Centre for Software Language Engineering, Royal Holloway

getNodeT (x,i) and getNodeP(Xa - 5,w, z) for BNF grammars

A GLL parser constructs binarised SPPFs. These are bipartite graphs which merge all of
the derivation trees of a given input string. Derivation tree nodes are labelled with both a
grammar symbol, x, and two integers which define the substring of the input derive from
x. So in a derivation tree for a; ... an,, (z,7,4) labels a node which is the root of a subtree
whose leaves are a;1,. .., a;.

To ensure that the resulting SPPF is worst-case cubic in size, the derivation trees are bina-
rised in a simple way by introducing intermediate nodes from the left.

The binarised derivation trees are packed together with nodes with the same label being
merged. A derivation tree node may have many packed node children but each packed node
will have at most two children as the original trees were binary.

Then, a binarised SPPF has three types of SPPF nodes: symbol nodes, with labels of the
form (x, j, i) where x is a terminal, nonterminal or € and 0 < j < ¢ < m; intermediate nodes,
with labels of the form (¢,7,4); and packed nodes, with labels for the form (¢, k), where
0 <k <m andtis of the form X ::=«a - [.

For example, for the rule X ::= xyxox324 we have SPPF fragment

packed node

intermediate node

lX = T1X273 ¢ 374,]7‘11 M
l X i=1x129 '$3$47j717] M

getNodeT (x,i) creates and returns an SPPF node labelled (x,7,i + 1) or (¢,4,i) if z = e.

getNodeP(X = a - B,w,z) takes a grammar position (slot) X = « - and two SPFF
nodes w, z, the first of which may be the dummy node $. The nodes w and z are not packed
nodes and will have labels of the form (s, 7, k) and (r, k,i). The function creates an SPPF
fragment of the form below, where t is X := « - § if § # € and ¢ is X otherwise.

... returned node ... returned node

- packed node or, if w= $, - packed node

(© Elizabeth Scott and Adrian Johnstone, June 2011
Centre for Software Language Engineering, Royal Holloway, University of London

