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1 Introduction

Martin-Löf [ML84] introduced two styles of universes in type theory: the
Tarski-style and the Russell-style. The Tarski-style universes are semanti-
cally more fundamental but the Russell-style universes are easier to use in
practice. It would be interesting to ask

• whether these two styles of universes are equivalent, and

• whether we can employ and implement universes in a Russell-style
that faithfully represent the Tarski-style universes.

The answer to the first question is negative, as long as we consider the
current formulation1 of the intensional type theories (and assume that a type
theory with Tarski-style universes have nice meta-theoretic properties). In
fact, as explained in this note, the Russell-style universes seem incompatible
with the general form of elimination rules of inductive types – ‘incompatible’
in the sense that the canonicity property and the subject reduction property
fail to hold in the resulting type theory.2

∗Notes for a talk at Institute for Advanced Study in Princeton in Oct 2012.
†zhaohui.luo@hotmail.co.uk, Royal Holloway, Univ of London.
1The emphasis may be important. See a discussion at the end of §3 on additional

definitional equality rules.
2A key rule for the Russell-style universes is a special case of subsumptive subtyping.

The problem is indeed a special case for subsumptive subtyping when it is employed in
intensional type theories with inductive types. It is pointed out in §4 of [LSX12] that there
are two different views on typing, one for type assignment systems such as those employed
in functional programming languages and the other for type theories with canonical objects
such as those implemented in proof assistants, and these two views on typing correspond
to two different views on subtyping: subsumptive subtyping for type assignment systems
and coercive subtyping for TTs with canonical objects. See the paper for more details.
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This negative answer to the first question seems to imply that the answer
to the second must be negative, too. However, it is argued that the essence
of the Russell-style universes can be obtained by means of the Tarski-style
universes together with coercive subtyping in taking the explicit lifting oper-
ators between universes as coercions (plus some notational conventions). In
this way, one may obtain both the theoretical adequacy and the easy-to-use
benefit.

2 Type Universes and Cumulativity

A universe is a type of types. One may consider a sequence of universes
indexed by natural numbers:3 intuitively,

U0 ∈ U1 ∈ U2 ∈ ...

U0 ⊆ U1 ⊆ U2 ⊆ ...

Tarski-style Universes. The Tarski-style universes are introduced by

Ui type

a : Ui

Ti(a) type ui : Ui+1 Ti+1(ui) = Ui

plus the rules for inductive types, examples of which are:4

nati : Ui Ti(nati) = Nat

a : Ui

listi(a) : Ui

a : Ui

Ti(listi(a)) = List(Ti(a))

and those for the lifting operators:5

(∗T )
a : Ui

ti+1(a) : Ui+1

3I mainly consider universes externally indexed by natural numbers in this note. Uni-
verses indexed by level expressions as considered in [Voe12] are briefly discussed in a
remark at the end of §4. For further universe operators and super universes, see [Pal98].

4These are rules for the special cases of the inductive types generated by inductive
schemata. See p183-184 of [Luo94] for rules for the general case.

5There are two ways to introduce the Tarski-style universes, as discussed in [Pal98]:
universes as full reflections (as described here) and universes as uniform constructions.
For the latter, one considers the following ‘uniform’ rule for the lifting operators:

a : Ui

Ti+1(ti+1(a)) = Ti(a)

and do not include the name uniqueness rules for inductive types.
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ti+1(nati) = nati+1 : Ui+1

a : Ui

ti+1(listi(a)) = listi+1(ti+1(a)) : Ui+1

Russell-style universes. The Russell-style universes are introduced by

Ui type

A : Ui

A type Ui : Ui+1

plus the rules for inductive types, examples of which are

Nat : U0

A : Ui

List(A) : Ui

and that for the inclusions between universes:

(∗R)
A : Ui

A : Ui+1

Remark

• Note that the above rule (∗R) for Russell-style universes is equivalent
to Ui ≤ Ui+1 plus the following subsumption rule:

a : A A ≤ B

a : B

• The Tarski-style rules can be formulated in a logical framework; for
instance,

Ui : Type ui : Ui+1

Ti : (Ui)Type Ti+1(ui) = Ui : Type

but the Russell-style rules cannot.

Cumulativity for Structural Subtyping The basic subtyping relations
such as those concerning universes (cf, (∗R) and (∗T ) for the Russell/Tarski-
styles, respectively) should be propagated through the type constructors.
For example, because U0 ≤ U1, we should have U0 × U0 ≤ U1 × U1. As
another example, for List(A), we naturally have:

A ≤ B

List(A) ≤ List(B)
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For coercive subtyping, this amounts to the following rule:

A ≤c B

List(A) ≤map(A,B,c) List(B)

where map(A,B, c) is the usual map-operation on lists defined by induction
as follows:

map(A,B, nil(A)) = nil(B) (1)

map(A,B, cons(A, a, l) = cons(B, c(a),map(A,B, l)) (2)

3 Problems with the Russell-style Universes

Are the Russell-style universes (and, in general, subsumption) compatible
with the general form of elimination rules for inductive types? The answer
is negative as the following two examples show.

Canonicity. The property of canonicity states that any closed object of
an inductive type is definitionally equal to a canonical object of that type. It
is a basis to justify the induction principles (elimination rules) for inductive
types.

Considering the Russell-style universes, we may ask: if A ≤ B and a is
a canonical object of A, is a a canonical object of B?

����A ����
&%
'$B

-a canonical in B?qa

Here is an example to show that canonicity fails.

Example 3.1 Let A and B be closed types such that A ≤ B but A ̸= B.
Then nil(A) : List(A) and, by subsumption, nil(A) : List(B). But nil(A)
is not definitionally equal to any canonical object of List(B), nil(B) or
cons(B, b, l). Canonicity fails to hold.

This has other unpleasant consequences. For instance, we can prove the
following proposition by means of the elimination rule for List(B):

Id(List(B), nil(A), nil(B)) ∨ ∃b:B∃l:List(B). Id(List(B), nil(A), cons(B, b, l)).
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but neither of the disjuncts is the case definitionally. Therefore, the prop-
erty of equality reflection does not hold: there is a mismatch between the
definitional and propositional equalities (even for closed terms).

Remark An intuitive understanding of this situation is that subsumptive
subtyping has introduced new objects into a type (nil(A) is introduced in
List(B) in the above example), which are not covered by the elimination
rules. One would ask: are these new objects canonical objects? (See the
above picture.) If they are, the traditional elimination rule does not cover
them and, in order to cover them, one might even consider an elimination
rule with ‘bounded quantification’ (take the type of lists as an example):

E ′
List : (A : Type)(A0 ≤ A : Type)

(C : (List(A0))Type)

(c : C(nil(A0)))

(f : (a : A0)(l : List(A0))C(cons(A0, a, l)))

(z : List(A0))C(z)

But bounded quantification is too much and problematic. (I omit discussions
here.)

Subject Reduction. The property of subject reduction, for a reduction
relation �, is that, if a : A and a � b, then b : A. It is an important prop-
erty, both theoretically in meta-theory and practically in implementations.
Unfortunately, subject reduction does not hold for non-constant (parame-
terised) inductive type constructors, if Russell-style universes are employed.
Here, the example is about the cartesian product types and can be found in
§4.3 of [Luo99].

Example 3.2 Consider the following context:

X, Y : U0

C : (U1 × U1)Type

f : (x, y : U1)C(pair×(U1, U1, x, y))

and the following term M :

M ≡ E×(U1, U1, C, f, pair×(U0, U0, X, Y ))
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where E× is the elimination operator for cartesian product types. M is well-
typed (because U0 × U0 ≤ U1 × U1) and of type

A ≡ C(pair×(U0, U0, X, Y )).

Now, M � f(X,Y ) : C(pair×(U1, U1, X, Y )). However, f(X,Y ) is not of
type A. Subject reduction fails to hold.

Remark For some types, the elimination operators may take different forms
than that for general inductive types. For example, in Coq, there is sub-
sumptive subtyping on Π-types with application operators and cumulativity
and, in ECC, the same for Π and there is also subsumptive subtyping for
Σ-types with projection operators and the corresponding cumulativity. In
such situations, things are OK (eg, the meta-theory goes through) because
the elimination rules are not in the general form for inductive types. If the
latter, the above problems would occur.

Adding Definitional Equality Rules: Discussion. One might say that
the above problems are due to some sort of ‘syntactic anomaly’ and the
syntax can be fixed. For instance, one might propose to ignore the typing
information when equality/conversion testing is performed. More precisely,
one may consider adding new definitional equality rules as guided by the
definitions of the propagating coercions.6 For instance, for List(A), guided
by equations (1) and (2) in §2, we might omit all of the typing/coercion
information and impose the following definitional equalities:7 for A ≤ B,
a : A and l : List(A),

nil(A) = nil(B)

cons(A, a, l) = cons(B, a, l)

The hope would be that, with the Russell-style universes and such additional
definitional equality rules, the resulting type theory would still have nice
properties such as canonicity and strong normalisation. However, besides
that such a proposal is a bit inconsistent with the spirit of canonical objects,

6A similar proposal was made by Dr Conor McBride in response to a talk of mine
on the subject in the 2010 Fun forum in London and by Dr Bruno Barras in a recent
communication: they have both suggested to impose similar equality rules.

7I am not precise here. Please note that even the formulation of such definitional
equality rules may not be as simple as one might think.
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it is unclear whether it can go through: some substantial and tedious meta-
theoretic work is called for, along the line of, for example, [Gog94, Wer94].

In the next section, we shall make a proposal to employ the Tarski-style
universes together with coercive subtyping so that, we can achieve both of
the theoretical correctness (eg, good meta-theoretic properties), on the one
hand, and the ease-of-use in practice, on the other.

4 Tarski-style Universes with Coercive Subtyping

Our proposal is to employ the Tarski-style universes and to adopt the follow-
ing coercion declarations and notational conventions so that the use of uni-
verses is as easy as the Russell-style universes, although ‘behind the scenes’
it is still the Tarski-style universes.

Lifting Operators as Coercions. The lifting operators ti+1 : (Ui)Ui+1

are taken as coercions. (Note that coercions are ‘implicit’ in the sense that
they are not seen by the users.)

Some Notational Conventions. We adopt the following conventions (to
abbreviate the left-hand side by the right-hand side):

• [El(A)] = [A] (El in the logical framework is omitted.)

• [Ti(a)] = [a] (Ti is omitted.)

• Types and their names are (syntactically) ‘identified’: for example,

– [ui] = Ui (Ui and ui are identified.)

– [nati] = Nat (Nat and nati are identified.)

– [σi(a, b)] = Σ([a], (x:[a])[b(x)] (Σ(A, [x:A]B(x)) and σi(a, b) are
identified if, in Ui, a names A and b(x) names B(x).)

We claim that the above proposal achieves our goals, because

• whether a term denotes a type or its name can be automatically dis-
ambiguated from the context;

• with the above notational conventions, all the Russell-style rules, ex-
cept (∗R), became derivable; but

• (∗R) is taken care of by declaring the lifting operators ti as coercions.
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Remark Voevodsky [Voe12] has introduced a type system TS whose uni-
verses are indexed by level expressions which may contain level variables. In
particular, if M1 and M2 are level expressions such that M1 ≤A M2, then
there is a lifting operator jM1,M2 from UM1 to UM2 . The above proposal
extends to the universes indexed by level expressions with:

• similar notational conventions;

• lifting operators jM1,M2 as coercions; plus

• the definitional equalities jM1,M3 = jM2,M3 ◦ jM1,M2 for M1 ≤A M2 ≤A
M3 (cf, TS’s reduction rules).

Acknowledgement Thanks to Per Martin-Löf for a discussion on universes
and to Peter Aczel and Thierry Coquand for their useful comments.
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