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Abstract. Coercive subtyping is a general approach to subtyping, inher-
itance and abbreviation in dependent type theories. A vital requirement
for coercive subtyping is that of coherence which essentially says that
coercions between any two types must be unique. Another important
task for coercive subtyping is to prove the admissibility or elimination
of transitivity and substitution. In this paper, we propose and study the
notion of Weak Transitivity, consider suitable subtyping rules for certain
parameterised inductive types and prove its coherence and the admis-
sibility of substitution and weak transitivity in the coercive subtyping
framework.

1 Introduction

Coercive subtyping represents a general approach to subtyping and inheritance
in type theory (see, for example, [Luo97,Lu099,SL02]). In particular, it provides a
framework in which subtyping, inheritance, and abbreviation can be understood
in dependent type theories. This paper investigates the issue of transitivity in
coercive subtyping.

A problem with transitivity In the presentation of coercive subtyping in
[Luo99], the transitivity rule

I'FA<.B:Type 't B <o C:Type

T
(Trans) I'F A <poc C: Type

is included. Intuitively, it says that the composition of two coercions is also
the coercion corresponding to transitivity. In [LLO1], it has been proved that
the transitivity rule is admissible for certain subtyping rules, such as those for
II-types and X-types.

However, the above transitivity rule is sometimes too strong (in intensional
type theories). For some parameterised inductive data types together with nat-
ural subtyping rules, especially when the inductive type has more than one
constructor, the above rule fails to be admissible or eliminatable. For instance,



for the inductive type of lists List(A) parameterised by its element type A, if
we introduce the following subtyping rule:
I'A<.B:Type
I' - List(A) <q,,,, List(B) : Type

where dr;st = map(A, B,c) (see the detailed definition of dr;s; in Example 3)

such that dp;s:(nil(A)) = nil(B) and dp;s(cons(4, a,l)) = cons(B, c(a),drist (1)),
then the transitivity rule (T'rans) fails to be admissible and, if we add it into

the system, the coherence requirement fails to be satisfied. To see this, suppose

we have I' F F <., E: Type and I' + E <., N : Type, and by transitivity rule

(T'rans), we also have I' F F' <.,o.;, N : Type. By the above subtyping rule for

lists, we have respectively

't List(F) <map(F,E,c;) List(E) : Type
I't List(E) <map(E,N,cs) List(N) : Type
I'E List(F) <map(F,N,cs0c,) List(N) : Type
By transitivity rule (T'rans), we also have
I'F List(F) <map(B,N,ca)omap(F,B,c1) List(N) : Type
Now, the problem is that, in an intensional type theory,
I'tY map(F,N,cq 0 ¢c1) = map(E, N,c3) omap(F,E, c;) : (List(F))List(N)

This means that we have two coercions between List(F') and List(N), but they
are not computationally equal in an intensional type theory (and hence coherence
fails), although we know that they are extensionally equal.

Remark 1. The problem showed in the above example arises when we consider
subtyping rules for parameterised inductive types. This itself is a difficult issue,
though these subtyping rules are very powerful and useful.

Weak transitivity — a proposed solution Rather than the above (strong)
transitivity rule, we introduce a new concept —Weak Transitivity, which can
informally be represented by the following rule:

I'A<.B:Type I' F B<. C: Type
I'- A< C:Type

(WTrans)

It says that, if A <. B and B <o C, then A <. C for some coercion ¢".
Furthermore, we require that ¢” be extensionally equal to ¢’ o¢ (see Section 5 for
the treatment of the equality requirement). The essential difference compared
with the strong transitivity rule (T'rans) is that we are only more concerned
with the existence of ¢” and such weak transitivity should be better suited to
a wider application, that is, many natural subtyping rules are suitable for weak
transitivity (WTrans) but incompatible with the transitivity rule (Trans).



Through our investigation, we also found out that weak transitivity does not
necessarily hold for some parameterised inductive types such as dependent X-
types which involve certain form of dependency between parameters. We show
how such dependency can be made precise — we consider, in Section 3, a restricted
form of inductive schemata, which forbids such dependency and hence enjoys
weak transitivity'. For such inductive schemata, we develop a general method,
which is also useful for implementation, to give the subtyping rules and the
definition of coercions for a large class of parameterised inductive types. Then,
in Section 4, we use the proof methods developed in [LLO01] to prove, for these
rules, the coherence and the admissibility of substitution and weak transitivity
of the coercive subtyping system. Section 5 discusses the equality requirement
for weak transitivity and shows that the general coercions we define satisfy the
requirement of extensional equality. Discussions will be given in the last section
of the paper.

In the following section, before presenting the above work, we give a brief
introduction to coercive subtyping and explain some background notations to
be used in latter sections.

2 Coercive subtyping and inductive schemata

2.1 Coercive subtyping

The basic idea of coercive subtyping, as studied in [Luo99), is that A is a subtype
of B if there is a (unique) coercion ¢ from A to B, and therefore, any object of
type A may be regarded as an object of type B via ¢, where ¢ is a functional
operation from A to B in the type theory.

A coercion plays the role of abbreviation. More precisely, if ¢ is a coercion
from Ky to K, then a functional operation f with domain K can be applied to
any object ko of Ko and the application f(kg) is definitionally equal to f(c(ko)).
Intuitively, we can view f as a context which requires an object of K; then
the argument ko in the context f stands for its image of the coercion, c(ko).
Therefore, one can use f(ko) as an abbreviation of f(c(ko)).

The above simple idea, when formulated in the logical framework, becomes
very powerful. The second author and his colleagues have developed the frame-
work of coercive subtyping that covers variety of subtyping relations including
those represented by parameterised coercions and coercions between parame-
terised inductive types. See [Luo99,Bai98,CL01,LC98,CLP01] for details of some
of these development and applications of coercive subtyping.

Some important meta-theoretic aspects of coercive subtyping have been stud-
ied. In particular, the results on conservativity and on transitivity elimination
for subkinding have been proved in [JLS98,SL02]. The conservativity result says,
intuitively, that every judgement that is derivable in the theory with coercive

! Note that the harmful dependency is some form of dependency between parameters.
Forbidding such dependency does not mean that all of the dependent types are
excluded. See more details in Section 3 and Section 6.



subtyping and that does not contain coercive applications is derivable in the
original type theory. Furthermore, for every derivation in the theory with coer-
cive subtyping, one can always insert coercions correctly to obtain a derivation
in the original type theory. The main result of [SLO02] is essentially that coher-
ence of basic subtyping rules does imply conservativity. These results not only
justify the adequacy of the theory from the proof-theoretic consideration, but
also provide the proof-theoretic basis for implementation of coercive subtyping.

How to prove coherence and admissibility of transitivity at the type level
has been studied in [LLO1] recently. In particular, the concept of Well-defined
coercions has been developed, and the suitable subtyping rules for IT-types and
JX-types have been given as examples to demonstrate these proof techniques.

Coercion mechanisms with certain restrictions have been implemented both
in the proof development system Lego [LP92] and Coq [B*00], by Bailey [Bai98§]
and Saibi [Sai97], respectively. Callaghan of the Computer Assisted Reasoning
Group at Durham has implemented Plastic [CL01], a proof assistant that sup-
ports logical framework and coercive subtyping with a mixture of simple coer-
cions, parameterised coercions, coercion rules for parameterised inductive types,
and dependent coercions [LS99].

A formal presentation Coercive subtyping is formally formulated as an ex-
tension of (type theories specified in) the logical framework LF? [Luo94|, whose
rules are given in Appendix A. Types in LF are called kinds. The kind Type
represents the conceptual universe of types and a kind of the form (z : K)K’
represents the dependent product with functional operations f as objects (e.g.,
abstraction [z : K]k') which can be applied to objects of kind K to form applica-
tion f(k). For every type (an object of kind T'ype), EI(A) is the kind of objects
of A. A kind is small if it does not contain T'ype. LF can be used to specify type
theories, such as Martin-Lof’s type theory [NPS90] and UTT [Luo94].

Notation We shall use the following notations:

e We often write (K)K' for (x : K)K' when z does not occur free in K’, and A
for El(A) and hence (A)B for (El(A))El(B) when no confusion may occur.

o Substitution: We sometimes use M [z] to indicate that variable z may occur
free in M and subsequently write M[N] for [N/z]M, when no confusion may
occur.

e Context equality: for ' = x1 : Ky, ...,z : Kpand " = 21 : K1, ...,z : K],
we shall write - I" = I for the sequence of judgements - K; = Kj, ...,
Iy Kl, ey p—1 Kn—l = Kn = K;L

¢ Functional composition: for f : (K1)K> and g : (y : K2)K3[y], define go f =4
[z : K1]g(f(z)) : (x : K1) Ks[f(z)], where z does not occur free in f or g.

A system with coercive subtyping, T[R], is an extension of any type theory
T specified in LF. It can be presented in two stages: first we consider the system
T[R]o, which is an extension of T, with subtyping judgements of the form I" -

2 The LF here is different from the Edinburgh Logical Framework [HHPS87].



A <. B : Type; then the system T[R], which is an extension of T[R]o, with
subkinding judgements of the form I - K <, K'. The rules for subkinding can
be found in Appendix B. Note that the substitution rule for subkinding (the
last rule in Appendix B) can be eliminated under the assumption that the set of
basic subtyping rules R is coherent [SL02]. As we are mainly concerned with the
subtyping rules and their transitivity and coherence (in T[R]g), we shall omit
the details of the kind level in this paper (details can be found in the forthcoming
thesis of the first author).
T[R]o is an extension of T' with the following rules:

e A set R of subtyping rules whose conclusions are subtyping judgements of
the form I' + A <. B : Type.
e The congruence rule for subtyping judgements

I'HA<.B:Type
I'rA=A":TypeI'FB=B'":TypeI' Fc=c:(A)B
I'k A" <o B': Type

(Cong)

In the presentation of coercive subtyping in [Luo99], T[R]o also has the following
substitution and transitivity rules:

INz:K,I'tA<.B:Type 't k: K

I [k/x]I" & [k/2]A <[r/z)c [k/2] B : Type

I'rA<,B:Type T'+B <y C : Type
'k A<uo. C:Type

Since we consider in this paper Weak transitivity and we will prove that the
substitution rule is admissible, we do not include them as basic rules.

(Subst)

(T'rans)

Remark 2. T[R]o is obviously a conservative extension of the original type theory
T, since the subtyping judgements do not contribute to any derivation of a
judgement of any other form.

The most basic requirement for the subtyping rules (in R) is that of coherence,
given in the following definition, which essentially says that coercions between
any two types must be unique.

Definition 1. (coherence condition) We say that the subtyping rules are co-
herent if T[R]o has the following coherence properties:

1. IfTFA<.B:Type, then I' - A :Type, I' - B : Type, and I' - ¢ : (A)B.
2. 'Y A<, A:Type for any I', A and c.
3 IfT-A<.,B:Type and ' A <. B :Type, then'Fc=¢ : (A)B.

Remark 3. This is a weaker notion of coherence as compared with that given in
[Luo99], since there the rules (Subst)(Trans) are included in T'[R]o. In general,
when parameterised coercions and substitutions are present, coherence is unde-
cidable. This is one of the reasons one needs to consider proofs of coherence in
general.



2.2 Well-defined Coercions

After new subtyping rules are added into R, we need to prove that R is still
coherent and that the transitivity rule and substitution rule are admissible. A
general strategy we adopt is to consider such proofs in a stepwise way. That
is, we first suppose that some existing coercions (possibly generated by some
existing rules) are coherent and have good admissibility properties, and then
prove that all the good properties are kept after new subtyping rules are added.
This leads us to define the following concept of well-defined coercions (WDC)
[LLO1].

Definition 2. (Well-defined coercions) If C is a set of subtyping judgements
of the form I' - M <4 M' : Type which satisfies the following conditions, we
say that C is a well-defined set of judgements for coercions, or briefly called
Well-Defined Coercions (WDC).

1. (Coherence)
(o) ' H A<, B:Type € C implies ' v A : Type, I' - B : Type and
I'Fec: (A)B.
(b)) T'FA<.A:Type ¢ C for any I', A, and c.
(c) THFA<, B:TypeeCandI't+ A<, B:Type € C imply ' - ¢; =
Co (A)B
2. (Congruence) ' W A <. B :Type € C, ' A=A":Type, ' - B= B':
Type and I'c=c" : (A)B imply ' A' <. B' € C.
3. (Transitivity) ' + A <., B:Type € C and I'+ B <., A’ : Type € C imply
I't A <¢yoey A" : Type € C.
4. (Substitution) I'x : K, I+ A <. B : Type € C implies for any k such that
I'tk:K, T [k/z]I"F [k/2]A <(t/z1c [k/x]B : Type € C.
5. (Weakening) ' H A <. B : Type € C, I' C I'" and I"" is valid imply I +-
A<, B:Type € C.

Remark 4. One may change the third condition (transitivity) to weak transi-
tivity, s.e., ' F A <., B : Type € C and I' + B <., A’ : Type € C imply
I' A<, A" : Type € C for some c3 such that ¢s and ¢y o ¢; are extensionally
equal. This weak condition is also sufficient for the following development in this
paper, except that some lemmas and proofs require minor changes.

In this paper, we consider the system of coercive subtyping in which the set R
of the subtyping rules includes the following rule, where C is a WDC:

I'rA<.B:Typee(C

©) I'A<.B:Type

2.3 Inductive schemata and parameterised inductive types

In this subsection, we lay down some notations of inductive schemata, to be
used in the next section (see [Luo94| for more details). We first give some formal
definitions, then give some examples to explain.



Definition 3. (Inductive schemata)

o A strictly positive operator, with respect to a type variable X and a valid
context I', is of one of the following forms:

1. =X, or
2.9 = (x: K)®y , where K is a small kind and ®y is a strictly positive
operator.

o An inductive schema ©, with respect to a type variable X and a valid context
T, is of one of the following forms:

1. =X, or
2. O = (z:K)Oq , where K is a small kind and Oq is an inductive schema,
or

3.0 = (z: )0y , where ¢ is a strictly positive operator and Oy is an
inductive schema and x & FV (60y).

Any finite sequence of inductive schemata @ =< Oy,...,0,, > (m € w)
generates an inductive type M[O], with its introduction, elimination and com-
putation rules. We shall consider the following form of parameterised inductive
types:

T =4 [Y1 : Pi]..[Yn : P, IJM[O]
where Y1, ..., Y,, are parameters (A-abstracted bound variable) and P, ..., P, are
kinds.

Specification of parameterised types in LF Now, we declare the following
constant expressions:

T:(Y1:P).(Yn: Py)Type
li:(Y1:P)...(Yn : Pp)O; [T(Y)] (j=1,..,m)
Er:(V1: P (Yo : Po)(C: (T(Y))Type)
(f1:02[T(Y),C,L(Y)))...
(fm : OR[T(Y), C,ln(Y)])
(z: T(Y))C(2)

and assert the following computation rules: (j = 1,...,m)
Er(Y,C, [, (;(Y,0))) = f3(65) : C(;(Y, 63))

where ©°, @? and ©@* are formally introduced in the following definition, which
will also be used in latter sections.

Definition 4. Let & be a strictly positive operator and © an inductive schema.
For A :Type, C: (A)Type, f:(x:A)C(z), y: P[A] z: OA],

o define kind $*[C,y] as follows:

(X)*[C,y] = Cly)
((z : K)®0)*[C,y] = (= : K)&5[C,y()]



e define kind O°[A, C, 2] as follows:
(X)°[4,C,2] = C(2)
((z : K)BO)°[A,C, 2] = (z : K)O§[A, C, 2(z)]
((z: 2)09)°[A,C, 2] = (z : P[A]) (2" : *[C,x])OF[A, C, 2(x)]
o define °[f,y] as follows:

(X)*[f,9] = f(v)
(@ : K)o [f,9] = [o: KIOLf, y()]

o Assume that © be of the form (xy : My)...(xs : M)X and xy,...,x5 are
fresh variables. Then OV =< x1,...,x, > and O is defined as the following
sequence of arguments:

1. if ©® = X then OF =< >
2. if O = (zy: K)Op then O =< 2,05 > (t=1,...,s)
3. if O = (x; : $)O then O =< z;, S [Er(A,C, F), 2], 05 > (t=1,...,5)

Ezxample 1. We give three examples of parameterised inductive types.

1. Lists: List =4 [A : Type]lM[X, (A)(X)X]. This is equivalent to declaring
the following constants:

List :

nil :

A)Type

A : Type)List(A)

A :Type)(a: A)(l : List(A))List(A)

A : Type)(C : (List(A))Type)(C(nil(4)))
(a: A)(I : List(A))(C(1))C(cons(4,a,l)))
z: List(A))C(z)

cons

ElList

NN N AN AN N

with computation rules:

ErList(A, C,c, f,nil(A)) = c¢: C(nil(A))
EList (A, Cie, f, COTLS(A, a, l)) = f(a, I gList(Aa Cie f, l))
: C(cons(A,a,l))
2. Function types: (=) =4¢ [A : Type][B : Type] M[((4)B)X].
(=) : (A : Type)(B : Type)Type

A: (A :Type)(B : Type)((A)B)(A — B)

(A : Type)(B : Type)(C : (A — B)Type)

((9: (A)B)C(A(4,B,9)))(z : A= B)C(z)

&)

with computation rule:

E(—))(AyBaca fa)‘(AaBag)) = f(g) : C()‘(AaBag))



3. Either types (disjoint union): Either =g [A : Type][B : Type] M[(A)X, (B)X]
Either : (A : Type)(B : Type)Type
left: (A: Type)(B : Type)(A)FEither(A, B)
right : (A : Type)(B : Type)(B)Either(A, B)
Egither + (A : Type)(B : Type)(C : (Either(A, B))Type)
((a : A)C(left(A, B,a)))((b: B)C(right(A, B,b)))
(z : Either(4, B))C(z)

with computation rules:

gEither (A, B, C, fl; f2, left(A, B, a)) = fl (a) : C(left(A, .B7 a))
gEitheT (AJ Ba Ca fl: f2a Tlght(A, Ba b)) = f2 (b) : C(Tlght(A, Ba b))

3 WT-schemata and general subtyping rules

In this section, we define the WT-schemata and the general subtyping rules
for those (parameterised) inductive types generated by the WT-schemata. The
WT-schemata are those that generate (parameterised) inductive types whose
subtyping rules satisfy the weak transitivity requirements.

3.1 WT-schemata

A problem with weak transitivity Weak transitivity does not hold for the
subtyping rules for every parameterised inductive types. For example, it fails for
the subtyping rules for X-types and II-types. An important observation is that
weak transitivity fails for such types because they involve certain form of depen-
dency between parameters. For example, X' =4 [A : Type][B : (A)Type]M|[(z :
A)(B(z))X] where B(x) is dependent on the objects of parameter A. There are
three subtyping rules for X-types, two of which are:

'A<, A :Type Iz : At B(z) = B'(c()) : Type
I'+X(A,B) <4, X(A",B’) : Type

'A< A :Type I'z:AF B(x) < B'(c(z)) : Type
I' ¥(A,B) <4, X(A',B") : Type

We can see that the coercion ¢ in the first premise occurs in the second premise.
And hence the proof of weak transitivity cannot go through. For instance, in
order to prove that Y (A;, By) < Y(Asg, B2) and ¥(Az, B2) < X(As, Bs) imply
Y(A1, B1) < ¥ (A3, Bs) (coercions and some other details are omitted here), we
would proceed by induction on derivations, and one of the cases is that the last
step of the derivations of E(Al, Bl) < E(AQ, Bg) and E(Ag, BQ) < E(Ag, Bg)
is the first subtyping rule (above) for X-types :

Ay <ey As 21 Ay F Bi(z) = Ba(ei(z)) Az <c, Az y: Ay F Ba(y) = Bs(ca(y))
Y(Ay,By) < ¥(Az, Bs) X(Az, By) < ¥(As, Bs)




By induction hypothesis, A; <., As is derivable for some c3, but cs is not
(necessarily) computationally equal to ¢y 0 ¢y. Since = : A1 b ¢1(z) : Ay we have
z: A1 F Ba(ei(z)) = Bs(ca(ei(z))) and hence = : A; F By(z) = Bs(ca(c1(z))).
But z : A; F Bi(z) = Bs(c3(x)) is not necessarily derivable and how to derive
Y(A1, B1) < ¥(As, B3) becomes a problem of the proof.

In fact, the following example shows that weak transitivity can fail when we
combine the subtyping rules for X-types and lists (in Section 1), i.e., even if
My <, M and My <., Mj are derivable, but My <., Mj is not necessarily
derivable for any es.

Example 2. Assume that we have some type constants A;, A2 and As, and a
constant Bj of kind (List(As))Type (i.e., Bz : (List(As))Type), and a WDC
C is generated by the congruence rule (Cong) and three coercions A; <., Aa,
A, <cq As and A, <cg0c1 As.

By the subtyping rule for lists, we have List(A41) <q4, List(As), List(As) <4,
List(A3) and List(A;) <4, List(As), where d;, do and d3 are defined as in
Section 1. Note that d3 and ds o d; are NOT computationally equal.

Since Bz o dy : (List(Az))Type, by the first subtyping rule (above) for X-
types, we have

Y(List(Ar), Bg o dy o dy) <, X(List(Az), Bs oda)

and
Y (List(Az), B3 0 dz) <., X(List(As), Bs)

We omit the definition of e; and e, here.

Now, is the judgement X' (List(A1), Bsodsod:) <., X(List(As), Bs) derivable
for some e3?

The answer is NO. We prove this by contradiction; if it is derivable, it can
only be derived from the first subtyping rule (above) for X-types (except some
steps of the congruence rule). By coherence and Church-Rosser property, we
would have d3 = dy o dy, i.e., they are computationally equal — a contradiction.
Note that the method of the proof of coherence is the same as that in Section 4
and in [LLO1].

Weak transitivity schemata The fact that weak transitivity fails for some pa-
rameterised inductive types has led us to introduce a restricted form of schemata,
WT-schemata, which disallow that a coercion in one premise occurs in a type of
another premise.

Definition 5. (WT-schemata) Let P be a set of parameters and © an induc-
tive schema. Then O is a WT-schema w.r.t. P if the following is the case:

e if (x : K)M is a subterm of @ and x occurs free in M, then K does not
contain any of the parameters in P.

Remark 5. Obviously, WT-schemata can be defined inductively as done for in-
ductive schemata, but the above definition captures directly the dependency to
be excluded.

10



The above notion of WT-schema covers a large class of parameterised induc-
tive types such as lists, Maybe types, Either types (disjoint union), function
types, product types, types of branching trees, etc. What it excludes are those
parameterised types such as X-types and IT-types.

3.2 Subtyping rules and coercions

Now, we consider how to define subtyping rules and the associated coercions for
any parameterised types (in I') generated by the form:

T =g [Yi : Pi]-[Yn : Pa]M[O]

where P; (i € w) are kinds, and © =< 6, ..., O, > (m € w) is a finite sequence
of WT-schemata.

Before we introduce a general form of subtyping rules we give the following
examples to demonstrate what the subtyping rules and associated coercions are.

Example 8. 1. We have given the subtyping rule for lists in Section 1. The
coercion dr;s can be defined as follows.

sz'st =df EL’iSt(A7 [l : L’LSt(A)]LZSt(B),nZl(B),
[a: A][l : List(A)|[l' : List(B)]cons(B,c(a),l'))
2. Subtyping rules for Either types:

'A<, A" :Type I' + B= B': Type
I' - Either(A, B) <dg,..., Fither(A!,B") : Type

I'rA=A":Type I'+ B <., B' : Type
I'+ Either(A, B) <dpin... Fither(A!,B") : Type
'A<, A" :Type I' + B <., B' : Type
I' b Either(A, B) <dgin..s Either(A',B') : Type

where

drithers =af EBither (4, B, [z : Either(A, B)]Either(A', B"),
[a: Alleft(A’, B',c1(a)),[b: Blright(A', B',ca(b)))

such that dgithers(left(A, B,a)) = left(A', B’ c1(a)) and
dgithers(right(A, B, b)) = right(A’,B’,ca2(b)). The definitions of dgitper1
and dgither2 are similar to dgiihers-

3. Subtyping rules for function types:

'A<, A:Type I'+- B=B': Type
I'-A— B<q_,, A' > B'": Type

I'-rA=A":Type I'+ B <., B' : Type
I'-A— B<q.,, A = B": Type

11



'A<, A:Type I' - B <., B' : Type
I'-A— B<q4_,, A" = B": Type

where

()3 =ar £)(A, B, [z : A= B])(A' = B'),
[9: (A)BIXA", B',c3 0 g0 c1))

such that d(_,)3(A(4, B, g)) = MA',B',ca 0 g o c1). The definitions of d(_,)
and d(_,), are similar to d(_,3.

The general form of subtyping rules The general form of subtyping rules
for the parameterised inductive types is

premises

) T Ay, A <a, T(Bro o Ba) Type

There can be more than one rule for an parameterised inductive type gener-
ated by WT-schemata. In order to find out the premises, we need to give some
notational definitions.

Notation: We shall often write D[A] for [A;/Y1,..., A,/ Yy]D. Also, we write
Y €e FV(M) and Y ¢ FV (M) to mean that ’some of the parameters occur
free in M’ and 'none of the parameters occurs free in M’, respectively.

Definition 6. (premise set)

o For any small kind K in I' and with the restrictions in WT-schema, we
define premyp(K) as follows:
1. K = EI(D)
(a) if Y ¢ FV(D) then premr(K) = (
(b) if Y € FV(D) then premr(K) = {I" + D[A] < D[B] : Type}
2. K= (y : Kl)KQ
(a) if y & FV(K3) then premp(K) = premp(K1) U premp(K>), where

premp(Ki) =q¢ {I'F B< A:Type|I' A< B :Type € premr(Ki)}

(b) ify € FV(K>) then premp(K) = premry.k,(K2). Note that in this
case, Y € FV(K,).
o For any WT-schema O in I', we define premp(O) as follows:
1. ©® = X, then premr(©) =0
2. 0= (.’L‘ : K)@()
(a) if © & FV(Oq) then premp(©) = premr(K) U premp(6y)
(b) if x € FV(©y) then premr(0©) = premp(K)Upremr,.x(60y). Note
that in this case, Y ¢ FV (K).
3. © = (z: P)Oq, then premp(0) = premp(P) U premr(Oq)

e For any sequence of WT-schemata in I', © =< O4,...,0,, >, we define

premr(0) = U, premr(6;)

12



We can now describe how to obtain the premises for the subtyping rules of the

form (x). For every I' F A < B : Type € premr(©), we consider a new coercion
¢, and one of the following is a premise of a (x)-rule:

e 'A<, B:Type,or
e ' A=DB:Type

All of the different combinations give different sequences of premises and hence
different rules, except that there must be at least one premise that has the form
I't A<, B:Type.

Remark 6. Some rules have contradictory premises. For example, the subtyping
rule for inductive type T (A) =q4 M[((A)A)X] parameterised by type variable
A would be

'A<, B:Type I'+ B <., A:Type

I'tT(A) <4y T(B) : Type

Since the premises in this rule are contradictory (and never satisfied), such rules
will never be applied.

In order to give the definition of dr in the rule (x), we introduce the following
notational definitions.

Definition 7. We define k[K] for each kind K occurring in a WT-schema O
of the form ..(z : K)..X and in a strictly positive operator & of the form
w(z : K)...X which occurs in a WT-schema. For the former, k[K] is of kind

(K[A])K[B] and for the latter, it is of kind (K[B])K[A]. The following definition
is for the former case and the latter is similar.

1. K = El(D)
(a) if Y ¢ FV(D) then k[K] =idx = [z : K]z
(b) if Y € FV(D) then k[K] = ¢, where ¢ is in the premise of the form

I'+ D[A] <. D[B] : Type
2. K= (y : Kl)K2
(a) if y ¢ FV(Ks) then by induction, we have x[K;] : (K1[B])K1[A] and

K[K2] : (K2[A])K2[B], so we define

w[K] = [f : K[A]llz : Ki[B]J&[K:](f (k[K1](2)))

(b) if y € FV(K,) then Y ¢ FV(K;), and by induction, we have &[K>] :
(K2[A])K»[B], so we define [K] = [f : K[A]]ly : K1]&[K3](f(y))-

Definition 8. Let © be a WT-schema and ¢ a positive operator.
. @[E] =4 [A1/ Y1, ..., A/ Y3]O, and @[E] =4t [B1/Y1, ..., Bn/Y;]0, and
O[B|[T(B)] =at [B1/ Y1, .-, Bn/Yn, T(B)/X]O

e for any f : ®[A][T(B)], define &*[f] of kind @[B][T (B)] as follows:
1. if # = X then ¢*[f] = f

13



2. if ® = (z : K)$p then by Definition 7, we have [K] : (K[B])K[A], and
define
P[f] = [z : K[B]®5[f (k[K](2))]
e for any g : O[B][T (B)], define ©*(g) as follows :
1. if @ = X then ©*(g) = ¢ o

2. if @ = (z : K)O, then we have x[K] : (K[A])K[B], and define
OMg) = [o : K[A]|65 (9(k[K](2)))
3. if @ = (z: )0, then
0Mg) = [z : S[A[T (A)]][z" : S[A][T (B)]|6; (9(2*[2"]))

Then, we define
dT =df ET(Aa C: f17 ey fm)

where C = [z : T(A)]T(B) and f; = ©}(;(B)) (j =1,...,m).

The coercion dr as defined above sends the canonical objects of T (41, ..., Ay)
to the corresponding canonical objects in T (Bj, ..., By), respecting the coercions
in the premises. For example, the coercion dr;s; between List(A) and List(B)
satisfies that dpis¢(nil(A)) = nil(B) and dpist(cons(4,a,l)) =
cons(B, c¢(a),dr;ist(1)). The lemma below proves that this is in general the case.

Definition 9. Let © be a WT-schema and assume that © be of the form (z; :

My)...(zs : M)X and 21,...,z5 are fresh variables. O%(A, B) is a sequence of
arguments:

1. if ® = X then O“(4, B) =< >
2. if ©@ = (2, : K)Og (t = 1,...,8) then we have s[K] : (K[A])K[B], and define

O0"“(A, B) =< k[K](z¢),0%(A, B) >
3. if @ = (2, : $)Oy (t = 1,...,5) then O%(A, B) =< S*[®"[d, ;]],04(4, B) >
Lemma 1. dr(l;(4, 03)) = 1;(B, @;-L(Z, B)).
Proof. By the definition of d7 and the computation rule(in Page 7), we have

dr(1;(4,6) = E7(A,C, f1, -, fm, 1i(4, 0})) = ©}(5(B))(6))

Now, we need to prove that @;‘(lj(ﬁ))(@g) = 1;(B,0%(4, B)). Rather than
proving it directly, we generalise the problem first; for any g : O[B][T(B)],

6;‘(9)(@§) =g(0} (A, B)). This can be proved by induction on the structures of
schema. 0
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4 Coherence and Admissibility of Substitution and Weak
Transitivity

In this section, we show that coherence of subtyping rules and admissibility of
substitution and weak transitivity hold for the inductive types generated by
WT-schemata. Details of the proofs can be found in the forthcoming thesis of
the first author.

Note that the set R of subtyping rules consists of the rule (C) and the
subtyping rules for parameterised types and the system T[R]o also includes the
congruence rule (Cong). Furthermore, we assume that for any judgement I"
A <. B : Type € C, neither A nor B is computationally equal to any 7;-type,
where T; is a type constructor such as List and Either, and T; # T; if i # j (for
example, 71 = List and T = FEither). We also assume that the original type
theory T has good properties, in particular the Church-Rosser property and the
property of context replacement by equal kinds.

We denote by Caq the set of the derivable subtyping judgements of the form
't M <4 M':Type in T[R]o; that is, I' W M <4 M' : Type € Cp, if and only
if ' M <4 M': Type is derivable in T[R]o.

Lemma 2. If I' - My <4 Ms : Type € Caq then both My and My are compu-
tationally equal to a T;-type (i.e., the normal forms of My and M, have same
type constructor) or I' = My <4 Ms : Type € C.

Proof. By induction on derivations and because C is a WDC. O
Theorem 1. If I' - My <q M> : Type € Caq then 't My = M : Type.
Lemma 3. (Contert equality and weakening)

o If 't My <q My : Type € Cpq and =T =T" then I'" = My <q M : Type
€ Cp.-

o IfI'F My <4 Ms : Type € Cpq, I' C I and I is valid then I'" + M; <4
My : Type € Cpg.

Theorem 2. (Coherence) If I' - My <q My : Type € Cp, [' b M| <g
M, : Type € Cp, I' F My = M| : Type and I' v My = M) : Type then
I'Hd= dl : (M]_)MQ

Proof. By induction on derivations, Lemma 2 and analysing the derivations. 0O

Theorem 3. (Substitution) If Ix : K,I' + My <4 M> : Type € Cp and
I'tk: K then I [k/x]I" & [k/x] My <[/q)a [k/2]M> : Type € Cpq.

Proof. By induction on derivations and Lemma 2. O

Theorem 4. (Weak Transitivity) If I' b My <4, My : Type € Cnm, ' F
M} <4, M3 : Type € Capq and I' = My = M) : Type then I' - My <g4, M3 : Type
€ Cp for some ds.
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Proof. By induction on derivations and Lemma 2. O

Remark 7. In [LLO1], we use the measure of depth, introduced by Chen in his
PhD thesis [Che98], to prove the admissibility of transitivity rule. But in this
paper, we proceed to the proof of weak transitivity simply by induction on
derivations since WT-schemata disallow that a coercion in one premise occurs
in another premise.

5 Equality requirement for weak transitivity

In the coercive subtyping framework, a subtyping relation between two types
means that there is a (unique) coercion between them. However, such a coercion
should not be an arbitrary one; in particular, if ' A<, Band I' + B < C,
then the coercion from A to C' must be in some sense related to ¢’ o ¢, the
composition of ¢ and ¢’. As we have mentioned earlier, in such a case, we require
that the coercion from A to C' be extensionally equal to ¢ o c.

There are choices one may make about this notion of extensional equality.
First, note that, although we have considered coercive subtyping in intensional
type theories, the equality requirement for weak transitivity can be considered
to be at the meta-level, and hence can be outside the intensional type theory.
One of such choices, that we adopt here, is the notion of equality in extensional
type theory [ML84].

In an extensional type theory, one has the following rule

I'q:Eq(A,a,b)
I'Fa=b:A

where A is a type, a and b are objects of type A, Eq is the propositional equality
(Martin-Lof’s equality type or the Leibniz equality), and = is the judgemental
equality. One can consider an extension of the intensional type theory (which
has Eg-types) by the above rule to obtain the corresponding extensional theory.
Note that the above rule makes the resulting type theory undecidable and loses
its property of strong normalisation. However, it does capture the notion of
extensional equality in a strong sense.

Notation Let K be a kind of the form (z : Ko)EI(A) and k and k' be objects
of kind K. Then I' b k =.,¢ k' : K stands for the judgement Iz : Ko
k(z) = k¥'(x) : A in the extensional type theory.

We can now use the above notion of extensional equality and the associated no-
tion just introduced to express our equality requirement about weak transitivity.

e Equality requirement: If ' - A <. B : Type, ' F B <o C : T'ype, and
I't A< C:Type,then I'F " =41 ' 0c: (A)C.

The following theorem says that the equality requirement is satisfied by the
general subtyping rules for parameterised inductive types as defined in Section
3.
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Theorem 5. (equality requirement) If ' - A <. B : Type, ' F B <. C :
Type and I' = A <. C : Type and are all in Cpq, then I'F " =¢pt ' oc: (A)C.

Proof. By induction on derivations, Lemma 2 and Lemma, 1. O

6 Discussion and related work

Extension of WT-schemata One may extend WT-schemata so that some
families of inductive types can also be covered. For example, the type of vectors
is defined as follows:

Vec =g [A : Type]l M[X(0), (n : N)(A)(X (1)) X (S(n))]

where X is a place holder of kind (N)Type, N is the type of natural numbers,
0 and S are constructors for zero and the successor respectively (see [Luo94] for
more details). A common subtyping rule for vectors is the following;:

I'tn:NTFA<.B:Type
I'=Vec(A,n) <qm) Vec(B,n) : Type

where

d(0,vnil(A)) = vnil(B)
d(S(m),vcons(A,m,a,l)) = veons(B, m,c(a),d(m,l))

and vnil and vcons are the constructors of vectors introduced as usual.

Adding this subtyping rule into R, all the good properties are kept, i.e., R is
still coherent, substitution rule is admissible, weak transitivity holds and equality
requirement is satisfied. Note that Vec is a dependent family. As mentioned in
Section 3, WT-schemata avoid the kind of dependency between parameters such
as that for Y-types to make sure that there is no coercion in one premise that
occurs in another premise. The above subtyping rule for vectors does not have
such dependency.

Decidability Since we have proven coherence and admissibility of substitution
and weak transitivity, and given a precise definition of coercions, we can give
a sound and complete algorithm to implement coercive subtyping with weak
transitivity and we can be sure that coercion searching in Ca4 is decidable if it
is decidable in C.

Combining coercions As we pointed out, weak transitivity fails for some pa-
rameterised inductive types such as dependent X-types which involve certain
form of dependency between parameters. For instance, if we combine the sub-
typing rules for X-types and lists, weak transitivity fails in the sense that the
Theorem 4 fails to hold. An interesting issue is to study how one may com-
bine different coercion schemes so that they can be used together. A step to
this direction is studied in a paper in preparation, concerning how to combine
component-wise subtyping rules for X-types with the subtyping rule of first pro-
jection.
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Extensionality vs intensionality The issue of transitivity (and in particular,
the weak transitivity) is studied in intensional type theories. An interesting issue
to be studied is how transitivity (and subtyping in general) works in extensional
type theories. Although extensional type theories are undecidable and arguably
not suitable for implementation or practical use, and we are aware of some
technical difficulties to work in an extensional type theory, to study coercive
subtyping and its related issues in an extensional framework may provide further
theoretical insights.

Although we have been working in a specific framework, the issues we are
studying (e.g., transitivity in intensional theories) have a wider impact on similar
studies in different frameworks.

Related work The early development of the framework of coercive subtyp-
ing is closely related to Aczel’s idea in type-checking overloading methods for
classes [Acz94] and the work on giving coercion semantics to lambda calculi with
subtyping by Breazu-Tannen et al [BCGS91]. Bailey, Saibi, and Callaghan’s re-
spective implementations of coercions in the proof systems Lego, Coq and Plas-
tic are important contributions [Bai98,5ai97,CL01]. Barthe and his colleagues
have studied constructor subtyping and its possible applications in proof sys-
tems [BF99,BvR00]. A recent logical study of subtyping in system F can be
found in [LMS95] and Chen has studied the issue of transitivity elimination in
that framework [Che98]. One of Chen’s proof methods was used in one of our
earlier papers [LLO01] to prove the admissibility of transitivity in the framework
of coercive subtyping.
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Appendix A: The following gives the rules of the logical framework LF.

Contexts and assumptions

'K kind x ¢ FV(I') T,z:K,I" valid
<> walid I'z : K valid Nz:KI'tz: K

Equality rules

'K kind TWK=K TI'FK=K 'K =K"

I''rK=K I'FK'=K I'-K=K"
I'k: K 'tk=K:K I'trk=K:KTtK=F'K
I'Fk=k:K I'Fk =k: K I'Fk=kK':K
I''-k:KI'FrK=K TI'vtk=K:KT+-HK=K
I'-k:K' I'tk=FkK:K'

Substitution rules

Iz:K,I' valid TFEk: K
I [k/x]I" valid
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Ne:KI'+K kind ’Hk:K @INz:K,I'tK kind 'rk=kK K
I[k/z)[" + [k/z)K' kind I[k/z)[" & [k/z]K' = [k' /2] K’
Iz:K,I'+K:K' I'Fk:K Nz:KI'FE K I'Fki=k K
L [k/z)[" & [k/z)k' : [k/c]K' L ki/z) " F [ki/z)k' = [ko/z] : [k1/x] K’
Nz:K\I'+K' =K' T'tk:K ILz:KI'tkK =K :K I'rk:K
I[k/z]I" F [k/z]K' = [k/z)K" T,[k/z]["F [k/z]k' = [k/z]k" : [k/z]K’
The kind Type

I' valid '+ A:Type I'+A=B:Type
T'F Type kind I F EI(A) kind I F EI(A) = EI(B)
Dependent product kinds
'K kind It : K+ K' kind 'K, =K, Iz: K1 - K, = K}
I'k(z: K)K' kind I'k(z: Ki)K] = (z: K2)K)
F,.CU:KI—’{::K’ FI—K1=K2 F,x:Kli—klzkg:K
I't[z:Klk: (z: K)K' (5)Fl—[le1]k1Z[.Z‘:Kz]kzt(xZK1)K
I'tf:(z:K)K' Ttk:K T'Hf=f:(x:K)K I'tki=ky:K
't f(k): [k/z]K' 't f(ki) = f'(k2) : [k /2] K’
Ne:K+-EK :K' I'tk: K 'tf:(z:K)K' z¢ FV(f)
Tr (o K = /el ak " Tr Kif@) = @ KK

(8)

Appendix B: The following are the inference rules for the coercive subkinding
extension T[R] (not including the rules for subtyping).

New rules for application
I'tf:(x:K)K' I'tko:Ko ' Ko <. K
I'+ f(ko) : [e(ko)/z]) K’
'tf=f:(x:K)K' T'tko=ky: Ko '+ Ko <c K
I't f(ko) = f'(kp) : [c(ko) /2] K"
Coercive definition rule
I'tf:(x:K)K' I'tko:Ko ' Ko <. K
't f(ko) = f(c(ko)) : [c(ko)/x]K’

Basic subkinding rule
I'H A< B:Type

I' - El(A) <. El(B)

Subkinding for dependent product kinds

'K, =K, It : K} - K» <. K}

It (z: K1)K2 <[fi(e:iky)Kollen k) Je(f(e)) (270 K1) K
Congruence rule for subkinding
FFEKi< Ky TFE =K, T+Ky;=Kj I'e=c : (K1)K>
T'F K, <, K}

Substitution rule for subkinding

Iz K\ I'FK <. Ko I'+k: K

L [k/z)I" - [k/ 2] Ky <gogale [k/x]Ko
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