
m

m
m
m m

m m
m m

S S S

S S

S

b

E

∗ +

a b

E E
? ? ?

? ?

? ? ?

�
�	

�
�	

@
@R

@
@R

d d
? ?

=~

S
S

S
S
Sw

�
�

�
�

�/

�� @@

3.4.2 The RNGLR parser

To turn the RNGLR recogniser into a parser we construct an SPPF as the
GSS is built. The method that we use is basically the same as that used
by Rekers [Rek92] to turn Farshi’s GLR algorithm into a parser. A node is
constructed when an edge is added to the GSS, and the edge is labelled with
this node.

We have to treat right nullable rules carefully because in the RNGLR algo-
rithm the right hand ends of such reductions are short circuited. Thus we have
pre-constructed ε-SPPFs for the nullable right hand ends of rules and to add
these in the appropriate places once the GSS construction has been completed.
These SPPFs are passed into the algorithm along with the parse table and the
input string.

The SPPF is then constructed as follows. When an input symbol, a say, is
read at the ith step of the algorithm, an SPPF node, u say, labelled (a, i) is
created. All of the GSS edges created when this a is read are labelled u. When
a reduction A ::= α · β is applied the labels, u1, . . . , uk say, on the edges on
the path down which the reduction is applied are collected. If the last node on
the path is at level j then we look for an SPPF node labelled (A, j). If one

The RNGLR parser 64

has already been constructed at this step then we create a new packing node
as a child of this node. Otherwise we create an SPPF node labelled (A, j). The
newly created node is then given as children the nodes labelled uk, . . . , u1. If
β 6= ε then the root node of the SPPF for β is also made a child of the new
SPPF node. (For full details of the SPPF construction process see [SJar] or
[SJH00].)

For example, consider the grammar ex10

S ::= T B

T ::= T + T | a | b
B ::= B B | c | ε

which has the following RN SLR(1) DFA and ε-SPPF

m

m
T ::= b·, {+, c, $}

S ::= TB·, {$}S ::= T · B, {$}

S′ ::= S·, {$}

B ::= c·, {c, $}
T ::= a·, {+, c, $}�
 �	
�
 �	 '

&
$
%

B ::= BB·, {c, $}

T ::= T + T ·, {c, +, $}

B ::= B · B, {c, $}

B ::= ·BB, {c, $}

B ::= ·BB, {c, $}

B ::= ·BB, {c, $}
B ::= B · B, {c, $}

B ::= ·, {c, $}

B ::= ·, {c, $}

B ::= ·, {c, $}

�
 �	

�
 �	
�� ��

'
&

$
%@

@
@

@@R

A
A
A
A
A
AAU

C
C
C
C
C
C
C
CCW

���* HHHj
S

S
S

SSw

�����

Z
ZZ}

S

b

a

T
B

B

c

c

+ c

a

b

T+

0

1

2

3

4

5

6

7

8

9

�
�

�
�

Z
Z

Z
ZZ~

HHHHHHHHjZ
Z

Z
Z}

����)

�

@
@

@
@@R

m
m

ε

Bd d
?

�� @@
*

�

wB

We parse the string a + b + a as follows.
We create a GSS node u0 labelled 0 and then read the first input symbol,

a. We create an SPPF node, w1, labelled (a, 1), a GSS node, u1, labelled 3 and
an edge (u1, u0) labelled w1. We then perform the reduction T ::= a down this
edge. We create an SPPF node, w2 labelled (T, 1) as a parent of w1, a GSS
node u2 labelled 2 and an edge (u2, u0) labelled w2.

m mm0 3

2

�

Z
ZZ}

a,1

T,1w1

w2 w1

w2

u0 u1

u2
�
 �	
�
 �	

?

We read the next input symbol, +, create an SPPF node, w3, labelled (+, 2), a
GSS node, u4, labelled 5 and an edge (u4, u2) labelled w3.

Reading the next input symbol, b, we create an SPPF node, w4, labelled
(b, 3), a GSS node, u5, labelled 4 and an edge (u5, u4) labelled w4. We then
perform the reduction T ::= b down the edge (u5, u4), create an SPPF node,
w5 labelled (T, 3), a GSS node u6 labelled 9 and an edge (u6, u4) labelled w5.
Performing the reduction from u6 we trace back along the path of length 3,

The RNGLR parser 65

collecting the labels w5, w3 and w2. We create a new SPPF node, w6, labelled
(T, 1) with children w2, w3, w5, a GSS node, u7, labelled 2 and an edge (u7, u0)
labelled w6.

m m mmm mm
0 2 95

3 4

2

� ��

Z
ZZ}

Z
ZZ}

a,1 +,2 b,3

T,1

T,1

T,3

w2 w5w3

w4

w1 w3 w4

w2

w6

w5

u0 u2 u6u4

u5

u7
�
 �	 �
 �	 �
 �	
�
 �	
�
 �	 �
 �	

? ?

����

?

HHHj
o

w6

We then read the next symbol, +, create an SPPF node, w7, labelled (+, 4),
a GSS node, u8, labelled 5, and two edges (u8, u6) and (u8, u7) labelled w7. Then
we read the final symbol, a, create an SPPF node, w8, labelled (a, 5), a GSS
node, u9, labelled 5 and an edge (u9, u8) labelled w8. Applying the reduction
T ::= a down the edge (u9, u8), we create an SPPF node, w9 labelled (T, 5), a
GSS node u10 labelled 9 and an edge (u10, u8) labelled w9.

m m m mmmm m mm
0 2 9 955

3 4 4

2

� � ���

Z
ZZ}

Z
ZZ}

Z
ZZ}

a,1 +,2 +,4b,3 a,5

T,1

T,1

T,3 T,5

w2 w5 w9w7w3

w8

w1 w3 w7w4 w8

w2

w6

w5 w9

u0 u2 u6 u10u8u4

u9

u7
�
 �	 �
 �	 �
 �	�
 �	 �
 �	
�
 �	
�
 �	 �
 �	 �
 �	

? ? ?

����

?

HHHj
o

w6

k

w7

From u10 we trace back along the two paths of length 3. This results in the
GSS and SPPF shown below.

m m m mmmm m mm m
0 2 9 955

3 4 4

2 2

� � ���

Z
ZZ}

Z
ZZ}

Z
ZZ}

a,1 +,2 +,4b,3 a,5

T,1

T,1

T,1

T,3

T,3 T,5

w2 w5 w9w7w3

w8

w1 w3 w7w4 w8

w2

w6

w11

w10

w5 w9

u0 u2 u6 u10u8u4

u9

u7 u11 �
 �	 �
 �	 �
 �	�
 �	 �
 �	
�
 �	
�
 �	
�
 �	 �
 �	�
 �	 �
 �	

? ? ?

����
����

? ?

HHHj
HHHj

o

w6

k

w7

	
w10

O

w11

^

^

�
��=

We have added a new edge to node u10 so the reduction is applied down this
edge. The required GSS node and edge already exist, and there is already an
SPPF node labelled (T, 1) that we have constructed at this step. Thus we reuse
this node and add the second set of children using packing nodes.

a,1 +,2 +,4b,3 a,5

T,1

T,1

T,1

T,3

T,3 T,5

w1 w3 w7w4 w8

w2

w6

w11

w10

w5 w9�
 �	 �
 �	 �
 �	�
 �	 �
 �	
�
 �	
�
 �	

�
 �	
�
 �	�
 �	 �
 �	

? ? ?

����
����

? ?

HHHj
HHHj

dd ZZ
���

�������

R

w?

HHHHHHj

The RNGLR parser 66

We then apply the reduction B ::= ε from node u11, creating a new GSS node,
u12, labelled 7 and an edge (u12, u11) labelled wB . Applying the reduction
B ::= ·BB does not create any new edges. Applying the reduction S ::= T ·B
from u11 we create an SPPF node labelled (S, 1) with children w11 and wB , and
a GSS node, u13 labelled 1.

We then apply the reduction B ::= ε from u12 to create u14 labelled 8.
As the edges from u12 and u14 were created by a zero length reduction we do
not apply any of the non-zero length reductions in state 7 or 8. We apply the
reduction B ::= ε to u14, creating an edge labelled wB from this node to itself,
and the construction process is complete.

m m m mmmm m m

m
m

m m

m

0 2 9 955

3 4 4

7

8

2 2

1

� � ���

Z
ZZ}

Z
ZZ}

Z
ZZ}

a,1 +,2 +,4b,3 a,5

T,1

T,1

T,1

S,1

wB

T,3

T,3 T,5

w2 w5 w9w7w3

w8

w1 w3 w7w4 w8

w2

w6

w11

w12

w10

w5 w9

u0 u2 u6 u10u8u4

u9

u12

u14

u7 u11

u13
�
 �	 �
 �	 �
 �	�
 �	 �
 �	
�
 �	
�
 �	

�
 �	
�
 �	 �
 �	
�
 �	�
 �	 �
 �	

? ? ?

����
����

? ?

HHHj
HHHj

o

w6

k

w7

	
w10

O

w11
dd ZZ

���
�������

R

w?

HHHHHHj

?
HHHj

6

6

wB

wB

-

�

wB

w12

To run the parser version of the RNGLR algorithm in gtb we use the
method

this_derivation := rnglr_parse[my_dfa STRING]

Chapter 4

Reduction incorporated recognisers

Although they are relatively efficient, GLR algorithms are at least cubic order
in worst case. There has been quite a lot of research directed towards improving
the efficiency of the standard LR parsing algorithm by reducing the cost of the
stack activity. We know that there exist context-free languages that cannot be
recognised by a finite state automaton, and thus we cannot expect to remove
the stack completely from the GLR algorithm. However, from a theoretical
point of view, we only require a stack to deal with instances of self embedding,
i.e. derivations of the form A

∗
⇒αAβ where α and β are not ε.

This observation forms the basis of a different type of general parsing algo-
rithm, initially developed by Aycock and Horspool [AH99]. As this is a tutorial
manual we shall not give the detailed motivation for this approach in terms of
the standard LR algorithm, the interested reader can read about this in [SJ02]
or [SJ05]. However, the basic idea can be illustrated as follows.

We use a stack in the standard LR parser so that when we perform a reduc-
tion we can find the state that we need to trace back to. For example, consider
the grammar, ex11,

S ::= a A b b | c A b d

A ::= d

which has LR(1) DFA

S′ ::= ·S, $

S ::= ·aAbb, $

S ::= ·cAbd, $

S′ ::= S·, $

S ::= a · Abb, $
A ::= ·d, b

S ::= aA · bb, $ S ::= aAb · b, $- - -A

S ::= c · Abd, $

A ::= ·d, b

S ::= cA · bd, $A

S

a b

b

A ::= d·, b
S

S
S
Sw

d

d

c

S ::= aAbb·, $

S ::= cAbd·, $

S ::= cAb · d, $
-

@@Rb

d

'
&

$
%
�
�

�
�
�
 �	 �
 �	�
 �	

�
�

�
�
�
 �	 �
 �	

�
 �	�
�
�
�

�� �

�
 �	
?

HHHj

�����1

����:
HHj

0

1

2

3

4
5

6

7 8

9

10

On input adbb we eventually read all the input and have stack

0 ← 2 ← 4 ← 5 ← 6

Since S ::= aAbb· is in state 6, we trace back to state 0 by popping four symbols
off the stack and then we traverse the S-transition from state 0 to state 1.

Grammars without self-embedding 68

What happens if we extend the LR DFA by adding special reduction tran-
sitions that move directly from a reduction state to the state that should be
pushed on to the stack? So, in the above example we would just have a reduc-
tion transition (a special form of ε-transition that does not require reading an
input symbol) from state 6 to state 1. This would mean that we did not have
to push and pop the intermediate states.

In fact we could put a reduction transition from state 6 to state 1, and from
state 9 to state 1, without changing the language accepted by the resulting
PDA. However, there is a problem with the reduction associated with state 10.
There are two possible paths to state 10 and two corresponding states that may
need to be traced back to, states 4 and 7.

S′ ::= ·S, $

S ::= ·aAbb, $

S ::= ·cAbd, $

S′ ::= S·, $

S ::= a · Abb, $
A ::= ·d, b

S ::= aA · bb, $ S ::= aAb · b, $- - -A

S ::= c · Abd, $

A ::= ·d, b

S ::= cA · bd, $A

S

a b

b

A ::= d·, b
S

S
S
Sw @

@R

R3

R3
d

d

c

S ::= aAbb·, $

S ::= cAbd·, $

S ::= cAb · d, $
-

@@Rb

d

R1

R2

'
&

$
%
�
�

�
�
�
 �	 �
 �	�
 �	

�
�

�
�
�
 �	 �
 �	

�
 �	�
�
�
�

�� �

�
 �	
?

HHHj

�����1

�
�

�>

����:

��

HHj

We could put reduction transitions in for each of these, but when the automa-
ton is in state 10 it would not be possible to tell which of the two reduction
transitions should be taken. The above automaton will incorrectly accept the
strings cabb and abbd.

The solution is to ‘multiply out’ the nodes, creating one copy of node 10 for
each of the possible paths. We now discuss the details of this approach.

4.1 Grammars without self-embedding

A grammar has self embedding if there is some non-terminal, A, and strings
α, β 6= ε such that A

∗
⇒αAβ.

In this section we discuss the construction of a finite state automaton, with
special reduction transitions, which accepts precisely the language of a grammar
provided that the grammar does not contain any self embedding.

4.1.1 Reduction incorporated automata

We begin not with the LR DFA but with the LR NFA, and add reduction
transitions from leaves of the tree. Thus, initially we construct an intermediate
automaton, IRIA(Γ), that is similar to the LR(0) NFA except that grammar
slots can label more that one node, and the header nodes are omitted.

Initially we suppose that the grammar does not contain any recursion.

Grammars without self-embedding 69

We begin by constructing a node labelled S′ ::= S·, this is the start node.
While the graph has leaf nodes labelled A ::= α · β where β 6= ε, pick such a
leaf node, h say, and suppose that β = xβ′. Create a new node, k say, labelled
A ::= αx · β′ and a transition from h to k labelled x. If x is a non-terminal,
then for each rule x ::= γ create a new node, t say, labelled x ::= ·γ and an
ε-transition from h to t.

?ε
A ::= α · xβ

?

A ::= αx · β
?x

�� ��� ��� �x ::= ·γ

...

h

k t

Once all the leaf nodes have labels of the form X ::= α·, we add the reduction
transitions. For each state, h, labelled X ::= α·, where X ::= α is rule i, trace
back up the automaton until the first node, k say, with a label of the form
Y ::= δ ·Xσ is reached. If t is the state such that there is a transition labelled
X from k to t, add a transition labelled Ri from h to t.

?ε
Y ::= δ · Xσ

?

?

Y ::= δX · σ

�� �
�� ��� �

�� �

X ::= α·

X ::= ·α

...

k

t

h

...

?
...

Ri

?
X

6

This approach results in the following FA, IRIA(Γ11), for ex11 above.

�� ���
�
�S′ ::= S·

�� �S′ ::= ·S

S ::= ·aAbb

S ::= a · Abb

S ::= aAbb·

?

?

?

a

b

S

�� �A ::= ·d�� �A ::= d·

?d

? ?

??

ε ε

εε

S ::= aAb · b

S ::= aA · bb

?

?

b

A

�� ��� ��� ��� ��� �

S ::= ·cAbd

S ::= c · Abd

?

?

c

d

R1

S ::= cAb · d

S ::= cA · bd

?

?

b

A

�� ��� ��� ��� ��� �S ::= cAbd·�� �A ::= ·d�� �A ::= d·

?d

R2

R3R3
oo

M �

Grammars without self-embedding 70

In the case of recursive rules we cannot simply use the multiplying out
approach because this would never terminate. So, for recursive instances of
non-terminals we add an ε-edge back to the most recent instance of the target
item on a path from the start state to the current state.

For example, from the recursive grammar ex12 given by

1. S ::= Sa 3. A ::= bA

2. S ::= A 4. A ::= ε

we generate the IRIA, IRIA(Γ12)

�� ���
�
�S′ ::= S·

�� �S′ ::= ·S �� �S ::= ·Sa

�� �S ::= ·A�� ��� ��� �
S ::= A·S ::= S · a

S ::= Sa·

??

?

AS

a

S �� �A ::= ·

�� �A ::= ·bA�� ��� ��� �
A ::= b · A

A ::= ·

A ::= bA·

?

?

b

A

? ??ε ε

ε

ε

ε

ε

ε
ε

R1

R4

R4
R3

R3

R1

M

?

?

?

RM
Y

I
R2

R2

N

L

?

M

?�

>
*

?

The ε-edge from L to M and the corresponding R3-edge from N to itself arise
from the recursive occurrence of A in the rule A ::= bA.

For completeness we give the formal IRIA construction algorithm.

IRIA construction algorithm

Step 1: Create a node labelled S′ ::= ·S.

Step 2: While there are nodes in the FA which are not marked as dealt with,
carry out the following:

1. Pick a node K labelled (X ::= µ · γ) which is not marked as dealt with.

2. If γ 6= ε then let γ = xγ′ where x ∈ N∪T, create a new node, M , labelled
X ::= µx · γ′, and add an arrow labelled x from K to M . This arrow is
defined to be a primary edge.

3. If x = Y , where Y is a non-terminal, for each rule Y ::= δ

(a) if there is a node L, labelled Y ::= ·δ, and a path θ from L to K

which consists of only primary edges and primary ε-edges (θ may be
empty), add an arrow labelled ε from K to L.

(b) if (a) does not hold, create a new node with label Y ::= ·δ and add
an arrow labelled ε from K to this new node. This arrow is defined
to be a primary ε-edge.

Grammars without self-embedding 71

4. Mark K as dealt with.

Step 3: Remove all the ‘dealt with’ marks from all nodes.

Step 4: While there are nodes labelled Y ::= γ· that are not dealt with: pick a
node K labelled X ::= x1 . . . xn· which is not marked as dealt with. Let Y ::= γ

be rule i.
If X 6= S′ then find each node L labelled Z ::= δ ·Xρ such that there is a

path labelled (ε, x1, . . . , xn) from L to K, then add an arrow labelled Ri from
K to the child of L labelled Z ::= δX · ρ. Mark K as dealt with. The new edge
is called a reduction edge.

Step5: Mark the node labelled S′ ::= ·S as the start node and mark the node
labelled S′ ::= S· as the accepting node.

A string is accepted by an IRIA if it is accepted by the automaton in the
standard way when the Ri transitions are treated as ε-transitions.

The following theorem is proved in [SJ05].

Theorem 1 Let Γ be a CFG that does not contain any self embedding. Then
a string, u, of terminals is accepted by IRIA(Γ) if and only if u is in L(Γ).

4.1.2 IRIA(Γ) in gtb

In gtb the construction of the ‘multiplied out’ version of an LR NFA is referred
to as unrolling. To instruct gtb to build the IRIA for a grammar, Γ, we use
the method

my_iria := nfa[my_grammar unrolled 0]

The parameter lr is replaced with the parameter unrolled. As for LR NFAs,
the nfa method augments the grammar, if it is not already in augmented form,
before building the IRIA.

Although the formal version of an IRIA does not include header nodes, the
gtb representation does use header nodes, because this allows a particularly
efficient internal representation. The VCG rendering of the IRIA includes the
header nodes.

The script

(* ex11 IRIA construction *)

S ::= ’a’ A ’b’ ’b’ | ’c’ A ’b’ ’d’ .

A ::= ’d’ .

(

ex11_grammar := grammar[S]

ex11_iria:= nfa[ex11_grammar unrolled 0]

render[open["nfa.vcg"] ex11_iria]

)

creates the IRIA

Grammars without self-embedding 72

In the VCG graph the ε-transitions are red and the reduction transitions are
blue. An ε-transition that returns to an existing node because of recursion is
green.

Grammars without self-embedding 73

The script

(* ex12 *)

S ::= S ’a’ | A .

A ::= ’b’ A | # .

(

ex12_grammar := grammar[S]

ex12_iria:= nfa[ex12_grammar unrolled 0]

render[open["nfa.vcg"] ex12_iria]

)

creates the IRIA

Grammars without self-embedding 74

Note: gtb will construct IRIA(Γ) for any context-free grammar Γ. However,
IRIA(Γ) only correctly accepts L(Γ) if Γ does not contain any self embedding.

Grammars without self-embedding 75

4.1.3 Reduction incorporated automata

The RIGLR algorithm that we shall discuss below is able to correctly deter-
mine whether or not a string of terminals is accepted by any given reduction
incorporated automaton. However, the algorithm is more efficient if there is
less non-determinism in the automaton.

The FAs IRIA(Γ) that we constructed above are highly non-deterministic.
In this section we shall consider approaches that reduce the non-determinism
in IRIA(Γ), culminating in the definition of a reduction incorporated automaton
for Γ.

First we note that IRIA(Γ) only ever has input which is a string of termi-
nals, thus the transitions labelled with non-terminals can be removed once the
R-transitions have been constructed. So from now on we shall assume that
IRIA(Γ) has had all the non-terminal labelled transitions removed.

A non-deterministic automaton can always be transformed in to a deter-
ministic one by applying the standard subset construction. In IRIA(Γ) the
transitions labelled R consume no input and so can be treated as ε-transitions
from the point of view of the subset construction. This is fine if all we want is
a recogniser but ultimately we want to produce all the derivations of a sentence
u and thus we do not want to lose the information about which reductions were
used.

We remove from IRIA(Γ) the transitions labelled with non-terminals and
then apply the subset construction treating the R-transitions as non-ε tran-
sitions. The following automaton is the result of applying this process to
IRIA(Γ12).

S′ ::= ·S
S ::= ·A

S ::= ·Sa

A ::= ·bA

A ::= ·

A ::= ·bA

S ::= A·

A ::= b · A

A ::= bA·

A ::= ·

�
 �	 �
 �	S ::= A· S ::= Sa·

R4
b - -

S′ ::= S·
�
�
�
�

�
�
�
�S ::= S · a

�
 �	A ::= bA·

R4

R3

-R2

R2

� O

Y

R3R1

b

a

'

&

$

%

#
"

!�
�
�
������)

?

@
@R

-

As there are no transitions to the start state of IRIA(Γ), the start state
of RIA(Γ) is the unique state whose label includes the item S′ ::= ·S. The
accepting states are the states whose label includes the item S′ ::= S·. Note
that an RIA can have more than one accepting state.

To construct an RIA using gtb we apply the subset construction to the
corresponding IRIA. The required gtb method call is

my_ria := dfa[my_iria]

Remember RIA(Γ) only accepts precisely L(Γ) if Γ does not contain any
proper self embedding. In the next section we will describe how to deal with
grammars which do contain proper self embedding.

Recursion call automata 76

4.2 Recursion call automata

In this section we describe how to build a push down automaton, RCA(Γ), for
any given context-free grammar, Γ, that can be used to recognise sentences in
L(Γ).

We begin by modifying the grammar to remove most of the recursion by
creating ‘terminalised’ instances, A⊥, of recursive non-terminals (this changes
the language generated by the grammar). We then construct the RIA for the
modified grammar as described in the previous sections. We also construct an
RIA for each terminalised non-terminal, and then call these automata from the
main RIA. The automata calls are managed using a stack and so the resulting
structure is a (non-deterministic) push down automaton.

4.2.1 Terminalising a grammar

Given a grammar, Γ, our goal is to replace instances of non-terminals on the
right hand sides of rules with special terminals, until the resulting grammar has
no self embedding.

For example, given the grammar ex13

S ::= A a

A ::= a B | a
B ::= A c

we have that A
∗
⇒aAc. If we replace the rule B ::= Ac with the rule B ::= A⊥c,

and treat A⊥ as a terminal, then the derivation is no longer possible. The
grammar

S ::= A a

A ::= a B | a
B ::= A⊥ c

does not contain self embedding. Notice, this is not the only terminalisation
that we could have used. The following grammar also has no self embedding

S ::= A a

A ::= a B⊥ | a
B ::= A c

We shall call a grammar that has, possibly, terminalised versions of some
of its non-terminals a terminalised grammar. (Note that it is possible to ter-
minalise any instance of any non-terminal, even if there is no self embedding
involved. We may wish to do this because it can reduce the size of the final
RCA.)

Detecting self embedding in a grammar and determining which non-terminals
to terminalise is not completely trivial. The GDG, see Section 1.6, can be used
to assist this process as we shall discuss in Section 4.2.4. For now it is suffi-
cient to say that we can construct an RCA from any terminalised context-free
grammar that does not have self embedding, using a process that we shall now
describe.

Recursion call automata 77

4.2.2 RCA(Γ)

Given a grammar, Γ, terminalise instances of non-terminals, as required, and
so that the resulting grammar, ΓS say, has no self embedding. We shall call ΓS

a derived grammar.
For each non-terminal, A 6= S, such that ΓS contains at least one termi-

nalised instance of A, construct the grammar ΓA that has the same rules as ΓS

but start symbol A.
Construct RIA(ΓS) and construct RIA(ΓA) for each terminalised non-terminal

A, ensuring that all the states in all the automata have different numbers.
For example, for the terminalised grammar, ΓS,

S ::= A a

A ::= a B | a
B ::= A⊥ c

we have the following RIAs,

A ::= a·

S ::= A · a

S ::= Aa·

B ::= A⊥ · c B ::= A⊥c·

A ::= aB·

S′ ::= S·

B ::= ·A⊥c

A ::= ·a

S ::= ·Aa

S′ ::= ·S
0 2

3

7

4 6

5

1

�� ��� �

�� ��� ��� ��� ��
�
�
�

a A⊥

�
�
�
�

A ::= a · B

A ::= ·aB

'

&

$

%
- - -

9
R3

R4

R2

R1

�

c

y

RIA(ΓS)

HHHj
�

a

A ::= a· B ::= A⊥ · c B ::= A⊥c·

A ::= aB·A′ ::= A·

B ::= ·A⊥c

A ::= ·a

A′ ::= ·A
8 10

9

11 12

13

�� ��� ��� ��� ��
�
�
�

a A⊥

�
�
�
�

A ::= a · B

A ::= ·aB

'

&

$

%
- - -

9
R3

R4

R2
�

c

y

RIA(ΓA)

To combine the RIAs into a push down automaton, RCA(Γ), that recognises
L(Γ) we replace transitions labelled with a terminalised non-terminal, A⊥, with
a call to the corresponding RIA, RIA(ΓA). When RIA(ΓA) has matched an
appropriate part of the input then we need to return to the next state in the
calling automaton, and continue to match the rest of the string. Thus we replace
each transition labelled A⊥ with a transition to the start state of RIA(ΓA)
and push the target of the A⊥-transition on to a stack. Thus we label the
new transition p(k), where k is the target of the A⊥-transition. These new
transitions are ε-transitions in the sense that they do not consume any of the
input string, but they have an associated stack action. The accepting states of
the automata RIA(ΓA) are labelled as pop states in the RCA. (If ΓS contains
S⊥ then the accepting state of the RCA is also a pop state.)

We call such a PDA a recursion call automaton (RCA).
The PDA, RCA(Γ13) constructed from the derived grammar ΓS of the gram-

mar ex13 above is

Recursion call automata 78

A ::= a·

S ::= A · a

S ::= Aa·

B ::= A⊥ · c B ::= A⊥c·

A ::= aB·

S′ ::= S·

B ::= ·A⊥c

A ::= ·a

S ::= ·Aa

S′ ::= ·S
0 2

3

7

4 6

5

1

�� � �� �

�� ��� ��� ��� ��
�
�
�

a

p(4)�
�
�
�

A ::= a · B

A ::= ·aB

'

&

$

%
- -

9
R3

R4

R2

R1

�

c

y

A ::= a· B ::= A⊥ · c B ::= A⊥c·

A ::= aB·A′ ::= A·

B ::= ·A⊥c

A ::= ·a

A′ ::= ·A
8 10

9

11 12

13

�� ��� ��� ��� �
a

p(11)�
�
�
�

A ::= a · B

A ::= ·aB

'

&

$

%
- -

9
R3

R4R2
�

c

�

9

�
pop

HHHj
�

a

4.2.3 Traversing an RCA

We traverse an RCA with an input string u as follows. We begin in the start
state with an empty stack and read the first input symbol. At each step in the
traversal we will be in a current state, h say, with a current stack and have read
the current input symbol, x say.

� If h has a transition labelled x to state k, say, then we may choose to
move to state k and read the next input symbol.

� If h has a transition labelled Ri to state k, say, then we may choose to
move to state k, without reading the next input symbol.

� If h has a transition labelled p(t) to a state k, say, then we may choose
to push t on to the stack and move to state k, without reading the next
input symbol.

� If h is labelled as a pop state then we may choose to pop the top symbol,
t say, off the stack and move to state t, without reading the next input
symbol.

� If h is the RCA accepting state and x is the end of string symbol, $, then
we may choose to terminate the traversal and report success.

� If none of the above actions is possible then we terminate the traversal
and report failure.

Of course it is possible for the RCA to be non-deterministic, i.e. that more
than one of the above actions is possible at some step. Thus we need an
algorithm that computes all possible traversals on a given input string, the
equivalent of Tomita’s algorithm for LR automata. We shall discuss such an
algorithm in Section 4.3, but first we describe the construction of RCAs in gtb.

Recursion call automata 79

4.2.4 Constructing RCAs in gtb

We have already discussed, in Sections 4.1.2 and 4.1.3, the generation of RIAs
in gtb. To construct an RCA for a grammar Γ, gtb needs to construct the
desired terminalised grammar, ΓS , from which it can then build the required
RIAs.

There are two possible approaches. The user can specify the instances of
non-terminals that are to be terminalised to construct ΓS, or gtb can identify
instances of self embedding and automatically introduce terminalisations until
the resulting grammar does not contain self embedding. In this section we
describe the former approach. In a later section we shall discuss the automatic
generation of ΓS .

gtb allows the user to mark instances of non-terminals in a grammar as
‘to be replaced with a terminalised version’ for an RIGLR parser. We use ~ to
mark the non-terminals.

For example, gtb accepts the script

(* ex13 terminalising a grammar *)

S ::= A ’a’ .

A ::= ’a’ B | ’a’ .

B ::= ~A ’c’ .

(

ex13_grammar := grammar[S]

)

The method grammar[S] ignores the ~ annotations and treats an instance
of ~A as though it were just A. Thus all of the previously described behaviour
of gtb is unchanged by the inclusion of the ~ annotations. This is to make it
possible to run the GLR algorithms on exactly the same input grammars as the
RIGLR algorithms.

We can terminalise a grammar, replacing each instance ~A with a pseudo
terminal called A!tilde by gtb, using the method

terminalise_grammar[my_grammar]

In order for gtb to use the terminalisation notation the grammar method needs
to have the tilde_enabled option set.

grammar[start_symbol tilde_enabled]

This ensures that gtb includes the terminalised non-terminals in the list of
grammar symbols when the grammar is built. Running the script

(* ex13 terminalising a grammar *)

S ::= A ’a’ .

A ::= ’a’ B | ’a’ .

B ::= ~A ’c’ .

(

Recursion call automata 80

ex13_grammar := grammar[S tilde_enabled]

terminalise_grammar[ex13_grammar terminal]

write[ex13_grammar]

iria_S := nfa[ex13_grammar unrolled 0]

render[open["nfa.vcg"] iria_S]

)

builds the IRIA

and causes the following to be printed on the screen

Terminalising A

The RIGLR algorithm 81

Grammar report for start rule S

Grammar alphabet

0 !Illegal

1 #

2 $

3 ’A!tilde’

4 ’B!tilde’

5 ’S!tilde’

6 ’a’

7 ’c’

8 A

9 B

10 S

Grammar rules

A ::= ’a’ B[0] |

’a’ .

B ::= ~’A!tilde’ ’c’ .

S ::= A[0] ’a’ .

End of grammar report for start rule S

The original grammar, grammar_S has been mutated into a new grammar
in which one of the instances of the non-terminal A has been replaced by a new
terminal A!tilde.

Since the grammar as been mutated the original unterminalised grammar
is lost. To reconstruct it, to mutate the grammar back to its original form, we
use the nonterminal option with the terminalise_grammar function.

my_grammar := terminalise_grammar[my_grammar nonterminal]

The corresponding option to terminalise a grammar is terminal and this is the
default.

4.3 The RIGLR algorithm

The RIGLR algorithm takes as input an RCA for a grammar Γ and a string
u = a1 . . . ad and it traverses the RCA using u. The algorithm accepts u if it is
a sentence in Γ and rejects u otherwise.

The algorithm starts in the RCA start state and at each step i it constructs
the set U of all RCA states that can be reached on reading the input a1 . . . ai.
When a push transition is traversed the return state is pushed onto the stack.
The stacks are combined into a graph structured stack called the call graph and
each state in U is recorded with the node in the call graph that corresponds to
the top of the associated stack.

We use a slightly modified version of the algorithm that incorporates some
lookahead. The lookahead is similar to that used in the SLR(1) version of the
GLR algorithms. We only perform a push action to the automaton for A if
the next input symbol is in first(A), or follow(A) if A

∗
⇒ε. Also, we only

The RIGLR algorithm 82

traverse a reduction transition if the next input symbol is in follow(A) where
A is the left hand side of the reduction rule, and we only perform a pop action
from the automaton for A if the next input symbol is in follow(A).

For example, consider the simple grammar ex14

S ::= a S⊥ B a | c
B ::= b | ε

which has RCA

��� ��� ��� ���
������

0 2

3

4 5 7

61

-
Q

QQs
w

7

-

)��
��

pop

c

R2

R4 a

R3

a
)

R1

p(4)

bpop

�

�� �
�� �-

and consider the input string aacbaa.
We begin by creating a base node, v0, in the call graph labelled −1 and

start in the start state 0. Thus we have

U = {(0, v0)}

The only action is to read the next input symbol, a, and move to state 2,
starting the next step. We then perform the push action, create a new call
graph node, v1 labelled 4, and move to state 0.

��� ���-1 4�
v0 v1

U = {(2, v0), (0, v1)}

Reading the next input symbol, a, from the process (0, v1) we move to state 2,
and from here we perform the push action, creating a new call graph node v2.

��� ��� ���-1 4 4� �
v0 v1 v2

U = {(2, v1), (0, v2)}

We then read the next input symbol, c, and from the process (0, v2) we move
to state 3. From state 3 we traverse the reduction transition to state 1 and we
perform the pop action. In the latter case we pop the top element, 4 the label
of v2, and we move to state 4. The top of the stack is now the child of v2, v1.
We do not traverse the reduction transition from state 5 because the next input
symbol, b, is not in follow(B).

U = {(3, v2), (1, v2), (4, v1)}

The next input symbol is b and from state 4 we can move to state 6 and then,
via the reduction transition, to state 5. From (5, v1), reading the next input
symbol a, we move to state 7. We can traverse the reduction transition to
state 1 and perform the pop action, creating the process (4, v0), and then the
reduction transition from state 4 to state 5.

U = {(7, v1), (1, v1), (4, v0), (5, v0)}

Terminalising a grammar 83

Reading the last input symbol, a, we move from state 5 to state 7. We can
traverse the reduction to state 1 but, as v0 is the base of the stack, no pop
action can be performed.

U = {(7, v0), (1, v0)}

The traversal is now complete and one of the current positions, (1, v0), is the
accepting state and the empty stack. Thus the input string is (correctly) ac-
cepted.

To run the RIGLR algorithm in gtb we use the method

ri_recognise[my_grammar STRING]

This method takes a grammar with terminalisation annotation, generates the
structures needed for an RIGLR recogniser as described above, and then runs
the recogniser on the specified STRING.

For example, running the script

(* ex14 the RIGLR algorithm *)

S ::= ’a’ ~S B ’a’ | ’c’ .

B ::= ’b’ | # .

(

ex14_grammar := grammar[S tilde_enabled]

ri_recognise[ex14_grammar "aacbaa"]

)

generates the following output.

Terminalising S

******: RIGLR recognise: ’aacbaa’

******: RIGLR recognise: accept

Call graph has 3 nodes and 2 edges

4.4 Terminalising a grammar

We now return to the issue of terminalising a grammar so that all the self
embedding is removed. In general there will be different terminalisation possi-
bilities that we could choose. We call a set of instances of non-terminals which
have been replaced with pseudo-terminals to remove self embedding a termi-
nalisation of the grammar. A terminalisation is minimal if no proper subset of
it is also a terminalisation.

The problem that has to be addressed is how to identify minimal termi-
nalisations. The GDG constructed by gtb has been designed to facilitate this
process. Recall from Section 1.6 that the GDG for a grammar, Γ, is a graph
with nodes labelled with each of the non-terminals of Γ such that there is an
edge from A to B if B appears on the right hand side of the grammar rule for
A.

Terminalising a grammar 84

The edge from A to B is labelled R (for non-trivial right context) if there
is a rule A ::= αBβ such that β 6= ε and the edge is labelled L (for non-trivial
left context) if there is a rule A ::= σBτ such that σ 6= ε.

A path of length k in a graph is a sequence of nodes (N1, . . . , Nk+1) such
that there is an edge from Ni to Ni+1, for 1 ≤ i ≤ k, and a cycle (from N1 to
itself) is a path (N1, . . . , Nk, N1), of length at least 1, such that Ni = Nj if and
only if i = j. Then a non-terminal A is recursive if and only if there is a cycle
in the GDG from A to itself.

The non-terminal A is self embedding if and only if there is a path in the
GDG from A to itself that contains at least one edge labelled L and at least
one edge labelled R. We call such paths LR-paths. Similarly, we call a path
that contains at least one L (R) edge an L-(R-)path. (So every LR-path is
also an L-path and an R-path.) To determine whether a non-terminal A is self
embedding we can find all the edges in the GDG that lie on any path from A to
itself and look at their labels. Finding all such edges is called strongly connected
component analysis.

4.4.1 Strongly connected components

A graph is said to be strongly connected if there is a path from any node to any
other node in the graph.

For any graph and any node A in the graph we can form the strongly
connected component containing A. We take A and all the nodes that are on
any path from A to itself. We then form a subgraph by taking these nodes and
all the edges from the original graph between these nodes.

Formally we partition the set of nodes of a graph into subsets, two nodes
A and B are in the same subset if and only if there is path from A to B and
a path from B to A. We turn the each set in the partition in to a graph by
adding an edge from A to B if A and B are in the same partition and if there
was an edge from A to B in the original graph. The subgraphs constructed in
this way are all strongly connected and they are called the strongly connected
components (SCCs) of the graph.

For example, the grammar ex15

S ::= A B A a | B d

A ::= E a | b | C S C | a S b | ε
B ::= b a A B | A
C ::= D a | a
D ::= C | F
E ::= d A

F ::= a

has GDG

Terminalising a grammar 85

m
m m m

mmm

S

B A E

CDF
?

�

-

z
y

*
j

i

l, L, Rl, L, R

r,L

l, r, L, R

l, R

r, L

l, r, L, R

l, r

l, R

l, r

� L, R ~
o

which in turn has two strongly connected components.m
m m m

mm

S

B A E

CD

-

z
y

*
j

i

l, L, Rl, L, R

r,L

l, r, L, R

l, R

r, L

l, r

l, R

� L, R ~
o

In order to remove recursion, we need to identify cycles in the SCCs and then
remove an edge from each cycle, by terminalising the corresponding instance(s)
of the non-terminal which is the target of the edge.

4.4.2 Finding terminalisation sets

Any LR-path from a node to itself in a GDG is contained in a maximal SCC,
and thus we begin by using Tarjan’s algorithm, as above, to find the SCCs.

Each SCC that contains at least one edge labelled L and at least one edge
labelled R is then considered. In any terminalisation all of the L-cycles or all
of the R-cycles must have been removed, and once all of the L-cycles (or R-
cycles) have been removed there can be no remaining self embedding. Thus to
find precisely all the minimal terminalisations we run the process twice, once
to find all possible minimal terminalisations that can be obtained by removing
edges from every L-cycle and then again to find the minimal terminalisations by
removing edges from every R-cycle. (Of course, the two processes will find many
of the same terminalisations.) In the rest of this discussion we shall describe
the process of generating terminalisations by removing L-cycles, the process for
R-cycles is identical except that only R-cycles are considered.

We illustrate the process using the following grammar, ex16, as a running
example.

S ::= A C ::= a D

A ::= E E B C D ::= C D a | ε
B ::= a A E a | ε E ::= A S | ε

The grammar has GDG

Terminalising a grammar 86

��� �
��

���

���

���
���

A
D

B

S

�

�

�

?

�

C

E
i q]

L,R

:

s

L

L,R
L

L

R

U
L,R

L,RL,R

R

First we run Tarjan’s algorithm. Since we are removing L-cycles, all L-loops
(L-edges from a node to itself) must be included in any terminalisation and no
other loops are of interest. To reduce the size of the SCC’s we remove all loops.
For the above example this gives the following two LR-SCC’s.

��� ���
���

���

���
���

A D

B

S

�

�

�

?

�

C

E
i q]

:

We then consider each LR-SCC in turn.
We begin by finding all the cycles, and then we consider all the L-cycles.

For the first SCC in our example this results in five L-cycles.

���
���

���
��� ���

��� ��� ���

���
������

���

���
���

A

A

A

A A

B B B

S

S

�

�

�

�

?

?

E

E

E

E

i

i

q

q]]

:

:

Once all the cycles have been found, the basic algorithm works recursively
down the list of cycles choosing one edge from each cycle to form each terminal-
isation set in turn. Of course this approach will produce many terminalisation
sets that are not minimal as well as all the minimal ones. As a first step to-
wards efficiency, as each cycle is considered the algorithm checks to see if the
terminalisation set already contains an edge from this cycle, and if it does then
the cycle is skipped.

For example, with the above cycles we could choose (S,A) from the first
cycle, (A,E) from the second cycle, then nothing more from the third cycle
because we already have (S,A), then (A,B) from the fourth cycle and nothing
from the fifth cycle. This gives us the following terminalisation set

{(S,A) (A,E) (A,B)}

We then back track to the fourth cycle and choose (B,E) instead of (A,B).
This time we have to choose an edge from the fifth cycle, thus we get two

Terminalising a grammar 87

terminalisation sets

{(S,A) (A,E) (B,E) (A,B)} {(S,A) (A,E) (B,E) (B,A)}

Carrying on in this way we find that the algorithm constructs the following
sequence of terminalisation sets, from which repeated ones have been removed.
(The actual list of terminalisations constructed before the test for subsets will
depend on the order in which the cycles are visited.)

{(S,A) (A,E) (E,A) (A,B)} {(S,A) (A,E) (E,A) (B,A)}
{(S,A) (E,A) (A,B)} {(S,A) (E,A) (B,A)}
{(A,B) (A,E)} {(A,B) (E,A) (A,E)}
{(A,B) (E,A) (E,S)} {(B,E) (A,E) (A,B)}
{(B,E) (A,E) (B,A)} {(B,E) (E,A) (S,A) (A,B)}
{(B,E) (E,A) (S,A) (B,A)} {(B,E) (E,A) (A,E) (A,B)}
{(B,E) (E,A) (A,E) (B,A)} {(B,E) (E,A) (E,S) (A,B)}
{(B,E) (E,A) (E,S) (B,A)} {(E,S) (A,E) (B,E) (A,B)}
{(E,S) (A,E) (B,E) (B,A)} {(E,S) (A,E) (E,A) (A,B)}
{(E,S) (A,E) (E,A) (B,A)} {(E,S) (E,A) (A,B)}
{(E,S) (E,A) (B,A)}

We then remove the non-minimal sets by removing any set which has one
of the other sets as a proper subset.

For our running example this results in the following six sets.

{(S,A) (E,A) (A,B)}
{(S,A) (E,A) (B,A)}
{(A,B) (A,E)}
{(B,E) (A,E) (B,A)}
{(E,S) (E,A) (A,B)}
{(E,S) (E,A) (B,A)}

We then repeat the process for the R-cycles. Once the terminalisations
for R-cycles are constructed we run a final test to see whether any of the L-
terminalisations are subsets of the R-terminalisations, or vice versa. Then the
resulting sets are the minimal terminalisations for the SCC.

In our example the R-cycles are the same as the L-cycles so no additional
terminalisation sets are created.

We then compute the terminalisation sets for the other SCC’s, and combine
them to form terminalisation sets for the whole grammar.

In our example the other SCC has two minimal terminalisations

{(C,D), (D,D)} {(D,C), (D,D)}

4.4.3 Terminalising a grammar using gtb

gtb supports user-defined grammar terminalisation by performing GDG anal-
ysis that identifies the strongly connected components. The terminalisation
analysis is performed by issuing the method call

Terminalising a grammar 88

cycle_break_sets[my_gdg]

It uses Tarjan’s algorithm [Tar72] on the initial GDG and, as a side effect, gtb
creates a new version of the GDG in which the nodes in each equivalence class
and the edges between them are identified, the nodes in equivalence classes of
greater than one element are all coloured the same colour, and the edges between
nodes in the same equivalence class have class 1 or 3. The class 2 edges can
be hidden in VCG allowing the non-trivial strongly connected components to
be viewed directly. In addition, the set of minimal terminalisation sets for each
SCC is output to the screen. The edges in the sets are listed by number and
these numbers are displayed in the gdg.vcg file.

Consider the following example, ex16,

(* ex16 removing self embedding *)

S ::= A .

A ::= E E B C .

B ::= ’a’ A E ’a’ | # .

C ::= ’a’ D .

D ::= C D ’a’ | # .

E ::= A S | # .

(

ex16_grammar := grammar[S]

ex16_gdg := gdg[ex16_grammar]

cycle_break_sets[ex16_gdg]

render[open["gdg.vcg"] ex16_gdg]

)

When this script is run the following output is generated. (More detailed in-
formation can be obtained by setting gtb_verbose to true.)

Break sets for partition 1

0: {6, 8} cardinality 2

1: {7, 8} cardinality 2

Break sets for partition 2

0: {1, 2} cardinality 2

2: {2, 9, 10} cardinality 3

3: {2, 9, 11} cardinality 3

5: {1, 4, 5} cardinality 3

10: {4, 9, 10} cardinality 3

11: {4, 9, 11} cardinality 3

After the analysis the GDG looks similar to the original GDG but nodes S,
B, A and E are coloured the same colour as each other, and so are nodes C and
D. Within the VCG tool there is a ‘Folding’ option which allows nodes and
edges to be combined and hidden. (In the Windows version of VCG there is a
Folding option on the task bar.) Under Folding is an option to Expose/Hide
edges. If this option is selected and used to Hide the class 2 edges then the
following graph is displayed

Terminalising a grammar 89

Choosing the terminalisation set {6, 8}∪{2, 3}, we use the GDG to find the
corresponding slots in the grammar and introduce the associated terminalisa-
tion to the grammar.

(* ex16 *)

S ::= A .

A ::= ~E ~E ~B C .

B ::= ’a’ A E ’a’ | # .

C ::= ’a’ ~D .

D ::= C ~D ’a’ | # .

E ::= A S | # .

(

ex16_grammar := grammar[S]

terminalise_grammar[ex16_grammar terminal]

ex16_gdg := gdg[ex16_grammar]

cycle_break_sets[ex16_gdg]

render[open["gdg.vcg"] ex16_gdg]

)

Running this script we see that the terminalised grammar has no non-trivial
strongly connected components, and hence no self embedding.

Terminalising a grammar 90

4.4.4 Pruning the search space

In some cases the number of interim terminalisation sets constructed prior to the
minimality testing is very large. Furthermore, for some grammars the number
of cycles, and the final number of minimal terminalisation sets, means that the
prospect of finding all minimal terminalisation sets is impractical.

We can get gtb to list the interim terminalisation sets by stopping the anal-
ysis before the minimality testing step. We do this using the retain_break_sets
option.

cycle_break_sets[my_gdg retain_break_sets]

(The option to do the minimality testing is prune_break_sets_by_table, which
is the default option.)

Running the script

(* ex16 *)

S ::= A .

A ::= E E B C .

B ::= ’a’ A E ’a’ | # .

C ::= ’a’ D .

D ::= C D ’a’ | # .

E ::= A S | # .

(

ex16_grammar := grammar[S]

ex16_gdg := gdg[ex16_grammar]

cycle_break_sets[ex16_gdg retain_break_sets]

)

generates the following output

Break sets for partition 1

0: {6, 8} cardinality 2

1: {7, 8} cardinality 2

Terminalising a grammar 91

Break sets for partition 2

0: {1, 2} cardinality 2

1: {1, 2, 9} cardinality 3

2: {2, 9, 10} cardinality 3

3: {2, 9, 11} cardinality 3

4: {1, 2, 4} cardinality 3

5: {1, 4, 5} cardinality 3

6: {1, 2, 4, 9} cardinality 4

7: {1, 4, 5, 9} cardinality 4

8: {1, 4, 9, 10} cardinality 4

9: {1, 4, 9, 11} cardinality 4

10: {4, 9, 10} cardinality 3

11: {4, 9, 11} cardinality 3

In the case where the number of interim sets is very large we can reduce the
search space by only looking for sets of size less than some specified value N say.
The effect of this is that gtb stops attempting to construct each terminalisation
set at the point where the (N + 1)st element is about to be added. We achieve
this using a third parameter to the analysis function

cycle_break_sets[my_gdg retain_break_sets 2]

(To compute all the terminalisation sets we set the parameter to 0, which is the
default option.)

For example, running the script

(* ex16 *)

S ::= A .

A ::= E E B C .

B ::= ’a’ A E ’a’ | # .

C ::= ’a’ D .

D ::= C D ’a’ | # .

E ::= A S | # .

(

ex16_grammar := grammar[S]

ex16_gdg := gdg[ex16_grammar]

cycle_break_sets[ex16_gdg retain_break_sets 2]

)

generates the following output

Break sets for partition 1

0: {6, 8} cardinality 2

1: {7, 8} cardinality 2

Break sets for partition 2

0: {1, 2} cardinality 2

Break set cardinality limit of 2 triggered: terminating

Aycock and Horspool’s approach 92

4.5 Aycock and Horspool’s approach

The RIGLR algorithm is based on work done by Aycock and Horspool [AH99].
However, Aycock and Horspool’s construction is slightly different. They con-
struct an automaton based on a trie constructed from the ‘handles’ of a ter-
minalised version of the input grammar. This method requires the grammar
to have terminalised so that all recursion except for non-hidden left recursion
has been removed. Aycock and Horspool also give a different algorithm for
computing all the traversals of an automaton. However, their algorithm is only
guaranteed to terminate if the original grammar did not contain any hidden
left recursion. Of course, the RIGLR algorithm can be used on Aycock and
Horspool style automata, and the RIGLR will work correctly on all context
free grammars. To allow Aycock and Horspool’s automata and algorithm to be
studied and compared to other algorithms, gtb supports the construction of
Aycock and Horspool trie based automata.

In this section we shall describe the trie based automata and their construc-
tion using gtb.

4.5.1 Left contexts and prefix grammars

The standard LR(0) parser identifies strings of the form αβ, where β is the right
hand side of a grammar rule and there is a right-most derivation S⇒

rm
αβw, for

some string of terminals w. The strings β are often called handles and the
string α is called a left context of β. An LR(0) parser identifies a handle, and
having identified a handle replaces it with the left hand side of the corresponding
grammar rule. The set of strings αβ as described above is the language accepted
by the LR(0) DFA of the grammar.

Aycock and Horspool’s automaton is constructed by taking all the strings
in the language of the LR(0) DFA and forming a trie from them. When the trie
has been constructed, reduction transitions are added, the non-terminal transi-
tions are removed, and transitions labelled with terminalised non-terminals are
replaced with calls to a trie constructed from that non-terminal.

In order to build the trie it is necessary for the language of the LR(0) DFA
to be finite, and this is the case if and only if the grammar contains no recursion
other than non-hidden left recursion.

To construct the language of an LR(0) DFA, we use what we call a prefix
grammar. We augment the original grammar with a non-terminal S′ and then
for each non-terminal A, including S′, we create a corresponding non-terminal,
[A] in the prefix grammar. The terminals of the prefix grammar are the ter-
minals and non-terminals of the original grammar. The rules of the prefix
grammar are constructed as follows. There is always a rule

[S′] ::= ε

and for each instance of a non-terminal, B say, on the right hand side of a rule

Aycock and Horspool’s approach 93

A ::= γBδ in the original grammar, where A is reachable, 1 there is a rule

[B] ::= [A]γ

in the prefix grammar. The prefix grammar, PΓ, has the property that L([A]),
the language generated by the non-terminal [A], is precisely the set of left
contexts of A. I.e. the set of α such that S⇒αAw for some string of terminals
w.

For example, consider the following terminalised version of ex15, from which
we have also removed the right recursion in B.

S ::= A B A a | B d

A ::= E⊥ a | b | C S⊥ C | a S⊥ b | ε
B ::= b a A B⊥ | A
C ::= D⊥ a | a
D ::= C | F
E ::= d A

F ::= a

(Notice that the non-terminals D, E and F are unreachable in this grammar,
but they are used later to construct a recogniser for the original grammar.) The
rules of the corresponding prefix grammar are

[S′] ::= ε

[S] ::= [S′]
[A] ::= [S] | [S] A B | [B] b a | [B]
[B] ::= [S] A | [S]
[C] ::= [A] | [A] C S⊥

If αβ is in the language of the LR(0) DFA, where β is a handle, then there is
some non-terminal, A say, such that S⇒αAw⇒αβw and so α ∈ L([A]). Thus

the language of the LR(0) DFA is the set of all strings

{αβ | for some nonterminal A,α ∈ L([A]) and A ::= β}

For the above example we have

L([S′]) = {ε},
L([S]) = {ε},
L([A]) = {ε, AB, Aba, ba, A},
L([B]) = {A, ε},
L([C]) = {ε, AB, Aba, ba, A, CS⊥, ABCS⊥, AbaCS⊥, baCS⊥, ACS⊥}

and the language of the LR(0) DFA for this grammar is

{ S, ABAa, Bd, E⊥a, b, CS⊥C, aS⊥b, ε, ABE⊥a, ABb, ABCS⊥C,

ABaS⊥b, AB, AbaE⊥a, Abab, AbaCS⊥C, AbaaS⊥b, Aba, baE⊥a,

bab, baCS⊥C, baaS⊥b, ba, AE⊥a, Ab, ACS⊥C, AaS⊥b, A, baAB⊥,

AA, baAB⊥, A, D⊥a, a, ABD⊥a,ABa, CS⊥D⊥a, CS⊥a,

ABCS⊥D⊥a, ABCS⊥a, AbaD⊥a, Abba, baD⊥a, baa AD⊥a, Aa,

AbaCS⊥D⊥a, AbaCS⊥a, baCS⊥D⊥a, baCS⊥a, ACS⊥D⊥a, ACS⊥a}

1A symbol x is reachable if S
∗

⇒τxσ for some τ and σ.

Aycock and Horspool’s approach 94

gtb will automatically construct the prefix grammar as the first step in the
trie construction discussed below. However, it is possible to get gtb to build
the prefix grammar independently of the other methods using the method

prefix_grammar[my_grammar]

This method does not mutate the grammar, it creates a new grammar, in this
case written to prefix_grammar.

For example, running the script

(* ex15 *)

S ::= A B A ’a’ | B ’d’ .

A ::= ~E ’a’ | ’b’ | C ~S C | ’a’ ~S ’b’ | # .

B ::= ’b’ ’a’ A ~B | A .

C ::= ~D ’a’ | ’a’ .

D ::= C | F .

E ::= ’d’ A .

F ::= ’a’ .

(

ex15_grammar := grammar[S tilde_enabled]

augment_grammar[ex15_grammar]

ex15_prefix := prefix_grammar[ex15_grammar]

write[ex15_prefix]

)

generates the following output.

Terminalising E

Terminalising S

Terminalising S

Terminalising B

Terminalising D

Grammar report for start rule S!left_context

Grammar alphabet

0 !Illegal

1 #

2 $

3 ’A!terminal’

4 ’B!terminal’

5 ’C!terminal’

6 ’S!tilde’

7 ’a’

8 ’b’

9 ’d’

10 A!left_context

11 B!left_context

12 C!left_context

13 D!left_context

14 E!left_context

Aycock and Horspool’s approach 95

15 F!left_context

16 S!augmented!left_context

17 S!left_context

Grammar rules

A!left_context ::= B!left_context[0] ’b’ ’a’ |

B!left_context[0] |

E!left_context[0] ’d’ |

S!left_context[0] |

S!left_context[0] ’A!terminal’ ’B!terminal’ .

B!left_context ::= S!left_context[0] ’A!terminal’ |

S!left_context[0] .

C!left_context ::= A!left_context[0] |

A!left_context[0] ’C!terminal’ ’S!tilde’ |

D!left_context[0] .

D!left_context ::= UNDEFINED

E!left_context ::= UNDEFINED

F!left_context ::= D!left_context[0] .

S!augmented!left_context ::= UNDEFINED

S!left_context ::= S!augmented!left_context[0] .

End of grammar report for start rule S!left_context

4.5.2 Trie based automata

If Γ has no recursion other than non-hidden left recursion then all the sets
L([A]) are finite. We form a trie from the set of strings in the language of the
DFA as follows.

Form the set, Φ(Γ), of triples

Φ(Γ) = {(α, β,A) | for some nonterminal A,α ∈ L([A]) and A ::= β}

by first generating each of the sets L([A]) then, for each α ∈ L([A]) and for
each rule A ::= β add (α, β,A) to Φ(Γ). (So the language of the DFA is the set
of strings αβ such that (α, β,A) ∈ Φ(Γ).)

We use Φ(Γ) to construct a trie based automaton. Create a start node, u0

say. For each element (α, β,A) in Φ(Γ), begin at the start node and suppose
that x1 is the first element of αβ. If there is an edge labelled x1 from the start
node move to the target of this edge. Otherwise create a new node, u say,
and an edge labelled x1 from u0 to u and move to u. Continue in this way, so
suppose that we are at node v and that the next symbol of αβ is xi. If there is
an edge labelled xi from v move to the target of this edge. Otherwise create a
new node, w say, and an edge labelled xi from v to w and move to w.

When all the symbols in αβ have been read, so we are at a node, y say,
that is at the end of a path labelled αβ from u0, if A 6= S′ retrace back up the
path labelled with the elements of β, so that we are at a node, t say, that is
the end of a path labelled α from u0. If there is not an edge labelled A from
t then create a new node, r say, and an edge from t to r labelled A. Add an
edge labelled R from y to r.

Aycock and Horspool’s approach 96

We then remove the edges labelled with non-terminals from the original
grammar, obtaining an automaton that corresponds to RIA(ΓS) in the RIGLR
algorithm. We call this the trie based automaton for S.

For example consider the terminalised grammar ex17

S ::= a S⊥ b | A a A | S a

A ::= a B⊥ | a B⊥ B⊥ | ε
B ::= B A | ε

The prefix grammar is
[S′] ::= ε

[S] ::= [S′] | [S]
[A] ::= [S] | [S] A a

the languages are

L([S′]) = {ε}, L([S]) = {ε}, L([A]) = {ε, Aa}

and the set Φ(Γ) is

{ (ε, S, S′), (ε, aS⊥b, S), (ε,AaA, S), (ε, Sa, S), (ε, aB⊥, A), (ε, aB⊥B⊥, A),
(ε, ε, A), (Aa, aB⊥, A), (Aa, aB⊥B⊥, A), (Aa, ε,A) }

The corresponding trie based automaton for S (before the non-terminal transi-
tions are removed) is

���
���

��� ��� ���
���

���
���
���

���
���

���

���
���

1

8

0 5 6

11

2

7

12

9

3

13

10

4

?

?

S

a

- - -

-

-

-

-

-

A a A

B⊥

B⊥

B⊥

B⊥

b

�
�

��7
a

A
A
A
AAU

@
@@R

a

S⊥

9)
�

R

yY

i
y

7

R6
R5R4

R6
R2

R1

R3

R4
R5

To build the full push down automaton, for each terminalised non-terminal,
A, in turn we create a new rule A′ ::= A in the terminalised grammar and
consider the grammar obtained by taking A′ as the start symbol. We construct
a prefix grammar and a trie based automaton for A, as we have described above
for S′.

For the above example we need to build the trie based automaton for B.
The required prefix grammar is

[B′] ::= ε

[B] ::= [B′] | [B]
[A] ::= [B] B

Aycock and Horspool’s approach 97

the set Φ(ΓB) is

{(ε,B,B′), (ε,BA,B), (ε, ε,B), (B, aB⊥, A), (B, aB⊥B⊥, A), (B, ε,A) }

and the trie based automaton is

���
���

���
��� ��� ���15

16

14

17 18 19

?

?

B

A

- -B⊥ B⊥a

7

R8

R6

R7

R4 R5

-

��/

�

As for the RCA construction described in Section 4.2, we build a push
down automaton from the trie based automata. For each transition in any of
the automata labelled A⊥, replace this with a transition labelled p(k) to the
start state of the trie based automaton for A, where k is the target of the
A⊥ transition. The accepting state of the PDA is the state in the trie based
automaton for S which is the target of the S transition from the start state.
For each terminalised non-terminal, A⊥, the state in the trie based automaton
for A which is the target of the A transition from the start state is a pop state
in the PDA.

The PDA for the above example is

���

��� ��� ���
���

���
���
���

���
���

���

���
���8

0 5 6

11

2

7

12

9

3

13

10

4

a

-

-

a

b

�
�

��7
a

A
A
A
AAU

a

9)
�

R

yY

i
y

7

R6
R5R4

R6
R2

R1

R3

R4
R5

�
�
�
����pop

���

���
���

���
��� ��� ���pop

16

14

17 18 19
a

7

R8

R6

R7

R4 R5

-

��/

�

��

p(18) p(19)

�)WN

p(13)

p(12)

p(9)

p(10)

�
p(3)

Aycock and Horspool’s approach 98

4.5.3 Trie based constructions in gtb

We get gtb to construct an Aycock and Horspool trie based push down au-
tomaton using the method

ah_trie[my_grammar]

As a side effect of this method gtb outputs a VCG rending of the tries in the
file

trie.vcg

Initially the grammar must be terminalised so that there is no recursion
other than non-hidden left recursion. As for the RCAs we use the method
terminalise_grammar[] to produce a terminalised grammar. We can run the
RIGLR recogniser on the trie based automata using the method call

ri_recognise[this_ah_trie STRING]

For example, the script

(* ex17 *)

S ::= ’a’ ~S ’b’ | A ’a’ A | S ’a’ .

A ::= ’a’ ~B | ’a’ ~B ~B | # .

B ::= B A | # .

(

ex17_grammar := grammar[S tilde_enabled]

terminalise_grammar[ex17_grammar terminal]

ah_ex17 := ah_trie[ex17_grammar]

ri_recognise[ah_ex17 "aaaabb"]

)

constructs the tries

and generates the following output

Terminalising B

Terminalising B

Terminalising B

Terminalising S

******: RIGLR recognise: ’aaaabb’

******: RIGLR recognise: accept

Call graph has 24 nodes and 77 edges

Chapter 5

Library grammars

Grammars for ANSI-C, ISO-7185 Pascal and a version of IBM VS-COBOL
are included with the gtb distribution. These are the grammars on which the
experiments that have been reported in [JSE04] are based. Basic gtb scripts
containing these grammars are in the lib_ex subdirectory and are called

ansi_c.gtb pascal.gtb cobol.gtb

respectively.
The grammar for ANSI-C has been extracted from [KR88], the grammar for

Pascal has been extracted from the ISO Standard and the grammar for COBOL
is from the grammar extracted by Steven Klusener and Ralf Laemmel, which
is available from http://www.cs.vu.nl/grammars/vs-cobol-ii/.

The grammars have been put into a BNF form using our ebnf2bnf tool,
followed by some manual manipulation.

Also in the lib_ex directory are token strings on which the recognisers
for these grammars can be run. The strings have been obtained from original
programs, written for other purposes, which have been ‘tokenised’ so that an
initial lexical analysis phase is not needed.

These token strings are as follows:

� bool.tok

An ANSI-C program implementing a Quine-McCluskey Boolean min-
imiser. It contains 4,291 tokens.

� rdp_full.tok

An ANSI-C program formed from the source code of our RDP tool. It
contains 26,551 tokens.

� gtb_src.tok

An ANSI-C program formed from the source code of the GTB tool itself.
It contains 36,827 tokens.

� treeview.tok

A Pascal program designed to allow elementary construction and visuali-
sation of tree structures. It contains 4,425 tokens.

100

� view_ite.tok

The treeview program with the if-then statements replaced by if-then-else

statements whose else clause is empty. This allows a longest match LR(1)
parser to successfully parse the string. It contains 4,480 tokens.

� quad.tok

A short Pascal program that calculates quadratic roots of quadratic poly-
nomials. It contains 279 tokens.

� cob_src.tok

A Cobol program based on one of the functions available from
http://www.cs.vu.nl/grammars/vs-cobol-ii/. It contains 2,197 to-
kens.

The gtb parse functions can read the input string from a file. To do this
simply open for reading the file that contains the token string and supply that
file in place of the STRING argument.

this_derivation :=

rnglr_recognise[this_dfa this_dfa open["bool.tok" read_text]]

NOTE: care is needed here because the default option for the open method is
write_text so if the read_text option is left out then the file, in this case
bool.tok, will be overwritten with an empty file!

Also note that gtb script files for each of the example grammars discussed in
this guide are included in the tut_ex subdirectory.

Chapter 6

gtb methods

ah_trie[my_grammar] p98
Builds an RCA using the Aycock and Horspool trie based method.

augment_grammar[my_grammar] p22
Augments the grammar my_grammar if it does not already have a start rule of
the required form.

close["file_name"] p15
Closes the file called file_name previously opened for reading and writing.

cycle_break_sets[my_gdg prune_break_sets_by_table 0] p88
Finds the strongly connected components and minimal terminalisation sets for
the graph my_gdg. Replacing the prune_break_sets_by_table option with
retain_break_sets causes all the sets constructed to be listed. Replacing 0
with N causes only sets of size up to N to be constructed.

dfa[my_nfa] p28
Constructs a DFA from the NFA my_nfa.

gdg[my_grammar] p14
Builds a grammar dependency graph for my_grammar.

generate[my_grammar 10 left sentences] p5
Constructs 10 sentences from the grammar my_grammar using left-most deriva-
tions. The parameter left can be replaced by right and random. The param-
eter sentences can be replaced by sentential_forms.

102

grammar[start_symbol tilde_enabled] p5
Creates a grammar from the given rules taking start_symbol as the start
symbol. The tilde_enabled flag is an optional flag that creates the additional
grammar symbols from a tilded rule set.

gtb_verbose p30
Switches on and off verbose diagnostics.

la_merge[my_dfa] p43
Constructs the LALR DFA from the LR(1) DFA my_dfa.

lr_parse[my_dfa STRING] p29
Parses the string STRING using an LR parser and the DFA my_dfa. If STRING
is replaced with a file name then the string is read from the file.

nfa[my_grammar lr 1 terminal_lookahead_sets p23
full_lookahead_sets normal_reductions]

Creates an NFA from the grammar my_grammar. The parameter lr can be
replaced with unrolled to get an IRIA NFA. The parameter 1 can be re-
placed by 0, to get an LR(0), or 0-1, to get an SLR(1) NFA. The last three
parameters are optional and the ones given are the defaults. There is one
other possibility for each of these parameters, non-terminal_lookahead_sets,
singleton_lookahead_sets and nullable_reductions, respectively.

nfa[my_grammar slr 1] p35
This is an abbreviation for nfa[my_grammar lr 0-1 terminal_lookahead_sets

full_lookahead_sets normal_reductions]

open["file_name" write_text] p12
Opens a file called file_name for writing. To open for read change the option
write_text to read_text. The default option is write_text.

prefix_grammar[my_grammar] p94
Constructs a left context prefix grammar from my_grammar.

render[my_file my_grammar] p12
Writes a file based on its second argument to the file file_name where this file
is created using my_file := open["file_name"]

103

ri_recognise[my_grammar STRING] p83
Recognises the string STRING using an RIGLR parser and the grammar my_grammar.
If STRING is replaced with a file name then the string is read from the file.

rnglr_recognise[my_dfa STRING] p61
Recognises the string STRING using an RNGLR parser and the DFA my_dfa.
The DFA must be RN. If STRING is replaced with a file name then the string
is read from the file.

terminalise_grammar[my_grammar terminal] p79
Convert non-terminals written ~A in the grammar into terminals. To turn
them back replace the terminal option (which is the default option) with
nonterminal.

tomita_1_parse[my_dfa STRING] p51
Parses the string STRING using a Tomita parser and the DFA my_dfa. If
STRING is replaced with a file name then the string is read from the file.

write[my_grammar] p8
Prints output based on its argument to the primary output device.

Bibliography

[AH99] John Aycock and Nigel Horspool. Faster generalised LR parsing. In
Compiler Construction, 8th Intnl. Conf, CC’99, volume 1575 of Lec-
ture Notes in Computer Science, pages 32 – 46. Springer-Verlag, 1999.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: prin-
ciples techniques and tools. Addison-Wesley, 1986.

[AU72] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Trans-
lation and Compiling, volume 1 — Parsing of Series in Automatic
Computation. Prentice-Hall, 1972.

[DeR69] Franklin L DeRemer. Practical translators for LR(k) languages. PhD
thesis, Massachussetts Institute of Technology, 1969.

[DeR71] Franklin L DeRemer. Simple LR(k) grammars. Communications of
the ACM, 14(7):453–460, July 71.

[GJ90] Dick Grune and Ceriel Jacobs. Parsing Techniques: A Prac-
tical Guide. Ellis Horwood, Chichester, England. (See also:
http://www.cs.vu.nl/~dick/PTAPG.html), 1990.

[JSE04] Adrian Johnstone, Elizabeth Scott, and Giorgios Economopoulos. The
grammar tool box: a case study comparing GLR parsing algorithms.
In Gorel Hedin and Eric Van Wick, editors, Proc. 4th Workshop on
Language Descriptions, Tools and Applications LDTA2004, also in
Electronic Notes in Theoretical Computer Science. Elsevier, 2004.

[Knu65] Donald E Knuth. On the translation of languages from left to right.
Information and Control, 8(6):607–639, 1965.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. Prentice Hall, second edition, 1988.

[NF91] Rahman Nozohoor-Farshi. GLR parsing for ε-grammars. In Masaru
Tomita, editor, Generalized LR Parsing, pages 60–75. Kluwer Aca-
demic Publishers, Netherlands, 1991.

[Rek92] Jan G. Rekers. Parser generation for interactive environments. PhD
thesis, Universty of Amsterdam, 1992.

[San95] Georg Sander. VCG Visualisation of Compiler Graphs. Universität
des Saarlandes, 66041 Saarbrücken, Germany, February 1995.

BIBLIOGRAPHY 105

[SJ02] Elizabeth Scott and Adrian Johnstone. Table based parsers with re-
duced stack activity. Technical Report TR-02-08, Computer Science
Department, Royal Holloway, University of London, London, 2002.

[SJ05] Elizabeth Scott and Adrian Johnstone. Generalised bottom up parsers
with reduced stack activity. The Computer Journal, 48(5):565–587,
2005.

[SJH00] Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain.
Tomita-style generalised LR parsers. Updated Version. Technical Re-
port TR-00-12, Computer Science Department, Royal Holloway, Uni-
versity of London, London, December 2000.

[SJar] Elizabeth Scott and Adrian Johnstone. Right nulled GLR parsers.
ACM Transactions on Programming Languages and Systems, to ap-
pear.

[Tar72] Robert E. Tarjan. Depth-first search and linear graph algorithms.
SIAM Journal on Computing, 1(2):146:160, 1972.

[Tom86] Masaru Tomita. Efficient parsing for natural language. Kluwer Aca-
demic Publishers, Boston, 1986.

[Tom91] Masaru Tomita. Generalized LR parsing. Kluwer Academic Publish-
ers, Netherlands, 1991.

